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TAYLOR COEFFICIENTS OF FALSE JACOBI FORMS AND RANKS OF

UNIMODAL SEQUENCES

WALTER BRIDGES AND KATHRIN BRINGMANN

Abstract. We apply the new framework for modularity of false theta functions developed by the
second author and Nazaroglu to study the asymptotic behavior of Taylor coefficients of false Jacobi
forms. The examples we study generate moments of the rank for unimodal sequences. For two
types of unimodal sequences, we prove asymptotic series for the rank moments.

1. Introduction and statement of results

In the theory of partitions, there are many generating functions F (ζ; q) of combinatorial interest
that factor as

F (ζ; q) = Jacobi form · partial/false Jacobi theta function + sparse series. (1.1)

Setting ζ = e2πiz , we wish to study Taylor coefficients in z of such F (ζ; q), themselves q-series, and
we would like to describe the growth of the coefficients of qn as n → ∞. That is, we would like a
method to estimate

coeff [qn]
1

(2πi)ℓ

[
∂ℓ

∂zℓ
F (ζ; q)

]

z=0

, as n→ ∞.

As modular (and mock modular) Jacobi forms are well understood, the primary difficulty is to
understand the contribution from the partial/false theta function. In the present work, we extend
the recent framework for the modularity of false theta functions due to the second author and
Nazaroglu [13] to accommodate two examples. We prove two variable transformations for false
theta functions, and we use the Hardy–Ramanujan Circle Method to obtain asymptotic series.

1.1. False theta functions. False theta functions appear similar to classical theta functions but
have different sign factors that prevent them from being modular forms. Consider in particular the
false theta function1 (τ = τ1 + iτ2 ∈ H, z = z1 + iz2 ∈ C)

ψ(z; τ) := i
∑

m∈Z+ 1
2

sgn

(
m+

z2

τ2

)
(−1)m− 1

2 q
m2

2 ζm
(
q := e2πiτ , ζ := e2πiz, w ∈ H

)
.

In recent work [13] the second author and Nazaroglu defined the following completion of ψ,

ψ̂(z; τ, w) := i
∑

m∈Z+ 1
2

erf

(
−i
√
πi(w − τ)

(
m+

z2

τ2

))
(−1)m− 1

2 q
m2

2 ζm,
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1Note that in [13] a slightly different definition of ψ was employed, where sgn(m) was used instead of sgn(m+ z2
τ2
).

Note that for | z2
τ2
| < 1

2
these definitions agree.
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where erf(x) := 2√
π

∫ x

0 e
−t2dt is the error function, and where here and throughout we take the

principal branch of the square-root. That ψ̂ is a “completion” of ψ means that ψ occurs as limiting

value of ψ̂ (see (3.1)) and ψ̂ transforms like a Jacobi form.

Theorem 1.1 ([13], Theorem 2.3). Let z ∈ C and τ, w ∈ H. Then for
(
a b
c d

)
∈ SL2(Z), we have

ψ̂(z; τ, w) = ετ,w

(
a b

c d

)−1

χ

(
a b

c d

)−3

(cτ + d)−
1
2 e

−πicz2

cτ+d ψ̂

(
z

cτ + d
;
aτ + b

cτ + d
,
aw + b

cw + d

)
,

where ετ,w
(
a b
c d

)
is defined in (3.2) and χ is given in (2.3).

From the modularity of ψ̂ we derive a transformation law for ψ requiring the Eichler integrals

E a
c
(z; τ) := e

−πiaz22
cτ2

2

∫ τ+i∞+ε

a
c

e

πiz22z

τ2
2

∑
m∈Z+ 1

2
(−1)m− 1

2

(
m+ z2

τ2

)
e
πi
(

m2
z+2m

(

z+(z−τ)
z2
τ2

))

√
i(z− τ)

dz.

The following theorem extends Lemma 3.1 of [13] which treats the case z = 0.

Theorem 1.2. For z ∈ C, we have, for
(
a b
c d

)
∈ SL2(Z) with c > 0,

ψ(z; τ) = χ

(
a b

c d

)−3

(cτ + d)−
1
2 e

−πicz2

cτ+d

×


ψ

(
z

cτ + d
;
aτ + b

cτ + d

)
− ie

πi
c(cτ+d)

(

Im( z
cτ+d)

Im(aτ+d
cτ+d )

)2

E a
c

(
z

cτ + d
;
aτ + b

cτ + d

)

 .

Theorem 1.2 allows to estimate the Taylor coefficients in z of ψ if τ tends to a rational number.

1.2. Partition statistics: ranks and cranks. A partition λ of a positive integer n is a sequence
of integers, λ1 ≥ . . . ≥ λℓ ≥ 1, such that λ1 + . . . + λℓ = n. The generating function for p(n), the
number of partitions of n, is the well-known infinite product (setting p(0) := 1)

∑

n≥0

p(n)qn =
1

(q; q)∞
,

where (a; q)n :=
∏n−1

j=0 (1−aqj) for n ∈ N0∪{∞}. Note that η(τ) := q
1
24
∏∞

n=1(1−qn) is Dedekind’s

eta function, a modular form. Groundbreaking work of Hardy and Ramanujan developed the Circle
Method to exploit the modularity to obtain an asymptotic series for p(n) [16]. Rademacher later
improved this to the following exact formula [21]. For h, k ∈ Z with gcd(h, k) = 1, we define
0 ≤ [−h]k < k by −h[−h]k ≡ 1 (mod k) and let χ be the multiplier for the Dedekind eta function
as in (2.3). Define the Kloostermann sums

Ak(n) := i
1
2

∑

0≤h<k
gcd(h,k)=1

χ

(
[−h]k −h[−h]k+1

k
k −h

)
e−

2πi
24k

((24n−1)h+[−h]k).

Then

p(n) =
2π

(24n − 1)
3
4

∑

k≥1

Ak(n)

k
I 3

2

(
π
√
24n− 1

6k

)
.

On the other hand, Ramanujan’s famous congruences show surprising arithmetic regularity in
p(n), namely [22]

p(5n+ 4) ≡ 0 (mod 5) , p(7n+ 5) ≡ 0 (mod 7) , p(11n + 6) ≡ 0 (mod 11) .
2



In attempt to explain these, Dyson defined the rank of a partition as rank(λ) := λ1 − ℓ, and he
conjectured that this simple statistic can be used to decompose the set of partitions of 5n+4 into 5
equal classes [14] and that the same should hold for the congruences modulo 7. These conjectures
were settled by Atkin and Swinnerton-Dyer in [6]. As the congruence modulo 11 was yet to be
explained, Dyson famously called for a “crank” statistic that would dissect all three congruences.
Such a statistic was found by Andrews and Garvan [3, 15]. Define o(λ) as the number of ones in λ
and let µ(λ) be the number of parts larger than o(λ). Then the crank is defined as

crank(λ) :=

{
λ1 if o(λ) = 0,

µ(λ)− o(λ) if o(λ) ≥ 1.

Let N(m,n) (resp. M(m,n)) denote the number of partitions of n with rank (resp. crank) equal
to m. Then one has

R(ζ; q) :=
∑

n≥0
m∈Z

N(m,n)qnζm =
∑

n≥0

qn
2

(ζq; q)n (ζ−1q; q)n
, (1.2)

C(ζ; q) :=
∑

n≥0
m∈Z

M(m,n)ζmqn =
(q; q)∞

(ζq; q)∞ (ζ−1q; q)∞
. (1.3)

Like the partition generating function, these functions also enjoy certain modularity properties.
Namely C(ζ; q) is essentially a Jacobi form, while R(ζ; q) is known to be a mock Jacobi form.

A study of moments of the rank and crank statistics was undertaken by Atkin and Garvan [4],

∑

n≥0

Nℓ(n)q
n :=

∑

n≥0

(
∑

m∈Z
mℓN(m,n)

)
qn =

1

(2πi)ℓ

[
∂ℓ

∂zℓ
R(ζ; q)

]

z=0

,

∑

n≥0

Mℓ(n)q
n :=

∑

n≥0

(
∑

m∈Z
mℓM(m,n)

)
qn =

1

(2πi)ℓ

[
∂ℓ

∂zℓ
C(ζ; q)

]

z=0

.

The symmetry ζ 7→ ζ−1 in (1.2) and (1.3) implies that Nℓ(n) = Mℓ(n) = 0 for ℓ odd. Atkin and
Garvan’s “rank-crank PDE” connects R(ζ; q) and C(ζ; q) and allowed them to prove many identities
for these moments. The rank-crank PDE was also exploited by the second author, Mahlburg, and
Rhoades [12] in their proof of the asymptotic formulas,

N2ℓ(n) ∼M2ℓ(n) ∼
(
22ℓ − 2

)
|B2ℓ|(6n)ℓp(n), (1.4)

where Bk is the k-th Bernoulli number. Note that for the crank moments, it is straightforward from
(1.3) to compute the derivatives of C(ζ; q) and write them recursively in terms of Eisenstein series
[4, equation (4.6)], whereas derivatives of R(ζ; q) are less tractable. In follow-up work, the second
author, Mahlburg, and Rhoades significantly improved on (1.4) by exploiting the Jacobi and mock
Jacobi transformations of C(ζ; q) and R(ζ; q) [11]. In particular, they avoided the rank-crank PDE
and proved asymptotic series for the moments with polynomial error.

1.3. Ranks for unimodal sequences. Let u(m,n) denote the number of unimodal sequences

a1 ≤ . . . ≤ ar ≤ c ≥ b1 ≥ . . . ≥ bs, where s− r = m and a1 + a2 + · · ·+ bs = n. (1.5)

The size of a unimodal sequence is the sum of the parts and the rank is m. Early work on
enumeration and asymptotics for unimodal sequences is due to Auluck [5] andWright [25]. Standard

3



techniques (see [23, §2.5]) yield that the generating function for u(m,n) equals

U(ζ; q) =
∑

n≥0
m∈Z

u(m,n)qnζm =
∑

n≥0

qn

(ζq, ζ−1q; q)n
.

In particular, the enumeration function u(n) for all unimodal sequences can be factored as the
product (essentially) of a weakly holomorphic modular form and a false theta function (see [25]),

U(1; q) =
∑

n≥0

u(n)qn =
1

(q; q)2∞

∑

n≥0

(−1)nq
n(n+1)

2 .

In Theorem 3.3, we show that, after subtracting a sparse series, U(ζ; q) transforms essentially as a
“false Jacobi form”.

In general, there are barriers preventing natural extensions of partition results to unimodal
sequences. A recent achievement was an exact formula for u(n) proved by the second author and
Nazaroglu using their framework for modularity of false theta functions. Prior to [13], essentially
only the main exponential term was known (see [5, 25]). The asymptotic formula below corresponds
to the second term in [13, Theorem 1.3].2 Define the Kloostermann sums Kk(n, ν) as in (6.1).

Theorem 1.3 ([13], Theorem 1.3). We have

u(n) =
π

2
3
4

√
3(24n + 1)

3
4

∑

k≥1

∑

0≤ν≤2k−1

Kk(n, ν)

k2

×
∫ 1

−1
cot

(
π

2k

(
x√
6
− ν − 1

2

))
I 3

2

(
π

3
√
2k

√
(1− x2) (24n + 1)

)(
1− x2

) 3
4 dx.

In the present paper, we study the ℓ-th unimodal rank moments, defined by

uℓ(n) :=
∑

m∈Z
mℓu(m,n) = coeff [qn]

[(
ζ
∂

∂ζ

)ℓ

U(ζ; q)

]

ζ=1

.

For ℓ odd we have uℓ(n) = 0 by symmetry. For ℓ even the main asymptotic term and resulting
logistic distribution of the rank was proved by the second author, Jennings-Shaffer, and Mahlburg
[8]. We greatly improve their results to an asymptotic series, given in terms of integrals involving

Cj(w) :=

(
1

2πi

∂

∂w

)j

cot(πw)

and the I-Bessel function Iν , certain numbers κ(a, b, c) defined in equation (2.2) and the Klooster-
mann sums Kk(n, ν) given in (6.1).

Theorem 1.4. For ℓ ∈ 2N0 and n→ ∞, we have

uℓ(n) =
π

2
3
4

√
3(24n + 1)

3
4

∑

0≤j≤ ℓ
2

a,b,c≥0
a+b+c=j

(
ℓ

2j

)
κ(a, b, c)

2
a
2
+c

(24n + 1)
a
2
+c

∑

1≤k≤√
n

0≤ν≤2k−1

ka−2Kk(n, ν)

2Note that our definition here differs from the one in [13]. If one denotes those unimodal sequences by u∗(n), then

u(n) = coeff [qn]
1

(q; q)2∞
− u

∗(n).
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×
∫ 1

−1
Cℓ−2j

(
1

2k

(
x√
6
− ν − 1

2

)) Ia+2c− 3
2

(
π

3
√
2k

√
(24n + 1) (1− x2)

)

(1− x2)
a
2
+c− 3

4

dx

+O
(
n

5ℓ
4
− 1

2 + n−
1
4 log(n)

)
.

We consider also Durfee unimodal sequences introduced by Kim and Lovejoy [18], which are
those sequences (1.5) where k is the size of the Durfee square (see [1]) of the partition

∑r
j=1 aj

and bs ≤ c − k. Let v(m,n) be the number of Durfee unimodal sequences of size n and rank m.
Standard techniques (see [18, proof of Proposition 3.1]) show that the generating function is

V (ζ; q) =
∑

n≥0
m∈Z

v(m,n)qnζm =
∑

0≤ℓ≤m

(q; q)mq
ℓ2+mζℓ

(ζq, q; q)ℓ(ζ−1q, q; q)m−ℓ

.

Define the moments vℓ(n) as above. Although not obvious from the definition or the above gener-
ating function, V (ζ; q) is symmetric under ζ 7→ ζ−1.3 Again note that vℓ(n) = 0 for ℓ odd, the main
asymptotic term and resulting logistic distribution may be found in [8]. Asymptotics for vℓ(n) are
significantly more challenging than for uℓ(n) because V (ζ; q) depends on a shifted version of ψ (see
Lemma 3.1). Unlike for unrestricted unimodal sequences, the shifted ψ has terms that contribute
to asymptotic growth (compare Corollaries 3.2 and 3.5). This is reflected by the terms below in
the second sum on k.

To state the asymptotic series for ℓ even, we require some notation. Let K := k
gcd(k,6) and define

γk,̺,ν, δk,̺,ν , and ε±k,̺ as in (4.2), (4.3), and (5.5), respectively. Let Kk,̺,ν(n), K±,[1]
k,̺,j2,j3,a

(n), and

K±,[2]
k,̺,j3,a

(n) be the Kloostermann-type sums defined in (6.3), (6.4), and (6.5), respectively. We use

the notation
∑

± to denote a sum of two terms depending on the sign.

Theorem 1.5. For ℓ ∈ 2N0 and n→ ∞, we have

vℓ(n) =
π

2
1
2 3

9
4 (4n+ 1)

3
4

∑

0≤j≤ ℓ
2

a,b,c≥0
a+b+c=j

(
ℓ

2j

)
3

a
2
+cκ(a, b, c)

2ℓ−2j
(4n+ 1)

a
2
+c

∑

0≤k≤√
n

0≤ν≤6K−1
0≤̺≤gcd(k,6)−1
gcd(̺,gcd(k,6))=1

√
gcd(k, 6)ka−1Kk,̺,ν(n)

×
∫ 1

−1

(
Cℓ−2j

(
1
6k

(
x− gcd(k, 6)

(
ν + 1

2

)
+ k

2 − ̺
))

− δk,̺,ν(−1)
ℓ
2
+j2(ℓ− 2j)!

(
3k

π(x+γk,̺,ν)

)ℓ−2j+1
)

×
Ia+2c− 3

2

(
π√
3k

√
(4n+ 1) (1− x2)

)

(1− x2)
a
2
+c− 3

4

dx

+
∑

1≤k≤√
n

0≤̺≤gcd(k,6)−1
gcd(̺,gcd(k,6))=1

∑

±
ε±k,̺

√
gcd(k, 6)

4n + 1




∑

j1,j3≥0,j2≥1
2j1+j2+j3=ℓ

∑

a,b,c≥0
a+b+c=j1

∑

0≤j4≤ j2−1
2

3This follows from [18, Proposition 3.1],

V (ζ; q) =
∑

m≥0

(

qm+1; q
)

m
qm

(ζq, ζ−1q; q)
m

.

5



ℓ!3
a
2
+c+

j2
2
+

j3
2
+

j4
2
−1ka−

1
2
+j4

(2j1)!j2 · j3!j4!(j2 − 1− 2j4)!2ℓ+a−2j1+j4−1 gcd(k, 6)j3πj4
κ(a, b, c)K±,[1]

k,̺,j2,j3,a
(n)

× (4n+ 1)
a
2
+c+

j2
2
+

j3
2
− j4

2 Ia+2c+j2+j3−j4−2

(
π√
3k

√
4n + 1

)

±
∑

j1,j3≥0
2j1+j3=ℓ

∑

a,b,c≥0
a+b+c=j1

(
ℓ

2j1

)
κ(a, b, c)

3
a
2
+c+

j3
2
− 3

2 ka−
3
2π

2a+j3−1 gcd(k, 6)j3
K±,[2]

k,̺,j3,a
(n)(4n+ 1)

a
2
+c+

j3
2
− 1

2

×
∫ 1

0
t−a−2c−j3+1Ia+2c+j3−1

(
πt√
3k

√
4n+ 1

)
dt


+O

(
n

5ℓ
4
− 1

2 +
log(n)

n
1
4

)
.

Remark. If ℓ = 0, then Theorem 1.5 becomes

v0(n) =
π

2
1
2 3

9
4 (4n+ 1)

3
4

∑

0≤k≤√
n

0≤ν≤6K−1
0≤̺≤gcd(k,6)−1
gcd(̺,gcd(k,6))=1

√
gcd(k, 6)Kk,̺,ν(n)

k

∫ 1

−1
I− 3

2

(
π√
3k

√
(4n + 1) (1− x2)

)

×
(
1− x2

) 3
4

(
cot
(

π
6k

(
x− gcd(k, 6)

(
ν + 1

2

)
+ k

2 − ̺
))

− δk,̺,ν
6k

π(x+γk,̺,ν)

)
dx

+
∑

1≤k≤√
n

0≤̺≤gcd(k,6)−1
gcd(̺,gcd(k,6))=1

∑

±
ε±k,̺

√
gcd(k, 6)

4n+ 1


2K±,[1]

k,̺,0,0,0(n)

3
√
k

I−2

(
π√
3k

√
4n+ 1

)

±
2πK±,[2]

k,̺,0,0(n)

(3k)
3
2
√
4n+ 1

∫ 1

0
tI−1

(
πt√
3k

√
4n+ 1

)
dt


+O

(
log(n)

n
1
4

)
.

Following the method of [13], it should be possible to improve the above to an exact formula.

The paper is organized as follows. In Section 2 we recall basic facts about some special functions
as well as transformation properties of the η-function, the ϑ-function, and the crank-generating
function. In Section 3 we prove Theorem 1.2 and show further transformation properties. In
Section 4, we split off contributions of the occuring Eichler integrals. In Section 5 we determine
asymptotic expansions of various functions and in Section 6 we finish the proofs of Theorem 1.4
and Theorem 1.5 using the Circle Method.
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2. Preliminaries

2.1. Special functions. Following [20, pp. 404–405] and in particular using the representation
of the I-Bessel function as a loop integral (as given in [24], §6.22, equation (1)) we conclude the
following lemma.
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Lemma 2.1. Suppose that k ∈ N, ν ∈ R and ϑ1, ϑ2, A,B ∈ R
+ satisfy k ≪ √

n, A ≪ n
k
, B ≪ 1

k
,

and kϑ1, kϑ2 ≍ 1√
n
. Then we have

∫ k
n
+ikϑ2

k
n
−ikϑ1

Z−ν exp

(
AZ +

B

Z

)
dZ = 2πi

(
A

B

) ν−1
2

Iν−1

(
2
√
AB
)
+




O
(
nν−

1
2

)
if ν ≥ 0,

O
(
n

ν−1
2

)
if ν < 0.

Our proof is based on [20, pp. 404–405] and is reproduced here for completeness.

Proof sketch. The following integral representation follows from [24], §6.22, equation (1):

2πi

(
A

B

) ν−1
2

Iν−1

(
2
√
AB
)
=

(∫ − k
n

−∞
+

∫ − k
n
−ikϑ1

− k
n

+

∫ k
n
−ikϑ1

− k
n
−ikϑ1

+

∫ k
n
+ikϑ2

k
n
−ikϑ1

+

∫ − k
n
+ikϑ2

k
n
+ikϑ2

+

∫ − k
n

− k
n
+ikϑ2

+

∫ −∞

− k
n

)
Z−ν exp

(
AZ +

B

Z

)
dZ =: J1 + J2 + . . .+ J7.

Note that J4 is the left-hand side of Lemma 2.1, so it remains to bound the other integrals.

For J2 and J6, we use Re(Z) = − k
n
< 0 and Re( 1

Z
) = Re(Z)

|Z|2 < 0, to obtain |J2|, |J6| ≪ nν−
1
2 . For

J3 and J5, we use Re(Z) ≤ k
n
< 0 and Re( 1

Z
) ≪ k, to show that

|J3|, |J5| ≪
{
nν−

1
2 if ν ≥ 0,

n
ν−1
2 if ν < 0.

Finally, we combine

J1 + J7 = −2i sin(πν)

∫ −∞

− k
n

|Z|−ν exp

(
AZ +

B

Z

)
dZ.

The lemma follows by bounding

|J1 + J7| ≪
{
nν−

1
2 if ν > 1,

n
ν−1
2 if ν ≤ 1. �

We also require certain functions occurring in the transformation law of our unimodal rank
generating functions. Define for z ∈ C, τ ∈ H

fν(z; τ) :=
sin(πz)

sinh
(
πz
τ

)eπνz2

τ .

By Lemma 3.1 of [12], we have

fν(z; τ) =
∑

r≥0

(2πiz)2r

(2r)!

∑

a,b,c≥0
a+b+c=r

νaκ(a, b, c)τ1−a−2c, (2.1)

where, with Bν(x) the ν-th Bernoulli polynomial,

κ(a, b, c) :=
(2(a+ b+ c))!(−1)a+cB2c

(
1
2

)

a!(2b+ 1)!(2c)!πa4a+b
. (2.2)

We let br(ν; τ) :=
∑

a,b,c≥0
a+b+c=r

νaκ(a, b, c)τ1−a−2c. A direct calculation yields the following lemma.
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Lemma 2.2. Let k ≪ √
n and suppose that Z = k

n
−ikΘ with −ϑ1 ≤ Θ ≤ ϑ2, where kϑ1, kϑ2 ≍ 1√

n
.

Then we have

br(jk;Z) ≪j |Z|1−2r.

Finally, we require the following integral evaluation (see below equation (3,4) of [13]).

Lemma 2.3. Let V ∈ C with Re(V ) > 0 and a ∈ R \ {0}. Then for any ε > 0,
∫ ∞−iε

−V

e−πa2z

√−z
dz =

1

ia

(
sgn(a) + erf

(
ia
√
πV
))

,

where the path of integration avoids the branch cut of
√−z along the positive real axis.

2.2. Modular forms and Jacobi forms. We define C∗(z; τ) := q−
1
24C(ζ; q). The classical Jacobi

theta function is given as

ϑ(z; τ) := i
∑

m∈Z+ 1
2

(−1)m− 1
2 q

m2

2 ζm.

For
(
a b
c d

)
∈ SL2(Z), the multiplier for the Dedekind eta function is defined as

χ

(
a b

c d

)
:=





(
d
|c|

)
e

πi
12((a+d)c−bd(c2−1)−3c) if c is odd,

(
c
d

)
e

πi
12(ac(1−d2)+d(b−c+3)−3) if c is even,

(2.3)

where ( ··) is the Kronecker symbol. We have the following transformation laws (see [19]).

Lemma 2.4. For Re(Z) > 0 and gcd(h, k) = 1, we have

η

(
h

k
+
iZ

k

)
= χ

(
[−h]k −h[−h]k+1

k
k −h

)−1
1√
iZ
η

(
[−h]k
k

+
i

kZ

)
,

ϑ

(
z;
h

k
+
iZ

k

)
= χ

(
[−h]k −h[−h]k+1

k
k −h

)−3
1√
iZ
e−

πkz2

Z ϑ

(
z

iZ
;
[−h]k
k

+
i

kZ

)
,

C∗
(
z;
h

k
+
iZ

k

)
=

sin(πz)

sin
(
πz
iZ

)χ
(
[−h]k −h[−h]k+1

k
k −h

)
1√
iZ
e

πkz2

Z C∗
(
z

iZ
;
[−h]k
k

+
i

kZ

)
.

3. Modular transformations and the proof of Theorem 1.2

3.1. Rewriting the generating functions. We use identities of Ramanujan [1] and Kim–Lovejoy
[17, 18] to rewrite U(ζ; q) and V (ζ; q) in terms of ϑ, η, C∗, ψ, and certain sparse series. Define

U1(z; τ) := − iC
∗(z; τ)
2η(τ)

(ϑ(2z; τ) + ψ(2z; τ)), V1(z; τ) := −q 1
12 ζ−

1
2
C∗(z; τ)
η(τ)

ψ

(
3z − τ +

1

2
; 6τ

)
,

H1(ζ; q) := (1− ζ)
∑

m≥0

(−1)m
(
1− ζ2q2m+1

)
q

m(3m+1)
2 ζ3m, H2(ζ; q) := (1− ζ)

∑

m≥0

qm(m+1)ζm.

Lemma 3.1. Let z ∈ R.

(1) We have

U(ζ; q) = q−
1
24U1(z; τ) +H1(ζ; q).

(2) For ℓ ∈ 2N0, we have
[
∂ℓ

∂zℓ
V (ζ; q)

]

z=0

=

[
∂ℓ

∂zℓ

(
q−

1
4V1(z; τ) +H2(ζ; q)

)]

z=0

.
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Proof. (1) Since sgn(m + z2
τ2
) = sgn(m) for z ∈ R, the claim follows directly from [2, entry 6.3.2]

(see also [17, Proposition 2.1]).
(2) We begin with (see [18, Proposition 3.1]),

V (ζ; q) = C(ζ; q)G2(ζ; q) +H2(ζ; q),

where

G2(ζ; q) :=
1

(q; q)∞

∑

m≥0

(
1− ζq2m+1

)
q3m

2+2mζ3m+1.

We next rewrite G2 as G2(ζ; q) = G
[1]
2 (ζ; q) +G

[2]
2 (ζ; q), where

G
[1]
2 (ζ; q) :=

1

(q; q)∞

∑

m≥0

q3m
2+2mζ3m+1, G

[2]
2 (ζ; q) := − 1

(q; q)∞

∑

m≥0

q3m
2+4m+1ζ3m+2.

In G
[2]
2 (ζ; q), we make the change of variables m 7→ −m− 1 to obtain

G
[2]
2 (ζ; q) = − 1

(q; q)∞

∑

m≤−1

q3m
2+2mζ−3m−1.

Next note that for ℓ even
[
∂ℓ

∂zℓ
C(ζ; q)G2(ζ; q)

]

z=0

=

[
∂ℓ

∂zℓ
C(ζ; q)

(
G

[1]
2 (ζ; q) +G

[2]
2

(
ζ−1; q

))]

z=0

.

Now combine, for z ∈ R,

G
[1]
2 (ζ; q) +G

[2]
2

(
ζ−1; q

)
= −q

− 1
4 ζ−

1
2

(q; q)∞
ψ

(
3z − τ +

1

2
; 6τ

)
,

where we use that for z ∈ R we have | Im(3z−τ+ 1
2
)

Im(6τ) | = 1
6 <

1
2 . From this, we obtain the claim. �

3.2. Proof of Theorem 1.2. We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We first note that

lim
t→∞

ψ̂(z; τ, τ + it+ ε) = ψ(z; τ), (3.1)

which follows from

lim
|z|→∞

erf(z) =

{
1 if |Arg(z)| < π

4 ,

−1 if 3π
4 < |Arg(z)| ≤ π.

We write (w ∈ H can be choosen freely)

ψ̂(z; τ, w) = ψ(z; τ) + ψ∗(z; τ, w).

Using that erf ′(x) = 2√
π
e−x2

, we obtain, away from the branch cut,

∂

∂w
ψ̂(z; τ, w) =

i√
i(w − τ)

∑

m∈Z+ 1
2

(−1)m− 1
2

(
m+

z2

τ2

)
q

m2

2 ζme
πi(w−τ)

(

m+
z2
τ2

)2

.

From (3.1) we thus obtain

ψ∗(z; τ, w) = −ie
−πiτz22

τ2
2

∫ τ+i∞+ε

w

e

πiz22z

τ2
2

∑
m∈Z+ 1

2
(−1)m− 1

2

(
m+ z2

τ2

)
e
πi
(

m2
z+2m

(

z+(z−τ)
z2
τ2

))

√
i(z− τ)

dz.
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Now recall that by Theorem 1.1 we have, for
(
a b
c d

)
∈ SL2(Z),

ψ̂

(
z

cτ + d
;
aτ + b

cτ + d
,
aw + b

cw + d

)
= ετ,w

(
a b

c d

)
χ

(
a b

c d

)3

(cτ + d)
1
2 e

πicz2

cτ+d ψ̂(z; τ, w),

where

ετ,w

(
a b

c d

)
:=

√
i(w − τ)

(cτ + d)(cw + d)

√
cτ + d

√
cw + d√

i(w − τ)
. (3.2)

Then we have

ψ

(
z

cτ + d
;
aτ + b

cτ + d

)
− ετ,w

(
a b

c d

)
χ

(
a b

c d

)3

(cτ + d)
1
2 e

πicz2

cτ+d ψ(z; τ)

= −ψ∗
(

z

cτ + d
;
aτ + b

cτ + d
,
aw + b

cw + d

)
+ ετ,w

(
a b

c d

)
χ

(
a b

c d

)3

(cτ + d)
1
2 e

πicz2

cτ+d ψ∗(z; τ, w).

Now letting w → τ + i∞+ ε the integral defining ψ∗(z; τ, w) vanishes and we are left with

− lim
w→τ+i∞+ε

ψ∗
(

z

cτ + d
;
aτ + b

cτ + d
,
aw + b

cw + d

)
= ie

−πiaτ+b
cτ+d

(

Im( z
cτ+d)

Im(aτ+d
cτ+d )

)2 ∫ aτ+b
cτ+d

+i∞+ε

a
c

e
πi

(

Im( z
cτ+d)

Im(aτ+d
cτ+d )

)2

z

×

∑
m∈Z+ 1

2
(−1)m− 1

2

(
m+

Im( z
cτ+d)

Im(aτ+d
cτ+d )

)
e
πi

(

m2
z+2m

(

z
cτ+d

+(z− aτ+b
cτ+d)

Im( z
cτ+d)

Im( aτ+d
cτ+d )

))

√
i
(
z− aτ+b

cτ+d

) dz,

using that c > 0 and computing limw→τ+i∞+ε ετ,w
(
a b
c d

)
= 1. The claim now follows from

aτ + b

cτ + d
=
a

c
− 1

c(cτ + d)
. �

Setting a := [−h]k, b := −h[−h]k+1
k

, c := k, d := −h, and τ := h
k
+ iZ

k
in Theorem 1.2, we

immediately obtain the following corollary.

Corollary 3.2. For z ∈ C, we have

ψ

(
z;
h

k
+
iZ

k

)
= χ

(
[−h]k −h[−h]k+1

k
k −h

)−3

(iZ)−
1
2 e−

πkz2

Z

×


ψ

(
z

iZ
;
[−h]k
k

+
i

kZ

)
− ie

πk
Z

(

Re(zZ)
Re(Z)

)2

E [−h]k
k

(
z

iZ
;
[−h]k
k

+
i

kZ

)
 .

3.3. Unrestricted unimodal sequences. Using Corollary 3.2 and Lemma 2.4, the function U1

transforms as follows.

Theorem 3.3. We have for Z ∈ C with Re(Z) > 0, 0 ≤ h < k, gcd(h, k) = 1, z ∈ R with |kz| < 1
4

U1

(
z;
h

k
+
iZ

k

)
= −iχ

(
[−h]k −h[−h]k+1

k
k −h

)−1

(iZ)−
1
2

×


f3k (z;−Z)U1

(
z

iZ
;
[−h]k
k

+
i

kZ

)
+ 1

2fk(z;Z)
C∗
(

z
iZ
; [−h]k

k
+ i

kZ

)

η
(
[−h]k

k
+ i

kZ

) E [−h]k
k

(
2z

iZ
;
[−h]k
k

+
i

kZ

)
 .
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3.4. Durfee unimodal sequences. Recall that K = k
gcd(k,6) . We further set H := 6h

gcd(k,6) and

αH,K := K
2 − H

6 . Before stating the relevant transformation, we state the following property of the
rational numbers αH,K . A direct calculation gives the following.

Lemma 3.4. We have
{
m ∈ Z+

1

2
: |m− αH,K | ≤ 1

gcd(k, 6)

}

=





{αH,K , αH,K ± 1} if gcd(k, 12) = 1,{
αH,K ± 1

2

}
if gcd(k, 12) = 2,

{αH,K} if gcd(k, 12) = 4,{
αH,K + 1

gcd(k,6)

}
if gcd(k, 12) ∈ {3, 6} and h ≡ 1 (mod 3),

{
αH,K − 1

gcd(k,6)

}
if gcd(k, 12) ∈ {3, 6} and h ≡ 2 (mod 3),

0 if gcd(k, 12) = 12.

We analyze the terms with |m−αH,K| ≤ 1
gcd(k,6) in ψ and E differently, and to this end we define

Ψ(z; τ) := i
∑∗

m∈Z+ 1
2

sgn

(
m+

z2

τ2

)
(−1)m− 1

2 q
m2

2 ζm,

E a
c
(z; τ) := e

−πiaz22
cτ2

2

∫ τ+i∞+ε

a
c

e
πi

z22
τ2
2
z

∑∗
m∈Z+ 1

2
(−1)m− 1

2

(
m+ z2

τ2

)
e
πi
(

m2
z+2m

(

z+(z−τ)
z2
τ2

))

√
i(z− τ)

dz,

where
∑∗

m∈Z+ 1
2
denotes the summation restricted to those m ∈ Z+ 1

2 with |m− αH,K | > 1
gcd(k,6) .

To state our transformations, it is convenient to define β := 3z − h
k
+ 1

2 . Note that β ∈ R if

and only if z ∈ R. Let W := 6
gcd(k,6)Z and denote by

∑∗∗
m∈Z+ 1

2
the summation restricted to these

m ∈ Z+ 1
2 with |m− αH,K | ≤ 1

gcd(k,6) .

Corollary 3.5. For z ∈ R, we have

ψ

(
3z − h

k
− iZ

k
+

1

2
; 6

(
h

k
+
iZ

k

))

= χ

(
[−H]K −H[−H]K+1

K
K −H

)−3

(iW )−
1
2 e−

πK
W (β− iZ

k )
2

×
(
Ψ

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)
− ie

πKβ2

W E [−H]K
K

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)

+i
∑∗∗

m∈Z+ 1
2

(−1)m− 1
2 e

πim2
(

[−H]K
K

+ i
KW

)

+2πim( β
iW

− 1
6K )

erf

(
i(3Kz + αH,K −m)

√
π

KW

))
.

Proof. Corollary 3.2 implies that

ψ

(
3z − h

k
− iZ

k
+

1

2
; 6

(
h

k
+
iZ

k

))
= χ

(
[−H]K −H[−H]K+1

K
K −H

)−3

(iW )−
1
2 e−

πK
W (β− iZ

k )
2

×
(
ψ

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)
− ie

πKβ2

W E [−H]K
K

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

))
.

Letting z 7→ iz + [−H]K
K

+ i
KW

in the integral in E and simplifying exponents, the terms with

|m− αH,K | ≤ 1
gcd(k,6) (without the prefactors) become
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(−1)m+ 1
2 e

πim2
(

[−H]K
K

+ i
KW

)

+2πim( β
iW

− 1
6K )

(
isgn(3Kz + αH,K −m) + (3Kz + αH,K −m)

∫ ∞−iε

− 1
KW

e−π(3Kz+αH,K−m)2z

√−z
dz

)
.

Using Lemma 2.3 we obtain the claim. �

We state the transformation of V1 we require the following multiplier

χh,k :=

χ

(
[−h]k −h[−h]k+1

k
k −h

)2

χ

(
[−H]K −H[−H]K+1

K
K −H

)3 .

The following lemma follows from Lemma 2.4 and Corollary 3.5.

Lemma 3.6. With notation as above and z ∈ R sufficiently small, we have

V1

(
z;
h

k
+
iZ

k

)
= iχh,k(iW )−

1
2

C∗
(

z
iZ
; [−h]k

k
+ i

kZ

)

η
(
[−h]k

k
+ i

kZ

)

×


e−

πih
6k

− 6παH,Kz

W
−

πα2
H,K

KW
+πi

6 f k
2
(z;−Z)Ψ

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)

+ ie−
πih
6k

+πi
6 fk(z;Z)E [−H]K

K

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)

+i
∑∗∗

m∈Z+ 1
2

(−1)m− 1
2 f k

2
(z;−Z)erf

(
i(3Kz + αH,K −m)

√
π

KW

)

× e
πz
Z

(m−αH,K)− π
KW

(m−αH,K)2+πi

(

[−H]Km2

K
+ H

36K
− 1

3K
(m−αH,K)

)


 .

4. Mordell-type integrals

4.1. Unrestricted unimodal sequences. Similarly as in the proof of Lemma 3.2 of [13], we
obtain the following representations of E [−h]k

k

.

Lemma 4.1. For z ∈ R sufficiently small and Re(Z) > 0, we have

E [−h]k
k

(
2z

iZ
;
[−h]k
k

+
i

kZ

)
=

1

πi

∑

m∈Z+ 1
2

(−1)m− 1
2 eπim

2 [−h]k
k lim

ε→0+

∫ ∞

−∞

e−
πx2

kZ

x− (m− 2kz)(1 + iε)
dx.

For 0 ≤ D ≤ 1
12 , we write

e
2πD
kZ E∗

[−h]k
k

(
2z

iZ
;
[−h]k
k

+
i

kZ

)
= E∗

[−h]k
k

,D

(
2z

iZ
;
[−h]k
k

+
i

kZ

)
+ Ee

[−h]k
k

,D

(
2z

iZ
;
[−h]k
k

+
i

kZ

)
,

where

E∗
[−h]k

k
,D

(
2z
iZ
; [−h]k

k
+ i

kZ

)
:=

e
2πD
kZ

πi

∑

m∈Z+ 1
2

(−1)m− 1
2 eπim

2 [−h]k
k lim

ε→0+

∫ √
2D

−
√
2D

e−
πx2

kZ

x− (m− 2kz)(1 + iε)
dx,
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Ee
[−h]k

k
,D

(
2z
iZ
; [−h]k

k
+ i

kZ

)
:=

e
2πD
kZ

πi

∑

m∈Z+ 1
2

(−1)m− 1
2 eπim

2 [−h]k
k lim

ε→0+

∫

|x|≥
√
2D

e
πx2

kZ

x− (m− 2kz)(1 + iε)
dx.

Lemma 4.2. Assume that 0 ≤ D ≤ 1
12 and Re( 1

Z
) ≥ k

2 . Then, for ℓ∈ N0

[
∂ℓ

∂zℓ
Ee

[−h]k
k

,D

(
2z

iZ
;
[−h]k
k

+
i

kZ

)]

z=0

≪ log(k) + kℓ.

Proof. We follow the proof of Lemma 3.3 in [13]. Assume that z ∈ R is sufficiently small. Combining
the integral over the negative and positive reals gives, making the change of variables u = x2 − 2D

Ee
[−h]k

k
,D

(
2z

iZ
;
[−h]k
k

+
i

kZ

)

=
i

π

∑

m∈Z+ 1
2

(−1)m− 1
2 (m− 2kz)eπim

2 [−h]k
k lim

ε→0+

∫ ∞

0

e−
πu
kZ

√
u+ 2D (u+ 2D − (m− 2kz)2(1 + iε)2)

du.

Using the identity 1
a−b

= a
b(a−b) −

1
b
, we split

1

u+ 2D − (m− 2kz)2(1 + iε)2

=
u+ 2D

(m− 2kz)2(1 + iε)2(u+ 2D − (m− 2kz)2(1 + iε)2)
− 1

(m− 2kz)2(1 + iε)2

and consider the contribution from each term separately which we denote by Ee
[−h]k

k
,D,1

and Ee
[−h]k

k
,D,2

,

respectively. We start with Ee
[−h]k

k
,D,1

and write

Ee
[−h]k

k
,D,1

(
2z

iZ
;
[−h]k
k

+
i

kZ

)

=
i

π

∑

m∈Z+ 1
2

(−1)m− 1
2 eπim

2 [−h]k
k

m− 2kz
lim
ε→0+

∫ ∞

0

√
u+ 2De−

πu
kZ

u+ 2D − (m− 2kz)2(1 + iε)2
du.

The poles of the integrand lie at u = −2D + (m − 2kz)2(1 + iε)2. These have positive real part

if ε is sufficiently small. If Re( 1
Z
) ≥ k

2 , then either Re(e
πi
4

kZ
) ≥ 1

2
√
2
or Re(e

−πi
4

kZ
) ≥ 1

2
√
2
. Using

the Residue Theorem, we shift the path of integration to e
πi
4 R

+ if Re(e
πi
4

kZ
) ≥ 1

2
√
2
or to e−

πi
4 R

+ if

Re(e
−πi

4

kZ
) ≥ 1

2
√
2
. In the first case we pick up residues which contribute

−2
∑

m∈Z+ 1
2

sgn(m)(−1)m− 1
2 eπim

2 [−h]k
k

−
π(m2−2D)

kZ

∑

j≥0

(
4πz
Z

)j
(m− kz)j

j!
.

The contribution of the ℓ-th coefficient in z is O(kℓ).

We next bound the remaining part and distinguish whether Re(e
πi
4

kZ
) ≥ 1

2
√
2
or Re(e

−πi
4

kZ
) ≥ 1

2
√
2
.

We first assume that Re(e
πi
4

kZ
) ≥ 1

2
√
2
and shift the path of integration to e

πi
4 R

+. Now the poles are

away from the path of integration, and Lebesgue’s Theorem on Dominated Convergence allows us
13



to set ε = 0. Thus, the limit (making the change of variables u 7→ e
πi
4 u) equals

ie
πi
4

π

∑

m∈Z+ 1
2

(−1)m− 1
2 eπim

2 [−h]k
k

m− 2kz

∫ ∞

0

√
1+i√

2
u+ 2De

−π(1+i)u√
2kZ

1+i√
2
u+ 2D − (m− 2kz)2

du.

We bound 
 ∂ℓ

∂zℓ
1

(m− 2kz)
(
1+i√

2
u+ 2D − (m− 2kz)2

)




z=0

≪ℓ
kℓ

m3
.

Now estimating |e−
π(1+i)u√

2 | ≤ e
− πu√

2 we bound the ℓ-th derivative of Ee
̺,D,1 at z = 0 against

≪ kℓ
∑

m∈Z+ 1
2

1

m3

∫ ∞

0

∣∣∣∣
1 + i√

2
u+ 2D

∣∣∣∣
1
2

e
− πu√

2du≪ kℓ.

The case Re(e
−πi

4

kZ
) ≥ 1

2
√
2
is treated in the same way.

In Ee
[−h]k

k
,D,2

, we may take ε→ 0+, to obtain

Ee
[−h]k

k
,D,2

(
2z

iZ
;
[−h]k
k

+
i

kZ

)
=

1

πi

∑

m∈Z+ 1
2

(−1)m− 1
2 eπim

2 [−h]k
k

m− 2kz

∫ ∞

0

e−
πu
kZ√

u+ 2D
du.

Taylor expanding in z, the coefficient of zℓ is

(2k)ℓ

πi

∑

m∈Z+ 1
2

(−1)m− 1
2 eπim

2 [−h]k
k

mℓ+1

∫ ∞

0

e−
πu
kZ√

u+ 2D
du.

Since Re( 1
kZ

) ≥ 1
2 , the integral is O(1). For ℓ ≥ 2, the series converges absolutely, and the overall

term is ≪ kℓ. For ℓ = 0, the sum is O(log(k)) as in [13]. �

Proceeding as in (3.11) of [13], we obtain the following representation as a Mordell-type integral.

Lemma 4.3. For z ∈ R and Re(Z) > 0, we have

E∗
[−h]k

k
, 1
12

(
2z

iZ
;
[−h]k
k

+
i

kZ

)

=
1

2
√
6ki

2k−1∑

ν=0

(−1)νeπi(ν+
1
2)

2 [−h]k
k

∫ 1

−1
cot

(
π

2k

(
x√
6
− ν − 1

2
+ 2kz

))
e

π
6kZ (1−x2)dx.

4.2. Durfee unimodal sequences. We next rewrite E [−H]K
K

as in Lemma 4.1.

Lemma 4.4. For z ∈ R with |z| sufficiently small and Re(Z) > 0, we have

E [−H]K
K

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)

=
1

πi

∑∗
m∈Z+ 1

2

(−1)m− 1
2 e

πi
(

− m
3K

+
[−H]K

K
m2
)

lim
ε→0+

∫ ∞

−∞

e−
πx2

KW

x− (m−Kβ)(1 + iε)
dx.
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Let

e
2πD
KW

πi

∑∗
m∈Z+ 1

2

(−1)m− 1
2 e

πi
(

− m
3K

+
[−H]K

K
m2
)

lim
ε→0+

∫ ∞

−∞

e−
πx2

KW

x− (m−Kβ)(1 + iε)
dx

= E
∗
[−H]K

K
,D

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)
+ E

e
[−H]K

K
,D

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)
, (4.1)

where

E
∗
[−H]K

K
,D

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)

:=
e

2πD
KW

πi

∑∗
m∈Z+ 1

2

(−1)m− 1
2 e

πi
(

− m
3K

+
[−H]K

K
m2
)

lim
ε→0+

∫ √
2D

−
√
2D

e−
πx2

KW

x− (m−Kβ)(1 + iε)
dx,

E
e
[−H]K

K
,D

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)

:=
e

2πD
KW

πi

∑∗
m∈Z+ 1

2

(−1)m− 1
2 e

πi
(

− m
3K

+
[−H]K

K
m2
)

lim
ε→0+

∫

|x|≥
√
2D

e−
πx2

KW

x− (m−Kβ)(1 + iε)
dx.

The following bounds for the Taylor coefficients of Ee
[−H]K

K
,D

are proved similarly to Lemma 4.2.

Lemma 4.5. Let ℓ ∈ 2N0. With 0 ≤ D ≤ 1
2 gcd(k,6)2

, we have

[
∂ℓ

∂zℓ
E
e
[−H]K

K
,D

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)]

z=0

≪ log(k) + kℓ.

We next write E
∗
[−H]K

K
, 1
gcd(k,6)2

as a Mordell-type integral. For 0 ≤ ν ≤ 6K − 1 and 0 ≤ ̺ <

gcd(k, 6), we set

γk,̺,ν :=





1 if gcd(k, 6)
(
ν + 1

2

)
≡ k

2 − ̺− 1 (mod 6k) ,

−1 if gcd(k, 6)
(
ν + 1

2

)
≡ k

2 − ̺+ 1 (mod 6k),

0 if gcd(k, 6)
(
ν + 1

2

)
≡ k

2 − ̺ (mod 6k),

(4.2)

δk,̺,ν :=

{
1 if

∣∣6kr + gcd(k, 6)
(
ν + 1

2

)
− k

2 + ̺
∣∣ ≤ 1 for some r ∈ Z,

0 otherwise.
(4.3)

Lemma 4.6. For h = µ gcd(k, 6) + ̺ with 0 ≤ ̺ < gcd(k, 6), we have

E
∗
[−H]K

K
, 1
2 gcd(k,6)2

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)
=
e−

πi
6K

6ki

6K−1∑

ν=0

(−1)ν+µe
πi
(

µ−ν
3K

+
[−H]K

K (ν−µ+ 1
2)

2
)

×
∫ 1

−1

(
cot
(

π
6k

(
x− gcd(k, 6)

(
ν + 1

2

)
+ k

2 − ̺+ 3kz
))

− 6kδk,̺,ν
π(x+ γk,̺,ν + 3kz)

)
e

π
6kZ (1−x2)dx.

Proof. Let m = 6Kr+ν−µ+ 1
2 with 0 ≤ ν ≤ 6K−1 and r ∈ Z. Then −µ−αH,K = −K

2 + ̺
gcd(k,6) ,

and we have

E
∗
[−H]K

K
,D

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)
=
e

2πD
KW

− πi
6K

πi

6K−1∑

ν=0

(−1)ν+µe
πi
(

µ−ν
3K

+
[−H]K

K (ν−µ+ 1
2)

2
)
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× lim
N→∞

∑

−N≤r≤N
∣

∣

∣
6Kr+ν+ 1

2
−K

2
+ ̺

gcd(k,6)

∣

∣

∣
> 1

gcd(k,6)

∫ √
2D

−
√
2D

e−
πx2

KW

x−
(
6Kr + ν + 1

2 − K
2 + ̺

gcd(k,6) − 3Kz
)dx. (4.4)

Now Lemma 3.4 implies that |6Kr + ν + 1
2 − K

2 + ̺
gcd(k,6) | ≤

1
gcd(k,6) if and only if δk,̺,ν = 1 and

6Kr + ν +
1

2
− K

2
+

̺

gcd(k, 6)
= − γ̺,k,ν

gcd(k, 6)
.

Thus, using π cot(πx) = limN→∞
∑

−N≤r≤N
1

x+r
, we have

lim
N→∞

∑

−N≤r≤N
∣

∣

∣
6Kr+ν+ 1

2
−K

2
+ ̺

gcd(k,6)

∣

∣

∣
> 1

gcd(k,6)

1

x−
(
6Kr + ν + 1

2 − K
2 + ̺

gcd(k,6) − 3Kz
)

=
π

6K


cot

(
π

6K

(
x− ν − 1

2
+
K

2
− ̺

gcd(k, 6)
+ 3Kz

))
− 6Kδk,̺,ν

π
(
x+

γk,̺,ν
gcd(k,6) + 3Kz

)


 .

Note that if δk,̺,ν = 1, then the above function has a removable singularities corresponding to the

denominators in the right three terms. Plugging this into (4.4) and setting D = 1
2 gcd(k,6)2

, we have

e−
πi
6K

6Ki

6K−1∑

ν=0

(−1)ν+µe
πi
(

µ−ν
3K

+
[−H]K

K (ν−µ+ 1
2)

2
) ∫ 1

gcd(k,6)

− 1
gcd(k,6)

e
π

K gcd(k,6)2W
− πx2

KW

×


cot

(
π
6K

(
x− ν − 1

2 + K
2 − ̺

gcd(k,6) + 3Kz
))

− 6Kδk,̺,ν

π
(
x+

γk,̺,ν
gcd(k,6) + 3Kz

)


 dx.

Making the change of variables x 7→ x
gcd(k,6) gives the claim. �

5. Taylor coefficients

5.1. Unrestricted unimodal sequences. The following theorem determines the main term of
derivatives (in z) of U1.

Theorem 5.1. Let ℓ ∈ 2N0. For Z ∈ C with Re( 1
Z
) ≥ k

2 and |Z| ≪ 1
k
, we have

[
∂ℓ

∂zℓ
U1

(
z;
h

k
+
iZ

k

)]

z=0

=
(2πi)ℓi

3
2

4
√
6k

χ

(
[−h]k −h[−h]k+1

k
k −h

)−1

×
2K−1∑

ν=0

(−1)νe
πi[−h]k

12k
(12ν(ν+1)+1)

ℓ
2∑

j=0

(
ℓ

2j

) ∑

a,b,c≥0
a+b+c=j

kaκ(a, b, c)Z
1
2
−a−2c

×
∫ 1

−1
Cℓ−2j

(
1

2k

(
x√
6
− ν − 1

2

))
e

π
6kZ (1−x2)dx+O

(
log(k)|Z| 12−ℓ

)
.

Proof. We first write

C∗(z; τ)
η(τ)

= q−
1
12


1 +

∑

j≥0

γj(τ)
(2πiz)j

j!


 , (5.1)
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where |γj(τ)| ≪ e2πiτ as τ → i∞. Recall the transformation of U1 stated in Theorem 3.3. We first
bound the Taylor coefficients in the first term (without prefactors). Define

U1(z; τ) =: q
1
24

∑

j≥0

aj(τ)
(2πiz)j

j!
.

We write

f3k (z;−Z)U1

(
z

iZ
;
[−h]k
k

+
i

kZ

)

= e
πi
12

(

[−h]k
k

+ i
kZ

)∑

ℓ≥0


ℓ!

∑

r,j≥0
j+2r=ℓ

br (3k;−Z)
(2r)!j!

aj

(
[−h]k
k

+
i

kZ

)(
− 1

Z

)j




(2πiz)ℓ

ℓ!
.

Note that aj(
[−h]k

k
+ i

kZ
) ≪ 1 as Z → 0 with Re(Z) > 0, so

[
∂ℓ

∂zℓ

(
f3k (z;−Z)U1

(
iz

Z
;
[−h]k
k

+
i

kZ

))]

z=0

≪ |Z|1−ℓe−
π

12k
Re( 1

Z ).

The main term comes from the second term in Theorem 3.3. Using the decomposition of E and

subtracting the principal part from C∗(z;τ)
η(τ) in (5.1), the second term in Theorem 3.3 equals

− i

2
χ

(
[−h]k −h[−h]k+1

k
k −h

)−1

(iZ)−
1
2 fk(z;Z)

×


e−

πi[−h]k
6k E∗

[−h]k
k

, 1
12

(
2z

iZ
;
[−h]k
k

+
i

kZ

)
+ e−

πi[−h]k
6k Ee

[−h]k
k

, 1
12

(
2z

iZ
;
[−h]k
k

+
i

kZ

)

+



C∗
(

z
iZ
; [−h]k

k
+ i

kZ

)

η
(
[−h]k

k
+ i

kZ

) − e
−πi

6

(

[−h]k
k

+ i
kZ

)


 Ee

[−h]k
k

,0

(
2z

iZ
;
[−hk]
k

+
i

kZ

)
 . (5.2)

It is easy to show using Lemma 2.2 and Lemma 4.2 that for 0 ≤ D ≤ 1
12 we have

[
∂ℓ

∂zℓ

(
fk(z;Z)Ee

[−h]k
k

,D

(
2z

iZ
;
[−h]k
k

+
i

kZ

))]

z=0

≪ log(k)|Z|1−ℓ. (5.3)

Combining (5.2) and (5.3), we have

[
∂ℓ

∂zℓ
U1

(
z;
h

k
+
iZ

k

)]

z=0

= − i

2
χ

(
[−h]k −h[−h]k+1

k
k −h

)−1

(iZ)−
1
2 e−

πi[−h]k
6k

×
[
∂ℓ

∂zℓ

(
fk(z;Z)E∗

[−h]k
k

, 1
12

(
2z

iZ
;
[−h]k
k

+
i

kZ

))]

z=0

+O
(
log(k)|Z| 12−ℓ

)
. (5.4)

By Lemma 4.3, we have

[
∂ℓ

∂zℓ

(
fk(z;Z)E∗

[−h]k
k

, 1
12

(
2z

iZ
;
[−h]k
k

+
i

kZ

))]

z=0

= − i

2
√
6k

2K−1∑

ν=0

(−1)νeπi(ν+
1
2)

2 [−h]k
k

×
[
∂ℓ

∂zℓ

(
fk(z;Z)

∫ 1

−1
cot

(
π

2k

(
x√
6
− ν − 1

2
+ 2kz

)))]

z=0

e
π

6kZ (1−x2)dx.

We next compute, using the product rule and the fact that fk is an even function,
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[
∂ℓ

∂zℓ

(
fk(z;Z) cot

(
π

2k

(
x√
6
− ν − 1

2
+ 2kz

)))]

z=0

= (2πi)ℓ
∑

a,b,c≥0
0≤j≤ ℓ

2

(
ℓ

2j

) ∑

a,b,c≥0
a+b+c=j

kaκ(a, b, c)Z1−a−2cCℓ−2j

(
1

2k

(
x√
6
− ν − 1

2

))
.

Combining with the prefactors in (5.4) completes the proof. �

5.2. Durfee unimodal sequences. The following theorem determines the main terms of deriva-
tives of V1. Define the following two indicator functions ε+̺,k and ε−̺,k,

ε±k,̺ :=

{
1 if ̺ ≡ ±1 (mod gcd(k, 3)) and gcd(k, 12) ∈ {1, 2, 3, 6},
0 otherwise.

(5.5)

We have the following for the derivatives of V1.

Theorem 5.2. Let ℓ ∈ 2N0 and suppose h = gcd(k, 6)µ + ̺ with 0 ≤ ̺ < gcd(k, 6). For Z ∈ C

with Re( 1
Z
) ≥ k

2 and |Z| ≪ 1
k
, we have

[
∂ℓ

∂zℓ
V1

(
z;
h

k
+
iZ

k

)]

z=0

= (2πi)ℓ
i
1
2 e

πi
6k

(k−h−[−h]k−gcd(k,6))
√

gcd(k, 6)

6
√
6k

χh,k

×
6K−1∑

ν=0

(−1)ν+µe
πi
(

µ−ν
3K

+
[−H]K

K (ν−µ+ 1
2)

2
)

ℓ
2∑

j=0

(
ℓ

2j

) ∑

a,b,c≥0
a+b+c=j

kaκ(a, b, c)Z
1
2
−a−2c22j−ℓ

∫ 1

−1
e

π
6kZ (1−x2)

×
(
Cℓ−2j

(
1
6k

(
x− gcd(k, 6)

(
ν + 1

2

)
+ k

2 − ̺
))

− δk,̺,ν(−1)
ℓ
2
+j2(ℓ− 2j)!

(
3k

π(x+γk,̺,ν)

)ℓ−2j+1
)
dx

+ (2πi)ℓi−
1
2

∑

±
ε±k,̺(−1)

αH,K± 1
gcd(k,6)

+ 1
2 e

πi

(

− [−h]k
6k

+
[−H]K

K

(

αH,K± 1
gcd(k,6)

)2
+ H

36K
∓ 1

3 gcd(k,6)K

)

√
gcd(k, 6)

×χh,k


e

π
6kZ

∑

j1,j3≥0,j2≥1
2j1+j2+j3=ℓ

∑

a,b,c≥0
a+b+c=j1

∑

0≤j4≤ j2−1
2

ℓ!3j4ka+
1
2
+j4

(2j1)!j2 · j3!j4!(j2 − 1− 2j4)!2ℓ+a−2j1+j4 gcd(k, 6)j3πj4+1

×κ(a, b, c)(−1)a(±i)j2+1(∓i)j3Z1−a−2c−j2−j3+j4

∓
∫ 1

0
e

πt2

6kZ dt
∑

j1,j3≥0
2j1+j3=ℓ

∑

a,b,c≥0
a+b+c=j1

(
ℓ

2j1

)
κ(a, b, c)

ka−
1
2 (−1)a+1

3 · 2a+j3

( ±i
gcd(k, 6)

)j3

Z−a−2c−j3




+O
(
log(k)|Z| 12−ℓ

)
.

Proof. Recall the transformation of V1 in Lemma 3.6. We proceed as for Theorem 5.1. First
consider the term with Ψ. We use (5.1) and observe that the exponential growth is determined by

e
π

6kZ
−

πα2
H,K

KW Ψ
(

β
iW

− 1
6K ; [−H]K

K
+ i

KW

)

= ie
π

6kZ
−

πα2
H,K

KW

∑∗
m∈Z+ 1

2

sgn (m−Kβ) (−1)m− 1
2 e

πim2
(

[−H]K
K

+ i
KW

)

+2πim( β
iW

− 1
6K )

.
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As a function of W , exponential growth of the m-th term above is e
π

KW
( 1
gcd(k,6)2

−(αH,K−m)2)
, which

gives exponential decay for |m− αH,K | > 1
gcd(k,6) . It follows that after differentiating ℓ times with

respect to z and setting z = 0, the term with Ψ in Lemma 3.6, goes into the error.

Using (4.1), Lemma 4.4, subtracting the principal part from C∗(z;τ)
η(τ) , and noting that 1

6kZ =
1

gcd(k,6)2KW
, we write the term in Lemma 3.6 with E as

− χh,k(iW )−
1
2 e−

πih
6k

+πi
6 fk(z;Z)


e−

πi[−h]k
6k E

∗
[−H]K

K
, 1
2 gcd(k,6)2

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)

+ e−
πi[−h]k

6k E
e
[−H]K

K
, 1
2 gcd(k,6)2

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)

+



C∗
(

z
iZ
; [−h]k

k
+ i

kZ

)

η
(
[−h]k

k
+ i

kZ

) − e
−πi

6

(

[−h]k
k

+ i
kZ

)


E

e
[−H]K

K
,0

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

)
 . (5.6)

It is easy to show using Lemmas 2.2 and 4.5 that for 0 ≤ D ≤ 1
2 gcd(k,6)2

we have

[
∂ℓ

∂zℓ

(
fk(z;Z)E

e
[−H]K

K
,D

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

))]

z=0

≪ log(k)|Z|1−ℓ.

We now use Lemma 4.6 and the above to write (5.6) as

− χh,k(iW )−
1
2 e−

πih
6k

+πi
6
−πi[−h]k

6k

[
∂ℓ

∂zℓ

(
fk(z;Z)E

∗
[−H]K

K
, 1
2 gcd(k,6)2

(
β

iW
− 1

6K
;
[−H]K
K

+
i

KW

))]

z=0

+O
(
log(k)|Z| 12−ℓ

)

= iχh,k(iW )−
1
2
e−

πih
6k

+πi
6
−πi[−h]k

6k
− πi

6K

6k

6K−1∑

ν=0

(−1)ν+µe
πi

(

− ν−µ
3K

+
[−H]K(ν−µ+1

2)
2

K

)

∫ 1

−1
e

π
6kZ (1−x2)

×
[
∂ℓ

∂zℓ

(
fk(z;Z)

(
cot
(

π
6k

(
x− gcd(k, 6)

(
ν + 1

2

)
+ k

2 − ̺+ 3kz
))

− 6kδk,̺,ν
π(x+ γk,̺,ν + 3kz)

))]

z=0

dx

+O
(
log(k)|Z| 12−ℓ

)
. (5.7)

By the product formula, we have

[
∂ℓ

∂zℓ

(
fk(z;Z)

(
cot
(

π
6k

(
x− gcd(k, 6)

(
ν + 1

2

)
+ k

2 − ̺+ 3kz
))

− 6kδk,̺,ν
π(x+ γk,̺,ν + 3kz)

))]

z=0

= (2πi)ℓ
∑

0≤j≤ ℓ
2

(
ℓ

2j

) ∑

a,b,c≥0
a+b+c=j

kaκ(a, b, c)Z1−a−2c22j−ℓ

×
(
Cℓ−2j

(
1
6k

(
x− gcd(k, 6)

(
ν + 1

2

)
+ k

2 − ̺
))

− δk,̺,ν(−1)
ℓ
2
−j2(ℓ− 2j)!

(
3k

π(x+γk,̺,ν)

)ℓ−2j+1
)
,

which, if substituted into (5.7) and then (5.6), is the first term in Theorem 5.2.
The remaining terms in Lemma 3.6 are
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χh,k(iW )−
1
2 f k

2
(z;−Z)


e−

πi
6

(

[−h]k
k

+ i
kZ

)

+



C∗
(

z
iZ
; [−H]K

K
+ i

kZ

)

η
(
[−H]K

K
+ i

kZ

) − e
−πi

6

(

[−h]k
k

+ i
kZ

)






×
∑∗∗

m∈Z+ 1
2

(−1)m+ 1
2 erf

(
i(3Kz + αH,K −m)

√
π

KW

)

× e
πz
Z

(m−αH,K)− π
KW

(m−αH,K)2+πi

(

[−H]Km2

K
+ H

36K
− 1

3K
(m−αH,K)

)

.

Recall that the summands with |m − αH,K | ≤ 1
gcd(k,6) are described by Lemma 3.4 as m ∈

{αH,K , αH,K ± 1
gcd(k,6)}. As in the previous subsection, the term with e−

πi
6
(
[−h]k

k
+ i

kZ
) dominates

while the rest exponentially decays.
In the case that m = αH,K , we have that f k

2
(z;−Z)erf(3Kiz

√
π

KW
) is an odd function of z, so

does not contribute to the ℓ-th Taylor coefficient.
In the case that m = αH,K ± 1

gcd(k,6) , which by Lemma 3.4 occurs if gcd(k, 12) ∈ {1, 2, 3, 6}, we
simplify using gcd(k, 6)2KW = 6kZ to get

χh,k(iW )−
1
2 f k

2
(z;−Z)(−1)

αH,K± 1
gcd(k,6)

+ 1
2 erf

(
i

(
3Kz ∓ 1

gcd(k, 6)

)√
π

KW

)

× e
± πz

gcd(k,6)Z
+πi

(

− [−h]k
6k

+
[−H]K

K

(

αH,K± 1
gcd(k,6)

)2
+ H

36K
∓ 1

3 gcd(k,6)K

)

. (5.8)

Recalling the Taylor series of f k
2
(z;−Z) in (2.1) and using

[
∂ℓ

∂zℓ
erf

(
i

(
3Kz ∓ 1

gcd(k, 6)

)√
π

KW

)]

z=0

=





∓
√
2i√
3kZ

∫ 1
0 e

πt2

6kZ dt if ℓ = 0,

(∓π)ℓ−1
√
6ki

Z
ℓ−1

2
e

π
6kZ
∑

0≤j≤ ℓ−1
2

(ℓ−1)!
j!(ℓ−1−2j)!

(
3kZ
2π

)j
if ℓ ≥ 1,

we see that the ℓ-th Taylor coefficient in z of (5.8) is

(2πi)ℓi−
1
2 (−1)

αH,K± 1
gcd(k,6)

+ 1
2 e

πi

(

− [−h]k
6k

+
[−H]K

K

(

αH,K± 1
gcd(k,6)

)2
+ H

36K
∓ 1

3 gcd(k,6)K

)

√
gcd(k, 6)χh,k

×


e

π
6kZ

∑

j1,j3≥0,j2≥1
2j1+j2+j3=ℓ

∑

a,b,c≥0
a+b+c=j1

∑

0≤j4≤ j2−1
2

ℓ!3j4ka+j4+
1
2

(2j1)!j2 · j3!j4!(j2 − 1− 2j4)!2ℓ+a−2j1+j4 gcd(k, 6)j3πj4+1

×κ(a, b, c)(−1)a(±i)j2+1(∓i)j3Z1−a−2c−j2−j3+j4

∓
∫ 1

0
e

π
6kZ

t2dt
∑

j1,j3≥0
2j1+j3=ℓ

∑

a,b,c≥0
a+b+c=j1

(
ℓ

2j1

)
κ(a, b, c)

ka−
1
2 (−1)1+a

3 · 2a+j3

( ±i
gcd(k, 6)

)j3

Z−a−2c−j3


 .

The theorem follows. �

6. The Circle method and the Proofs of Theorems 1.4 and 1.5

6.1. Proof of Theorem 1.4. We are now ready to prove Theorem 1.4.
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Proof of Theorem 1.4. By Lemma 3.1 (1), we have

uℓ(n) = coeff[qn]
1

(2πi)ℓ

[
∂ℓ

∂zℓ

(
q−

1
24U1(z; τ) +H1(ζ; q)

)]

z=0

.

The contribution of H1 to
∑

m∈Zm
ku(m,n) can just be calculated directly. Indeed, if

1

(2πi)ℓ

[
∂ℓ

∂zℓ
H1(ζ; q)

]

z=0

=:
∑

n≥0

a(n)qn,

then a(n) ≪ n
ℓ−1
2 , so this piece goes into the error term. Write

Uℓ(τ) :=
1

(2πi)ℓ

[
∂ℓ

∂zℓ
U1(z; τ)

]

z=0

=:
∑

n≥0

aℓ(n)q
n+ 1

24 .

With Z = k
n
− ikΘ, N = ⌊√n⌋, ϑ′h,k := 1

k(k1+k) , and ϑ
′′
h,k := 1

k(k2+k) , where
h1
k1
< h

k
< h2

k2
are three

consecutive fractions in the Farey sequence of order N , we write

aℓ(n) =
∑

0≤h<k≤N
gcd(h,k)=1

e−
2πi
k (n+ 1

24)h
∫ ϑ′′

h,k

−ϑ′
h,k

Uℓ

(
h

k
+
iZ

k

)
e

2π(n+ 1
24)Z

k dΘ.

We now use Theorem 5.1. The contribution of the error term may be bounded against

∑

0≤h<k≤N
gcd(h,k)=1

log(k)

∫ ϑ′′
h,k

−ϑ′
h,k

|Z| 12−ℓe
2π(n+ 1

24)Re(Z)

k dΘ ≪
∑

1≤k≤N

k log(k)

∫ ϑ′′
h,k

−ϑ′
h,k

|Z| 12−ℓe2π(1+
1

24n )dΘ.

Recall that ϑ′h,k, ϑ
′′
h,k ≍ 1

kN
. For ℓ = 0, we use that |Z| 12 ≪ (k|Θ|) 1

2 ≪ n−
1
4 to bound the above

against

≪ n−
1
4
1

N

∑

1≤k≤N

log(k) ≪ log(N)n−
1
4 ≪ log(n)n−

1
4 .

For ℓ ≥ 2, we employ |Z| 12−ℓ ≤ n
ℓ−1

2

kℓ−
1
2
and bound the error term as

≪ nℓ−
1
2

N

∑

1≤k≤N

log(k)

kℓ−
1
2

≪ nℓ−
1
2

N
≪ nℓ−

1
4 ≪ n

5ℓ
4
− 1

2 .

Define the Kloostermann sums

Kk(n,m) := i
3
2 (−1)m

∑

0≤h<k
gcd(h,k)=1

χ

(
[−h]k −h[−h]k+1

k
k −h

)−1

e
πi
12k

(−(24n+1)h+(12m(m+1)+1)[−h]k ). (6.1)

Then the main term becomes

1

4
√
6

∑

1≤k≤N
0≤ν≤2k−1

Kk(n, ν)

k

∑

0≤j≤ ℓ
2

(
ℓ

2j

) ∑

a,b,c≥0
a+b+c=j

kaκ(a, b, c)

×
∫ 1

−1
Cℓ−2j

(
1

2k

(
x√
6
− ν − 1

2

))∫ ϑ′′
h,k

−ϑ′
h,k

Z
1
2
−a−2ce

π
6kZ (1−x2)+

2π(n+ 1
24)Z

k dΘdx.

The claim now follows using Lemma 2.1 with ν = a+2c− 1
2 , A =

2π(n+ 1
24

)

k
, B = π(1−x2)

6k , ϑ1 = ϑ′′h,k,
and ϑ2 = ϑ′h,k. �
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6.2. Proof of Theorem 1.5. We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. By Lemma 3.1 (2), we have

vℓ(n) = coeff [qn]
1

(2πi)ℓ

[
∂ℓ

∂zℓ

(
q−

1
4V1(z; τ) +H2(ζ; q)

)]

z=0

.

Again, H2(ζ; q) only contributes to the error term. Write

Vℓ(τ) :=
1

(2πi)ℓ

[
∂ℓ

∂zℓ
V1(z; τ)

]

z=0

=:
∑

n≥0

bℓ(n)q
n+ 1

4 .

With the same setup and notation as above, we have

bℓ(n) =
∑

0≤h<k≤N
gcd(h,k)=1

e−
2πih
k (n+ 1

4)
∫ ϑ′′

h,k

−ϑ′
h,k

Vℓ

(
h

k
+
iZ

k

)
e

2π(n+1
4)Z

k dΘ. (6.2)

Now set h = gcd(k, 6)µ + ̺ with 0 ≤ ̺ < gcd(k, 6). Then we can rewrite the sum above as
∑

0≤h<k≤N
gcd(h,k)=1

=
∑

1≤k≤N
0≤̺≤gcd(k,6)−1
gcd(̺,gcd(k,6))=1

∑

0≤µ≤K−1
gcd(k,h)=1

.

Continuing to write h = gcd(k, 6)µ + ̺, we set

Kk,̺,ν(n) := i
1
2 e

πi
6 (−1)ν

∑

0≤µ≤K−1
gcd(k,h)=1

(−1)µχh,k

× e
πi
6k

(

−(12n+4)h−[−h]k+gcd(k,6)(2(µ−ν)−1)+6 gcd(k,6)
(

ν−µ+
1
2

)2
[−H]K

)

, (6.3)

K±,[1]
k,̺,j2,j3,a

(n) := i
3
2 e∓

πi
3k (−1)

a+ 1
2
± 1

gcd(k,6) (±i)j2+1(∓i)j3
∑

0≤µ≤K−1
gcd(k,h)=1

(−1)αH,Kχh,k

× e
πi
6k

(

−2(6n+1)h−[−h]k+6gcd(k,6)
(

αH,K± 1
gcd(k,6)

)2
[−H]K

)

, (6.4)

K±,[2]
k,̺,j3,a

(n) := i
3
2 e∓

πi
3k (−1)

a+ 1
2
± 1

gcd(k,6) (±i)j3
∑

0≤µ<K−1
gcd(k,h)=1

(−1)αH,Kχh,k

× e
πi
6k

(

−2(6n+1)h−[−h]k+6gcd(k,6)
(

αH,K± 1
gcd(k,6)

)2
[−H]K

)

. (6.5)

We plug Theorem 5.2 into (6.2) and conclude Theorem 1.5 as in the previous subsection. �

7. Outlook

We demonstrate with two examples techniques for proving precise asymptotic series for Taylor
coefficients of functions F (ζ; q) that factor as in (1.1). There are surely many more examples for
which a similar analysis is possible. Notable among them are ranks for strongly unimodal sequences
(in which the inequalities (1.5) are strict) and ranks for overpartitions. The relevant generating
functions are essentially mock Jacobi forms and are, respectively, [7, equation (2.1)] given by

U∗(ζ; q) = − 1

(1 + ζ−1)(q; q)∞


 ∑

n∈Z\{0}

(−1)nq
n(3n+1)

2

1 + ζqn
+

∑

n∈Z\{0}

q
n(n+1)

2 ζ−n

1 + ζqn


 ,
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and [9, equation (1.3)]

O(ζ; q) =
(−q; q)∞
(q; q)∞


1 + 2

∑

n≥1

(−1)n(1− ζ)
(
1− ζ−1

)
qn

2+n

(1− ζqn) (1− ζ−1qn)


 .

Other examples depending on false theta functions include the companions to Caparelli’s identities
found by the second author and Mahlburg [10, Theorem 1.1].

Finally, let U(n) be the set of unimodal sequences with u(n) := #U(n), and define V(n) and
v(n) for Durfee unimodal sequences similarly. The second author, Jennings-Shaffer, and Mahlburg
used the method of moments to conclude limiting logistic distributions [8, Proposition 1.2],

lim
n→∞

#
{
σ ∈ U(n) : rank(σ)√

3n
≤ x

}

u(n)
= lim

n→∞

#
{
σ ∈ V(n) : rank(σ)√

3n
≤ x

}

v(n)
=

1

1 + e−πx
.

We leave it as an open problem to determine convergence rates above.
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