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Abstract. In this paper, we consider the space of second order cusp forms. We determine
that this space is precisely the same as a certain subspace of mixed mock modular forms. Based
upon Poincaré series of Diamantis and O’Sullivan [21] which span the space of second order
cusp forms, we construct Poincaré series which span a natural (more general) subspace of mixed
mock modular forms.

1. Introduction

In his last letter to Hardy (see pages 57–61 of [34]), Ramanujan described 17 q-hypergeometric
series which he called mock theta functions. For example, denoting q := e2πiτ for τ ∈ H, one
such function is

f (τ) := 1 +
∞∑
n=1

qn
2

(1 + q)2(1 + q2)2 · · · (1 + qn)2
.

Ramanujan mysteriously said that these q-series “enter mathematics as beautifully as ordinary
theta-functions” (Ramanujan referred to all modular forms as “theta functions”), but only gave
a vague definition. While many of his claims were proven throughout the years, the exact role
of his functions within the theory of automorphic forms remained a mystery until Zwegers [39]
showed that each of the mock theta functions is the “holomorphic part” of a weight 1

2 harmonic
weak Maass form. A harmonic weak Maass form of weight κ is a certain non-holomorphic
automorphic form which is annihilated by the weight κ hyperbolic Laplacian (see Section 2 for a
definition). Following Zagier [35], we call the holomorphic part of a harmonic weak Maass form
a mock modular form. The non-holomorphic part of a harmonic weak Maass form is related to a
non-holomorphic Eichler integral g∗ (see Section 2) arising from a weakly holomorphic modular
form (i.e., a meromorphic modular form whose only possible poles occur at cusps) g of weight
2− κ. One refers to g as the shadow of the mock modular form.

As evidence of their influence, mock modular forms and harmonic weak Maass forms naturally
appear in partition theory (for example [2, 4, 7, 11, 13]), Zagier’s duality [36] (for example [12]),
and derivatives of L-functions (for example [16, 17]). Extending work of Conway and Norton
[19] and Borcherds [3] on classical Monstrous Moonshine, Eguchi, Ooguri, and Tachikawa [25]
have recently observed a connection between mock modular forms and Monstrous Moonshine of
the largest Mathieu group M24. To expound upon another application, an exact formula for the
Fourier coefficients α(n) of f (τ) (as a sum involving Kloosterman sums and Bessel functions) was
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conjectured by Andrews and Dragonette [1, 23]. Although this formula resembled those proven
by Rademacher and Zuckerman [32, 33, 37] for coefficients of weakly holomorphic modular
forms, no further progress was made for 40 years. The Andrews–Dragonette conjecture was
finally resolved [11] by realizing α(n) as the coefficients of a certain non-holomorphic Poincaré
series. Such Poincaré series span the space H`(N) of harmonic weak Maass forms of weight `
for Γ0 (N) and in special cases can be shown to be the classical Poincaré series Pm,` ∈ M !

` (N)
(the space of weakly holomorphic modular forms of weight ` for Γ0 (N)) defined in (4.2).

The notion of mock modular forms has recently been generalized to mixed mock modular
forms. We call a holomorphic function h a mixed mock modular form of weight (2− k, `) if there
exist g1, . . . , gn ∈M !

k (N) and f1, . . . , fn ∈M !
` (N) so that

Mh := h+

n∑
i=1

g∗i fi (1.1)

transforms like a weight 2−k+ ` modular form on Γ0 (N). As before, g∗ is the non-holomorphic
Eichler integral of g defined in (2.2). We denote the space comprised of weight (2− k, `) mixed
mock modular forms by M2−k,` (N) and the space of their completions (1.1) by M2−k,` (N). We
define S2−k,` (N) to be the subspace of M2−k,` (N) consisting of those mixed mock modular
forms which “vanish” at each cusp of Γ0 (N). More precisely, we say that h ∈ M2−k,` (N)
vanishes at a cusp ρ if the holomorphic part of the Fourier expansion of Mh at ρ decays ex-
ponentially. The subspace M +

2−k,` (N) (resp. S +
2−k,` (N)) of M2−k,` (N) (resp. S2−k,` (N))

is characterized by the restriction that, in (1.1), every gi ∈ Sk (N). Define S!
k (N) to be the

subspace of M !
k (N) consisting of those elements for which the constant term of the Fourier ex-

pansion at each cusp is zero. Let S cusp
2−k,` (N) ⊆ S2−k,` (N) be the subspace precisely containing

those mixed mock modular forms for which every gi ∈ S!
k (N) and every fi ∈ S` (N).

Similarly to mock modular forms, mixed mock modular forms have appeared in a variety
of fields. Answering a question of Kac, the first author and Ono (Theorem 1.1 of [14]) have
proven that certain characters arising in affine Lie superalgebras are mixed mock modular forms.
Exploiting the “modularity” of the Kac–Wakimoto characters, the first author and Folsom [5]
have proven an asymptotic expansion near the cusp 0, improving upon the main term shown by
Kac and Wakimoto [28].

Zwegers [38] observed that mock theta functions appear as coefficients of meromorphic Jacobi
forms. More generally, motivated by their appearance in the quantum theory of black holes,
Dabholkar, Murthy, and Zagier [20] have recently shown that the coefficients of meromorphic
Jacobi forms with poles of order at most 2 are indeed related to mixed mock modular forms (see
also [6]).

Analogous to the case of mock modular forms, the coefficients of mixed mock modular forms
encode important arithmetic information. However, as proven by the first author and Mahlburg
[9], the shape of the Fourier expansions of mixed mock modular forms differ from those of mock
modular forms. The first author and Manschot [10] then used the method developed in [9] to
prove exact formulas for the Euler numbers of certain moduli spaces. In addition to terms which
resemble those given for mock modular forms, there are extra terms which do not appear as
coefficients of known Poincaré series.

In hope of a better understanding of these coefficients, one would like to construct Poincaré
series for the completions (1.1) of mixed mock modular forms. In this note, we set out to
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construct Poincaré series of weight (2− k, `) mock modular forms and their completions for
some special cases of k and `.

Our motivation comes from a link between mixed mock modular forms and so-called weight
` second-order cusp forms. Second-order modular forms, initially studied by Kleban and Zagier
[29] while investigating crossing probabilities in percolation models, and by Chinta, Diamantis,
and O’Sullivan [18] while studying Eisenstein series with modular symbols, are essentially holo-
morphic functions on H which, instead of satisfying modularity, “fail to be modular” by a usual
cusp form (see (2.6)). A precise definition of second-order cusp forms is given in Definition 2.2

and the space of second-order cusp forms is denoted S
(2)
` (N). Weight ` second-order cusp forms

turn out to be weight (0, `) mixed mock modular forms.

Theorem 1.1. For ` ≥ 4 and N ∈ N, one has

S cusp
0,` (N) = S

(2)
` (N) .

Having established the relationship between second-order cusp forms and mixed mock modular
forms, whenever ` > k ≥ 2, we are able to mimic the construction of Poincaré series for second-
order modular forms by Diamantis and O’Sullivan [21] in order to define Poincaré series for
mixed mock modular forms of weight (2− k, `). For notational simplicity, we only address the
case N = 1 in this note and, for brevity, omit the level in our notation (e.g., M !

k instead of

M !
k(1)). For m ∈ Z and g ∈ Sk (the subspace of M !

k consisting of cusp forms) the shadow of

a mock modular form with completion M ∈ H+
2−k (the subspace of H2−k consisting of those

harmonic weak Maass forms which map to cusp forms under the anti-holomorphic differential

operator ξ2−k := 2iy2−k ∂
∂τ ) we construct a mixed mock modular form Poincaré series QMm,2−k,`

in (4.5) and a Poincaré series PMm,2−k,` for its completion in (4.1).

Theorem 1.2. Suppose that ` > k ≥ 12 are integers and m ∈ Z. If M ∈ H+
2−k, then

PMm,2−k,` −M−Pm,` ∈ S +
2−k,`

(so that PMm,2−k,` ∈M2−k,`) and

PMm,2−k,` −MPm,` ∈M !
2−k+`.

Here M− is the non-holomorphic part (see Section 2 for the definition). Furthermore, the space
S +

2−k,` (resp. M +
2−k,`) is spanned by the holomorphic functions

PMm,2−k,` −M−Pm,` and the classical Poincaré series Pr,2−k+` with r ∈ N (resp. r ∈ Z).

Remark. Although we only address Poincaré series of level 1, one can construct analogous such
functions for k ≥ 2 and arbitrary level N which vanish in all but one cusp. However, the
generalization to higher level does not display any interesting new behavior, so we choose N = 1
to avoid obfuscating technical details while still demonstrating the essense of the construction.
For k = 2, the arbitrary level N version of the Poincaré series QMm,2−k,` was defined by Diamantis

and O’Sullivan [21] in the context of second-order modular forms.
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2. Background on Harmonic weak Maass forms and second-order cusp forms

In this section we recall the definitions of harmonic weak Maass forms and second-order cusp
forms as well as their properties which are necessary for our purposes. Good background refer-
ences for harmonic weak Maass forms and second-order cusp forms are [15] and [18], respectively.

As in the case of usual modular forms, for a function h : H → C and γ =
(
a b
c d

)
∈ SL2 (Z),

one defines the weight ` ∈ Z slash-operator |` by

h
∣∣∣
`
γ (τ) := j (γ, τ)−` h

(
aτ + b

cτ + d

)
, (2.1)

where j (γ, τ) := cτ + d. As usual, we write τ = x+ iy ∈ H with x, y ∈ R. For k ∈ Z, the weight
2− k hyperbolic Laplacian is defined by

∆2−k := −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ i (2− k) y

(
∂

∂x
+ i

∂

∂y

)
.

Definition 2.1. For k ∈ 2N, a harmonic weak Maass form M : H→ C of weight 2− k ∈ Z for
Γ0 (N) ⊆ SL2 (Z) is a real analytic function satisfying:

(1) M |2−kγ (τ) = M (τ) for every γ ∈ Γ0 (N).
(2) ∆2−k (M) = 0.
(3) M has at most linear exponential growth at each cusp of Γ0 (N).

The weight 2−k hyperbolic Laplacian is related to the anti-holomorphic differential operator
ξ2−k through

∆2−k = −ξkξ2−k.

In particular, holomorphic functions are annihilated by ∆2−k, since they are annihilated by ξ2−k.
We defineH2−k (N) to be the space of harmonic weak Maass forms of weight 2−k and levelN and
H+

2−k (N) ⊆ H2−k (N) to be the subspace of those M ∈ H2−k (N) for which ξ2−k (M) ∈ Sk (N).
Each M ∈ H2−k (N) naturally splits into a holomorphic part and a non-holomorphic part. To
describe this decomposition, we define the non-holomorphic Eichler integral of g ∈ Sk (N) by

g∗ (τ) :=

(
1

2i

)k−1 ∫ i∞

−τ
(z + τ)k−2 g (−z)dz. (2.2)

The operator defined in (2.2) is clearly antilinear. More generally, suppose that

g (τ) =
∑
n6=0

a(n)qn ∈ S!
k (N) .

In this case one defines

g∗ (τ) := − (4π)1−k∑
n6=0

a (−n)n1−kΓ (k − 1;−4πny) qn,

where for z ∈ C, Γ (k − 1; z) :=
∫∞
z e−ttk−2dt is the incomplete gamma function. For each

M ∈ H2−k (N) there exists a unique g ∈M !
k (N) such that M − g∗ is holomorphic. Conversely,

for every g ∈ M !
k (N), there exists M ∈ H2−k (N) with ξ2−k (M) = g (see [15]). One refers to

M− := g∗ as the non-holomorphic part of M and M+ := M − g∗ as the holomorphic part of M .
Since ξ2−k annihilates holomorphic functions, the function g may be determined by

ξ2−k (M) = ξ2−k (g∗) = g.
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Similarly, M ∈ H2−k (N) has a Fourier expansion at the other cusps of Γ0 (N) from which
one may define a holomorphic and non-holomorphic part at each cusp. The operator ξ2−k is
complemented by the differential operator Dk−1, where D := 1

2πi
∂
∂τ . Bol’s identity ([31], see

also [24]) states that

Dk−1 (H2−k (N)) ⊆M !
k (N) .

Furthermore, a direct calculation shows that

Dk−1 (g∗) = 0. (2.3)

Hence for every M ∈ H2−k (N),

Dk−1 (M) = Dk−1
(
M+

)
∈M !

k (N) . (2.4)

The other automorphic objects which we relate in this note to harmonic weak Maass forms
are n-th order (specifically, second-order) cusp forms, which we now define inductively. Denote

the space of n-th order cusp forms of weight k and level N by S
(n)
k (N).

Definition 2.2. Define S
(0)
k (N) := {0} and for n ≥ 1 a holomorphic function h : H→ C is an

n-th order cusp form of weight k and level N if the following hold:

(1) The function h satisfies the transformation property

h
∣∣∣
k

(γ − 1) ∈ S(n−1)
k (N) (2.5)

for every γ ∈ Γ0 (N).
(2) For each cusp ρ of Γ0 (N) there exists c ∈ R+ such that

f
∣∣∣
k
σρ (τ)� e−cy

as y →∞ uniformly in x. Here σρ ∈ SL2 (Z) is the scaling matrix which maps i∞ to ρ.
(3) For every parabolic element γ ∈ Γ0 (N), one has

h
∣∣∣
k

(γ − 1) = 0.

For n = 1, one has S
(1)
k (N) = Sk (N) (for example, see Lemma 2 of [22]) so that, for every

γ ∈ Γ0 (N), the second-order cusp forms (n = 2) satisfy the transformation property

h
∣∣∣
k

(γ − 1) ∈ Sk (N) . (2.6)

In other words, for any γ1, γ2 ∈ Γ0 (N),

h
∣∣∣
k

(γ1 − 1) (γ2 − 1) = 0,

from which second-order modular forms obtain their nomenclature.
To aid the reader, we now give a brief summary of the spaces of functions which are of interest

in this paper. These are denoted as follows:

(1) M !
k: Weakly holomorphic modular forms and the subspaces

• S!
k: consisting of those f ∈M !

k for which the constant term of the Fourier expansion
at every cusp is zero,
• Mk: holomorphic modular forms,
• Sk: cusp forms.
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(2) H2−k (N): The space of harmonic weak Maass forms of weight 2−k and level N together
with the subspace

(3) H+
2−k (N): The space consisting of those M ∈ H2−k for which ξ2−k (M) ∈ Sk (N).

(4) M2−k,` (N): Weight (2− k, `) mixed mock modular forms of level N and the following
subspaces, defined by the restrictions of gi and fi in (1.1) and growth conditions at the
cusps of Γ0 (N):

subspace gi fi growth at cusps

M +
2−k,` (N) Sk (N) M !

` (N) at most linear exponential

S2−k,` (N) M !
k (N) M !

` (N) vanishes
S +

2−k,` (N) Sk (N) M !
` (N) vanishes

S cusp
2−k,` (N) S!

k (N) S` (N) vanishes

(5) M2−k,` (N): The space consisting of all completions Mh (from (1.1)) of every h ∈
M2−k,` (N).

(6) S
(n)
k : The space of n-th order cusp forms.

3. Relating second-order cusp forms and mixed mock modular forms

This section is devoted to establishing the connection between second-order cusp forms and
mixed mock modular forms. In order to prove Theorem 1.1, we require two lemmas. The
following lemma may be known to the experts, but does not appear to be stated in this form in
the literature. The proof we give here is based upon an operator defined in Section 1.1 of [8].

Lemma 3.1. If k ∈ 2N and g ∈ S!
k (N), then there exists a constant c ∈ C (unique for k > 2)

such that g∗ + c ∈ H2−k (N) if and only if g ∈ Dk−1
(
M !

2−k (N)
)
.

Remark. Suppose that k > 2. For g ∈ Dk−1
(
M !

2−k (N)
)
, the constant c satisfying g∗ + c ∈

H2−k (N) may be given explicitly in terms of the principal part of g (the terms in the Fourier
expansion which exhibit growth) at every cusp. Moreover, if M ∈ M !

2−k (N) has constant

coefficient cM and satisfies g = Dk−1 (M), then

c =
(k − 2)!

(−4π)k−1
cM .

Proof. First suppose that there exists a constant c such that g∗+c ∈ H2−k (N). By (an extension,
to include k = 2 and arbitrary growth towards all cusps, of) Theorem 1.1 of [8], there exists an
involution F on H2−k (N) such that for every M∈ H2−k (N), we have

(−4π)k−1

(k − 2)!
Dk−1 (M) = ξ2−k (F (M)) . (3.1)

Choosing M = M̃ := F (g∗ + c), (3.1) (together with the fact that F is an involution) yields

g = ξ2−k (g∗ + c) =
(−4π)k−1

(k − 2)!
Dk−1

(
M̃
)
. (3.2)

Moreover, after applying (3.1) with M = g∗ + c, (2.3) implies that

ξ2−k

(
M̃
)

=
(−4π)k−1

(k − 2)!
Dk−1 (g∗ + c) = 0.
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By Proposition 3.2 of [15], the kernel of ξ2−k is M !
2−k (N), and hence one concludes that M̃ ∈

M !
2−k (N). Therefore g ∈ Dk−1

(
M !

2−k (N)
)

by (3.2).

Conversely, assume that g ∈ Dk−1
(
M !

2−k (N)
)

and choose M̃ ∈ M !
2−k (N) so that g =

Dk−1
(
M̃
)

. Then M := (k−2)!

(−4π)k−1F
(
M̃
)

satisfies M− = g∗ by (3.1). Furthermore, (2.4) and

(3.1) imply that

Dk−1
(
M+

)
= Dk−1 (M) = ξ2−k

(
M̃
)

= 0,

because ξ2−k annihilates holomorphic functions. One concludes that M+ is a polynomial in τ of
degree at most k− 2 as well as a q-series, and hence a constant c ∈ C. Thus g∗+ c ∈ H2−k (N).
This completes the proof of the lemma. �

Before stating our second lemma, recall that D
(
M !

0 (N)
)
⊆ S!

2 (N) by (2.4). Furthermore,
Theorem 1 of [26] states that

S
!
2 (N) := S!

2 (N)
/
D
(
M !

0 (N)
)

has a basis of Hecke eigenforms and dim
(
S

!
2 (N)

)
= 2d, where d := dim (S2 (N)). As standard,

we slightly abuse notation throughout by writing g ∈ S!
2 (N) to mean a representative g ∈ S!

2 (N)
of the coset.

Lemma 3.2. Suppose that N, ` ∈ N with ` ≥ 4, {g1, . . . , g2d} is a basis of S
!
2 (N) and {f1, . . . , fn}

is a basis of S` (N). Then for ci,j ∈ C (1 ≤ i ≤ n, 1 ≤ j ≤ 2d),

M :=

n∑
i=1

2d∑
j=1

ci,jg
∗
j fi

is an element of M0,` (N) if and only if ci,j = 0 for every i, j.

Proof. If ci,j = 0 for every i, j, then 0 =M∈M0,` (N) trivially.
Conversely assume that M ∈ M0,` (N). Then for every γ =

(
a b
c d

)
∈ Γ0 (N), the weight `

modularity of M and every fi imply that

0 =M
∣∣∣
`
(γ − 1) (τ) =

n∑
i=1

2d∑
j=1

ci,j

(
g∗j

(
aτ + b

cτ + d

)
− g∗j (τ)

)
fi (τ) . (3.3)

However, for each g ∈ S2 (N), one can show that

g∗
(
aτ + b

cτ + d

)
= g∗ (τ) + cγ,g (3.4)

for some cγ,g ∈ C (for example, see [30]). Therefore by (3.3), we have

n∑
i=1

 2d∑
j=1

ci,jcγ,gj

 fi (τ) = 0.
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Since f1, . . . , fn are linearly independent, it follows that

2d∑
j=1

ci,jcγ,gj = 0.

One concludes that
2d∑
j=1

ci,jg
∗
j ∈ H0 (N) .

Therefore, Lemma 3.1 implies that

2d∑
j=1

ci,jgj ∈ D
(
M !

0 (N)
)
.

Because g1, . . . , g2d form a basis for S
!
2 (N), we deduce by linear independence that ci,j = 0,

completing the proof. �

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Suppose that h ∈ S cusp
0,` (N) and define its completion Mh as in (1.1),

with g1, . . . , gn ∈ S!
2 (N) and f1, . . . , fn ∈ S` (N). Combining (3.4) with the automorphicity of

Mh and every fi, one concludes that

h
∣∣∣
`
(γ − 1) = −

n∑
i=1

cγ,gifi ∈ S` (N) . (3.5)

This is precisely the transformation law (2.6) for second-order modular forms. By considering
every M ∈ H0 (N) as a component of a vector-valued automorphic form of level 1, one can prove,
analogously to (3.4), that for every g ∈ S2 (N) and γ =

(
a b
c d

)
∈ SL2 (Z) there exist gγ ∈ S2 (N)

and cγ,g ∈ C such that

g∗
(
aτ + b

cτ + d

)
= g∗γ (τ) + cγ,g.

Similarly, considering f ∈ S` (N) as a component of a vector-valued modular form, one may
prove that, for every γ ∈ SL2 (Z), fγ := f |`γ is a cusp form of weight `. Since cγ,g is a constant,
one can show that h has a Fourier expansion in every cusp (note that this argument does not
work for k > 2). Furthermore, denoting gi,γ := (gi)γ and fi,γ := (fi)γ , for every γ ∈ SL2 (Z),
one has

h
∣∣∣
`
γ =Mh

∣∣∣
`
γ −

n∑
i=1

(
g∗i,γ + cγ,gi

)
fi,γ . (3.6)

Because h ∈ S cusp
0,` (N) ⊆ S0,` (N), the holomorphic part of Mh|`γ decays exponentially by

assumption. Furthermore, since each fi,γ vanishes towards every cusp and every g∗i,γfi,γ does not

contribute to the holomorphic part, it follows that h|`γ exponentially decays. Hence condition
(2) of Definition 2.2 is satisfied and h is a second-order cusp form.

In Theorem 2.2 of [21], Diamantis and O’Sullivan prove that

dim
(
S

(2)
` (N)

)
= (2d+ 1) dim (S` (N)) , (3.7)
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where we recall that d = dim (S2 (N)). It hence remains to prove that

dim
(
S cusp

0,` (N)
)

= (2d+ 1) dim (S` (N)) . (3.8)

We next prove that for every g ∈ S!
2 (N) and f ∈ S` (N) (possibly with g = 0),

Sf,g :=
{
h ∈ S cusp

0,` (N) : h+ g∗f ∈M0,` (N)
}

has the same dimension as S` (N). By Lemma 3.2, we may then conclude (3.8) by letting g and

f run through basis elements of S
!
2 (N) and S` (N), respectively. Note that from (3.6) one may

conclude that every h ∈ Sf,g vanishes at each cusp. For every h1, h2 ∈ Sf,g, the (exponential)
decay at each cusp together with the automorphicity of h1 − h2 implies that h1 − h2 ∈ S` (N).
Conversely, for every h ∈ Sf,g, {

h+ f̃ : f̃ ∈ S` (N)
}
⊆ Sf,g.

Thus, to determine the dimension of Sf,g, it is enough to show that Sf,g is not empty. By the

surjectivity of ξ0 onto S!
2 (N), proven by Bruinier and Funke [15], one may choose M ∈ H0 (N)

with ξ0 (M) = g (so that the non-holomorphic part of M is g∗ = M−). Therefore h0 := M+f ∈
M0,` (N) because

h0 + g∗f = M+f +M−f = Mf ∈M0,` (N) .

In order to augment h0 so that it vanishes at each cusp, one must subtract a weakly holomorphic
modular form which cancels the growth at each cusp. Indeed (since ` > 2), for each cusp ρ of
Γ0 (N) and m ≥ 0, there is a distinguished element fm,ρ ∈ M !

` (N) (for example, see Chapter 3

of [27]) which grows towards ρ like q
−m
tρ and vanishes towards every other cusp, where tρ is the

cusp width of ρ. Since h0 has a Fourier expansion at each cusp, one may subtract an appropriate
linear combination of these fm,ρ from h0 to obtain an element h ∈ S cusp

0,` (N). �

4. Poincaré series of mixed weight (2− k, `)

In this section we prove Theorem 1.2. We first give the definition of PMm,2−k,` and then show
that the Poincaré series converges compactly on H.

Set hm (τ) := e2πimτ . For M ∈ H+
2−k with non-holomorphic part M− = g∗ (for some g ∈ Sk)

and `, k ∈ Z, define the Poincaré series

PMm,2−k,` (τ) :=
∑

γ∈Γ∞\SL2(Z)

(
M−hm

) ∣∣∣
2−k+`

γ (τ) , (4.1)

where Γ∞ := {( 1 n
0 1 ) : n ∈ Z}, which is the stabilizer in SL2 (Z) of M−hm. For `,m ∈ Z, we also

define the classical (weakly) holomorphic Poincaré series (for example, see Chapter 3 of [27]),

Pm,` (τ) :=
∑

γ∈Γ∞\SL2(Z)

hm

∣∣∣
`
γ (τ) ∈M !

`. (4.2)

For ` > 2, these series converge compactly on H and {Pm,` : m ∈ Z} spans the space M !
`. We

next prove compact convergence of PMm,2−k,` whenever ` > k ≥ 12.

Lemma 4.1. If ` > k ≥ 12 are even integers, then PMm,2−k,` converges compactly on H.
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Proof. We first prove the estimate

M− (τ) = g∗ (τ)� 1, (4.3)

where the implied constant only depends on g. Note that since

g∗ (τ + 1) = g∗ (τ) ,

we may assume that 0 ≤ x < 1. We rewrite (2.2) as

1

2k−1

∫ ∞
y

(v + y)k−2 g (x+ iv)dv �
∫ ∞
y

vk−2 |g (x+ iv)| dv. (4.4)

Since v
k
2 |g (x+ iv)| is bounded on H (by a constant depending on g) and k > 2, (4.4) is bounded

by ∫ ∞
1

vk−2 |g (x+ iv)| dv +

∫ 1

y
v
k
2
−2dv � 1.

Thus (4.3) follows. Similarly, hm (τ)� 1.
We are now ready to show compact convergence of PMm,2−k,`. For each γ ∈ SL2 (Z), one uses

(4.3) and Im (γτ) = y

|j(γ,τ)|2 to obtain∣∣∣∣∣ (g∗hm)
∣∣∣
2−k+`

γ (τ)

∣∣∣∣∣� |j (γ, τ)|k−2−` |g∗ (γτ)| · |hm (γτ)| � |j (γ, τ)|k−2−` .

Since k− 2− ` < −2, one now concludes compact convergence of PMm,2−k,` from compact conver-
gence of the usual weight 2+ `−k Eisenstein series. This completes the proof of the lemma. �

Remark. In Lemma 4.1 we restrict to k ≥ 12 because otherwise no g ∈ Sk exists. When
generalizing to higher level with k ≥ 2, the argument follows precisely as above, except that for
k = 2 the bound in (4.3) is replaced by g∗ (τ)� 1 + log (Im (τ)).

Having proven convergence, we now move on to the proof of Theorem 1.2.

Proof of Theorem 1.2. The automorphicity of PMm,2−k,` (τ) follows by the usual argument for

Poincaré series. To be more precise, for δ ∈ SL2 (Z), we have

PMm,2−k,`

∣∣∣
2−k+`

δ (τ) = j (δ, τ)k−2−` ∑
γ∈Γ∞\SL2(Z)

(
M−hm

) ∣∣∣
2−k+`

γ (δτ)

=
∑

γ∈Γ∞\SL2(Z)

(
M−hm

) ∣∣∣
2−k+`

(γδ) (τ) = PMm,2−k,` (τ) ,

where the absolute convergence proven in Lemma 4.1 is used in the last equality. We next note
that, for each γ ∈ SL2 (Z)

LM (γ, τ) := M−
∣∣∣
2−k

(γ − 1) (τ)

is a polynomial in j (γ, τ) of degree at most k−2 (for example, see [30]) and is hence holomorphic
for τ ∈ H. Moreover, for each γ0 ∈ Γ∞ one has

LM (γ0γ, τ) = LM (γ, τ) .
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Since PMm,2−k,` and Pm,` both converge compactly for ` > k ≥ 12, the Poincaré series

QMm,2−k,` (τ) :=
∑

γ∈Γ∞\SL2(Z)

LM (γ, τ) j (γ, τ)−` e2πimγ(τ) = PMm,2−k,` (τ)−M− (τ)Pm,` (τ) (4.5)

converges compactly for ` > k ≥ 12 and is holomorphic for τ ∈ H. Since LM (γ, τ) = 0
for every γ ∈ Γ∞, QMm,2−k,` vanishes towards the cusp i∞. From (4.5) one now deduces that

PMm,2−k,` ∈M2−k,` is the completion (1.1) of QMm,2−k,` ∈ S +
2−k,`.

The function M+Pm,` is also clearly holomorphic on H. However, since both PMm,2−k,` and
MPm,` are automorphic of weight 2− k + `, it follows that

HM
m,2−k,` := PMm,2−k,` −MPm,` = QMm,2−k,` −M+Pm,` ∈M !

2−k+`,

because it is both automorphic and weakly holomorphic.
In order to finish the proof of Theorem 1.2, it remains to show that QMm,2−k,` (m ∈ Z) and

Pr,2−k+` with r ∈ N (resp. r ∈ Z) span S +
2−k,` (resp. M +

2−k,`). Assume that h ∈ M +
2−k,` and

choose g1, . . . , gn ∈ Sk and f1, . . . , fn ∈M !
` so that

Mh := h+
n∑
i=1

g∗i fi ∈M2−k,`.

Since the Poincaré series Pm,` with m ∈ Z span the space M !
`, there exist ci,j ∈ C, ri ∈ N, and

mi,j ∈ Z (1 ≤ j ≤ ri) such that

fi =

ri∑
j=1

ci,jPmi,j ,`.

Thus

Mh = h+
n∑
i=1

ri∑
j=1

ci,jg
∗
i Pmi,j ,`. (4.6)

Using the surjectivity of ξ2−k onto Sk, proven by Bruinier and Funke [15], for each gi there exists
Mi ∈ H+

2−k (N) satisfying ξ2−k (Mi) = gi. By (4.5) and (4.6),

H := h−
n∑
i=1

ri∑
j=1

ci,jQ
Mi
mi,j ,2−k,` =Mh−

n∑
i=1

ri∑
j=1

ci,jg
∗
i Pmi,j ,`−

n∑
i=1

ri∑
j=1

ci,j

(
PMi
mi,j ,2−k,` − g

∗
i Pmi,j ,`

)
=Mh −

n∑
i=1

ri∑
j=1

ci,jP
Mi
mi,j ,2−k,` ∈M2−k,`.

Since the function H is clearly holomorphic on H by definition, H ∈M !
2−k+`, which is spanned

by the Poincaré series Pr,2−k+` with r ∈ Z.

Furthermore, if h ∈ S +
2−k,`, then H also decays exponentially at i∞ and hence H ∈ S2−k+`.

Since the space S2−k+` is spanned by the Poincaré series Pr,2−k+` with r ∈ N, the proof is now
complete. �
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