
ON JACOBI POINCARÉ SERIES OF SMALL WEIGHT

KATHRIN BRINGMANN AND TONGHAI YANG

1. Introduction and Statement of results

In this paper we study Poincaré series of small weight for the generalized Jacobi group

ΓJ
g := SL2(Z) n (Zg × Zg) (g ∈ N).

We show that they form a generating system for the vector space of Jacobi cusp forms Jcusp
k,m .

As two applications, we estimate Fourier coefficients of Siegel modular forms and construct
lifting maps from Jcusp

k,m to a subspace of elliptic modular forms. It is likely that one can
generalize our results to certain congruence subgroups as done in [Br2].

In the following, let k and n be positive integers, r ∈ Zg, and m a positive definite
symmetric half-integral (i.e., 2m has integral entries and even diagonal elements) g×g matrix
such that D := det

(
2n rt

r 2m

)
is positive. For s ∈ C and (τ, z) ∈ H× Cg, we define the Jacobi-

Poincaré series of exponential type

Pk,m;(n,r),s(τ, z) :=
∑

γ∈(ΓJ
g )∞\ΓJ

g

(
v

|cτ + d|2

)s

· en,r|k,mγ(τ, z).(1.1)

Here en,r(τ, z) := e(nτ + rtz) := e2πi(nτ+rtz),
(
ΓJ

g

)
∞ := {(( 1 n

0 1 ) , (0, µ))| n ∈ Z, µ ∈ Zg} ,
v :=Im(τ), and |k,m is the usual slash operator for the Jacobi group defined in Section 2. One
can show (see [Br1]) that this series is absolutely and locally uniformly convergent on H×Cg

if σ := Re(s) > 1
2(g−k+2). If s = 0 and k > g+2, then we obtain the usual Jacobi-Poincaré

series as defined in [GKZ] and [BK]. By construction we have

Pk,m;(n,r),s|k,mγ(τ, z) = Pk,m;(n,r),s(τ, z)
(
for all γ ∈ ΓJ

g , (τ, z) ∈ H× Cg
)
.(1.2)

In Section 3 we show that the Poincaré series Pk,m;(n,r),s have an analytic continuation to σ >
1
2

(g
2 − k + 2

)
following [BK] and [Br2]. Then we observe that the corresponding Petersson

coefficients formula holds in this range too via analytic continuation, a point missed in [BK]
and [Br2]. This enables us to extend their results to a larger domain with a shorter proof.

Theorem 1.1. Assume the notation above.
(1) The series Pk,m;(n,r),s has an analytic continuation to σ > 1

2

(g
2 − k + 2

)
given by

its Fourier expansion. Moreover, if s + k − g
2 + 1 is not a non-positive integer, and

φ(τ, z) =
∑

n′,r′ c(n
′, r′)e

(
n′τ + r′tz

)
∈ Jcusp

k,m , then one has〈
φ, Pk,m;(n,r),s

〉
= λk,m,D,s · c(n, r),(1.3)
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where

λk,m,D,s := 2−k−s+1 · Γ
(
k − g

2
− 1 + s

)
· π−k+ g

2
+1−s · (det(2m))k− g

2
− 3

2
+s ·D−k+ g

2
+1−s.

(2) If k > g
2 +2, then the series Pk,m;(n,r) := Pk,m;(n,r),0 generate the space of Jacobi cusp

forms Jcusp
k,m and we have for φ(τ, z) =

∑
n′,r′ c(n

′, r′)e
(
n′τ + r′tz

)
∈ Jcusp

k,m〈
φ, Pk,m;(n,r)

〉
= λk,m,D · c(n, r),(1.4)

where λk,m,D := λk,m,D,0.

In Section 4, we estimate the Fourier coefficients bn,r

(
Pk,m;(n,r)

)
of the Poincaré series

Pk,m;(n,r) for k ≥ g + 1 and g > 2. The case k ≥ g + 2 is contained in [BK] and [Br2].
These estimates require using Theorem 1.1 and then estimating sums involving Kloosterman
sums and Bessel functions. In the case k = g + 1 refined estimates for Kloosterman sums
are required. We spit the sumation into more ranges than in [BK] and [Br2], use different
estimates for Kloosterman sums in each range, and then optimize the cutoff points. This
enables us to obtain estimates of the same quality as in [BK] and [Br2]. We show

Theorem 1.2. If k ≥ g + 1 and g > 2, then∣∣bn,r

(
Pk,m;(n,r)

)∣∣�k,ε 1 +D
g
2
+ε · det(2m)−

g+1
2

+ε.(1.5)

Section 5 contains the main result of this paper. We enlarge the range for estimates to
k > g

2 + 2. The ideas used here are fundamentally different from those contained in [BK]
and [Br2]. We employ the theta decomposition to reduce the estimation of the the Poincaré
series Pk,m;(n,r),s(τ, z) to the estimation of the Fourier coefficients of certain one dimensional
Poincaré series. The difficulty here is that those Poincaré series involve multiplier systems
which are not characters. We show

Theorem 1.3. If k > g
2 + 2, then∣∣bn,r

(
Pk,m;(n,r)

)∣∣�k 1 +
D

det(2m)
.(1.6)

As an application of Theorems 1.2 and 1.3, we obtain estimates for Fourier coefficients
of Siegel modular forms for a much wider range than known before. Let us first describe
what is known. Let F be a cusp form of weight k with respect to the Siegel modular
group Γg := Spg(Z) ⊂ GL2g(Z) with Fourier coefficients a(T ), where T is a positive definite
symmetric half-integral g × g matrix. It is well-known that

a(T ) �F (detT )
k
2 .

Resnikoff and Saldaña (cf. [RS]) conjectured that for every ε > 0

a(T ) �ε,F (detT )
k
2
− g+1

4
+ε.(1.7)

For g = 1 this conjecture is true (cf.[De] and [DS]), but for arbitrary g there are known
counter examples (cf. [K2]). For k ≥ g + 1, the best known estimate is

a(T ) �ε,F (detT )
k
2
−cg+ε,(1.8)
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where

cg :=


1
2 if g = 2 [BK],
1
4 if g = 3 [Bre],

1
2g +

(
1− 1

g

)
αg if g > 3 [BK], [Br2].

Here

α−1
g := 4(g − 1) + 4

[
g − 1

2

]
+

2
g + 2

.(1.9)

One directly sees that cg → 0 for g →∞ (i.e., far from (1.7)).
To see how we can use Theorems 1.2 and 1.3 to obtain estimates for a(T ), we write Z ∈ Hg

as Z =
(

τ zt

z τ ′

)
, where τ ∈ H, z ∈ Cg−1, and τ ′ ∈ Hg−1. Then the function F (Z) has a so-called

Fourier-Jacobi expansion
F (Z) =

∑
m>0

φm(τ, z) e2πitr (mτ ′),

where m runs through all positive definite symmetric half-integral (g− 1)× (g− 1) matrices,
and where the coefficients φm(τ, z) are Jacobi cusp forms. Since the estimates in Theorems
1.2 and 1.3 are uniform in m, we can use them to obtain estimates for a(T ). This was first
observed by Kohnen [K1] for g = 2, and generalized to general g by Kohnen and Böcherer
for k > g + 1. The case k = g + 1 was considered in [Br2] using the ”Hecke trick”. Here we
enlarge the range of weights to k > g+3

2 . For k = g, we obtain estimates of the same quality
as in [BK]. For g+3

2 < k < g, we have a slightly weaker bound. Using Theorem 1.2 and 1.3,
we show

Theorem 1.4. We have for k ≥ g:

a(T ) � (detT )
k
2
− 1

2g
−

“
1− 1

g

”
αg+ε

.(1.10)

Theorem 1.5. We have for k > g+3
2 :

a(T ) � (detT )
k
2
−

“
1− 1

g

”
αg+ε

.

As another application of Theorem 1.1, we generalize results of [GKZ] and [Br3] and
construct lifting maps from the vector space of Jacobi cusp forms to a certain subspace of
elliptic modular forms. In their paper “Heegner points and derivatives of L-series II ” [GKZ],
Gross, Kohnen, and Zagier constructed certain lifting maps in the dimension 1 case of Jacobi
forms, to obtain deep formulas relating height pairings of Heegner points to coefficients of
Jacobi forms. In [Br3] lifting maps for higher genus were constructed for k ≥ g+3

2 . Using
Theorem 1.1, we can extend this to k ≥ 3, independent of g. Armed with the result of
[Br3] and the one obtained here, following the approach of [EZ], one should then be able to
develop a theory of newforms and hopefully use the Eichler-Shimura trace formula for elliptic
cusp forms to compare the Hecke actions on these spaces in a nice compatible way. One
then expects explicit formulas that express the central critical values of Hecke L-functions of
elliptic Hecke eigenforms as squares of Fourier coefficients of generalized Jacobi forms.

Here we consider the case of general genus and all weights k ≥ 3. In the following, let
n0, k, g ∈ N with g ≡ 1 (mod 8), andm a positive definite symmetric half-integral g×g matrix
r0 ∈ Zg, D0 := det

(
2n0 rt

0
r0 2m

)
> 0 (under certain additional restictions given in Section 7).
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For an integer l, let Sk(l)− be the subspace of elliptic cusp forms with respect to Γ0(l) that
have eigenvalue −1 under the Fricke involution. We define the following lifting maps.

Definition 1.6. For φ ∈ Jcusp

k+ g+1
2

,m
and w ∈ H, we define

SD0,r0(φ)(w) := 21−g
∞∑

n=1

∑
d|n

(
−D0

d

)
dk−1cφ

(
n2

d2
n0,

n

d
r0

) e2πinw,

where cφ(n, r) is the (n, r)−th Fourier coefficient of φ, and where
( ·

d

)
denotes the usual

Kronecker symbol. For f ∈ S2k

(
1
2 det(2m)

)− and (τ, z) ∈ H× Cg, we define

S∗D0,r0
(f)(τ, z) :=

(
i

det(2m)

)k−1 ∑
D>0

rk, 1
2

det(2m),D0D,r0(2m)∗rt,−D0
(f) · e2πi(nτ+rtz),

where D := det
(

2n rt

r 2m

)
, n ∈ N, r ∈ Zg, and where rk, 1

2
det(2m),D0D,r0(2m)∗rt,−D0

(f) is a
certain cycle integral, defined in Section 7.

Using Theorem 1.1, we show as in [GKZ] and [Br3]

Theorem 1.7. Assuming the hypotheses in Section 7, the following are true:
(1) If φ is an element of Jcusp

k+ g+1
2

,m
, then the function SD0,r0(φ)(w) is an element of

S2k(1
2 det(2m))−.

(2) If f ∈ S2k

(
1
2 det(2m)

)−, then the function S∗D0,r0
(f)(τ, z) is an element of Jcusp

k+ g+1
2

,m
.

(3) The maps SD0,r0 and S∗D0,r0
are adjoint with respect to the Petersson scalar products.

The paper is organized as follows. In Section 2 we recall basic facts about Jacobi cusp
forms. In Section 3 we show the analytic continuation of the series Pk,m;(n,r),s(τ, z) to σ >
1
2

(g
2 − k + 2

)
and prove Theorem 1.1. In Section 4 we consider the case k = g + 1 and show

Theorem 1.2, refining arguments used in [Br2]. In Section 5 we prove Theorem 1.3. Using
the theta decomposition, we reduce the estimation of the Poincaré series Pk,m;(n,r),s(τ, z) to
the estimation of the Fourier coefficients of certain one dimensional Poincaré series. This
approach differs from the one used in [K1], [BK], and [Br2]. In Section 6 we combine the
results of Sections 3-5 to obtain Theorems 1.4 and 1.5. Section 7 is devoted to the construction
of the lifting maps and the proof of Theorem 1.7.
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and K. Ono for helpful comments on an earlier version of this paper. They also acknowledge
the referee for carefully reading the paper and making useful suggestions which improved the
exposition of the paper.

2. Basic facts about Jacobi cusp forms

Here we recall some basic facts about Jacobi cusp forms. For details we refer the reader
to [EZ] and [Zi]. The Jacobi group ΓJ

g acts on H× Cg in the usual way by((
a b
c d

)
, (λ, µ)

)
◦ (τ, z) :=

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
.
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Let k ∈ 1
2Z be a half-integer, m be a positive definite symmetric half-integral g × g matrix,

γ =
((

a b
c d

)
, (λ, µ)

)
∈ ΓJ

g , and φ : H× Cg → C. Then we define the following action

φ|k,mγ(τ, z) := (cτ + d)−k · e(−c(cτ + d)−1m[z+λτ +µ] +m[λ]τ + 2λtmz)) ·φ(γ ◦ (τ, z)),

where e(w) := e2πiw (∀w ∈ C) , and where A[B] := BtAB for matrices A and B of com-
patible sizes. Moreover we write w

1
2 :=

√
r · e

iφ
2 if w = r · eiφ with −π < φ ≤ π.

A holomorphic function φ : H×Cg → C is called a Jacobi cusp form of weight k and index
m with respect to ΓJ

g , if for all γ ∈ ΓJ
g we have φ|k,mγ(τ, z) = φ(τ, z), and φ has a Fourier

expansion of the form
φ(τ, z) =

∑
D>0

c(n, r)e
(
nτ + rtz

)
,

where D := det
(

2n rt

r 2m

)
with n ∈ N and r ∈ Zg. Let us denote by Jcusp

k,m the vector space of
these Jacobi cusp forms. It is a finite dimensional Hilbert space with the Petersson scalar
product

〈φ, ψ〉 :=
∫

ΓJ
g \H×Cg

φ(τ, z) · ψ(τ, z) · vk · exp
(
−4πm[y] · v−1

)
dV J

g ,

where dV J
g = v−g−2 du dv dx dy, τ = u+ iv, and z = x+ iy.

3. Analytic continuation of Pk,m;(n,r),s and Petersson coefficient formula

In this section we show the analytic continuation of the Poincaré series Pk,m;(n,r),s defined
in (1.1) and prove Theorem 1.1. The proof is basically the same as in [Br2] except for the
simple observation in Lemma 3.3. For the convenience of the reader, we outline the argument
here and refer to [Br2] for more detail.

Lemma 3.1. ([Br2], Lemma 3.1 and Theorem 3.4) The Poincaré series has an analytic
continuation to σ > 1

2

(g
2 − k + 2

)
given by the Fourier expansion

Pk,m;(n,r),s(τ, z) =
∑
n′∈Z
r′∈Zg

g±k,m;(n,r);s,v(n
′, r′)e(n′τ + r′tz),

where
g±k,m;(n,r);s,v(n

′, r′) := gk,m;(n,r);s,v(n
′, r′) + (−1)kgk,m;(n,r);s,v(n

′,−r′).
Here

gk,m;(n,r);s,v(n
′, r′) := vs · δm(n, r, n′, r′) +

∑
c≥1

Hm,c(n, r, n′, r′) · Φk,m,c,v(n′, r′, s) · c−k−2s,

where

δm(n, r, n′, r′) :=
{

1 if D′ = D, r′ ≡ r (mod 2mZg),
0 otherwise

with D′ := det
(

2n′ r′t

r′ 2m

)
. Finally

Hm,c(n, r, n′, r′) :=
∑

x (mod c)
y (mod c)∗

ec((m[x] + rtx+ n)ȳ + n′y + r′tx).
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Here x and y run over a complete set of representatives for Zg/cZg and (Z/cZ)∗, respectively,
ȳ denotes an inverse of y (mod c), and ec(x) := e

(
x
c

)
. Moreover

Φk,m,c,v(n′, r′, s) := (det(2m))−
1
2 · i−

g
2 · v

g
2
−k−s+1 · e2c(rtm−1r′)

×
∫ ∞

−∞
(u+ i)

g
2
−k−s · (u− i)−s · e

(
−(2 det(2m))−1

(
D′v(u+ i) +

D

vc2(u+ i)

))
du.

We next show that in the case s = 0 the Poincaré series are Jacobi cusp form.

Lemma 3.2. For k > g
2 + 2 the function Pk,m;(n,r)(τ, z) := Pk,m;(n,r),0(τ, z) is an element of

Jcusp
k,m . It has the Fourier expansion

Pk,m;(n,r)(τ, z) =
∑
D′>0

g±k,m;(n,r)(n
′, r′) e(n′τ + r′tz),

where
g±k,m;(n,r)(n

′, r′) := gk,m;(n,r)(n
′, r′) + (−1)kgk,m;(n,r)(n

′,−r′),
with

gk,m;(n,r)(n
′, r′) := δm(n, r, n′, r′) + 2πik · (det(2m))−

1
2 · (D′/D)

k
2
− g

4
− 1

2

×
∑
c≥1

e2c(rtm−1r′) ·Hm,c(n, r, n′, r′) · Jk− g
2
−1

(
2π
√
D′D

det(2m) · c

)
· c−

g
2
−1.

Proof. The fact that Pk,m;(n,r)(τ, z) satisfies the correct transformation law under ΓJ
g follows

directly from (1.2). Plugging s = 0 into Lemma 3.1 gives that it has the correct Fourier
expansion. One can show exactly as in [Br2] that the Fourier coefficients of Pk,m;(n,r)(τ, z)
are independent of v = Im(τ) and are 0 unless D′ > 0. Now the proof follows as in [BK]
page 504. �

We next show that the Petersson coefficient formula holds.

Lemma 3.3. Formulas (1.3) and (1.4) are true.

Proof. From the proof of Theorem 3.4 in [Br2] it follows that the Fourier coefficients of
Pk,m;(n,r),s have at most polynomial growth and the coefficients of Pk,m;(n,r) have exponential
decay. Together with (1.2) and Lemma 3.2, this implies that the left hand sides of (1.3)
and (1.4) are well defined and absolutely convergent. For σ > 1

2(g − k + 2) formula (1.3)
follows by the usual unfolding argument as in [Br2]. The series Pk,m;(n,r),s has an analytic
continuation to σ > 1

2

(g
2 − k + 2

)
. On the other hand, the right hand side of (1.3) clearly

has a meromorphic continuation to the whole complex plane, with at most simple poles at s
satisfying s+ k − g

2 + 1 ≤ 0 is an integer. Now the lemma is clear. �

Lemma 3.3 implies that Pk,m;(n,r) form a generating system for Jcusp
k,m whenever k > g

2 + 2.
Moreover we obtain an estimate for the Fourier coefficients of a Jacobi cusp form.

Lemma 3.4. Suppose that k > g
2 + 2, and φ ∈ Jcusp

k,m with Fourier coefficients c(n, r). Then
we have

|c(n, r)| �k

∣∣bn,r

(
Pk,m;(n,r)

)∣∣ 12 D
k
2
− g

4
− 1

2

(det 2m)
k
2
− 1

4
(g+3)

· ‖ φ ‖ .



ON JACOBI POINCARÉ SERIES OF SMALL WEIGHT 7

Proof. Using (1.4) and the Cauchy-Schwarz inequality we find

|c(n, r)|2 = λ−2
k,m,D ·

∣∣〈φ, Pk,m;(n,r)

〉∣∣2
≤ λ−2

k,m,D· ‖ φ ‖
2 ·
〈
Pk,m;(n,r), Pk,m;(n,r)

〉
= λ−1

k,m,D · bn,r(Pk,m;(n,r))· ‖ φ ‖2

which immediately gives the lemma. �

4. The case k = g + 1 and proof of Theorem 1.2

In this section we estimate the Fourier coefficients of the Poincaré series Pk,m;(n,r) for the
special case k = g + 1 with g > 2. By Lemma 3.2 we have to estimate

Sm,n,r :=
∑
c≥1

c−
g
2
−1 |Hm,c(n, r, n,±r)|

∣∣∣∣J g
2

(
2πD

det(2m)c

)∣∣∣∣ .(4.1)

Estimating (4.1) requires more care than was necessary for the estimates in [Br2]. We use
more refined estimates for Kloosterman sums, and split the summation into 3 ranges. In
each range, we use different estimates for Kloosterman sums and Bessel functions and then
optimize the cutoff points. This enables us to obtain estimates of the same quality as in [BK]
and [Br2].

We need the following two estimates on Kloosterman sums which can be found in [BK] and
[Br1] (implicitely in the proof of the analytic continuation of the Poincaré series), respectively:

|Hm,c(n, r, n,±r)| � cg+ε · (D, c),(4.2)

|Hm,c(n, r, n,±r)| ≤ (2 det(2m)D))
g
2 · c

g
2
+1+ε.(4.3)

Moreover, for l, x > 0, we have (see [Ba] pages 4 and 74)

Jl(x) �l min
{
x−

1
2 , xl

}
.(4.4)

Now write

Sm,n,r =
∑
d|D

∑
c≥1

(c,D/d)=1

(cd)−
g
2
−1 |Hm,dc(n, r, n,±r)|

∣∣∣∣J g
2

(
A

c

)∣∣∣∣ ,
with A = 2πD

d det(2m) . We first estimate

Bm,n,r,d :=
∑
c≥1

(c,D/d)=1

(cd)−
g
2
−1 |Hm,dc(n, r, n,±r)|

∣∣∣∣J g
2

(
A

c

)∣∣∣∣ .(4.5)

For this we split the sum into three parts. A part with c ≤ A, a part with A ≤ c ≤ B and
a part with c ≥ B, where B := (D · det(2m))4. To estimate the sum with c ≤ A we use the
first estimate in (4.4) and (4.2). Thus we can estimate the contribution to Bm,n,r,d against

A−
1
2 · d

g
2
+ε
∑
c≤A

c
g
2
− 1

2
+ε = d

g
2
+ε ·A

g
2
+ε.(4.6)
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Next we estimate the sum in the range A ≤ c ≤ B. For this we use the second estimate in
(4.4) and (4.2). This shows that the contribution to Bm,n,r,d can be estimated against

d
g
2
+ε ·A

g
2

∑
A≤c≤B

c−1+ε � d
g
2
+ε ·A

g
2 ·Bε.(4.7)

To estimate the sum with B ≤ c we use the second estimate in (4.4) and (4.3). This shows
that the contribution to Bm,n,r,d can be estimated against

(det(2m)D)
g
2 ·A

g
2 · dε

∑
c≥B

c−
g
2
+ε � dε · (det(2m)D)

g
2 ·A

g
2 ·B− g

2
+1+ε.(4.8)

Recall our choice B = (D · det(2m))4. Combining (4.6), (4.7), and (4.8) gives

Bm,n,r,d � d
g
2
+ε ·A

g
2
+ε (det(2m)D)ε � D

g
2
+ε · det(2m)−

g
2
+ε.

Thus
Sm,n,r � det(2m)−

g
2
+ε ·D

g
2
+ε
∑
d|D

1 � det(2m)−
g
2
+ε ·D

g
2
+ε.

This immediately gives (1.5) in Theorem 1.2.

5. Theta Decomposition of Poincare Series

In this section we study the Poincaré series defined in (1.1) by using its theta decomposition.
Let T =

(
n rt/2

r/2 m

)
be a positive definite half-integral (g + 1) × (g + 1) matrix with D =

det(2T ) = t
(
n− 1

4m
−1[r]

)
> 0 and t := 2 det 2m. For l ∈ Zg/2mZg, we define the theta

series

(5.1) Θl(τ, z) :=
∑
λ∈Zg

e

(
m

[
λ+

1
2
m−1l

]
τ + 2

(
λ+

1
2
m−1l

)t

mz

)
.

This theta series is known to be a Jacobi form of weight g
2 for the principal congruence Jacobi

group Γ(t) n (Zg × Zg). In fact, the vector-valued theta function

(5.2) Θ(τ, z) := (Θl(τ, z))l∈Zg/2mZg

has the following transformation law for every M ∈ SL2(Z)

(5.3) Θ| g
2
,mM(τ, z) :=

(
Θl| g

2
,mM(τ, z)

)
l∈Zg/2mZg

= U(M)Θ(τ, z)

for some unitary matrix U(M). Let χi
j(M) be the (i, j)-th entry of U(M).

Lemma 5.1. Assuming the notation from above we have:

(1) |χi
j(M)| ≤ 1.

(2) U(γM) = U(Mγ) = U(M) for γ ∈ Γ(t).
(3) χr

l (
(

1 b
0 1

)
M) = e(−Db

t )χr
l (M).

(4) χi
j(−M) = i−g χi

−j(M).
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Proof. (1) is clear from the fact that U(M) is unitary.
(2) follows from the fact that Θl is a modular form for Γ(t).
(3) follows from the fact that Θ|g/2

(
1 b
0 1

)
= AΘ, where A is the diagonal matrix with the

(n, l)th entry being e
(

Dlb
t

)
, with Dl := t

(
n− 1

4m
−1[l]

)
.

(4) follows from Θl|g/2(−I) = i−gΘ−l, where I is the identity matrix. �

By Lemma 5.1, it is easy to see that the Poincaré series

(5.4) Ps,l(τ) := vs
∑

M∈Γ∞\Γ

χr
l (M) · (cτ + d)−k+ g

2 · |cτ + d|−2s · e
(
D (aτ + b)
t (cτ + d)

)
is well-defined and is a (non-holomorphic) modular form of weight k− g

2 for Γ(t). We remark
that it is not a modular form for SL2(Z) since χr

l is not a character. The following proposition
describes how this Poincaré series is related to the Jacobi Poincaré series Pk,m;(n,r),s(τ, z).

Proposition 5.2. One has

Pk,m;(n,r),s(τ, z) =
∑

l∈Zg/2mZg

Θl(τ, z)Ps,l(τ).

In particular, bn,r(Pk,m;(n,r),s) = bD
t
(Ps,r), with bD

t
(Ps,r) the D

t -th Fourier coefficient of Ps,r.

Proof. We choose the elements
((

a b
c d

)
, (aλ, bλ)

)
as a set of representatives of (ΓJ

g )∞\ΓJ
g ,

where c, d ∈ Z with (c, d) = 1, λ ∈ Zg, and where, for each pair (c, d), we have chosen a, b ∈ Z
such that ad− bc = 1. It is not hard to see from the definition that

Pk,m;(nr),s(τ, z) =
vs

t

∑
M∈Γ(t)∞\Γ

(cτ + d)−(k− g
2
) · |cτ + d|−2s · e

(
n(aτ + b)
cτ + d

+ rtz
1

cτ + d

)
∑
λ∈Zg

e
((
m[λ] + rtλ

)
τ + 2λtmz

)
| g
2
,mM.

Rewriting ∑
λ∈Zg

e
((
m[λ] + rtλ

)
τ + 2λtmz

)
= e

(
−1

4
m−1

[
rt
]
τ − rtz

)
Θr(τ, z)

one sees from (5.3) that Pk,m;(r,n),s(τ, z) equals

vs

t

∑
M∈Γ(t)∞\Γ

(cτ + d)−(k− g
2
) · |cτ + d|−2s · e

(
D (aτ + b)
t (cτ + d)

)
·Θr| g

2
,mM(τ, z)

=
∑

l∈Zg/2mZg

Θl(τ, z) · Ps,l(τ),

as claimed. Since Ps,l is independent of z, it is easy to check the identity between the Fourier
coefficients in the proposition. �

Proposition 5.2 leads to the study of the one variable Poincaré series Ps,l(τ). As usual, we
break the sum in Ps,l into three parts: c = 0, c > 0, and c < 0. For c 6= 0 we use the identity

aτ + b

cτ + d
=
a

c
− 1
c2
(
τ + d

c

)
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and write d as d+λtc with λ ∈ Z and d running modulo ct. Here we need Ps,l(τ+t) = Ps,l(τ),
which follows from Lemma 5.1. A simple calculation gives

(5.5) Ps,l(τ) = vs
(
1 + (−1)k

)
e

(
Dτ

t

)
+ vs

∑
c>0

c
g
2
−k−2s

∑
d (mod tc)

(d,c)=1

(
χr

l (c, d) + (−1)kχr
−l(c, d)

)
Fs

(
τ +

d

c

)
.

Here for M =
(

a b
c d

)
∈ SL2(Z)

χr
l (c, d) := χr

l (M)e
(
Da

tc

)
,

is well-defined (independent of the choice of M) by Lemma 5.1, and

(5.6) Fs(τ) :=
∑
λ∈Z

(τ + λt)−(k− g
2
) · |τ + λt|−2s · e

(
− D

tc2(τ + λt)

)
.

Lemma 5.3. The function Fs(τ) has Fourier expansion

Fs(τ) =
∑
µ∈Z

Φk,c,v(µ, s) · e
(µτ
t

)
,

with

(5.7) Φk,c,v(µ, s) = v−k+ g
2
−2s+1 · 1

t
· e

2πµv
t∫

R
(u+ i)−(k− g

2
+s) · (u− i)−s · e

(
−1
t

(
µvu+

D

c2v(u+ i)

))
du.

Moreover,
(1) If σ > 1

2

(
1 + g

2 − k
)
, then the coefficients Φk,c,v(µ, s) are holomorphic functions in s.

If K is any compact set in the right half plane σ > 1
2

(
1 + g

2 − k
)
, then we have for

s ∈ K
Φk,c,v(µ, s) �K,v,D,t e

2πµv
t

(1−sign(µ)v1),

where v1 is a positive constant.
(2) The function Fs(τ) has an analytic continuation to σ > 1

2

(
1 + g

2 − k
)
.

(3) If k > g
2 + 1, then F0(τ) is a holomorphic function of τ with Fourier expansion

(5.8) F0(τ) = 2πi
g
2
−k+2 · t−1

∑
µ>0

(
D

µ

) 1
4
(g+2−2k)

· ck−
g
2
−1 · Jk− g

2
−1

(
4π
√
Dµ

ct

)
· e(µτ).

Proof. Clearly Fs(τ) has period t and thus a Fourier expansion

Fs(τ) =
∑
µ∈Z

aµ(v) · e
(µτ
t

)
,

where

aµ(v) =
1
t

∫ t

0
Fs(τ) · e

(
−µτ
t

)
du =

1
t

∫
R
τ−(k− g

2
+s) · τ̄−s · e

(
− D

tc2τ
− µτ

t

)
du.



ON JACOBI POINCARÉ SERIES OF SMALL WEIGHT 11

Making the substitution u 7→ uv gives (5.7).
Claim (1) follows directly from Lemma 3.5 of [Br1] with c1 = k− g

2 , c2 = vµ
t , and c3 = D

tc2v
.

(2) follows from (1).
(3) If k > g

2 + 1, then one has

Φk,c,v(µ, 0) =
1
t

∫ iv+∞

iv−∞
τ

g
2
−k · e

(
−1
t

(
µτ +

D

c2τ

))
dτ.

For µ > 0, the substitution τ = i
c ·
(

D
µ

)1/2
· w gives

Φk,c,v(µ, 0) =
1
t

[
i

c

√
D

µ

] g
2
+1−k ∫ v′+i∞

v′−i∞
w

g
2
−k · exp

(
2π
√
Dµ

ct

(
w − w−1

))
dw

=
1
t

[
i

c

√
D

µ

] g
2
+1−k

2πi · Jk− g
2
−1

(
4π
√
Dµ

ct

)
as claimed. The vanishing of the Fourier coefficients for µ ≤ 0 can be established if we deform
the path of integration up to infinity. �

From this we obtain the Fourier expansion of Ps,l(τ). Combining the following theorem
with Proposition 5.2 gives another proof of the analytic continuation of the Poincaré series
Pk,m;(n,r),s(τ, z).

Theorem 5.4. (1) The function Ps,l(τ) has an analytic continuation to σ > 1
2

(g
2 + 2− k

)
with the following Fourier expansion:

Ps,l(τ) = vs
∑
µ∈Z

bµ
t
(Ps,l) · e

(µτ
t

)
with

bµ
t
(Ps,l) =

(
1 + (−1)k

)
· δµ,D +

∑
c>0

c
g
2
−k−2s ·Kµ(c, tc) · Φk,c,v(µ, s).

Here δµ,D :=
{

1 if µ = D,
0 otherwise, and

Kµ(c, tc) :=
∑

d (mod tc)
(c,d)=1

e

(
µd

tc

)(
χr

l (c, d) + (−1)kχr
−l(c, d)

)
.

(2) If k > g
2 + 2, then Pr(τ) := P0,r(τ) has the Fourier expansion:

Pr(τ) =
∑
µ>0

bµ
t
(Pr) · e

(µτ
t

)
where

bµ
t
(Pr) =

(
1 + (−1)k

)
· δµ,D − 2πi

g
2
−k

(
D

µ

) 1
4
(g+2−2k)∑

c>0

1
tc
Kµ(c, tc) · Jk− g

2
−1

(
4π
√
Dµ

tc

)
.



12 KATHRIN BRINGMANN AND TONGHAI YANG

Proof. (1) The Fourier expansion of Ps,l(τ) follows from (5.5) and Lemma 5.3 for
σ > 1

2

(
−k + g

2 + 1
)
. Notice that

(5.9) |Kµ(c, tc)| ≤ 2tc.

Now, using the Fourier expansion and Lemma 5.3 (1), one sees that for σ > 1
2

(g
2 + 2− k

)∣∣∣bµ
t
(Ps,l)

∣∣∣�K,v,D,t δµ,D + e
2πµv

t
(1−sign(µ)v1)

∑
c>0

c
g
2
+1−k−2σ �K,v,D,t δµ,D + e

2πµv
t

(1−sign(µ)v1).

Thus
|Ps,l(τ)| �K,ν,D,t 1 +

∑
µ∈Z

e−
2π|µ|v1

t ,

which is absolutely convergent. This proves (1).
(2) By Lemma 5.3 and (1), one sees that Pr(τ) is a holomorphic function of τ in the upper
half plane. The Fourier expansion formula follows from (1) and Lemma 5.3. �

Corollary 5.5. (Theorem 1.3) Assuming the hypothesis above, we have∣∣bn,r

(
Pk,m;(n,r),s

)∣∣ = ∣∣∣bD
t
(P0,r)

∣∣∣�k 1 +
D

det(2m)
.

Proof. The first identity is already contained in Proposition 5.2. Set A := 4πD
t . Similarly to

the proof of (1.5), Theorem 5.4, (5.9), and (4.4) give,∣∣∣bD
t
(P0,r)

∣∣∣�k 1 +
∑
c>0

∣∣∣∣Jk− g
2
−1

(
A

c

)∣∣∣∣�k 1 +
D

det(2m)
.

�

6. Proof of Theorems 1.4 and 1.5

Here we prove Theorems 1.4 and 1.5. For this we recall the following Lemma from [BK].

Lemma 6.1. If φm is the mth Fourier Jacobi coefficient of a Siegel cusp form F , then we
have

‖ φm ‖�ε,F (det 2m)
k
2
−αg+ε ,

where αg is defined in (1.9).

Define
mg−1(T ) := min {T [U ]g−1 |U ∈ GLg(Z)} ,

where T [U ]|g−1 denotes the determinant of the leading (g − 1) rowed submatrix of T [U ]. To

prove Theorems 1.4 and 1.5, we may assume that T =
(

n rt

2
r
2

m

)
with detm = mg−1(T ) since

both sides of the estimates are invariant under replacing T with T [U ] with U ∈ GLg(Z). Now
by Lemma 3.4 (with g − 1 instead of g) and Lemma 6.1

a(T ) �
∣∣bn,r

(
Pk,m;(n,r)

)∣∣ 12 ·D k
2
− g

4
− 1

4 · (det(2m))
g
4
+ 1

2
−αg+ε.(6.1)

We now use this estimate to prove Theorems 1.4 and 1.5. Recall D = det(2T ).
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Proof of Theorem 1.4. From Theorem 1.3 we get

bn,r

(
Pk,m;(n,r)

)
� det(2m)−

g
2

(
det(2m)

g
2 +D

g−1
2

+ε · det(2m)ε
)
.

Combining this with (6.1) gives

a(T ) � det(2m)
1
2
−αg+ε ·D

k
2
− g

4
− 1

4

(
det(2m)

g
2 +D

g−1
2

+ε · det(2m)ε
) 1

2
.

Using reduction theory we can assume that

detm = mg−1(T ) � (detT )1−
1
g .(6.2)

This directly gives Theorem 1.4. �

Proof of Theorem 1.5. By (6.1) and Corollary 5.5, we have

a(T ) � det(2m)
g
4
−αg+εD

k
2
− g

4
− 1

4 (det(2m) +D)
1
2 .

Theorem 1.5 now follows directly using (6.2). �

7. Proof of Theorem 1.7

In this section we construct lifting maps from the vector space of Jacobi cusp forms to a
subspace of elliptic modular forms. Since we have shown the properties of the Poincaré series
given in Theorem 1.1, we can proceed as in [Br2]. For the reader convenience we recall the
arguments here. First we recall some facts from [GKZ] about quadratic forms, the generalized
genus character, and geodesic cycle integrals. For a, b, c ∈ Z let us define the integral binary
quadratic form

[a, b, c](x, y) := ax2 + bxy + cy2.

The group SL2(Z) acts on these forms in the usual way by

[a, b, c] ◦
(

α β
γ δ

)
(x, y) := [a, b, c](αx+ βy, γx+ δy) (x, y ∈ Z).

Let ∆ > 0 be a discriminant (of a binary quadratic form) and denote by D∆ the set of
integral binary quadratic forms with discriminant ∆ = 4ac − b2 > 0. Furthermore for a
positive integer l, denote by Dl,∆ the subset of D∆ of all quadratic forms with the additional
condition that a ≡ 0 (mod l). Moreover for integers ρ (mod 2l) with ∆ ≡ ρ2 (mod 4l), let

Dl,∆,ρ := {[a, b, c] ∈ D∆| a ≡ 0 (mod l) , b ≡ ρ (mod 2l)} .

Both sets Dl,∆ and Dl,∆,ρ are Γ0(l) invariant. For a fundamental discriminant −D0 that
divides ∆ with −D0 and − ∆

D0
are squares (mod 4l), define for Q = [al, b, c] ∈ Dl,∆ the

generalized genus character:

χD0(Q) :=
{ (−D0

n

)
if (a, b, c,D0) = 1,

0 otherwise.

Here n is an integer coprime to D0 represented by the form [al1, b, cl2] for some decomposition
l = l1l2 , li > 0 (i = 1, 2). It is easy to show that such an n always exists and that the value
of
(−D0

n

)
is independent of the choice of l1, l2, and n.
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Define for f ∈ S2k(l) and Q = [a, b, c] ∈ Dl,∆,ρ the cycle integral

rk,l,Q(f) :=
∫

γQ

f(z) ·Q(z, 1)k−1 dz,

where γQ is the image in Γ0(l)\H of the semicircle a|z|2 + bx+ c = 0 (x = Re(z)), orientated
from −b−

√
∆

2a to −b+
√

∆
2a if a 6= 0 or, if a = 0, the vertical line bx+ c = 0, orientated from − c

b
to i∞ if b > 0 and from i∞ to − c

b if b < 0. It is not hard to see that the above definition
makes sense (i.e., the integral is invariant with respect to the subgroup of Γ0(l) preserving
Q) and depends only on the Γ0(l) equivalence class of Q. Furthermore, we define

rk,l,∆,ρ,D0(f) :=
∑

Q∈Dl,∆,ρ/Γ0(l)

χD0(Q) · rk,l,Q(f).

Next we define a kernel functions for the cycle integrals

fk,l,∆,ρ,D0(z) :=
∑

Q∈Dl,∆,ρ

χD0(Q)
Q(z, 1)k

(z ∈ H).

It is known from [GKZ] that the series fk,l,∆,ρ,D0(z) is absolutely and locally uniformly
convergent for k > 1 and is an element of S2k(l)−. Moreover for k = 1 the series is continued,
using the “Hecke-trick”, and again is an element of S2k(l)−.

Lemma 7.1. The Fourier expansion of fk,l,∆,ρ,D0(z) (k ≥ 1) is given by

fk,l,∆,ρ,D0(z) =
∞∑

m=1

c±k,l(m,∆, ρ,D0)e2πimz,

where
c±k,l(m,∆, ρ,D0) := ck,l(m,∆, ρ,D0) + (−1)k+1ck,l(m,∆,−ρ,D0),

with

ck,l(m,∆, ρ,D0) := ik · (−1)−
1
2 · (2π)k

(k − 1)!
· (m2/∆)

k−1
2 ·

[
D
− 1

2
0 · εl(m,∆, ρ,D0)

+ik+1 · π ·
√

2 ·
(
m2/∆

) 1
4 ·
∑
a≥1

(la)−
1
2 · Sla(m,∆, ρ,D0) · Jk− 1

2

(
πm

√
∆

la

) .
Here

εl(m,∆, ρ,D0) :=

{ (
−D0
m/f

)
if ∆ = D2

0 · f2 (f > 0), f |m, −D0f ≡ ρ (mod 2l)
0 otherwise

,

Sla(m,∆, ρ,D0) =
∑
b(2la)

b≡ρ(2l)

b2≡∆(4la)

χD0

([
al, b,

b2 −∆
4la

])
· e
(
mb

2la

)
.

The following theorem is known from [GKZ].
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Theorem 7.2. For f ∈ S2k(l)− we have

〈f, fk,l,∆,ρ,D0〉 = π ·
(

2k − 2
k − 1

)
· 2−2k+2 ·∆−k+1/2 · rk,l,∆,ρ,D0(f),

where < ·, · > denotes the usual Petersson scalar product for elliptic cusp forms with respect
to Γ0(l).

Proof of Theorem 1.7. Before we give the proof, we state the needed conditions precisely as
follows:

(1) −D0 is a a square (mod 1
2 det(2m)) and is a fundamental discriminant.

(2) If p|gcd
(

1
2 det(2m), D0

)
, then ordp

(
1
2 det(2m)

)
≤ ordp(D0).

(3) If 2 6= p|gcd
(

1
2 det(2m), D0

)
, then there always exists a matrix U ∈ GL2(Z), such

as (2m)[U ] ≡ diag(m1, · · · ,mg−1, 0) (mod p). We require
∏

1≤i<g mi to be a square
(mod p).

Quadratic forms with the above conditions indeed exist (for an example see [Br1]). It can
easily be shown that the last two conditions are satisfied if det(2m) · D0 is square-free.
Moreover it can be shown for g = 1 that the conditions are equivalent to the conditions given
in [GKZ].

To prove Theorem 1.7, define

(7.1) Ωk,m,D0,r0(w; τ, z) := ck,m,D0 ·
∑
D>0

Dk− 1
2 · fk, 1

2
det(2m),D0D,r(2m)∗rt

0,D0
(w) · e(nτ + rtz),

where

ck,m,D0 :=
(−2i)k−1 ·Dk− 1

2
0(

1
2 det(2m)

)k−1 · π ·
(
2k−2
k−1

) .
Here for a matrix A we denote by A∗ the adjoint matrix of A. One can easily see, using
the Fourier expansion of fk, 1

2
det(2m),D0D,r(2m)∗rt

0,D0
(w), that the series Ωk,m,D0,r0(w; τ, z) is

absolutely convergent. As a function of w it is clearly an element of S2k

(
1
2 det(2m)

)−. On
the other hand, the same argument as in [Br3], Section 3 gives

(7.2) Ωk,m,D0,r0(w; τ, z) = ck,m,D0 ·
ik−1 · (2π)k

(k − 1)!

×
∑
l≥1

lk−1

(∑
dd′=l

(
−D0

d

)
· d′k · Pk+ g+1

2
,m,(n0d′2,r0d′)(τ, z)

)
e2πilw.

This shows that Ωk,m,D0,r0(w; τ, z) is a Jacobi form in the variables τ and z. Now for f ∈
Sk

(
1
2 det(2m)

)− we have by Theorem 7.2 and (7.1) that

(7.3) S∗D0,r0
(f)(τ, z) = 〈f,Ωk,m,D0,r0(·;−τ̄ ,−z̄)〉

is a Jacobi form, proving Theorem 1.7 (2).
Next, for φ ∈ Jcusp

k+ g+1
2

,m
, we have by Theorem 1.1 and (7.2)

(7.4) SD0,r0(φ)(ω) = 〈φ,Ωk,m,D0,r0(−ω̄, ·, ·)〉 ,

proving Theorem 1.7 (1). Here we also used the fact Ωk,m,D0,r0(w;−τ̄ ,−z̄) = Ωk,m,D0,r0(−w̄; τ, z).
Theorem 1.7 (3) is now clear from (7.3) and (7.4). �
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