Symmetric superspaces: slices, radial parts, and invariants

Alexander Alldridge (Cologne)

Meeting of the Priority Programme on Representation Theory (SPP 1388) Physikzentrum Bad Honnef March 13th, 2015

Joint work with Kevin Coulembier, Tilmann Wurzbacher, Joachim Hilgert, and Martin Zirnbauer (partly in progress).

Research supported by DFG, grants no. ZI 513/2-1 and SFB/TR 12, and by the UoC Institutional Strategy in the German Excellence Initiative.

Plan of the talk

- Recollections
- Even type and odd type
- Results in even type
- Radial parts
- Results in odd type

Non-graded recollections. I. The "group case"

g	reductive Lie algebra
h	Cartan subalgebra
$\mathfrak{b}=\mathfrak{h}\oplus\mathfrak{u}$	Borel subalgebra
$W = W(\mathfrak{g}:\mathfrak{h})$	Weyl group

Theorem (Chevalley, Harish-Chandra).

- 1. The map $\operatorname{res}_{\mathfrak{h}}: p \mapsto p|_{\mathfrak{h}^*}$ is an algebra isomorphism $S(\mathfrak{g})^{\mathfrak{g}} \longrightarrow S(\mathfrak{h})^W$, and $S(\mathfrak{h})^W$ is a polynomial algebra in $r = \operatorname{rk} \mathfrak{g}$ indeterminates.
- 2. There is an algebra isomorphism

$$\Gamma: \mathcal{Z}(\mathfrak{g}) = \mathfrak{U}(\mathfrak{g})^{\mathfrak{g}} \longrightarrow S(\mathfrak{h})^{W},$$

given by the projection

$$\mathfrak{U}(\mathfrak{g}) = \mathfrak{U}(\mathfrak{h}) \oplus (\mathfrak{u}\mathfrak{U}(\mathfrak{g}) + \mathfrak{U}(\mathfrak{g})\mathfrak{u}^{-}) \longrightarrow \mathfrak{U}(\mathfrak{h}) = S(\mathfrak{h}),$$

followed by the shift $p \mapsto p(\cdot - \varrho)$, $\varrho = \frac{1}{2} \operatorname{tr}_{\mathfrak{u}} \operatorname{ad} |_{\mathfrak{h}}$.

Non-graded recollections. I. The case of symmetric pairs

(\mathfrak{g}, θ)	reductive symmetric Lie algebra
$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{p}$	heta-eigenspace decomposition
$\mathfrak{a}\subseteq\mathfrak{p}$	Cartan subspace
$\mathfrak{m}\oplus\mathfrak{a}\oplus\mathfrak{n}$	minimal θ -parabolic
$W = W(\mathfrak{g} : \mathfrak{a})$	little Weyl group

Theorem (Chevalley, Harish-Chandra).

- 1. The map $\operatorname{res}_{\mathfrak{a}}: p \mapsto p|_{\mathfrak{a}^*}$ is an algebra isomorphism $S(\mathfrak{g})^{\mathfrak{k}} \to S(\mathfrak{a})^W$, and $S(\mathfrak{a})^W$ is a polynomial algebra in $r = \operatorname{rk} \Sigma$ indeterminates, $\Sigma = \Delta(\mathfrak{g}: \mathfrak{a})$.
- 2. There is an exact sequence

$$0 \longrightarrow (\mathfrak{k}\mathfrak{U}(\mathfrak{g}))^{\mathfrak{k}} \longrightarrow \mathfrak{U}(\mathfrak{g})^{\mathfrak{k}} \stackrel{\Gamma}{\longrightarrow} S(\mathfrak{a})^{W} \longrightarrow 0$$

where Γ is given by the projection

$$\mathfrak{U}(\mathfrak{g}) = \mathfrak{U}(\mathfrak{a}) \oplus (\mathfrak{n}\mathfrak{U}(\mathfrak{g}) + \mathfrak{U}(\mathfrak{g})\theta(\mathfrak{n})) \longrightarrow \mathfrak{U}(\mathfrak{a}) = S(\mathfrak{a}),$$

followed by the shift $p \mapsto p(\cdot - \varrho)$, $\varrho = \frac{1}{2} \operatorname{tr}_{\mathfrak{n}} \operatorname{ad} |_{\mathfrak{a}}$.

Remark. The "group case" is recovered for $(g \times g, (12))$.

Graded group cases

$\mathfrak{g}=\mathfrak{g}_{\bar{0}}\oplus\mathfrak{g}_{\bar{1}}$	contragredient Lie superalgebra
$\mathfrak{h}\subseteq\mathfrak{g}_{\bar{0}}$	Cartan subalgebra
6	Borel subalgebra
$W = W(\mathfrak{g}_{\bar{0}}:\mathfrak{h})$	Weyl group

Theorem (Sergeev, Kac, Gorelik).

1. $\operatorname{res}_{\mathfrak{h}}: S(\mathfrak{g})^{\mathfrak{g}} \longrightarrow S(\mathfrak{h})^{W}$ is an injection whose image $I(\mathfrak{h})$ consists of all $p \in S(\mathfrak{h})^{W}$,

 $p(\lambda) = p(\lambda + \alpha), \quad \forall \lambda \in \mathfrak{h}^*, \alpha \in \overline{\Delta}_{\overline{1}}, \langle \lambda + \varrho, \alpha \rangle = 0.$

Here, $\overline{\Delta}_{\overline{1}} := \Delta_{\overline{1}} \setminus \mathbb{Q}\Delta_{\overline{0}}$ are the purely odd roots.

2. $\Gamma: \mathcal{Z}(\mathfrak{g}) \longrightarrow S(\mathfrak{h})^W$ is an injective algebra morphism whose image is $I(\mathfrak{h})$.

Remark (Sergeev, Stembridge). $I(\mathfrak{gl}(m|n))$ is not finitely generated for $m, n \ge 1$.

Symmetric superpairs

 (g, θ) symmetric contragredient Lie superalgebra

Theorem (Serganova, Chuah). If $\mathbf{k} = \ker(1 - \theta)$ is non-degenerate, then (\mathbf{g}, \mathbf{k}) is one of:

- 1. Lie algebra symmetric pairs,
- 2. parity involution pairs $(g, g_{\bar{0}})$,
- 3. group type pairs $(g \times g, g)$,
- 4. entries of the following list and their simple subquotients.

AI AII	$\mathfrak{gl}(p 2q)$	$\mathfrak{osp}(p 2q)$
AIII AIII	$\mathfrak{gl}(p+q r+s)$	$\mathfrak{gl}(p r) \times \mathfrak{gl}(q s)$
BDI CII	$\mathfrak{osp}(p+q 2r+2s)$	$\mathfrak{osp}(p 2r) \times \mathfrak{osp}(q 2s)$
DIII CI	$\mathfrak{osp}(2p 2q)$	$\mathfrak{gl}(p q)$
$(BDI CII)_{\alpha}$	$D(2,1;\alpha)$	$\mathfrak{osp}(2 2) \times \mathfrak{o}(2)$
BDI _I	F(4)	sf (4 1)
BDI _{II}	F(4)	$\mathfrak{osp}(2 4) \times \mathbb{C}$
BDI _{III}	F(4)	$\mathfrak{osp}(4 2) \times \mathfrak{sl}(2)$
G_I	G(3)	$\mathfrak{osp}(3 2) \times \mathfrak{sl}(2)$
G_{II}	G(3)	osp(4 2)

Remark. g = F(4), G(3) type II \Rightarrow trivial automorphism of $g_{\bar{0}} \mapsto (g, g_{\bar{0}})$ $|\operatorname{Aut}_2(g_{\bar{0}}) \setminus \{\operatorname{id}\}| = 3, 1$, parity self-dual in F(4) case, non self-dual in G(3) case

Even type and odd type

 $\begin{aligned} \mathfrak{a}_{\bar{0}} &\subseteq \mathfrak{p}_{\bar{0}} & \text{even Cartan subspace} \\ \mathfrak{a} &\coloneqq \mathfrak{z}_{\mathfrak{p}}(\mathfrak{a}_{\bar{0}}) & \text{Cartan subspace} \end{aligned}$

Definition. We say $(\mathfrak{g}, \mathfrak{k})$ is of *even type* if $\mathfrak{a} = \mathfrak{a}_{\bar{0}}$ and *odd type* otherwise.

Of the symmetric pairs listed above, the following are of even type:

- 1. Lie algebra symmetric pairs,
- 2. group type symmetric pairs,
- 3. the following types: $AI|AII, DIII|CI, (BDI|CII)_{\alpha}, BDI_{I}, BDI_{II}, BDI_{III}, G_{I}$, and
- 4. the types AIII|AIII, BDI|CII for $(p-q)(r-s) \ge 0$.

Thus, the following are the odd type pairs:

- 1. parity involution pairs,
- 2. type G_{II} , and
- 3. the types AIII|AIII, BDI|CII for (p-q)(r-s) < 0.

Invariants in even type. I. Functions

 $\overline{\Sigma}_{\tilde{1}} \coloneqq \Sigma_{\tilde{1}} \setminus \mathbb{Q}\Sigma_{\tilde{0}} \qquad \qquad \text{purely odd restricted roots}$

Theorem (A–Hilgert–Zirnbauer 2010). $\operatorname{res}_{\mathfrak{a}} : S(\mathfrak{p})^{k} \longrightarrow S(\mathfrak{a})^{W}$ is an injection whose image is

$$I(\mathfrak{a}) \coloneqq \bigcap_{\alpha \in \overline{\Sigma}_{\bar{1}}} I_{\alpha}$$

where for $\langle \alpha, \alpha \rangle = 0$:

$$I_{\alpha} := \{ p \in S(\mathfrak{a})^{W} \mid \partial_{\alpha}^{k} p \in (\check{\alpha}^{k}), k = 0, \dots, \frac{1}{2} \dim \mathfrak{g}_{1}^{\alpha} \}$$

and for $\langle \alpha, \alpha \rangle \neq 0$:

$$I_{\alpha} \coloneqq \{ p \in S(\mathfrak{a})^{W} \mid \partial_{\alpha}^{k} p \in (\check{\alpha}), k = 1, 3, 5, \dots, \dim \mathfrak{g}_{1}^{\alpha} - 1 \}.$$

Example. g = osp(2|2q), k = osp(1|2q):

$$I(\mathfrak{a}) = \mathbb{C}[a^2, a^{2q+1}] \cong \mathbb{C}[X, Y] / (X^{2q+1} - Y^2)$$

Invariants in even type. II. Operators

Theorem (A 2012). $\Gamma : \mathfrak{U}(\mathfrak{g})^{\mathfrak{k}} \longrightarrow S(\mathfrak{a})^{W}$ has kernel $(\mathfrak{k}\mathfrak{U}(\mathfrak{g}))^{\mathfrak{k}}$ and image

$$J(\mathfrak{a}) \coloneqq \bigcap_{\alpha \in \overline{\Sigma}_{\bar{1}}} J_{\alpha}$$

where for $\langle \alpha, \alpha \rangle = 0$:

 $J_{\alpha} \coloneqq I_{\alpha}$

and for $\langle \alpha, \alpha \rangle \neq 0$ and $2q = \dim \mathfrak{g}_{\mathfrak{j}}^{\alpha}$:

$$J_{\alpha} \coloneqq S(\mathfrak{a})^{W} \cap \mathbb{C}[(\check{\alpha}^{2} - q^{2}), (\check{\alpha} - q)(\check{\alpha}^{2} - q^{2})^{q}].$$

We have $\operatorname{gr} J(\mathfrak{a}) = I(\mathfrak{a})$, but in general $J(\mathfrak{a}) \neq I(\mathfrak{a})$.

Example. g = osp(2|2q), k = osp(1|2q):

$$J(\mathfrak{a}) = \mathbb{C}[a^2 - q^2, (a - q)(a^2 - q^2)^q] \cong \mathbb{C}[X, Y] / (X^{2q+1} - Y^2 - 2qX^qY)$$

Idea of proof: Radial parts

Theorem. For any differential operator *D* on \mathfrak{p} , there is a unique differential operator \overline{D} on \mathfrak{a}' such that

 $\overline{D}(f|_{\mathfrak{a}'}) = D(f)|_{\mathfrak{a}'}$

for any locally defined k-invariant analytic function.

Theorem (A-Hilgert-Zirnbauer 2010). We have

 $I_{\alpha} = \bigcap_{D \in S(\mathfrak{p}_{\hat{1}}^{\alpha})} \operatorname{dom} \overline{D}$

This follows from the fact that for a symplectic basis (z_i, \tilde{z}_i) of $\mathfrak{p}_{\tilde{i}}^{\alpha} = (1 + \theta)(\mathfrak{g}_{\tilde{i}}^{\alpha})$, we have

$$\overline{z_I \tilde{z}_I} = (-1)^{\frac{k(k+1)}{2}} \sum_{j=0}^{k-1} \frac{(k-1+j)!}{2^j (k-1-j)!} \frac{(-\langle \alpha, \alpha \rangle)^j}{\check{\alpha}^{k+j}} \partial_{\alpha}^{k-j}, \quad k = |I|$$

One might hope for a characterisation in terms of operators with simpler radial parts. Moreover, one would like to give meaning to radial parts in general.

Radial parts and slices. I

Greal or complex Lie supergroup $X, a: G \times X \longrightarrow X$ real or complex supermanifold with G-action $Y \subseteq X$ locally closed subsupermanifold

Prime example:

$$G = \mathrm{Ad}_{\mathbf{k}}, \quad X = \mathbf{p}, \quad Y = \mathbf{a}'.$$

Definition. We say that Y is a weak slice if

$$T_{\mathcal{V}}X = T_{\mathcal{V}}Y \oplus \operatorname{im}(\mathfrak{g} \longrightarrow T_{\mathcal{V}}X), \quad \forall y \in Y_0$$

and a strong slice if in addition

 $(\forall y' \in U(y) : (v_X)(y') = 0) \implies (v_X|_Y)_y = 0, \forall v \in \mathfrak{g}, y \in Y_0.$

The conditions are equivalent if *X*, *Y*, *G* are non-graded.

Proposition. In the above situation, α is always a weak slice, and it is a strong slice if and only if (g, \hat{k}) is of even type.

Radial parts and slices. II

Theorem (A–Coulembier 2015). Let *Y* be a strong slice. For any differential operator *D* on *X*, there is a unique differential operator \overline{D} on *Y* such that

 $\overline{D}(f|_Y) = D(f)|_Y$

for any locally defined (locally) G-invariant analytic (smooth) function f.

When Y is only a weak slice, consider the Weyl groupoid

 $\widetilde{W}_Y \coloneqq \operatorname{Trans}_G(Y) / \operatorname{Fix}_G(Y), \quad \operatorname{Trans}_G(Y) \coloneqq \{(y,g) \mid g \cdot y \in Y\},$ $\operatorname{Fix}_G(Y) \coloneqq \{(y,g) \mid g \cdot y = y\}.$

Theorem (A–Coulembier 2015). Let *Y* be a weak slice and assume the quotient $\pi_Y : Y \to Y/\widetilde{W}_Y$ exists as a reasonable superspace. For any differential operator *D* on *X*, there is a unique differential operator \overline{D} along π_Y such that

 $\overline{D}(\bar{f}) = D(f)|_Y, \quad f|_Y = \pi_Y^{\sharp}(\bar{f})$

for any locally defined (locally) *G*-invariant analytic (smooth) function *f*. If *D* is *G*-invariant, then \overline{D} descends to an operator on Y/\widetilde{W}_Y .

Proof no. 1

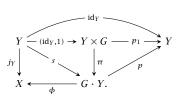
Proof of Theorem 1.

There is a local isomorphism onto an open subspace:

 $\phi: G \cdot Y := (Y \times G) / \operatorname{Fix}_G (Y \subseteq X) \longrightarrow X$

Shrinking *Y* and *X*, we may assume it is an isomorphism.

There is a commutative diagram:



For any $D \in \Gamma(\mathcal{D}_X)$, we may define $\overline{D} \in \Gamma(\mathcal{D}_Y)$ by the prescription

$$\bar{D} \coloneqq j_Y^{\sharp} \circ D \circ \phi^{-1\sharp} \circ p^{\sharp}.$$

This shows existence, and uniqueness follows similarly.

Proof no. 2

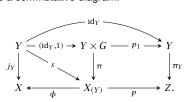
Proof of Theorem 2.

There is an open G-equivariant embedding

 $\phi: X_{(Y)} := (Y \times G) / \operatorname{Trans}_G(Y) \longrightarrow X$

Shrinking *X*, we may assume it is an isomorphism.

Let $Z := Y / \tilde{W}_Y$. There is a commutative diagram:



For any $D \in \Gamma(\mathcal{D}_X)$, we may define $\overline{D} \in \Gamma(\mathcal{D}_{Y \to Z})$ by the prescription

$$\bar{D} \coloneqq j_Y^{\sharp} \circ D \circ \phi^{-1\sharp} \circ p^{\sharp}.$$

This shows existence, and uniqueness follows similarly.

Radial parts in odd type

Theorem (A–Coulembier 2015). The Weyl groupoid $\tilde{W}_{\mathfrak{a}'}$ is $\mathfrak{a}' \times \widetilde{W}$, where \widetilde{W} is the Weyl group \sim ______

$$\widetilde{W} = N_{K_0}(\mathfrak{a}) / Z_{K_0}(\mathfrak{a}) = W \times \overline{W}$$

where

$$W = W(\mathfrak{g}_{\bar{0}} : \mathfrak{a}_{\bar{0}}), \quad \overline{W} = N_{K_0}(\mathfrak{a})/(Z_{K_0}(\mathfrak{a}_{\bar{0}}) \cap N_{K_0}(\mathfrak{a}_{\bar{1}})).$$

W acts only on $\mathfrak{a}_{\bar{0}}$, and \overline{W} acts only on $\mathfrak{a}_{\bar{1}}$. The quotient $\mathfrak{a}'/\widetilde{W}$ is reasonable.

Example. For $(\mathfrak{g}, \mathfrak{k}) = G_{II}$:

$$\overline{W} \cong SL(2, \mathbb{C}).$$

Proposition (A–Coulembier 2015). Let $\alpha \in \Sigma$. The radial part of the Laplacian L_{α} of the symmetric pair $(\mathfrak{g}_{\alpha}, \mathfrak{f}_{\alpha})$ has the shape

$$L_{\mathfrak{a}} + \frac{\dim \mathfrak{g}^{\alpha} + \dim \mathfrak{g}^{2\alpha}}{\check{\alpha}} \partial_{\alpha}, \quad \alpha \notin \Sigma_{\bar{0}} \cap \Sigma_{\bar{1}}$$

or

$$L_{\mathfrak{a}} + \left(\dim \mathfrak{g}^{\alpha} + \dim \mathfrak{g}^{2\alpha} - \operatorname{tr}\left(\frac{1}{1 + G_{\alpha}/\check{\alpha}^{2}}\right)\right) \frac{1}{\check{\alpha}} \partial_{\alpha} + \sum_{ab} \eta_{ab} \operatorname{tr}\left(\frac{\partial_{\theta_{a}}G_{\alpha}/\check{\alpha}^{2}}{1 + G_{\alpha}/\check{\alpha}^{2}}\right) \partial_{\theta_{b}}, \quad \alpha \in \Sigma_{\bar{0}} \cap \Sigma_{\bar{1}}.$$

Invariant functions in odd type

Theorem (A–Coulembier 2015).
1. res_α: S(p)^k → S(α) is injective, and its image is
S(a)^{W̃} ∩ ∩ ∩ Kα, Kα := ∩ ∩ dom(Ūα).
When α ∈ Σ₁, then finite intersections up to k = 1/2 dim gα are sufficient.
If (g, k̂) is of even type, then one may omit Kα for α ∈ QΣ₀ ∩ Σ₁.
For α ∈ Σ₀, sα-invariance may be replaced by Kα.

5. Similar statements hold for analytic and smooth functions.

For parity involution pairs, this just states that

$$S(\mathfrak{p})^{\mathfrak{k}} = (\bigwedge \mathfrak{g}_{\overline{1}})^{\mathfrak{g}_{\overline{0}}} = S(\mathfrak{a})^{\widetilde{W}}.$$

Remark. This explains the $(\mathfrak{osp}(2|2q), \mathfrak{osp}(1|2q))$ result, as

$$L^{m}_{\alpha}x^{n} = \left(\partial_{x}^{2} - 2qx^{-1}\partial_{x}\right)^{m}x^{n} = 4^{m}(n/2)_{m}((n-1)/2 - q)_{m}x^{n-2m}$$

so $p \in \bigcap_m \operatorname{dom}(L^m_\alpha)$ if and only if $p_{2j-1} = 0$ for $j = 1, \dots, q$.

References.

- A. Alldridge, The Harish-Chandra isomorphism for reductive symmetric superpairs, Transformation Groups 17 (2012), no. 4, 889–919.
- [2] A. Alldridge and K. Coulembier, Actions, slices, and radial parts (2015). In preparation.
- [3] _____, Invariant functions on reductive symmetric superpairs (2015). In preparation.
- [4] A. Alldridge, J. Hilgert, and T. Wurzbacher, Superorbits (2015), available at arXiv: 1502.04375.41 p.
- [5] A. Alldridge, J. Hilgert, and M.R. Zirnbauer, Chevalley's restriction theorem for reductive symmetric superpairs, J. Algebra 323 (2010), no. 4, 1159–1185.

Thank you for your attention.