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Plan of the talk

ñ Recollections
ñ Even type and odd type
ñ Results in even type
ñ Radial parts
ñ Results in odd type



Non-graded recollections. I. The “group case”
g reductive Lie algebra
h Cartan subalgebra
b = h⊕ u Borel subalgebra
W = W(g : h) Weyl group

Theorem (Chevalley, Harish-Chandra).
1. The map resh : p 7 -→ p|h∗ is an algebra isomorphism S(g)g -→ S(h)W , and S(h)W is

a polynomial algebra in r = rk g indeterminates.
2. There is an algebra isomorphism

Γ : Z(g) = U(g)g -→ S(h)W ,

given by the projection

U(g) = U(h)⊕ (u U(g)+U(g)u−) -→ U(h) = S(h),

followed by the shift p 7 -→ p(· − %), % = 1
2 tru ad |h.



Non-graded recollections. I. The case of symmetric pairs
(g, θ) reductive symmetric Lie algebra
g = k⊕ p θ-eigenspace decomposition
a ⊆ p Cartan subspace
m⊕ a⊕ n minimal θ-parabolic
W = W(g : a) little Weyl group

Theorem (Chevalley, Harish-Chandra).
1. The map resa : p 7 -→ p|a∗ is an algebra isomorphism S(p)k -→ S(a)W , and S(a)W is

a polynomial algebra in r = rkΣ indeterminates, Σ = ∆(g : a).
2. There is an exact sequence

0 (kU(g))k U(g)k S(a)W 0
Γ

where Γ is given by the projection

U(g) = U(a)⊕ (n U(g)+U(g)θ(n)) -→ U(a) = S(a),

followed by the shift p 7 -→ p(· − %), % = 1
2 trn ad |a.

Remark. The “group case” is recovered for (g× g, (1 2)).



Graded group cases
g = g0̄ ⊕ g1̄ contragredient Lie superalgebra
h ⊆ g0̄ Cartan subalgebra
b Borel subalgebra
W = W(g0̄ : h) Weyl group

Theorem (Sergeev, Kac, Gorelik).
1. resh : S(g)g -→ S(h)W is an injection whose image I(h) consists of all p ∈ S(h)W ,

p(λ) = p(λ+α), ∀λ ∈ h∗, α ∈ ∆1̄, 〈λ+ %,α〉 = 0.

Here, ∆1̄ := ∆1̄ \Q∆0̄ are the purely odd roots.
2. Γ : Z(g) -→ S(h)W is an injective algebra morphism whose image is I(h).

Remark (Sergeev, Stembridge). I(gl(m|n)) is not finitely generated form,n á 1.



Symmetric superpairs
(g, θ) symmetric contragredient Lie superalgebra

Theorem (Serganova, Chuah). If k = ker(1− θ) is non-degenerate, then (g, k) is one of:
1. Lie algebra symmetric pairs,
2. parity involution pairs (g, g0̄),
3. group type pairs (g× g, g),
4. entries of the following list and their simple subquotients.

AI|AII gl(p|2q) osp(p|2q)
AIII|AIII gl(p + q|r + s) gl(p|r)× gl(q|s)
BDI|CII osp(p + q|2r + 2s) osp(p|2r)× osp(q|2s)
DIII|CI osp(2p|2q) gl(p|q)

(BDI|CII)α D(2,1;α) osp(2|2)× o(2)
BDII F(4) sl(4|1)
BDIII F(4) osp(2|4)× C
BDIIII F(4) osp(4|2)× sl(2)
GI G(3) osp(3|2)× sl(2)
GII G(3) osp(4|2)

Remark. g = F(4),G(3) type II =⇒ trivial automorphism of g0̄ 7 -→ (g, g0̄)∣∣Aut2(g0̄) \ {id}
∣∣ = 3,1, parity self-dual in F(4) case, non self-dual in G(3) case



Even type and odd type
a0̄ ⊆ p0̄ even Cartan subspace
a := zp(a0̄) Cartan subspace

Definition. We say (g, k) is of even type if a = a0̄ and odd type otherwise.

Of the symmetric pairs listed above, the following are of even type:
1. Lie algebra symmetric pairs,
2. group type symmetric pairs,
3. the following types: AI|AII, DIII|CI, (BDI|CII)α, BDII , BDIII , BDIIII , GI , and
4. the types AIII|AIII, BDI|CII for (p − q)(r − s) á 0.

Thus, the following are the odd type pairs:
1. parity involution pairs,
2. type GII , and
3. the types AIII|AIII, BDI|CII for (p − q)(r − s) < 0.



Invariants in even type. I. Functions
Σ1̄ := Σ1̄ \QΣ0̄ purely odd restricted roots

Theorem (A–Hilgert–Zirnbauer 2010). resa : S(p)k -→ S(a)W is an injection whose
image is

I(a) :=
⋂
α∈Σ1̄

Iα

where for 〈α,α〉 = 0:

Iα :=
{
p ∈ S(a)W

∣∣ ∂kαp ∈ (α̌k), k = 0, . . . , 1
2 dim gα1̄

}
and for 〈α,α〉 ≠ 0:

Iα :=
{
p ∈ S(a)W

∣∣ ∂kαp ∈ (α̌), k = 1,3,5, . . . ,dim gα1̄ − 1
}
.

Example. g = osp(2|2q), k = osp(1|2q):

I(a) = C[a2, a2q+1] � C[X, Y]/(X2q+1 − Y 2)



Invariants in even type. II. Operators

Theorem (A 2012). Γ : U(g)k -→ S(a)W has kernel (kU(g))k and image

J(a) :=
⋂
α∈Σ1̄

Jα

where for 〈α,α〉 = 0:
Jα := Iα

and for 〈α,α〉 ≠ 0 and 2q = dim gα1̄ :

Jα := S(a)W ∩ C[(α̌2 − q2), (α̌− q)(α̌2 − q2)q].

We have gr J(a) = I(a), but in general J(a) ≠ I(a).

Example. g = osp(2|2q), k = osp(1|2q):

J(a) = C[a2 − q2, (a− q)(a2 − q2)q] � C[X, Y]/(X2q+1 − Y 2 − 2qXqY)



Idea of proof: Radial parts

Theorem. For any differential operator D on p, there is a unique differential operator D
on a′ such that

D(f |a′ ) = D(f)|a′

for any locally defined k-invariant analytic function.

Theorem (A–Hilgert–Zirnbauer 2010). We have

Iα =
⋂

D∈S(pα
1̄
)

domD

This follows from the fact that for a symplectic basis (zi, z̃i) of pα1̄ = (1+ θ)(g
α
1̄ ), we have

zI z̃I = (−1)
k(k+1)

2

k−1∑
j=0

(k− 1+ j)!
2j(k− 1− j)!

(−〈α,α〉)j
α̌k+j

∂k−jα , k = |I|.

One might hope for a characterisation in terms of operators with simpler radial parts.
Moreover, one would like to give meaning to radial parts in general.



Radial parts and slices. I
G real or complex Lie supergroup
X,a : G ×X -→ X real or complex supermanifold with G-action
Y ⊆ X locally closed subsupermanifold

Prime example:
G = Adk, X = p, Y = a′.

Definition. We say that Y is a weak slice if

TyX = TyY ⊕ im(g -→ TyX), ∀y ∈ Y0

and a strong slice if in addition(
∀y′ ∈ U(y) : (vX)(y′) = 0

)
=⇒ (vX |Y )y = 0, ∀v ∈ g, y ∈ Y0.

The conditions are equivalent if X,Y ,G are non-graded.

Proposition. In the above situation, a is always a weak slice, and it is a strong slice if
and only if (g, k) is of even type.



Radial parts and slices. II

Theorem (A–Coulembier 2015). Let Y be a strong slice. For any differential operator D
on X, there is a unique differential operator D on Y such that

D(f |Y ) = D(f)|Y

for any locally defined (locally) G-invariant analytic (smooth) function f .

When Y is only a weak slice, consider the Weyl groupoid

W̃Y := TransG(Y)/FixG(Y), TransG(Y) :=
{
(y,g)

∣∣ g ·y ∈ Y},
FixG(Y) :=

{
(y,g)

∣∣ g ·y = y}.
Theorem (A–Coulembier 2015). Let Y be a weak slice and assume the quotient
πY : Y -→ Y/W̃Y exists as a reasonable superspace. For any differential operator D on
X, there is a unique differential operator D along πY such that

D(f̄ ) = D(f)|Y , f |Y = π]Y (f̄ )

for any locally defined (locally) G-invariant analytic (smooth) function f . If D is
G-invariant, then D descends to an operator on Y/W̃Y .



Proof no. 1

Proof of Theorem 1.
There is a local isomorphism onto an open subspace:

φ : G · Y := (Y ×G)/FixG(Y ⊆ X) -→ X

Shrinking Y and X, we may assume it is an isomorphism.

There is a commutative diagram:

Y Y ×G Y

X G · Y .

idY

(idY ,1)

sjY π

p1

φ

p

For any D ∈ Γ(DX), we may define D̄ ∈ Γ(DY ) by the prescription

D̄ := j]Y ◦D ◦φ−1] ◦ p].

This shows existence, and uniqueness follows similarly.



Proof no. 2

Proof of Theorem 2.
There is an open G-equivariant embedding

φ : X(Y) := (Y ×G)/TransG(Y) -→ X

Shrinking X, we may assume it is an isomorphism.

Let Z := Y/W̃Y . There is a commutative diagram:

Y Y ×G Y

X X(Y) Z.

idY

(idY ,1)

sjY π

p1

πY

φ p

For any D ∈ Γ(DX), we may define D̄ ∈ Γ(DY→Z) by the prescription

D̄ := j]Y ◦D ◦φ−1] ◦ p].

This shows existence, and uniqueness follows similarly.



Radial parts in odd type

Theorem (A–Coulembier 2015). The Weyl groupoid W̃a′ is a′ × W̃ , where W̃ is the Weyl
group

W̃ = NK0 (a)/ZK0 (a) = W ×W

where
W = W(g0̄ : a0̄), W = NK0 (a)/(ZK0 (a0̄)∩NK0 (a1̄)).

W acts only on a0̄, and W acts only on a1̄. The quotient a′/W̃ is reasonable.

Example. For (g, k) = GII :
W � SL(2,C).

Proposition (A–Coulembier 2015). Let α ∈ Σ. The radial part of the Laplacian Lα of
the symmetric pair (gα, kα) has the shape

La +
dim gα + dim g2α

α̌
∂α, α ∉ Σ0̄ ∩ Σ1̄

or

La+
(
dim gα + dim g2α − tr

( 1
1+Gα/α̌2

)) 1
α̌
∂α+

∑
ab
ηab tr

( ∂θaGα/α̌2

1+Gα/α̌2

)
∂θb , α ∈ Σ0̄∩Σ1̄.



Invariant functions in odd type

Theorem (A–Coulembier 2015).
1. resa : S(p)k -→ S(a) is injective, and its image is

S(a)W̃ ∩
⋂
α∈Σ

Kα, Kα :=
∞⋂
k=0

dom(Lkα).

2. When α ∈ Σ1̄, then finite intersections up to k = 1
2 dim gα are sufficient.

3. If (g, k) is of even type, then one may omit Kα for α ∈ QΣ0̄ ∩ Σ1̄.
4. For α ∈ Σ0̄, sα-invariance may be replaced by Kα.
5. Similar statements hold for analytic and smooth functions.

For parity involution pairs, this just states that

S(p)k =
(∧

g1̄

)g0̄ = S(a)W̃ .

Remark. This explains the (osp(2|2q), osp(1|2q)) result, as

Lmα xn =
(
∂2
x − 2qx−1∂x

)mxn = 4m(n/2)m((n− 1)/2− q)mxn−2m

so p ∈
⋂
m dom(Lmα ) if and only if p2j−1 = 0 for j = 1, . . . , q.



References.
[1] A. Alldridge, The Harish-Chandra isomorphism for reductive symmetric superpairs, Transformation Groups 17

(2012), no. 4, 889–919.

[2] A. Alldridge and K. Coulembier, Actions, slices, and radial parts (2015). In preparation.

[3] , Invariant functions on reductive symmetric superpairs (2015). In preparation.

[4] A. Alldridge, J. Hilgert, and T. Wurzbacher, Superorbits (2015), available at arXiv:1502.04375. 41 p.

[5] A. Alldridge, J. Hilgert, and M.R. Zirnbauer, Chevalley’s restriction theorem for reductive symmetric superpairs, J.
Algebra 323 (2010), no. 4, 1159–1185.

Thank you for your attention.

arXiv:1502.04375

