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Summary

Compare the three projective varieties

The main subjects of this talk are three different projective
varieties of different nature:

m Quiver Grassmannians of type A: Gre(M);
m Schubert varieties of type A: X(7) C Fl(dy,--- ,ds);
m Degenerate flag varieties of type A: Fl,.

The aim of the talk is to show that they are comparable:

Gre(M) < >~ 11, X(7)
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Quiver Grassmannians of type A

Definition

Let K = C be the field of complex numbers and let n > 1 be a
positive integer. We consider the algebra A = T,(K) of lower
triangular n x n matrices: as a vector space this has basis the
elementary matrices {g;| 1 </ < j < n} and multiplication is
given by the usual rule

&ji - eke = ik Ej¢
So
K 0
K K
A~
K .. K
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Quiver Grassmannians of type A

A complete set of pairwise orthogonal idempotents of
A = T,(K) is given by the diagonal elementary matrices
{ei ;= ejj|]1 < i< n}and as a left A-module we have

AA=Ae D Aex @ --- @ Aep

Notice that the projective indecomposable A—-module Aeg; is
nothing but the "i-th column of A”:
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Quiver Grassmannians of type A

Let M be a finite dimensional A—-module. As a K—vector space,
M decomposesas M =e M d esM P - - - & e,M and we define

M,‘ = e,-M.
The dimension vector of M is the integer vector
dlm(M) = (dimKM1 , dimKMQ, s ,dimKMn).

The action of a basis element g;; defines a linear map

6’,’ : M,’ — /V,j
Since €ji = €j(j_1) - €(j—1)(j-2) """ €(i+1)i the linear map f; is the
composite of linear maps
fi1)i fiv2)(ir1)
fi: My——> Mg —> -
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Quiver Grassmannians of type A

We hence see that an A-module M determines a diagram

M My —2 g, 2 M,

and viceversa.

Let ¢ : M — N an A-morphism, i.e. p(a- m) = ao p(m), then
o(eiM) = eip(M) C e;N. We hence see that p = >°7_; ¢;
where ¢ : M; — N; is a linear map such that the squares of the

diagram
f; f fin—1
M M, 21 Mo % (i M,
l#’ i% is@z \Lwn
9(n—1
N N, 921 N> oz 2 N,
commute.
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Quiver Grassmannians of type A

Definition

An A-submodule L C4 M of M, is a vector subspace of M
invariant under A. In other words an A-submodule is a pair (L, ¢)
where L is an A-module and ¢ : L — M is @ monomorphism.

Definition
A quiver Grassmannian of type A is the closed subvariety

Gre(M) := {L Cq M|dimL = e} C Gre,(My) x --- x Gre,(Mn)

where M is an A-module and e € ZZ is a dimension vector.
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Quiver Grassmannians of type A

First examples

m If e =dim M or e = 0 then Gre(M) = {point}.
m If e > dim M; forsome i =1,---  n, then Gre(M) is empty.
m If M is semisimple, then Gre(M) =[], Gre,(M;)

(59)

Gri1,1y(M) ~ {([Xo : X1],[Yo : Y1]) € P! x P'| XY = 0}

mForn=2letM= K2 K2 then

is the cross of two P'’s in one point.
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Quiver Grassmannians of type A

AR theory of A

The indecomposable A-modules are, up to isomorphisms,
i J

forall1 <i<j<n.
For example, the projective indecomposables are

P; = Mli, n] (i=1,---,n)
and the injectives

=M1,k (k=1,---,n)
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Quiver Grassmannians of type A

Irreducible maps

Recall that a map f: M — N between two indecomposable
A—modules (for any algebra A) is called irreducible if any
decomposition f = g o himplies that either h is split-mono or g
is split—epi. It is not difficult to show that the irreducible maps
between indecomposable A—-modules are of two “types”

M[i,j] —=M[i —1,j] and MIi, j]~—— M[i,j — 1]

forany2 <i<j<n.
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Quiver Grassmannians of type A

AR—quiver

The AR—quiver of an algebra B is the oriented graph with
m vertices: isoclasses of indecomposable B—-modules;
m arrows: there is an arrow [M] — [N] if and only if there
exists an irreducible map M — N. Such arrow has

multiplicity equal to the dimension of the “space of
irreducible maps”, which for our algebra A is at most 1.
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Quiver Grassmannians of type A

The AR—quiver of the matrix algebra A, is (for n=4)
[1.4]
[2,4] [1,3]
/[3, 4] <

[4,4] [3,3] [2,2] [1,1]

[2,3] [1,2]

VAN
N/
N/
/
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Quiver Grassmannians of type A

Projective modules as flags

The reason why we are working with the matrix algebra A, is
that it enjoys the following wonderful property: an A-module P
is projective if and only if the algebra A acts on P via injective
linear maps. In other words P defines a flag

P=P,= (PP = P,)

of vector subspaces of P,. Moreover, a sub representation
Q Cp P determines a sub-flag Q, C4 P., in the sense that
Q; C Piforeveryi=1,---,n.
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Quiver Grassmannians of type A

Quiver Grassmannians inside flag varieties

m Let M be an A-module and let

0 PM_t. QM T .M 0

be a minimal projective resolution of M.

m The homomorphism ¢ : PM — QM provides a sub—flag
(P C QM.

m Every sub representation N C4 M lifts to a sub—flag
71 (N)e =: Ny € QM with the property that

(PMyC N, c QM

and dim N = dim N -+ dim PV.
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Quiver Grassmannians of type A

Quiver Grassmannians inside flag varieties

Givene = (eq,--- ,en) € Z, and an A-module M, we denote
by Gre(QY C PM) the variety of flags R, in PM s.t.

Q¥ c R, C PY;

dim R; = e; + dim QM.
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Quiver Grassmannians of type A

Quiver Grassmannians inside flag varieties

For a vector space V, and non—negative integers
0<di <d<---<d,we denote by

Fl(dy,---,dr; V)={Re =(Ry C--- C R C V)|dim Rx = di}.
Then, by definition,
Gre(QY C PMYC Fl(ei + a1, .en+ qn; PY)

is a closed sub variety of a variety of (partial) flags of P where
gi == dim QM.
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Quiver Grassmannians of type A

Quiver Grassmannians inside flag varieties

Lemma

The map
Gre(M) — Gre(QY € P))

N+——— 771 (N),

is an isomorphism of projective variety.
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Quiver Grassmannians of type A

Example

Let us consider the example above: n = 2, and

(1 0)
00
M= K? K?2

resolution of M is

= S @& Py & P». The minimal projective

04>QM P24>PM P1@P1@P24>M4>0
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Quiver Grassmannians of type A

Example

m The variety Gr 1)( Q¥ PM ) is the variety of
complete flags in PY = K3 = (w1, va, v3)

Re=(Ric Rc K3  (dimR;=1)

such that
m Ry C (v, v3) and
m (v3) C Ro.
m In particular, notice that Gr(; 1)(Q) C PY) is stable under

the action of the Borel B < GL(PY) of lower triangular
matrices.
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Quiver Grassmannians of type A

Coefficient quiver

Given an A-module M, by Krull-Remak-Schmidt theorem, we
can write M ~ @ .;<;<, M[i,j]™. In particular, M has a normal
form in which all its linear maps are permutation matrices (every
column has at most one non—zero entry which is equal to 1).
The coefficient quiver of M has vertices the basis vector of M in
normal form, and there is an arrow v — fi.4 ;(v) if fii 1 ,i(v) # 0.
Notice that £, 1 ;(v) is again a basis vector, by assumption.
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Quiver Grassmannians of type A

Example

m The coefficient quiver of Mis e —— o
[ ] [
m which can be rewritten as °
e ———>0
[ ]

m and its minimal projective resolution looks like

[ ]
o —>0

o ——f

where the * represents the kernel Ps.
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Quiver Grassmannians of type A

Example

We represent the quiver Grassmannian Gre(M) via its "torus
fixed points": by putting the number g; at the bottom of the i-th
column of the coefficient quiver of M. For example,

o ——>60
[ ] [ ]
1 1
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Quiver Grassmannians of type A

Similarly

1 2

represents Gr; 1)(QM C PM) of before and the « says that the
corresponding line "must be taken".
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Quiver Grassmannians of type A

Example

Let us consider the quiver Grassmannian (n=4)

o —————>0——>0

o ————>0 —> 0

(=] (&) €3 €4
and its corresponding subvariety of flags in K*

o ———f

>} >

° °

) (] >k
e (=)} 93+1 €4+ 2
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Quiver Grassmannians of type A

Example

From the picture

[
[ ° e ———>ff
e e ez +1 ey+2

one immediately sees that Gre(QY C PM) is not a B-stable
subvariety of Fl(eq, €, €3 + 1, €4 + 2; K*). In particular, it is not
clear if its irreducible components share the geometric
properties of Schubert varieties (projectively normal, rational
singularities, Bott—Samelson resolution.. ).
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Schubert quiver Grassmannians

Definition

Definition

We say that a quiver Grassmannian Gre(M) is Schubert if the
corresponding variety Gre(QM C PM) is stable under a Borel
subgroup of GL(PM).
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Schubert quiver Grassmannians

Example

m Gre(Q) is Schubert, for any projective A-module Q. Indeed,
this is just a variety of partial flags in Q. The variety of full
flags is Gr(1727._.7,,,1)(P1”).

m Gre(E) is Schubert, for any injective A-module E.
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Schubert quiver Grassmannians

Linearly ordered modules

Definition
We say that an A-module whose indecomposable
decomposition is of the form

M=M1)* . & M(s)*

is linearly ordered if [M(1)],--- ,[M(s)] lie in a same path of the
AR-quiver of A.
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Schubert quiver Grassmannians
example

[1,4]
[2,4] [1,3]

[2,3]

NN
SN

7 N
(3, 4] [1,2]
N A

e

[4,4] [3,3] [2,2] [1,1]
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Schubert quiver Grassmannians

Theorem

Theorem (C. I.- Reineke, 2014)
Gre(M) is Schubert if and only if M is linearly ordered.
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Summary Quiver Grassmannians of type A Schubert quiver G 3 Degenerate Flag varieties Type C Me

Theorem (Evgeny Feigin)

Let g = sl,.1. Then the complete degenerate flag variety
associated with g is the projective variety

Flppr = {(V4,---, Vn EHGI’ |pr,+1VCV,+1}

where pr; : K™ — K™ S apvy — iz @ Vk is the
projection along the i-th basis vector v;.
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Degenerate Flag varieties

Degenerate Flag variety and quiver Grassmannians

The module over A = T,(K):

M- KM P KN+ pr Kgn+1 Pin-1 Prn—1 KN+

is nothing but

M~Pi& - Po®h@- & lh=aA® D(Ap)

Corollary (C.l.- M. Reineke- E. Feigin, 2011)

Flpi1 ~ Grgim,a(aA ® D(Aa))
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Degenerate Flag varieties

Degenerate Flag variety and Schubert quiver
Grassmannians

Since M = pA @ D(A,) is clearly linearly ordered, we get
another proof of

Theorem (C.1.- M. Lanini, 2014)

Degenerate flag varieties are Schubert varieties.
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Self-duality

There is an isomorphism of algebras
A— AP . €ij— en—jn—i
which induces an equivalence of categories
S:A— mod — A% — mod

By composing with the standard duality
D : A% — mod — A — mod we get a self-duality

V:A—mod — A— mod

(A— mod, V) is hence an Hermitian category in the
terminology of W. Scharlau.
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Symplectic Modules

m A symplectic module is a pair (M, V) where
m Mis a finite-dimensional A-module
m V:M— VMis anisomorphism such that ¥ + V¥ =0
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G. Cerulli Irelli

Isotropic quiver Grassmannians

The underlying vector space of a symplectic module (M, V)
inherits a symplectic non-degenerate bilinear form (—, —),
"compatible with the action of A".

Definition
Given a dimension vector e one defines the isotropic quiver

Grassmannian Grls°(M, V), as the subvariety of Gre(M)
consisting of isotropic sub representations with respect to

<_7_>‘|"

Degenerate flag varieties of type C are isotropic quiver
Grassmannians.

Geometry of Quiver Grassmannians
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Methods

Why representation theory of quivers helps?

Let us show how having the representation theory of A at
disposal can help. For example, let us prove that degenerate
flag varieties are flat degeneration of flag varieties: This result
was first proved by E. Feigin using explicit computations.
Together with M. Reineke and E. Feigin we gave another proof
using the interpretation in terms of quiver Grassmannians:
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Methods

Let M = X @ Y be an A-module, such that
Ext! (X,Y)=0= Ext! (X, X) = Ext1(Y, Y). Letd :=dimM
and e :=dim X. Let
n—1
Rep(d, A) = [ [ Homk (K, K%)

i=1

be the affine variety parameterizing A—modules of dimension
vector d.

Theorem (C.1.- M. Reineke- E. Feigin, 2011)

Let M be the generic representation in Rep(d, A). Then

Gr4im x(M) is a flat degeneration of Grgim x(M)
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Methods

m Let Y C Rep(d, A) be the open subset consisting of all
representations Z whose orbit closure O contains the

orbit Owm;
m Let

Gr(d) = {((UDy x (fis).) € (IT7-1 Gre,(K%)) x Rep(d, A)|
fir1),i(Ui) € Uig1 }

m We have two projections:

[T Gre,(K®)
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Methods

Proof

m We have two projections:
Gr&(d)

P1 P2
17, Gre,(f?df)/ \Rep(d,A)

m Gre(M) = p; ' (M).

m Letg: Y — Y be the restriction of ps to
widetildeY = p2‘1(Y). This is a proper morphism between
two smooth and irreducible varieties. N

m The general fiber of q is Gre(M), since the orbit of M is
open in Y and the special fiber of q is Gre(M), since the
orbit of M is closed in Y by definition. -
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Methods

m By semicontinuity, and an easy dimension estimate, all
fibres of g have the same dimension.

m By Matsumura’s theorem, a proper morphism between

smooth and irreducible varieties with constant fibre
dimension is already flat.

Corollary

Degenerate flag varieties are flat degeneration of flag varieties.
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Methods

Thank you!
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