Spherical varieties: interactions with representation theory and generalizations Part I

Stéphanie Cupit-Foutou

Ruhr-Universität Bochum

Real structures

Moduli Theory

What is a spherical *G*-variety?

◆□> < □> < □> < □> < □> < □> < □</p>

Real structures

Moduli Theory

What is a spherical G-variety?

Structure theory

Real structures

Moduli Theory

What is a spherical G-variety?

Structure theory

Real structures

Real structures

Moduli Theory

What is a spherical G-variety?

Structure theory

Real structures

Moduli Theory

Moduli Theory

What is a spherical G-variety?

Structure theory

Real structures

Moduli Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Some notation

• $\mathbf{k} = \bar{\mathbf{k}}$ a field

What is a spherical G-variety?

Structure theory

Real structures

Moduli Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Some notation

- $\mathbf{k} = \bar{\mathbf{k}}$ a field
- G a connected reductive algebraic group

What is a spherical *G*-variety?

Structure theory

Real structures

Moduli Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Some notation

- $\mathbf{k} = \bar{\mathbf{k}}$ a field
- G a connected reductive algebraic group
- B a Borel subgroup of G

Moduli Theory

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Some notation

- $\mathbb{k} = \overline{\mathbb{k}}$ a field
- G a connected reductive algebraic group
- B a Borel subgroup of G
- X an algebraic variety equipped with an action of G

Moduli Theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

A spherical *G*-variety is...

Moduli Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

A spherical G-variety is...

... a normal *G*-variety *X* satisfying one of the following equivalent conditions

Moduli Theory

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

A spherical *G*-variety is...

... a normal *G*-variety *X* satisfying one of the following equivalent conditions

• Every birational *G*-equivariant model of *X* has finitely many *G*-orbits.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A spherical *G*-variety is...

... a normal *G*-variety *X* satisfying one of the following equivalent conditions

- Every birational *G*-equivariant model of *X* has finitely many *G*-orbits.
- *B* has finitely many orbits in *X*.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A spherical *G*-variety is...

... a normal *G*-variety *X* satisfying one of the following equivalent conditions

- Every birational *G*-equivariant model of *X* has finitely many *G*-orbits.
- *B* has finitely many orbits in *X*.
- *B* has an open orbit in *X*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Combinatorial invariants attached to a spherical X

• $\Xi(X)$ –the weight lattice

Combinatorial invariants attached to a spherical X

• $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$
- Ξ(X)^{*}_ρ := Hom(Ξ(X), ℤ) ⊗ ℤ_ρ − the co-weight lattice of X

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$
- Ξ(X)^{*}_ρ := Hom(Ξ(X), ℤ) ⊗ ℤ_ρ − the co-weight lattice of X
- $\mathcal{V}(X)$ the valuation cone of X:

- $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$
- Ξ(X)^{*}_ρ := Hom(Ξ(X), ℤ) ⊗ ℤ_ρ − the co-weight lattice of X

Combinatorial invariants attached to a spherical X

- $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$
- $\Xi(X)_{p}^{*} := \operatorname{Hom}(\Xi(X), \mathbb{Z}) \otimes \mathbb{Z}_{p}$ the co-weight lattice of X
- *V*(*X*) the valuation cone of *X*: the set of *G*-invariant
 Q-valued valuations of k(*X*)
 [Knop]: *V*(*X*) is a finitely generated convex cone in Ξ(*X*)^{*}₀:

 $\mathbf{v} \longmapsto \varphi_{\mathbf{v}}$ with $\varphi_{\mathbf{v}}(\lambda) := \mathbf{v}(\lambda_f)$

- $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$
- Ξ(X)^{*}_ρ := Hom(Ξ(X), ℤ) ⊗ ℤ_ρ − the co-weight lattice of X
- D(X) the set of colors of X, that are the B-stable and not G-stable prime divisors of X

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$
- Ξ(X)^{*}_ρ := Hom(Ξ(X), ℤ) ⊗ ℤ_ρ − the co-weight lattice of X
- D(X) the set of colors of X, that are the B-stable and not G-stable prime divisors of X
- $\Sigma(X)$ the set of spherical roots of X:

(日) (日) (日) (日) (日) (日) (日)

- $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$
- Ξ(X)^{*}_ρ := Hom(Ξ(X), ℤ) ⊗ ℤ_ρ − the co-weight lattice of X
- D(X) the set of colors of X, that are the B-stable and not G-stable prime divisors of X
- Σ(X) the set of spherical roots of X: set of primitive elements of Ξ(X)^{*}_p such that

$$\mathcal{V}(X) = ig\{ oldsymbol{v} : \langle oldsymbol{v}, \gamma
angle \leq oldsymbol{0} \quad orall \gamma \in \Sigma(X) ig\}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Combinatorial invariants attached to a spherical X

- $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$
- Ξ(X)^{*}_ρ := Hom(Ξ(X), ℤ) ⊗ ℤ_ρ − the co-weight lattice of X
- D(X) the set of colors of X, that are the B-stable and not G-stable prime divisors of X
- Σ(X) the set of spherical roots of X: set of primitive elements of Ξ(X)^{*}_p such that

$$\mathcal{V}(X) = ig\{ oldsymbol{v} : \langle oldsymbol{v}, \gamma
angle \leq oldsymbol{0} \quad orall \gamma \in \Sigma(X) ig\}$$

• W_X – the little Weyl group of X:

Combinatorial invariants attached to a spherical X

- $\Xi(X)$ –the weight lattice set of λ s.t. $\exists f$ with $f \in \Bbbk(X)_{\lambda}^{(B)}$
- Ξ(X)^{*}_ρ := Hom(Ξ(X), ℤ) ⊗ ℤ_ρ − the co-weight lattice of X
- D(X) the set of colors of X, that are the B-stable and not G-stable prime divisors of X
- Σ(X) the set of spherical roots of X: set of primitive elements of Ξ(X)^{*}_p such that

$$\mathcal{V}(X) = ig\{ oldsymbol{v} : \langle oldsymbol{v}, \gamma
angle \leq oldsymbol{0} \quad orall \gamma \in \Sigma(X) ig\}$$

W_X – the little Weyl group of X: group generated by the reflections w.r.t. facets of V(X)

Real structures

Moduli Theory

Theorem (Brion/Knop) Let $p \neq 2$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Theorem (Brion/Knop) Let $p \neq 2$.

• The cone $\mathcal{V}(X)$ is a fundamental domain for W_X .

Theorem (Brion/Knop) Let $p \neq 2$.

- The cone $\mathcal{V}(X)$ is a fundamental domain for W_X .
- $W_X \Sigma(X)$ is a root system with basis $\Sigma(X)$ (renormalized).

Theorem (Brion/Knop) Let $p \neq 2$.

- The cone $\mathcal{V}(X)$ is a fundamental domain for W_X .
- $W_X \Sigma(X)$ is a root system with basis $\Sigma(X)$ (renormalized).

p = 2: $\mathcal{V}(X)$ may consist of more than one chamber (Schalke).

Theorem (Brion/Knop) Let $p \neq 2$.

- The cone $\mathcal{V}(X)$ is a fundamental domain for W_X .
- $W_X \Sigma(X)$ is a root system with basis $\Sigma(X)$ (renormalized).

p = 2: $\mathcal{V}(X)$ may consist of more than one chamber (Schalke).

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Theorem (Brion/Knop) Let $p \neq 2$.

- The cone $\mathcal{V}(X)$ is a fundamental domain for W_X .
- $W_X \Sigma(X)$ is a root system with basis $\Sigma(X)$ (renormalized).

p = 2: $\mathcal{V}(X)$ may consist of more than one chamber (Schalke).

Let $\Sigma(G)$ be the set of spherical roots of rank 1 spherical *G*-varieties.

Theorem (Brion/Knop) Let $p \neq 2$.

- The cone $\mathcal{V}(X)$ is a fundamental domain for W_X .
- $W_X \Sigma(X)$ is a root system with basis $\Sigma(X)$ (renormalized).

p = 2: $\mathcal{V}(X)$ may consist of more than one chamber (Schalke).

Let $\Sigma(G)$ be the set of spherical roots of rank 1 spherical *G*-varieties.

Theorem (Luna-Akhiezer/Knop)

Theorem (Brion/Knop) Let $p \neq 2$.

- The cone $\mathcal{V}(X)$ is a fundamental domain for W_X .
- $W_X \Sigma(X)$ is a root system with basis $\Sigma(X)$ (renormalized).

p = 2: $\mathcal{V}(X)$ may consist of more than one chamber (Schalke).

Let $\Sigma(G)$ be the set of spherical roots of rank 1 spherical *G*-varieties.

Theorem (Luna-Akhiezer/Knop)

Σ(X) is a subset of Σ(G).

Theorem (Brion/Knop) Let $p \neq 2$.

- The cone $\mathcal{V}(X)$ is a fundamental domain for W_X .
- $W_X \Sigma(X)$ is a root system with basis $\Sigma(X)$ (renormalized).

p = 2: $\mathcal{V}(X)$ may consist of more than one chamber (Schalke).

Let $\Sigma(G)$ be the set of spherical roots of rank 1 spherical *G*-varieties.

Theorem (Luna-Akhiezer/Knop)

- Σ(X) is a subset of Σ(G).
- $\Sigma(G)$ is finite (resp. infinite) in char 0 (resp. char p > 0).
Classification (char 0: 1983–2011 // char *p* > 0 ...)

 char 0: Existence of a classification based on the aforementioned combinatorial invariants (Luna & Vust// Luna, Losev, Bravi, Pezzini, C.-F.).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Classification (char 0: 1983–2011 // char *p* > 0 ...)

- char 0: Existence of a classification based on the aforementioned combinatorial invariants (Luna & Vust// Luna, Losev, Bravi, Pezzini, C.-F.).
- char p ≠ 2: classification of reductive spherical subgroups of a given simple G (Knop & Röhrle, 2014)

,

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Real structures on spherical varieties

 $\mathbb{k} = \mathbb{C}$ A *real structure* μ on X is

Given σ : $G \rightarrow G$ an anti-holomorphic involution, a real structure μ is called σ -equivariant if

$$\mu(gx) = \sigma(g)\mu(x)$$
 for all $(g, x) \in G \times X$.

Theorem (Akhiezer & C.-F., 2014)

Let σ define the split real form of G. If $H \subset G$ is spherical and self-normalizing then there exists a unique σ -equivariant real structure on G/H.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Real structures on spherical varieties

 $\mathbb{k} = \mathbb{C}$ A *real structure* μ on X is an involutive anti-holomorphic map,

Given σ : $G \rightarrow G$ an anti-holomorphic involution, a real structure μ is called σ -equivariant if

 $\mu(gx) = \sigma(g)\mu(x)$ for all $(g, x) \in G \times X$.

Theorem (Akhiezer & C.-F., 2014)

Let σ define the split real form of G. If $H \subset G$ is spherical and self-normalizing then there exists a unique σ -equivariant real structure on G/H.

Real structures on spherical varieties

 $\Bbbk = \mathbb{C}$

A *real structure* μ on X is an involutive anti-holomorphic map, i.e.

$$\overline{f \circ \mu} \in \mathcal{O}(X)$$
 for all $f \in \mathcal{O}(X)$.

Given σ : $G \rightarrow G$ an anti-holomorphic involution, a real structure μ is called σ -equivariant if

$$\mu(gx) = \sigma(g)\mu(x)$$
 for all $(g, x) \in G \times X$.

Theorem (Akhiezer & C.-F., 2014)

Let σ define the split real form of G. If $H \subset G$ is spherical and self-normalizing then there exists a unique σ -equivariant real structure on G/H.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Real parts

Let μ be a σ -equivariant real structure on *X*. The corresponding real part is the set

$$X^{\mu} = \{ x \in X : \mu(x) = x \}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Real parts

Let μ be a σ -equivariant real structure on *X*. The corresponding real part is the set

$$X^{\mu} = \{ x \in X : \mu(x) = x \}.$$

Theorem (Akhiezer & C.-F., 2014)

Let σ define the split real form of G, $H \subset G$ be spherical and self-normalizing and X = G/H.

- The real part of X^{μ} is not empty.
- The group G_0^{σ} acts on X^{μ} with finitely many orbits.
- There are at most $2^{\operatorname{rank}(X)} G_0^{\sigma}$ -orbits in X^{μ} .

Real parts

Let μ be a σ -equivariant real structure on *X*. The corresponding real part is the set

$$X^{\mu} = \{ x \in X : \mu(x) = x \}.$$

Theorem (Akhiezer & C.-F., 2014)

Let σ define the split real form of G, $H \subset G$ be spherical and self-normalizing and X = G/H.

- The real part of X^{μ} is not empty.
- The group G_0^{σ} acts on X^{μ} with finitely many orbits.
- There are at most $2^{\operatorname{rank}(X)} G_0^{\sigma}$ -orbits in X^{μ} .

Note: The G_0^{σ} -orbits of X^{μ} are real spherical varieties.

Moduli Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Further results

• Generalizations of the above theorems to any involution σ (Akhiezer; C.F.).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Further results

- Generalizations of the above theorems to any involution σ (Akhiezer; C.F.).
- In case X is a symmetric space, the G^σ-orbits of X^μ are in 1 : 1-correspondence with T^σ/W_X (Borel & Ji).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Further results

- Generalizations of the above theorems to any involution σ (Akhiezer; C.F.).
- In case X is a symmetric space, the G^σ-orbits of X^μ are in 1 : 1-correspondence with T^σ/W_X (Borel & Ji).
- Case of rank one real reductive groups G_ℝ: classification of spherical subgroups of G_ℝ by Knauss & Miebach (2014).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Quasi-projective spherical varieties

Theorem (Vinberg, Kimelfeld & al)

A quasi-projective G-variety X is spherical if and only if the G-module $H^0(X, \mathcal{L})$ is multiplicity-free, \forall G-line bundles \mathcal{L} .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Affine spherical varieties

Char= 0Let *X* be affine and spherical. Then

 $\Bbbk[X] = \oplus_{\Gamma(X)} V(\lambda)$

 $\Gamma(X)$ is the weight monoid of X.

The root monoid of X is the submonoid R(X) of Λ generated by

$$\{\lambda + \mu - \nu : \Bbbk[X]_{\lambda} \cdot \Bbbk[X]_{\mu} \supset \Bbbk[X]_{\nu} \quad (\lambda, \mu, \nu) \in (\Lambda^{+})^{3}\}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Affine spherical varieties

Char= 0Let *X* be affine and spherical. Then

 $\Bbbk[X] = \oplus_{\Gamma(X)} V(\lambda)$

 $\Gamma(X)$ is the weight monoid of X.

The root monoid of X is the submonoid R(X) of Λ generated by

$$\{\lambda + \mu - \nu : \Bbbk[X]_{\lambda} \cdot \Bbbk[X]_{\mu} \supset \Bbbk[X]_{\nu} \quad (\lambda, \mu, \nu) \in (\Lambda^{+})^{3}\}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Affine spherical varieties

Chark = 0Let *X* be affine and spherical. Then

 $\Bbbk[X] = \oplus_{\Gamma(X)} V(\lambda)$

 $\Gamma(X)$ is the weight monoid of X.

The root monoid of X is the submonoid R(X) of Λ generated by

$$\{\lambda + \mu - \nu : \mathbb{k}[X]_{\lambda} \cdot \mathbb{k}[X]_{\mu} \supset \mathbb{k}[X]_{\nu} \quad (\lambda, \mu, \nu) \in (\Lambda^{+})^{3}\}.$$

Theorem (Knop)

The saturation of R(X) is free with set of free generators given by the set of spherical roots of X.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Affine spherical varieties

Chark = 0Let *X* be affine and spherical. Then

 $\Bbbk[X] = \oplus_{\Gamma(X)} V(\lambda)$

 $\Gamma(X)$ is the weight monoid of X.

The root monoid of X is the submonoid R(X) of Λ generated by

$$\{\lambda + \mu - \nu : \mathbb{k}[X]_{\lambda} \cdot \mathbb{k}[X]_{\mu} \supset \mathbb{k}[X]_{\nu} \quad (\lambda, \mu, \nu) \in (\Lambda^{+})^{3}\}.$$

Theorem (Knop)

The saturation of R(X) is free with set of free generators given by the set of spherical roots of X.

Theorem (Losev)

 $X_1 \simeq_G X_2 \quad \iff \quad \Gamma(X_1) = \Gamma(X_2) \quad and \quad \Sigma(X_1) = \Sigma(X_2).$

Moduli schemes for affine spherical *G*-varieties with prescribed weight monoid

- $\Gamma \subset \Lambda^+$ a finitely generated monoid

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Moduli schemes for affine spherical *G*-varieties with prescribed weight monoid

- $\Gamma \subset \Lambda^+$ a finitely generated monoid
- E any finite set of generators of Γ

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Moduli schemes for affine spherical *G*-varieties with prescribed weight monoid

- $\Gamma \subset \Lambda^+$ a finitely generated monoid
- E any finite set of generators of Γ
- $V(E) = \bigoplus_{\lambda \in E} V(\lambda)^*$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Moduli schemes for affine spherical *G*-varieties with prescribed weight monoid

- $\Gamma \subset \Lambda^+$ a finitely generated monoid
- E any finite set of generators of Γ
- $V(E) = \bigoplus_{\lambda \in E} V(\lambda)^*$
- $X_0(\Gamma)$ the *G*-orbit closure of $\sum_{\lambda \in E} v_{\lambda}^*$ in V(E).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Moduli schemes for affine spherical *G*-varieties with prescribed weight monoid

- $\Gamma \subset \Lambda^+$ a finitely generated monoid
- E any finite set of generators of Γ
- $V(E) = \bigoplus_{\lambda \in E} V(\lambda)^*$
- $X_0(\Gamma)$ the *G*-orbit closure of $\sum_{\lambda \in E} v_{\lambda}^*$ in V(E).

Note: The weight monoid of $X_0(\Gamma)$ is Γ .

Moduli schemes for affine spherical *G*-varieties with prescribed weight monoid

- $\Gamma \subset \Lambda^+$ a finitely generated monoid
- E any finite set of generators of Γ
- $V(E) = \bigoplus_{\lambda \in E} V(\lambda)^*$
- $X_0(\Gamma)$ the *G*-orbit closure of $\sum_{\lambda \in E} v_{\lambda}^*$ in V(E).

Note: The weight monoid of $X_0(\Gamma)$ is Γ .

Theorem (Alexeev-Brion, 2005)

Equivalence classes of pairs (X, φ) , where X is an affine spherical G-variety with weight monoid Γ and φ is a fixed morphism $X//U \to \operatorname{Spec} \Bbbk[\Gamma]$ are parametrized by an affine connected scheme M_{Γ} .

$T_{\rm ad}$ -action on the moduli scheme M_{Γ}

Theorem (Alexeev-Brion, 2005)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$T_{\rm ad}$ -action on the moduli scheme M_{Γ}

Theorem (Alexeev-Brion, 2005)

The adjoint torus T_{ad} of G acts on M_Γ with finitely many orbits.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

$T_{\rm ad}$ -action on the moduli scheme M_{Γ}

Theorem (Alexeev-Brion, 2005)

- The adjoint torus T_{ad} of G acts on M_Γ with finitely many orbits.
- The G-isomorphism classes of ASV with weight monoid Γ are in bijection with T_{ad}-orbits in M_Γ.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$T_{\rm ad}$ -action on the moduli scheme M_{Γ}

Theorem (Alexeev-Brion, 2005)

- The adjoint torus T_{ad} of G acts on M_Γ with finitely many orbits.
- The G-isomorphism classes of ASV with weight monoid Γ are in bijection with T_{ad}-orbits in M_Γ.
- $X_0(\Gamma)$ is the unique fixed T_{ad} -fixed point of M_{Γ} .

$T_{\rm ad}$ -action on the moduli scheme M_{Γ}

Given X with $\Gamma(X) = \Gamma$, the multiplication m = m(X) of X can be written as

$$m=\sum_{\lambda,\mu,
u}m_{\lambda,\mu}^{
u}$$
 with $(\lambda,\mu,
u)\in {\sf \Gamma}^3$ and

 $m^{
u}_{\lambda,\mu}:V(\lambda)\otimes V(\mu)\longrightarrow V(
u)$ homomorphism of *G*-modules.

Case of $X_0 = X_0(\Gamma)$: $m(X_0)_{\lambda,\mu}^{\nu} \neq 0 \iff \nu = \lambda + \mu$.

The T_{ad} -action on M_{Γ} reads as a *T*-action on the set of multiplication laws *m* with

$$t.\textit{\textit{m}}_{\lambda,\mu}^{
u}=t^{\lambda+\mu-
u}\textit{\textit{m}}_{\lambda,\mu}^{
u} \quad t\in\textit{T}_{\mathrm{ad}}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Alexeev & Brion, 2005) The T_{ad} -variety $\overline{T_{ad}.X} \subset M_{\Gamma(X)}$ is affine and multiplicity-free with weight monoid R(X).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Theorem (Alexeev & Brion, 2005) The T_{ad} -variety $\overline{T_{ad}.X} \subset M_{\Gamma(X)}$ is affine and multiplicity-free with weight monoid R(X).

Theorem (Alexeev & Brion, 2005) The T_{ad} -variety $\overline{T_{ad}.X} \subset M_{\Gamma(X)}$ is affine and multiplicity-free with weight monoid R(X).

Theorem (Avdeev & C.-F., 2014) Let Γ be saturated (i.e. normal).

Theorem (Alexeev & Brion, 2005)

The T_{ad} -variety $\overline{T_{ad}.X} \subset M_{\Gamma(X)}$ is affine and multiplicity-free with weight monoid R(X).

Theorem (Avdeev & C.-F., 2014)

Let Γ be saturated (i.e. normal).

• The irreducible components (with reduced induced scheme structure) of *M*_Γ are affine spaces.

Theorem (Alexeev & Brion, 2005)

The T_{ad} -variety $\overline{T_{ad}.X} \subset M_{\Gamma(X)}$ is affine and multiplicity-free with weight monoid R(X).

Theorem (Avdeev & C.-F., 2014)

Let Γ be saturated (i.e. normal).

- The irreducible components (with reduced induced scheme structure) of M_Γ are affine spaces.
- The root monoid of any affine spherical variety is free.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Alexeev & Brion, 2005)

The T_{ad} -variety $\overline{T_{ad}.X} \subset M_{\Gamma(X)}$ is affine and multiplicity-free with weight monoid R(X).

Theorem (Avdeev & C.-F., 2014)

Let Γ be saturated (i.e. normal).

- The irreducible components (with reduced induced scheme structure) of M_Γ are affine spaces.
- The root monoid of any affine spherical variety is free.

Partial results:

Theorem (Alexeev & Brion, 2005)

The T_{ad} -variety $\overline{T_{ad}.X} \subset M_{\Gamma(X)}$ is affine and multiplicity-free with weight monoid R(X).

Theorem (Avdeev & C.-F., 2014)

Let Γ be saturated (i.e. normal).

- The irreducible components (with reduced induced scheme structure) of M_Γ are affine spaces.
- The root monoid of any affine spherical variety is free.

Partial results:

- (Jansou, 2007) $\Gamma = \mathbb{N}\lambda \subset \Lambda^+$.
- (Bravi & C.-F., 2008) for Γ free and G-saturated; M_Γ is irreducible.
- (C.-F., 2011) for *canonical* Γ.
- (Bravi & van Steirteghem, 2014) for Γ free.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The tangent space of $T_{X_0}M_{\Gamma}$

Let $T^1(X_0)$ be the cokernel of

$$H^0(X_0, \mathcal{O}_{X_0}\otimes_{\Bbbk} V) \longrightarrow H^0(X_0, \mathcal{N}_{X_0})$$

where \mathcal{N}_{X_0} denotes the normal sheaf of X_0 in V.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The tangent space of $T_{X_0}M_{\Gamma}$

Let $T^1(X_0)$ be the cokernel of

$$H^0(X_0, \mathcal{O}_{X_0}\otimes_{\Bbbk} V) \longrightarrow H^0(X_0, \mathcal{N}_{X_0})$$

where \mathcal{N}_{X_0} denotes the normal sheaf of X_0 in V. Theorem (Alexeev & Brion) The T_{ad} -modules $T_{X_0}M_{\Gamma}$ and $T^1(X_0)^G$ are isomorphic.
A D F A 同 F A E F A E F A Q A

The tangent space of $T_{X_0}M_{\Gamma}$

Let $T^1(X_0)$ be the cokernel of

$$H^0(X_0, \mathcal{O}_{X_0} \otimes_{\Bbbk} V) \longrightarrow H^0(X_0, \mathcal{N}_{X_0})$$

where \mathcal{N}_{X_0} denotes the normal sheaf of X_0 in V. Theorem (Alexeev & Brion) The T_{ad} -modules $T_{X_0}M_{\Gamma}$ and $T^1(X_0)^G$ are isomorphic.

Theorem (Avdeev & C.-F.)

Let Γ be saturated (i.e. normal). The tangent space of $T_{X_0}M_{\Gamma}$ is a multiplicity-free T_{ad} -module whose weights belong to $-\Sigma(G)$.

Moduli Theory

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Further results

Combinatorial description of the spherical roots of *G* compatible with a given Γ.

Moduli Theory

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Further results

- Combinatorial description of the spherical roots of *G compatible* with a given Γ.
- Combinatorial description of the irreducible components of M_{Γ} .

Moduli Theory

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Further results

- Combinatorial description of the spherical roots of *G* compatible with a given Γ.
- Combinatorial description of the irreducible components of *M*_Γ.
- There exist non-reduced moduli schemes M_Γ.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Further results

- Combinatorial description of the spherical roots of *G* compatible with a given Γ.
- Combinatorial description of the irreducible components of *M*_Γ.
- There exist non-reduced moduli schemes M_Γ.
- New proof of the Uniqueness Theorem for affine spherical varieties.

Moduli scheme of stable projective spherical varieties

 $\operatorname{Char} \mathbb{k} = 0$

- (X, L) polarized projective G-variety
- $R(X, \mathscr{L})$ the section ring of X.
- $\hat{X} = \operatorname{Spec} R(X, \mathscr{L})$ affine cone over (X, \mathscr{L}) .

The moment polytope of *X* is the set $\Gamma(\hat{X}) \cap (\{1\} \times \Lambda^+_{\mathbb{R}})$.

Existence of a moduli theory for projective *stable* varieties (Alexeev & Brion).