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n ∈ N0, Sn the symmetric group of degree n, p ∈ P

P(n) set of partitions of n

λ = (λ1, . . . , λk) = (nmn , . . . , 2m2 , 1m1) ∈ P(n) is called

p-regular if mi < p, for i = 1, . . . , n,
p-restricted if λj − λj+1 < p, for j = 1, . . . , k .

To each λ ∈ P(n) one associates its Young diagram [λ], e.g.,

[(3, 3, 2, 1)] = .

λ ∈ P(n)  λ′ ∈ P(n) is such that [λ′] = [λ]T

λ ∈ P(n)  

repeatedly remove rim p-hooks from [λ] to get the p-core λ̃
λ̃ is p-regular and p-restricted
number of rim p-hooks removed to obtain λ̃ is called the p-weight of λ
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Combinatorics

Example

λ = (52, 3, 2, 13) ∈ P(18), p := 5

Thus λ has 5-core λ̃ = (13) and 5-weight 3.
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λ ∈ P(n)  |λ| := n

The dominance order Q on P(n) is the partial order defined by

λ Q µ :⇔
l∑

i=1

λi >

l∑

i=1

µi , for all l > 0 .

Let P2(n) be the set of pairs of partitions (λ|µ) with |λ|+ |µ| = n.
The dominance order Q on P2(n) is the partial order defined by

(λ|µ) Q (α|β) :⇔
l∑

i=1

λi >

l∑

i=1

αi and

|λ|+
l∑

i=1

µi > |α|+
l∑

i=1

βi ,

for all l > 0 .



(Signed) Young Permutation Modules

F a field of characteristic p > 0

For λ = (λ1, . . . , λk) ∈ P(n), one has the (standard) Young
subgroup

Sλ = Sλ1
× · · · ×Sλk

of Sn, and the Young permutation FSn-module

Mλ := IndSn

Sλ
(F ) .



(Signed) Young Permutation Modules

F a field of characteristic p > 0

For λ = (λ1, . . . , λk) ∈ P(n), one has the (standard) Young
subgroup

Sλ = Sλ1
× · · · ×Sλk

of Sn, and the Young permutation FSn-module

Mλ := IndSn

Sλ
(F ) .

For (λ|ζ) ∈ P2(n), one has the signed Young permutation
FSn-module

M(λ|ζ) := IndSn

Sλ×Sζ
(F ⊗ sgn) .



(Signed) Young Permutation Modules

F a field of characteristic p > 0

For λ = (λ1, . . . , λk) ∈ P(n), one has the (standard) Young
subgroup

Sλ = Sλ1
× · · · ×Sλk

of Sn, and the Young permutation FSn-module

Mλ := IndSn

Sλ
(F ) .

For (λ|ζ) ∈ P2(n), one has the signed Young permutation
FSn-module

M(λ|ζ) := IndSn

Sλ×Sζ
(F ⊗ sgn) .

If ζ = ∅ then M(λ|ζ) = Mλ.



(Signed) Young Permutation Modules

F a field of characteristic p > 0

For λ = (λ1, . . . , λk) ∈ P(n), one has the (standard) Young
subgroup

Sλ = Sλ1
× · · · ×Sλk

of Sn, and the Young permutation FSn-module

Mλ := IndSn

Sλ
(F ) .

For (λ|ζ) ∈ P2(n), one has the signed Young permutation
FSn-module

M(λ|ζ) := IndSn

Sλ×Sζ
(F ⊗ sgn) .

If ζ = ∅ then M(λ|ζ) = Mλ.

The indecomposable direct summands of (signed) Young permutation
modules are called indecomposable (signed) Young modules. How
can these be characterized?
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Theorem (James 1983)

The isoclasses of indecomposable Young FSn-modules are labelled by

P(n). For λ ∈ P(n), let Y λ be the corresponding indec. Young module.

Then

Mλ ∼= Y λ ⊕
⊕

µ⊲λ

mλ,µY
µ ,

for certain mλ,µ ∈ N0.

Theorem (Donkin 2001)

Let p > 3. The isoclasses of indec. signed Young FSn-modules are

labelled by the pairs (λ|pµ) ∈ P2(n). If (λ|pµ) ∈ P2(n) then

M(λ|pµ) ∼= Y (λ|pµ)⊕
⊕

(α|pβ)⊲(λ|pµ)

m(λ|pµ),(α|pβ)Y (α|pβ) ,

for certain m(λ|pµ),(α|pβ) ∈ N0.



(Signed) Young Modules

Every Young module is a signed Young module. If λ ∈ P(n) then
Y λ ∼= Y (λ|∅).

If (λ|pµ) ∈ P2(n) then Y (λ|pµ)⊗ sgn is an indecomposable signed
Young module, since

Y (λ|pµ)⊗ sgn | M(λ|pµ)⊗ sgn ∼= M(pµ|λ) .

Problem

Find (α|pβ) ∈ P2(n) such that Y (λ|pµ)⊗ sgn ∼= Y (α|pβ).
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For λ ∈ P(n), let Sλ be the corresponding Specht FSn-module,
which is submodule of Mλ.

If p = 0 then Sλ (λ ∈ P(n)) are representatives of the isoclasses of
simple FSn-modules.

If p > 0 then

Dλ := Sλ/Rad(Sλ) are representatives of the isoclasses of simple
FSn-modules, as λ varies over the p-regular partitions of n.
Dλ := Soc(Sλ) are representatives of the isoclasses of simple
FSn-modules, as λ varies over the p-restricted partitions of n.
Moreover, Dλ

∼= Dλ
′

⊗ sgn.

Given λ ∈ P(n), when is Sλ simple?  A combinatorial answer has
been

given by James–Mathas (1999), for p = 2,
conjectured by James–Mathas, for p > 3. The proof is due to work of
Lyle and Fayers (2003–2005).
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F a field of characteristic p > 3

Sλ simple Specht FSn-module  λ is called a JM-partition

JM-partitions are best characterized using abacus combinatorics,
which we omit here.

One of the most important properties for our purposes is:

Lemma (D.–Lim 2015)

If λ ∈ P(n) is a JM-partition then the p-core λ̃ can be obtained by

removing only vertical and horizontal p-hooks from [λ]. The procedures of

removing horizontal and vertical p-hooks, respectively, are independent of

each other.
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Theorem (Hemmer 2005)

Let F be a field of characteristic p > 3. Then every simple Specht

FSn-module is isomorphic to an indecomposable signed Young module.

Remark

Hemmer’s result fails for p = 2. Suppose that p = 2, and let Sλ be a
simple Specht FSn-module. Then, by James–Mathas, one of the following
cases occurs:

λ is 2-regular and Sλ ∼= Y λ, or

λ is 2-restricted and Sλ ∼= Y λ′

, or

λ = (2, 2), but Sλ is not isomorphic to an indecomposable Young
module.
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Simple Specht Modules

Problem

Let p > 3, and let Sλ be a simple Specht FSn-module. Determine
(α|pβ) ∈ P2(n) such that Sλ ∼= Y (α|pβ).

In the following we shall establish a solution to the above problem. This is
joint work with Kay Jin Lim (Singapore).

The combinatorial formula we are going to present has been conjectured,
independently, by D. (2007), Lim (2009), Orlob (2009).
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Let λ = (λ1, . . . , λk) ∈ P(n), and let p be any prime. Then λ admits a
p-adic expansion

λ =

rλ∑

i=0

pi · λ(i) ,

where the λ(i) are uniquely determined p-restricted partitions.

Example

p := 2, λ := (15, 9) ∈ P(24)  

Thus λ = 8 · (1, 1) + 4 · (1) + 2 · (1) + (1, 1), and λ(0) = (1, 1).
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The Labelling

Let p be a prime, and let Φ : P(n) → P2(n) be defined by

Φ(λ) := ((λ′(0))′|λ′ − λ′(0)) .

Theorem (D.–Lim 2015)

Let p > 3, let F be a field of characteristic p, and let Sλ be a simple

Specht FSn-module. Then Sλ is isomorphic to the signed Young module

Y (Φ(λ)).

Example

p := 3, λ := (6, 4, 14)  Φ(λ) = ((6, 4, 1)|(3)) = ((3, 12) + (32)|(3)).
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Main Ideas of Proof

The proof of the theorem involves the following key ingredients:

1 The theory of Young vertices, Young sources and Young–Green
correspondents in the sense of Grabmeier and Donkin.

2 A twisting formula determining the label of the signed Young
FSn-module Y (α|pβ)⊗ sgn, for (α|pβ) ∈ P2(n).

3 A reduction of the theorem to the case of simple Specht modules
belonging to Rouquier blocks.

4 A generalization of Young’s Rule, due to recent work of Lim and
Tan. The latter determines the multiplicities of any given Specht
FSn-module as a factor of some Specht filtration of a signed Young
permutation module.
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Relative Projectivity

F a field of characteristic p > 0, G any finite group, FG the group algebra
of G over F

If p ∤ |G | then every FG -module is projective, i.e., a direct summand
of a free FG -module.

If p | |G | then there is a classical notion of relative projectivity:

Definition

Let H 6 G . An FG -module M is called relatively H-projective if
M | IndGH(Res

G
H(M)).

Theorem (J.A. Green 1959)

Let M be an indecomposable FG-module, and let P 6 G be minimal such

that M is relatively P-projective. Then P is a p-group, unique up to

G-conjugation.

One calls P a Green vertex of M.
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Young Vertices and Sources

F field of characteristic p > 0, M an indecomposable FSn-module

Theorem (Grabmeier 1985)

Let H 6 Sn be a Young subgroup that is minimal such that M is relatively

H-projective. Then H is unique up to Sn-conjugation.

A Young subgroup H as above is called a Young vertex of M.

If H is a Young vertex of M then there is an indecomposable
FH-module L such that M | IndSn

H (L), which is unique up to iso. and
NSn

(H)-conjugation, and has also Young vertex H. One calls L a
Young source of M.

U 6 Sn  replace set Y of Young subgroups by {U ∩ H : H ∈ Y} to
define Young vertices and Young sources of indec. FU-modules

Young–Green correspondence induces a bijection between the
isoclasses of indecomposable FSn-modules with Young vertex H and
the isoclasses of indecomposable FNSn

(H)-modules with Young
vertex H.
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Young Vertices and Sources

If (λ|pµ) ∈ P2(n) then the Young vertices and the Young–Green
correspondents of Y (λ|pµ) have been determined by Donkin (2001).

Consider the p-adic expansions

λ =

rλ∑

i=0

pi · λ(i) and µ =

rµ∑

i=0

pi · µ(i)

and let r := max{rλ, rµ + 1}.

n0 := |λ(0)|, ni := |λ(i) + |µ(i − 1)|, for i = 1, . . . , r ,

ρ = ((pr )nr , . . . , pn1 , 1n0) ∈ P(n),

Donkin (2001): The signed Young module Y (λ|pµ) has Young vertex
Sρ and one-dimensional Young sources.

NSn
(Sρ) ∼= (Spr ≀Snr )× · · · × (Sp ≀Sn1)×Sn0 , and Donkin has

given an explicit description of the Young–Green correspondent of
Y (λ|pµ) w.r.t. NSn

(Sρ).
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Twisting Formula

F a field of characteristic p > 0

α ∈ P(n) a p-restricted partition, Dα the corresponding simple
FSn-module  Dα ⊗ sgn is also simple  exists a p-restricted
partition m(α) ∈ P(n) with Dα ⊗ sgn ∼= Dm(α)

Theorem (D.–Lim 2015)

Let (λ|pµ) ∈ P2(n). Then one has an isomorphism of FSn-modules

Y (λ|pµ)⊗ sgn ∼= Y (m(λ(0)) + pµ|λ− λ(0)) .

In the case where µ = ∅, the formula already appears in work of Hemmer
(2006).

Main idea of the proof: consider p-adic expansions of the partitions
involved. Then use Donkin’s result to show that Y (λ|pµ)⊗ sgn and
Y (m(λ(0)) + pµ|λ− λ(0)) have a common Young vertex Sρ and
isomorphic Young–Green correspondents w.r.t. NSn

(Sρ).
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Rouquier Blocks

F a field of characteristic p > 0

Nakayama Conjecture (proved 1947 by Brauer and Robinson): The
blocks of FSn are labelled by pairs (κ,w), where κ is the p-core of a
partition of n and w is the corresponding p-weight.

Rouquier blocks of symmetric groups are labelled by particular
p-cores; to describe them one uses abacus combinatorics.

Rouquier blocks are usually better understood than arbitrary blocks of
FSn.

Strategy used by Fayers and Hemmer: reduce statements about
simple Specht modules to simple Specht modules belonging to
Rouquier blocks.
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Proposition

Let p > 3, and let Sλ be a simple Specht FSn-module. Then there is an

m > n and a simple Specht FSm-module Sµ belonging to a Rouquier

block such that

Sµ | IndSm

Sn
(Sλ) and Sλ | ResSm

Sn
(Sµ) .

Proposition (D.–Lim 2015)

The theorem on signed Young module labels of simple Specht modules

holds if it holds for simple Specht modules belonging to Rouquier blocks.
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Lemma (D.–Lim 2015)

Let p > 2, and let M be an FSn-module admitting a Specht filtration. If

Sλ is a simple Specht FSn-module with Sλ | M then every Specht

filtration of M has a factor isomorphic to Sλ.
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Proof for Rouquier Blocks

F a field of characteristic p > 3, Sλ a simple Specht FSn-module
belonging to a Rouquier block, λ̃ the p-core of λ

Recall that λ̃ is obtained from λ by removing only vertical and
horizontal rim p-hooks. Use this to show that Φ(λ) = (λ̃+ pσ|pτ),
for suitable partitions σ and τ .

Suppose that Sλ ∼= Y (α|pβ). By work of Hemmer,

Sλ | M(λ̃+ pσ) ,

thus (α|pβ) Q (λ̃+ pσ|pτ), by Donkin.

Replace Sλ by Sλ′

, and use the twisting formula to show that

(m(λ̃) + pβ|α− λ̃) Q (λ̃′ + pτ |pσ) .

Deduce α Q λ̃+ pσ and pβ Q pτ .

Now use Sλ | M(α|pβ) and Lim–Tan’s twisted Young’s Rule to obtain
equality.
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Green Sources and Green Correspondence

F a field of characteristic p > 0, G a finite group, M indecomposable
FG -module

Recall the notion of a Green vertex of M.

P Green vertex of M  exists indecomposable FP-module S such
that M | IndGP (S).

S has Green vertex P , and is unique up to iso. and
NG (P)-conjugation.

One calls S a Green source of M.

Green correspondence induces a bijection between the isoclasses of
indecomposable FG -modules with Green vertex P and the isoclasses
of indecomposable FNG (P)-modules with Green vertex P .
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invariants of indecomposable signed Young modules. Our Labelling
Formula then allows us to determine these invariants for every simple
Specht FSn-module as well.

Theorem (D.–Lim 2015)

Let (λ|pµ) ∈ P2(n), and let Y := Y (λ|pµ). Then

(a) Y has complexity |µ|+ (|λ| − |λ(0)|)/p;

(b) Y is

(i) projective iff µ = ∅ and λ is p-restricted;

(ii) non-projective periodic iff either µ = (1) and λ is p-restricted, or µ = ∅
and λ− λ(0) = (p); in this case Y has period 2p − 2;

(c) if Sρ is a Young vertex of Y and Pρ ∈ Sylp(Sρ) then Pρ is a Green

vertex of Y . Moreover, Y has trivial Green sources. If L is the

Young–Green correspondent of Y w.r.t. NSn
(Sρ) then Res

NSn (Sρ)

NSn (Pρ)
(L)

is the Green correspondent of Y w.r.t. NSn
(Pρ).


