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Study representations over a field k of characteristic ℓ ≥ 0 using higher Lie

theory, i.e. categorical actions of Lie algebras on
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⊕

n≥0

kGn(q)-modu

coming from (parabolic) induction and restriction

Hoping for the following applications:

◮ Branching graph for induction/restriction [Gerber-Hiss-Jacon]

◮ Derived equivalences [Broué]

◮ Decomposition numbers
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called the unipotent characters, labelled by partitions

Uch(GLn(q)) ←→ {Partitions of n} (←→ IrrSn)
χµ ←−[ µ

Examples

◮ χ(n) = 1GLn(q) the trivial character

◮ χ(1n) = StGLn(q) the Steinberg character

Under this parametrization, parabolic induction and restriction on
unipotent characters coincide with induction and restriction on irreducible
characters of symmetric groups.

In fact there is a Hecke algebra Hq(An−1) hiding there...
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-2 -1
-3

+

0 1 2 3
-1 0
-2 -1
-3 -2

+

0 1 2 3
-1 0
-2 -1
-3
-4

Use content to split f =
∑

fa
 fa(χµ) is either zero or irreducible

〈ea, fa〉a∈Z induce an action of sl∞ on
⊕

CUch(GLn(q)) isomorphic to a
Fock space representation of level 1.
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ea

(content modulo d)

O. Dudas (Paris 7) Categorical actions Mar. 2015 5 / 1



Positive characteristic

fa is constructed using the qa-eigenspace of a Jucys-Murphy element

Now assume char k = ℓ > 0, ℓ ∤ q and set

d = order of q ∈ k×

Identification of qa and qa+d eigenspaces
 for ā ∈ Z/dZ, set

fā =
∑

a∈ā

fa and eā =
∑

a∈ā

ea

(content modulo d)

Through the decomposition map Uch(GLn(q)) −→ K0(kGLn(q)-modu),
the action of 〈eā, fā〉ā∈Z/dZ induces an action of ŝld on

K0(C) =
⊕

n≥0

K0(kGLn(q)-modu)
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Action of ŝld on V = C⊗Z K0(C)

Lascoux-Leclerc-Thibon

◮ The weight space decomposition V =
⊕

Vλ coincide with the block
decomposition

◮ Ŝd acts on V and two blocks are in the same orbit iff they have the
same defect.

Action on C:

◮ adjoint pair of exact functors (Ea,Fa) with [Ea] = ea and [Fa] = fa

◮ weight decomposition C ≃
⊕
Cλ with C⊗ K0(Cλ) = Vλ

◮ extra structure on End Fm
a ← very important!

Chuang-Rouquier

Elements of Ŝd lift to derived equivalences of C. In particular, two blocks
with same defect are derived equivalent.
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Induction and restriction come from an adjoint pair of exact functors

kGLn(q)-mod kGLn+1(q)-mod
F
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The structure of categorical action comes from natural transformations

◮ X ∈ End(F ) (Jucys-Murphy element)

◮ T ∈ End(F 2)

satisfying affine Hecke relations

• (T − qIdF 2) ◦ (T + IdF 2) = 0

• (T IdF ) ◦ (IdFT ) ◦ (T IdF ) = (IdFT ) ◦ (T IdF ) ◦ (IdFT )

• T ◦ (IdFX ) ◦ T = qX IdF

 algebra homomorphism Hq(Ãm−1) −→ EndFm

Fa := qa-eigenspace of X on F
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One recovers the standard construction of the Hecke algebra of type A as

the endomorphism algebra of the induced representation Ind
GLm(q)
B C

Hq(Ãm−1) = 〈X1, . . . ,Xm,T1, . . . ,Tm−1〉 EndFm

Hq(Am−1) = 〈T1, . . . ,Tm−1〉 EndGLm(q) (F
mC)

EndGLm(q) (Ind
GLm(q)
B C)

∼

X1=q
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The finite unitary groups

Underlying algebraic group GLn(Fq)
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Underlying algebraic group GLn(Fq)

GUn(q) := {M ∈ GLn(Fq) |M
tFr(M) = In} ⊂ GLn(q

2)

where Fr : (mi ,j) 7−→ (mq
i ,j)
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GUn(q) := {M ∈ GLn(Fq) |M
tFr(M) = In} ⊂ GLn(q

2)

where Fr : (mi ,j) 7−→ (mq
i ,j)

Parabolic induction and restriction yield an adjoint pair of exact functors

kGUn(q)-mod kGUn+2(q)-mod
F

E
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GUn(q) := {M ∈ GLn(Fq) |M
tFr(M) = In} ⊂ GLn(q

2)

where Fr : (mi ,j) 7−→ (mq
i ,j)

Parabolic induction and restriction yield an adjoint pair of exact functors

kGUn(q)-mod kGUn+2(q)-mod
F

E

“GUn(q) = GLn(−q)”
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Underlying algebraic group GLn(Fq)

GUn(q) := {M ∈ GLn(Fq) |M
tFr(M) = In} ⊂ GLn(q

2)

where Fr : (mi ,j) 7−→ (mq
i ,j)

Parabolic induction and restriction yield an adjoint pair of exact functors

kGUn(q)-mod kGUn+2(q)-mod
F

E

“GUn(q) = GLn(−q)”

In particular, unipotent characters are still labelled by partitions of n

Uch(GUn(q)) ←→ {Partitions of n}
χµ ←− [ µ
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The finite unitary groups

Underlying algebraic group GLn(Fq)

GUn(q) := {M ∈ GLn(Fq) |M
tFr(M) = In} ⊂ GLn(q

2)

where Fr : (mi ,j) 7−→ (mq
i ,j)

Parabolic induction and restriction yield an adjoint pair of exact functors

kGUn(q)-mod kGUn+2(q)-mod
F

E

“GUn(q) = GLn(−q)”

In particular, unipotent characters are still labelled by partitions of n

Uch(GUn(q)) ←→ {Partitions of n}
χµ ←− [ µ

But branching rules are different!
O. Dudas (Paris 7) Categorical actions Mar. 2015 10 / 1



Induction and restriction for GUn(q)

e = [E ] and f = [F ] act by removing/adding 2-hooks or on

unipotent characters
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Induction and restriction for GUn(q)

e = [E ] and f = [F ] act by removing/adding 2-hooks or on

unipotent characters

f

0 1 2 3
-1 0
-2 -1
-3

=

0 1 2 3 4 5
-1 0
-2 -1
-3

+

0 1 2 3
-1 0 1 2
-2 -1
-3

+

0 1 2 3
-1 0 1
-2 -1 0
-3

+

0 1 2 3
-1 0
-2 -1
-3
-4
-5

Again, one can split f =
∑

fa using contents
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Induction and restriction for GUn(q)

e = [E ] and f = [F ] act by removing/adding 2-hooks or on

unipotent characters

f

0 1 2 3
-1 0
-2 -1
-3

=

0 1 2 3 4 5
-1 0
-2 -1
-3

+

0 1 2 3
-1 0 1 2
-2 -1
-3

+

0 1 2 3
-1 0 1
-2 -1 0
-3

+

0 1 2 3
-1 0
-2 -1
-3
-4
-5

Again, one can split f =
∑

fa using contents

Up to a sign normalization,

fa = [f
(GL)
a , f

(GL)
−qa ]

and 〈ea, fa〉a∈Z induce an action of sl⊕2
∞ on

⊕
CUch(GUn(q)) isomorphic

to a Fock space representation of level 2.
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Positive characteristic

fa is constructed using the (−q)a-eigenspace of a Jucys-Murphy element
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Positive characteristic

fa is constructed using the (−q)a-eigenspace of a Jucys-Murphy element

We set
d = order of −q ∈ k×

and define fā =
∑

a∈ā fa and eā =
∑

a∈ā ea as before, for ā ∈ Z/dZ
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fa is constructed using the (−q)a-eigenspace of a Jucys-Murphy element

We set
d = order of −q ∈ k×

and define fā =
∑

a∈ā fa and eā =
∑

a∈ā ea as before, for ā ∈ Z/dZ

Through the decomposition map Uch(GUn(q)) −→ K0(kGUn(q)-modu),
the action of 〈eā, fā〉ā∈Z/dZ induces an action of

• ŝld if d is odd (unitary prime case)

• ŝld/2 ⊕ ŝld/2 if d is even (linear prime case)

on
K0(C) =

⊕

n≥0

K0(kGUn(q)-modu)
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Positive characteristic

fa is constructed using the (−q)a-eigenspace of a Jucys-Murphy element

We set
d = order of −q ∈ k×

and define fā =
∑

a∈ā fa and eā =
∑

a∈ā ea as before, for ā ∈ Z/dZ

Through the decomposition map Uch(GUn(q)) −→ K0(kGUn(q)-modu),
the action of 〈eā, fā〉ā∈Z/dZ induces an action of

• ŝld if d is odd (unitary prime case)

• ŝld/2 ⊕ ŝld/2 if d is even (linear prime case)

on
K0(C) =

⊕

n≥0

K0(kGUn(q)-modu)

Moreover, weight spaces coincide with blocks.
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Categorical action

As in the case of GLn(q), the action lifts to a categorical action on C
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Categorical action

As in the case of GLn(q), the action lifts to a categorical action on C

Theorem [DSVV]

There exist X ∈ End(F ) and T ∈ End(F 2) such that

• (T − q2IdF 2) ◦ (T + IdF 2) = 0

• (T IdF ) ◦ (IdFT ) ◦ (T IdF ) = (IdFT ) ◦ (T IdF ) ◦ (IdFT )

• T ◦ (IdFX ) ◦ T = q2X IdF
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Theorem [DSVV]

There exist X ∈ End(F ) and T ∈ End(F 2) such that

• (T − q2IdF 2) ◦ (T + IdF 2) = 0

• (T IdF ) ◦ (IdFT ) ◦ (T IdF ) = (IdFT ) ◦ (T IdF ) ◦ (IdFT )

• T ◦ (IdFX ) ◦ T = q2X IdF

Moreover, the eigenvalues of X are powers of −q.

 algebra homomorphism Hq2(Ãm−1) −→ EndFm
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Categorical action

As in the case of GLn(q), the action lifts to a categorical action on C

Theorem [DSVV]

There exist X ∈ End(F ) and T ∈ End(F 2) such that

• (T − q2IdF 2) ◦ (T + IdF 2) = 0

• (T IdF ) ◦ (IdFT ) ◦ (T IdF ) = (IdFT ) ◦ (T IdF ) ◦ (IdFT )

• T ◦ (IdFX ) ◦ T = q2X IdF

Moreover, the eigenvalues of X are powers of −q.
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Categorical action

As in the case of GLn(q), the action lifts to a categorical action on C

Theorem [DSVV]

There exist X ∈ End(F ) and T ∈ End(F 2) such that

• (T − q2IdF 2) ◦ (T + IdF 2) = 0

• (T IdF ) ◦ (IdFT ) ◦ (T IdF ) = (IdFT ) ◦ (T IdF ) ◦ (IdFT )

• T ◦ (IdFX ) ◦ T = q2X IdF

Moreover, the eigenvalues of X are powers of −q.

 algebra homomorphism Hq2(Ãm−1) −→ EndFm

Fa := (−q)a-eigenspace of X on F

+ similar results for classical types B , C , D and 2D
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Decategorifying

χµ ∈ Uch(GUn(q)) is a cuspidal character
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χµ ∈ Uch(GUn(q)) is a cuspidal character

⇐⇒ E (χµ) = 0 (highest weight vector)

⇐⇒ one cannot remove any 2-hook from µ

⇐⇒ µ = (t, t − 1, t − 2, . . . , 1) is a triangular partition

(in particular n = t(t + 1)/2)
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Decategorifying

χµ ∈ Uch(GUn(q)) is a cuspidal character

⇐⇒ E (χµ) = 0 (highest weight vector)

⇐⇒ one cannot remove any 2-hook from µ

⇐⇒ µ = (t, t − 1, t − 2, . . . , 1) is a triangular partition

(in particular n = t(t + 1)/2)

Given t ≥ 0 and µ = (t, t − 1, t − 2, . . . , 1) one recovers that the
endomorphism algebra of Fmχµ has type Bm and parameters (q2t+1, q2)
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Decategorifying

χµ ∈ Uch(GUn(q)) is a cuspidal character

⇐⇒ E (χµ) = 0 (highest weight vector)

⇐⇒ one cannot remove any 2-hook from µ

⇐⇒ µ = (t, t − 1, t − 2, . . . , 1) is a triangular partition

(in particular n = t(t + 1)/2)

Given t ≥ 0 and µ = (t, t − 1, t − 2, . . . , 1) one recovers that the
endomorphism algebra of Fmχµ has type Bm and parameters (q2t+1, q2)

Hq2(Ãm−1) = 〈X1, . . . ,Xm,T1, . . . ,Tm−1〉 EndFm

Hq2t+1,q2(Bm) = 〈X1,T1, . . . ,Tm−1〉 EndGUn+m(q) (F
mχµ)

∼

(X1−(−q)t )(X1−(−q)−t−1)=0
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Applications to Broué’s conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué’s
conjecture predicts the existence of a derived equivalence between
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Given a finite group Γ and a block b with abelian defect group D, Broué’s
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Given a finite group Γ and a block b with abelian defect group D, Broué’s
conjecture predicts the existence of a derived equivalence between

◮ the block b (global, a block of Γ)

◮ the Brauer correspondent of b (local, a block of NΓ(D))

Categorical actions provide derived equivalences between blocks: “global
↔ global”.
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Applications to Broué’s conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué’s
conjecture predicts the existence of a derived equivalence between

◮ the block b (global, a block of Γ)

◮ the Brauer correspondent of b (local, a block of NΓ(D))

Categorical actions provide derived equivalences between blocks: “global
↔ global”.To go to the local block one needs good blocks.

Theorem [Livesey, 12]

Assume d is even. There is a family of good blocks of GUn(q) for which
Broue’s conjecture holds.
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Applications to Broué’s conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué’s
conjecture predicts the existence of a derived equivalence between

◮ the block b (global, a block of Γ)

◮ the Brauer correspondent of b (local, a block of NΓ(D))

Categorical actions provide derived equivalences between blocks: “global
↔ global”.To go to the local block one needs good blocks.

Theorem [Livesey, 12]

Assume d is even. There is a family of good blocks of GUn(q) for which
Broue’s conjecture holds.

Theorem [DSVV]

Assume d is even. Each orbit of the action of the Weyl group on C
contains a good block. Consequently, Broué’s conjecture holds in that
case.
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Applications to Broué’s conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué’s
conjecture predicts the existence of a derived equivalence between

◮ the block b (global, a block of Γ)

◮ the Brauer correspondent of b (local, a block of NΓ(D))

Categorical actions provide derived equivalences between blocks: “global
↔ global”.To go to the local block one needs good blocks.

Theorem [Livesey, 12]

Assume d is even. There is a family of good blocks of GUn(q) for which
Broue’s conjecture holds.

Theorem [DSVV]

Assume d is even. Each orbit of the action of the Weyl group on C
contains a good block. Consequently, Broué’s conjecture holds in that
case.

+ work in progress for type B and C (d odd)
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Applications to the branching graph

As a module for the Lie algebra

C⊗ K0(C) ≃
⊕

t≥0

F((−q)t , (−q)−1−t)

O. Dudas (Paris 7) Categorical actions Mar. 2015 16 / 1



Applications to the branching graph

As a module for the Lie algebra

C⊗ K0(C) ≃
⊕

t≥0

F((−q)t , (−q)−1−t)

where F(q1, q2) is a level-2 Fock space representation corresponding to
the weight (q1, q2).
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As a module for the Lie algebra

C⊗ K0(C) ≃
⊕

t≥0

F((−q)t , (−q)−1−t)

where F(q1, q2) is a level-2 Fock space representation corresponding to
the weight (q1, q2).

Modular branching graph: given a simple module S , Fa(S) is either zero or
has a simple quotient, which one?

Theorem [DSVV]

The modular branching graph coincide with the disjoint union of the
crystal graphs of the Fock spaces F((−q)t , (−q)−1−t).
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where F(q1, q2) is a level-2 Fock space representation corresponding to
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Modular branching graph: given a simple module S , Fa(S) is either zero or
has a simple quotient, which one?

Theorem [DSVV]

The modular branching graph coincide with the disjoint union of the
crystal graphs of the Fock spaces F((−q)t , (−q)−1−t).

This is a weak version of a conjecture of Gerber-Hiss-Jacon.
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Applications to the branching graph

As a module for the Lie algebra

C⊗ K0(C) ≃
⊕

t≥0

F((−q)t , (−q)−1−t)

where F(q1, q2) is a level-2 Fock space representation corresponding to
the weight (q1, q2).

Modular branching graph: given a simple module S , Fa(S) is either zero or
has a simple quotient, which one?

Theorem [DSVV]

The modular branching graph coincide with the disjoint union of the
crystal graphs of the Fock spaces F((−q)t , (−q)−1−t).

This is a weak version of a conjecture of Gerber-Hiss-Jacon.The strong
version predicts a isomorphism of graphs inducing the identity on
partitions (labelling the vertices of the two graphs).
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Decomposition numbers

For GLn(q), and for GUn(q) with d even, the basis of simple modules in
K0(C) corresponds to the (dual) canonical basis of the Fock spaces.
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Decomposition numbers

For GLn(q), and for GUn(q) with d even, the basis of simple modules in
K0(C) corresponds to the (dual) canonical basis of the Fock spaces.

Question

Is there any Lie-theoretic interpretation of the basis of simple modules
when d is odd?
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