Categorical actions on unipotent representations of finite classical groups

Olivier Dudas
(with P. Shan, M. Varagnolo and E. Vasserot)

Paris 7 - Paris Diderot

March 2015

Motivation

Finite classical groups

$$
G_{n}(q)=\mathrm{GL}_{n}(q), \mathrm{GU}_{n}(q), \mathrm{Sp}_{2 n}(q) \ldots
$$

Motivation

Finite classical groups

$$
G_{n}(q)=\mathrm{GL}_{n}(q), \mathrm{GU}_{n}(q), \mathrm{Sp}_{2 n}(q) \ldots
$$

Study representations over a field k of characteristic $\ell \geq 0$ using higher Lie theory, i.e. categorical actions of Lie algebras on

$$
\mathcal{C}=\bigoplus_{n>0} k G_{n}(q)-\bmod ^{\mathrm{u}}
$$

coming from (parabolic) induction and restriction

Motivation

Finite classical groups

$$
G_{n}(q)=\mathrm{GL}_{n}(q), \mathrm{GU}_{n}(q), \mathrm{Sp}_{2 n}(q) \ldots
$$

Study representations over a field k of characteristic $\ell \geq 0$ using higher Lie theory, i.e. categorical actions of Lie algebras on

$$
\mathcal{C}=\bigoplus_{n \geq 0} k G_{n}(q)-\bmod ^{\mathrm{u}}
$$

coming from (parabolic) induction and restriction Hoping for the following applications:

Motivation

Finite classical groups

$$
G_{n}(q)=\mathrm{GL}_{n}(q), \mathrm{GU}_{n}(q), \mathrm{Sp}_{2 n}(q) \ldots
$$

Study representations over a field k of characteristic $\ell \geq 0$ using higher Lie theory, i.e. categorical actions of Lie algebras on

$$
\mathcal{C}=\bigoplus_{n \geq 0} k G_{n}(q)-\bmod ^{\mathrm{u}}
$$

coming from (parabolic) induction and restriction Hoping for the following applications:

- Branching graph for induction/restriction [Gerber-Hiss-Jacon]

Motivation

Finite classical groups

$$
G_{n}(q)=\mathrm{GL}_{n}(q), \mathrm{GU}_{n}(q), \mathrm{Sp}_{2 n}(q) \ldots
$$

Study representations over a field k of characteristic $\ell \geq 0$ using higher Lie theory, i.e. categorical actions of Lie algebras on

$$
\mathcal{C}=\bigoplus_{n \geq 0} k G_{n}(q)-\bmod ^{\mathrm{u}}
$$

coming from (parabolic) induction and restriction Hoping for the following applications:

- Branching graph for induction/restriction [Gerber-Hiss-Jacon]
- Derived equivalences [Broué]

Motivation

Finite classical groups

$$
G_{n}(q)=\mathrm{GL}_{n}(q), \mathrm{GU}_{n}(q), \mathrm{Sp}_{2 n}(q) \ldots
$$

Study representations over a field k of characteristic $\ell \geq 0$ using higher Lie theory, i.e. categorical actions of Lie algebras on

$$
\mathcal{C}=\bigoplus_{n \geq 0} k G_{n}(q)-\bmod ^{\mathrm{u}}
$$

coming from (parabolic) induction and restriction Hoping for the following applications:

- Branching graph for induction/restriction [Gerber-Hiss-Jacon]
- Derived equivalences [Broué]
- Decomposition numbers

Unipotent characters of $\mathrm{GL}_{n}(q)$

There is a distinguished set of complex irreducible characters of $\mathrm{GL}_{n}(q)$, called the unipotent characters, labelled by partitions

$$
\begin{aligned}
\operatorname{Uch}\left(\mathrm{GL}_{n}(q)\right) & \longleftrightarrow\{\text { Partitions of } n\} \\
\chi_{\mu} & \longleftrightarrow \mu
\end{aligned}
$$

Unipotent characters of $\mathrm{GL}_{n}(q)$

There is a distinguished set of complex irreducible characters of $\mathrm{GL}_{n}(q)$, called the unipotent characters, labelled by partitions

$$
\begin{aligned}
\operatorname{Uch}\left(\mathrm{GL}_{n}(q)\right) & \longleftrightarrow\{\text { Partitions of } n\} \quad\left(\longleftrightarrow \operatorname{lrr} \mathfrak{S}_{n}\right) \\
\chi_{\mu} & \longleftrightarrow \mu
\end{aligned}
$$

Unipotent characters of $\mathrm{GL}_{n}(q)$

There is a distinguished set of complex irreducible characters of $\mathrm{GL}_{n}(q)$, called the unipotent characters, labelled by partitions

$$
\begin{aligned}
\operatorname{Uch}\left(\mathrm{GL}_{n}(q)\right) & \longleftrightarrow\{\text { Partitions of } n\} \quad\left(\longleftrightarrow \operatorname{lrr} \mathfrak{S}_{n}\right) \\
\chi_{\mu} & \longleftrightarrow \mu
\end{aligned}
$$

Examples

- $\chi_{(n)}=1_{\mathrm{GL}_{n}(q)}$ the trivial character

Unipotent characters of $\mathrm{GL}_{n}(q)$

There is a distinguished set of complex irreducible characters of $\mathrm{GL}_{n}(q)$, called the unipotent characters, labelled by partitions

$$
\begin{aligned}
\operatorname{Uch}\left(\mathrm{GL}_{n}(q)\right) & \longleftrightarrow\{\text { Partitions of } n\} \quad\left(\longleftrightarrow \operatorname{lrr} \mathfrak{S}_{n}\right) \\
\chi_{\mu} & \longleftrightarrow \mu
\end{aligned}
$$

Examples

- $\chi_{(n)}=1_{\mathrm{GL}_{n}(q)}$ the trivial character
- $\chi_{\left(1^{n}\right)}=\operatorname{St}_{\mathrm{GL}_{n}(q)}$ the Steinberg character

Unipotent characters of $\mathrm{GL}_{n}(q)$

There is a distinguished set of complex irreducible characters of $\mathrm{GL}_{n}(q)$, called the unipotent characters, labelled by partitions

$$
\begin{aligned}
\operatorname{Uch}\left(\mathrm{GL}_{n}(q)\right) & \longleftrightarrow\{\text { Partitions of } n\} \quad\left(\longleftrightarrow \operatorname{lrr} \mathfrak{S}_{n}\right) \\
\chi_{\mu} & \longleftrightarrow \mu
\end{aligned}
$$

Examples

- $\chi_{(n)}=1_{\mathrm{GL}_{n}(q)}$ the trivial character
- $\chi_{\left(1^{n}\right)}=\operatorname{St}_{\mathrm{GL}_{n}(q)}$ the Steinberg character

Under this parametrization, parabolic induction and restriction on unipotent characters coincide with induction and restriction on irreducible characters of symmetric groups.

Unipotent characters of $\mathrm{GL}_{n}(q)$

There is a distinguished set of complex irreducible characters of $\mathrm{GL}_{n}(q)$, called the unipotent characters, labelled by partitions

$$
\begin{aligned}
\operatorname{Uch}\left(\mathrm{GL}_{n}(q)\right) & \longleftrightarrow\{\text { Partitions of } n\} \quad\left(\longleftrightarrow \operatorname{lrr} \mathfrak{S}_{n}\right) \\
\chi_{\mu} & \longleftrightarrow \mu
\end{aligned}
$$

Examples

- $\chi_{(n)}=1_{\mathrm{GL}_{n}(q)}$ the trivial character
- $\chi_{\left(1^{n}\right)}=\operatorname{St}_{\mathrm{GL}_{n}(q)}$ the Steinberg character

Under this parametrization, parabolic induction and restriction on unipotent characters coincide with induction and restriction on irreducible characters of symmetric groups.

In fact there is a Hecke algebra $\mathcal{H}_{q}\left(A_{n-1}\right)$ hiding there...

i-induction and i-restriction

i-induction and i-restriction

i-induction and i-restriction

Parabolic induction and restriction

f add boxes, and e remove boxes e

i-induction and i-restriction

Parabolic induction and restriction

f add boxes, and e remove boxes

i-induction and i-restriction

Parabolic induction and restriction

f add boxes, and e remove boxes e

i-induction and i-restriction

Parabolic induction and restriction

f add boxes, and e remove boxes e

i-induction and i-restriction

Parabolic induction and restriction

f add boxes, and e remove boxes e

i-induction and i-restriction

Parabolic induction and restriction

f add boxes, and e remove boxes e

Use content to split $f=\sum f_{a}$

i-induction and i-restriction

Parabolic induction and restriction

```
                        f
```


f add boxes, and e remove boxes e

Use content to split $f=\sum f_{a}$
$\rightsquigarrow f_{a}\left(\chi_{\mu}\right)$ is either zero or irreducible

i-induction and i-restriction

Parabolic induction and restriction

f

f add boxes, and e remove boxes e

Use content to split $f=\sum f_{a}$
$\rightsquigarrow f_{a}\left(\chi_{\mu}\right)$ is either zero or irreducible
$\left\langle e_{a}, f_{a}\right\rangle_{a \in \mathbb{Z}}$ induce an action of $\mathfrak{s l}_{\infty}$ on $\bigoplus \mathbb{C U c h}\left(\operatorname{GL}_{n}(q)\right)$ isomorphic to a Fock space representation of level 1.

Positive characteristic

f_{a} is constructed using the q^{a}-eigenspace of a Jucys-Murphy element

Positive characteristic

f_{a} is constructed using the q^{a}-eigenspace of a Jucys-Murphy element Now assume char $k=\ell>0, \ell \nmid q$ and set

$$
d=\text { order of } q \in k^{\times}
$$

Positive characteristic

f_{a} is constructed using the q^{a}-eigenspace of a Jucys-Murphy element Now assume char $k=\ell>0, \ell \nmid q$ and set

$$
d=\text { order of } q \in k^{\times}
$$

Identification of q^{a} and q^{a+d} eigenspaces
\rightsquigarrow for $\bar{a} \in \mathbb{Z} / d \mathbb{Z}$, set

$$
f_{\bar{a}}=\sum_{a \in \bar{a}} f_{a} \quad \text { and } \quad e_{\bar{a}}=\sum_{a \in \bar{a}} e_{a}
$$

Positive characteristic

f_{a} is constructed using the q^{a}-eigenspace of a Jucys-Murphy element Now assume char $k=\ell>0, \ell \nmid q$ and set

$$
d=\text { order of } q \in k^{\times}
$$

Identification of q^{a} and q^{a+d} eigenspaces
\rightsquigarrow for $\bar{a} \in \mathbb{Z} / d \mathbb{Z}$, set

$$
f_{\bar{a}}=\sum_{a \in \bar{a}} f_{a} \quad \text { and } \quad e_{\bar{a}}=\sum_{a \in \bar{a}} e_{a}
$$

(content modulo d)

Positive characteristic

f_{a} is constructed using the q^{a}-eigenspace of a Jucys-Murphy element Now assume char $k=\ell>0, \ell \nmid q$ and set

$$
d=\text { order of } q \in k^{\times}
$$

Identification of q^{a} and q^{a+d} eigenspaces
\rightsquigarrow for $\bar{a} \in \mathbb{Z} / d \mathbb{Z}$, set

$$
f_{\bar{a}}=\sum_{a \in \bar{a}} f_{a} \quad \text { and } \quad e_{\bar{a}}=\sum_{a \in \bar{a}} e_{a}
$$

(content modulo d)
Through the decomposition map $\operatorname{Uch}\left(\mathrm{GL}_{n}(q)\right) \longrightarrow K_{0}\left(k \mathrm{LL}_{n}(q)-\bmod ^{\mathrm{u}}\right)$, the action of $\left\langle e_{\bar{a}}, f_{\bar{a}}\right\rangle_{\bar{a} \in \mathbb{Z}} / d \mathbb{Z}$ induces an action of $\widehat{\mathfrak{s l}}{ }_{d}$ on

$$
K_{0}(\mathcal{C})=\bigoplus_{n \geq 0} K_{0}\left(k G L_{n}(q)-\bmod ^{\mathrm{u}}\right)
$$

Categorical action

Action of $\widehat{\mathfrak{s l}}_{d}$ on $V=\mathbb{C} \otimes_{\mathbb{Z}} K_{0}(\mathcal{C})$

Categorical action

Action of $\widehat{\mathfrak{s l}}_{d}$ on $V=\mathbb{C} \otimes_{\mathbb{Z}} K_{0}(\mathcal{C})$
Lascoux-Leclerc-Thibon

- The weight space decomposition $V=\bigoplus V_{\lambda}$ coincide with the block decomposition

Categorical action

Action of $\widehat{\mathfrak{s l}}_{d}$ on $V=\mathbb{C} \otimes_{\mathbb{Z}} K_{0}(\mathcal{C})$
Lascoux-Leclerc-Thibon

- The weight space decomposition $V=\bigoplus V_{\lambda}$ coincide with the block decomposition
- $\widehat{\mathfrak{S}}_{d}$ acts on V and two blocks are in the same orbit iff they have the same defect.

Categorical action

Action of $\widehat{\mathfrak{s l}}_{d}$ on $V=\mathbb{C} \otimes_{\mathbb{Z}} K_{0}(\mathcal{C})$
Lascoux-Leclerc-Thibon

- The weight space decomposition $V=\bigoplus V_{\lambda}$ coincide with the block decomposition
- $\widehat{\mathfrak{S}}_{d}$ acts on V and two blocks are in the same orbit iff they have the same defect.

Action on \mathcal{C} :

Categorical action

Action of $\widehat{\mathfrak{s l}}_{d}$ on $V=\mathbb{C} \otimes_{\mathbb{Z}} K_{0}(\mathcal{C})$
Lascoux-Leclerc-Thibon

- The weight space decomposition $V=\bigoplus V_{\lambda}$ coincide with the block decomposition
- $\widehat{\mathfrak{S}}_{d}$ acts on V and two blocks are in the same orbit iff they have the same defect.

Action on \mathcal{C} :

- adjoint pair of exact functors $\left(E_{a}, F_{a}\right)$ with $\left[E_{a}\right]=e_{a}$ and $\left[F_{a}\right]=f_{a}$

Categorical action

Action of $\widehat{\mathfrak{s l}}_{d}$ on $V=\mathbb{C} \otimes_{\mathbb{Z}} K_{0}(\mathcal{C})$

Lascoux-Leclerc-Thibon

- The weight space decomposition $V=\bigoplus V_{\lambda}$ coincide with the block decomposition
- $\widehat{\mathfrak{S}}_{d}$ acts on V and two blocks are in the same orbit iff they have the same defect.

Action on \mathcal{C} :

- adjoint pair of exact functors $\left(E_{a}, F_{a}\right)$ with $\left[E_{a}\right]=e_{a}$ and $\left[F_{a}\right]=f_{a}$
- weight decomposition $\mathcal{C} \simeq \bigoplus \mathcal{C}_{\lambda}$ with $\mathbb{C} \otimes K_{0}\left(\mathcal{C}_{\lambda}\right)=V_{\lambda}$

Categorical action

Action of $\widehat{\mathfrak{s l}}_{d}$ on $V=\mathbb{C} \otimes_{\mathbb{Z}} K_{0}(\mathcal{C})$

Lascoux-Leclerc-Thibon

- The weight space decomposition $V=\bigoplus V_{\lambda}$ coincide with the block decomposition
- $\widehat{\mathfrak{S}}_{d}$ acts on V and two blocks are in the same orbit iff they have the same defect.

Action on \mathcal{C} :

- adjoint pair of exact functors $\left(E_{a}, F_{a}\right)$ with $\left[E_{a}\right]=e_{a}$ and $\left[F_{a}\right]=f_{a}$
- weight decomposition $\mathcal{C} \simeq \bigoplus \mathcal{C}_{\lambda}$ with $\mathbb{C} \otimes K_{0}\left(\mathcal{C}_{\lambda}\right)=V_{\lambda}$
- extra structure on End F_{a}^{m}

Categorical action

Action of $\widehat{\mathfrak{s l}}_{d}$ on $V=\mathbb{C} \otimes_{\mathbb{Z}} K_{0}(\mathcal{C})$

Lascoux-Leclerc-Thibon

- The weight space decomposition $V=\bigoplus V_{\lambda}$ coincide with the block decomposition
- $\widehat{\mathfrak{S}}_{d}$ acts on V and two blocks are in the same orbit iff they have the same defect.

Action on \mathcal{C} :

- adjoint pair of exact functors $\left(E_{a}, F_{a}\right)$ with $\left[E_{a}\right]=e_{a}$ and $\left[F_{a}\right]=f_{a}$
- weight decomposition $\mathcal{C} \simeq \bigoplus \mathcal{C}_{\lambda}$ with $\mathbb{C} \otimes K_{0}\left(\mathcal{C}_{\lambda}\right)=V_{\lambda}$
- extra structure on End $F_{a}^{m} \leftarrow$ very important!

Categorical action

Action of $\widehat{\mathfrak{s l}}_{d}$ on $V=\mathbb{C} \otimes_{\mathbb{Z}} K_{0}(\mathcal{C})$

Lascoux-Leclerc-Thibon

- The weight space decomposition $V=\bigoplus V_{\lambda}$ coincide with the block decomposition
- $\widehat{\mathfrak{S}}_{d}$ acts on V and two blocks are in the same orbit iff they have the same defect.

Action on \mathcal{C} :

- adjoint pair of exact functors $\left(E_{a}, F_{a}\right)$ with $\left[E_{a}\right]=e_{a}$ and $\left[F_{a}\right]=f_{a}$
- weight decomposition $\mathcal{C} \simeq \bigoplus \mathcal{C}_{\lambda}$ with $\mathbb{C} \otimes K_{0}\left(\mathcal{C}_{\lambda}\right)=V_{\lambda}$
- extra structure on End $F_{a}^{m} \leftarrow$ very important!

Chuang-Rouquier

Elements of $\widehat{\mathfrak{S}}_{d}$ lift to derived equivalences of \mathcal{C}. In particular, two blocks with same defect are derived equivalent.

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

$$
k G L_{n}(q)-\bmod \quad k G L_{n+1}(q)-\bmod
$$

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

$$
k G L_{n}(q)-\bmod \quad F \quad k G L_{n+1}(q)-\bmod
$$

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

The structure of categorical action comes from natural transformations

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

The structure of categorical action comes from natural transformations

- $X \in \operatorname{End}(F)$ (Jucys-Murphy element)

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

The structure of categorical action comes from natural transformations

- $X \in \operatorname{End}(F)$ (Jucys-Murphy element)
- $T \in \operatorname{End}\left(F^{2}\right)$

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

The structure of categorical action comes from natural transformations

- $X \in \operatorname{End}(F)$ (Jucys-Murphy element)
- $T \in \operatorname{End}\left(F^{2}\right)$
satisfying affine Hecke relations
- $\left(T-q \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

The structure of categorical action comes from natural transformations

- $X \in \operatorname{End}(F)$ (Jucys-Murphy element)
- $T \in \operatorname{End}\left(F^{2}\right)$
satisfying affine Hecke relations
- $\left(T-q \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$
- $\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right)=\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right)$

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

$$
k G L_{n}(q)-\bmod \begin{array}{lll}
& F & k G L \\
n+1
\end{array}(q)-\bmod
$$

The structure of categorical action comes from natural transformations

- $X \in \operatorname{End}(F)$ (Jucys-Murphy element)
- $T \in \operatorname{End}\left(F^{2}\right)$
satisfying affine Hecke relations
- $\left(T-q \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$
- $\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right)=\left(\mathrm{Id}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right)$
- $T \circ\left(\operatorname{ld}_{F} X\right) \circ T=q X \operatorname{ld}_{F}$

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

$$
k G L_{n}(q)-\bmod \begin{array}{lll}
& F & k G L \\
n+1
\end{array}(q)-\bmod
$$

The structure of categorical action comes from natural transformations

- $X \in \operatorname{End}(F)$ (Jucys-Murphy element)
- $T \in \operatorname{End}\left(F^{2}\right)$
satisfying affine Hecke relations
- $\left(T-q \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$
- $\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right)=\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right) \circ\left(\mathrm{Id}_{F} T\right)$
- $T \circ\left(\operatorname{ld}_{F} X\right) \circ T=q X \operatorname{ld}_{F}$
\rightsquigarrow algebra homomorphism $\mathcal{H}_{q}\left(\widetilde{A}_{m-1}\right) \longrightarrow$ End F^{m}

Structure of End F^{m}

Induction and restriction come from an adjoint pair of exact functors

The structure of categorical action comes from natural transformations

- $X \in \operatorname{End}(F)$ (Jucys-Murphy element)
- $T \in \operatorname{End}\left(F^{2}\right)$
satisfying affine Hecke relations
- $\left(T-q \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$
- $\left(T \mathrm{Id}_{F}\right) \circ\left(\mathrm{Id}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right)=\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{ld}_{F}\right) \circ\left(\mathrm{ld}_{F} T\right)$
- $T \circ\left(\operatorname{ld}_{F} X\right) \circ T=q X \operatorname{Id}_{F}$
\rightsquigarrow algebra homomorphism $\mathcal{H}_{q}\left(\widetilde{A}_{m-1}\right) \longrightarrow$ End F^{m}

$$
F_{a}:=q^{a} \text {-eigenspace of } X \text { on } F
$$

Decategorifying

Draw the quiver with

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X
- edges: $a \longrightarrow q a$

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X
- edges: $a \longrightarrow q a$
\rightsquigarrow the Kac-Moody algebra associated to this quiver acts on $K_{0}(\mathcal{C})$

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X
- edges: $a \longrightarrow q a$
\rightsquigarrow the Kac-Moody algebra associated to this quiver acts on $K_{0}(\mathcal{C})$
For parabolic induction and restriction we get

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X
- edges: $a \longrightarrow q a$
\rightsquigarrow the Kac-Moody algebra associated to this quiver acts on $K_{0}(\mathcal{C})$
For parabolic induction and restriction we get
in char 0

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X
- edges: $a \longrightarrow q a$
\rightsquigarrow the Kac-Moody algebra associated to this quiver acts on $K_{0}(\mathcal{C})$
For parabolic induction and restriction we get
in char $0 \quad \cdots q^{-2} \longrightarrow q^{-1} \longrightarrow 1 \longrightarrow q \longrightarrow q^{2} \cdots$

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X
- edges: $a \longrightarrow q a$
\rightsquigarrow the Kac-Moody algebra associated to this quiver acts on $K_{0}(\mathcal{C})$
For parabolic induction and restriction we get
in char $0 \quad \cdots q^{-2} \longrightarrow q^{-1} \longrightarrow 1 \longrightarrow q \longrightarrow q^{2} \cdots \quad \mathfrak{s l}_{\infty}$

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X
- edges: $a \longrightarrow q a$
\rightsquigarrow the Kac-Moody algebra associated to this quiver acts on $K_{0}(\mathcal{C})$
For parabolic induction and restriction we get
in char $0 \quad \cdots q^{-2} \longrightarrow q^{-1} \longrightarrow 1 \longrightarrow q \longrightarrow q^{2} \cdots \quad \mathfrak{s l}_{\infty}$
in char ℓ

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X
- edges: $a \longrightarrow q a$
\rightsquigarrow the Kac-Moody algebra associated to this quiver acts on $K_{0}(\mathcal{C})$
For parabolic induction and restriction we get
in char $0 \quad \cdots q^{-2} \longrightarrow q^{-1} \longrightarrow 1 \longrightarrow q \longrightarrow q^{2} \cdots \quad \mathfrak{s l}_{\infty}$
in char ℓ

Decategorifying

Draw the quiver with

- vertices: eigenvalues of X
- edges: $a \longrightarrow q a$
\rightsquigarrow the Kac-Moody algebra associated to this quiver acts on $K_{0}(\mathcal{C})$
For parabolic induction and restriction we get
in char $0 \quad \cdots q^{-2} \longrightarrow q^{-1} \longrightarrow 1 \longrightarrow q \longrightarrow q^{2} \cdots \quad \mathfrak{s l}_{\infty}$
\Downarrow
in char ℓ

$\widehat{\mathfrak{s l}}{ }_{d}$

Decategorifying

$\mathbb{C} \in \operatorname{Uch}\left(\mathrm{GL}_{0}(q)\right)$ is the only cuspidal character (i.e. such that $E(\chi)=0$)

Decategorifying

$\mathbb{C} \in \operatorname{Uch}\left(\mathrm{GL}_{0}(q)\right)$ is the only cuspidal character (i.e. such that $E(\chi)=0$) One recovers the standard construction of the Hecke algebra of type A as the endomorphism algebra of the induced representation $\operatorname{Ind}_{B} \mathrm{GL}^{(q)}(\mathbb{C}$

Decategorifying

$\mathbb{C} \in \operatorname{Uch}\left(\mathrm{GL}_{0}(q)\right)$ is the only cuspidal character (i.e. such that $E(\chi)=0$) One recovers the standard construction of the Hecke algebra of type A as the endomorphism algebra of the induced representation $\operatorname{Ind}_{B} \mathrm{GL}_{m}(q) \mathbb{C}$

$$
\mathcal{H}_{q}\left(\widetilde{A}_{m-1}\right)=\left\langle X_{1}, \ldots, X_{m}, T_{1}, \ldots, T_{m-1}\right\rangle \longrightarrow \text { End } F^{m}
$$

Decategorifying

$\mathbb{C} \in \operatorname{Uch}\left(\mathrm{GL}_{0}(q)\right)$ is the only cuspidal character (i.e. such that $E(\chi)=0$) One recovers the standard construction of the Hecke algebra of type A as the endomorphism algebra of the induced representation $\operatorname{Ind}_{B} \mathrm{GL}_{m}(q) \mathbb{C}$

$$
\mathcal{H}_{q}\left(\widetilde{A}_{m-1}\right)=\left\langle X_{1}, \ldots, X_{m}, T_{1}, \ldots, T_{m-1}\right\rangle \longrightarrow \text { End } F^{m}
$$

Decategorifying

$\mathbb{C} \in \operatorname{Uch}\left(\mathrm{GL}_{0}(q)\right)$ is the only cuspidal character (i.e. such that $E(\chi)=0$) One recovers the standard construction of the Hecke algebra of type A as the endomorphism algebra of the induced representation $\operatorname{Ind}_{B} \mathrm{GL}_{m}(q) \mathbb{C}$

$$
\mathcal{H}_{q}\left(\widetilde{A}_{m-1}\right)=\left\langle X_{1}, \ldots, X_{m}, T_{1}, \ldots, T_{m-1}\right\rangle \longrightarrow \text { End } F^{m}
$$

Decategorifying

$\mathbb{C} \in \operatorname{Uch}\left(\mathrm{GL}_{0}(q)\right)$ is the only cuspidal character (i.e. such that $E(\chi)=0$) One recovers the standard construction of the Hecke algebra of type A as the endomorphism algebra of the induced representation $\operatorname{Ind}_{B}^{G L_{m}(q)} \mathbb{C}$

$$
\begin{aligned}
\mathcal{H}_{q}\left(\widetilde{A}_{m-1}\right)=\left\langle X_{1}, \ldots, X_{m}, T_{1}, \ldots, T_{m-1}\right\rangle & \text { End } F^{m} \\
\mathcal{H}_{q}\left(A_{m-1}\right)=\left\langle T_{1}, \ldots, T_{m-1}\right\rangle \longrightarrow & \sim \operatorname{End}_{G_{G}(q)}\left(F^{m} \mathbb{C}\right) \\
& \sim \operatorname{End}_{G_{m}(q)}\left(\operatorname{lnd}_{B}^{G L_{m}(q)} \mathbb{C}\right)
\end{aligned}
$$

Decategorifying

$\mathbb{C} \in \operatorname{Uch}\left(\mathrm{GL}_{0}(q)\right)$ is the only cuspidal character (i.e. such that $E(\chi)=0$) One recovers the standard construction of the Hecke algebra of type A as the endomorphism algebra of the induced representation $\operatorname{Ind}_{B} \mathrm{GL}_{m}(q) \mathbb{C}$

$$
\begin{aligned}
& \mathcal{H}_{q}\left(\widetilde{A}_{m-1}\right)=\left\langle X_{1}, \ldots, X_{m}, T_{1}, \ldots, T_{m-1}\right\rangle \longrightarrow \text { End } F^{m} \\
& \begin{array}{c}
\left.\begin{array}{|}
x_{1}=q \\
\mathcal{H}_{q} \\
\left(A_{m-1}\right)
\end{array}\right)\left\langle T_{1}, \ldots, T_{m-1}\right\rangle \longrightarrow \operatorname{End}_{\mathrm{GL}_{m}(q)}\left(F^{m} \mathbb{C}\right)
\end{array} \\
& \operatorname{End}_{\mathrm{GL}_{m}(q)}\left(\operatorname{Ind}_{B}^{G L_{m}(q)} \mathbb{C}\right)
\end{aligned}
$$

The finite unitary groups

Underlying algebraic group $\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$

The finite unitary groups

Underlying algebraic group $\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$

$$
\mathrm{GU}_{n}(q):=\left\{M \in \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right) \mid M^{t} \operatorname{Fr}(M)=I_{n}\right\} \subset \mathrm{GL}_{n}\left(q^{2}\right)
$$

where $\mathrm{Fr}:\left(m_{i, j}\right) \longmapsto\left(m_{i, j}^{q}\right)$

The finite unitary groups

Underlying algebraic group $\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$

$$
\mathrm{GU}_{n}(q):=\left\{M \in \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right) \mid M^{t} \operatorname{Fr}(M)=I_{n}\right\} \subset \mathrm{GL}_{n}\left(q^{2}\right)
$$

where $\operatorname{Fr}:\left(m_{i, j}\right) \longmapsto\left(m_{i, j}^{q}\right)$
Parabolic induction and restriction yield an adjoint pair of exact functors

$$
k G U_{n}(q)-\bmod \begin{gathered}
F \\
\hline
\end{gathered}
$$

The finite unitary groups

Underlying algebraic group $\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$

$$
\mathrm{GU}_{n}(q):=\left\{M \in \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right) \mid M^{t} \mathrm{Fr}(M)=I_{n}\right\} \subset \mathrm{GL}_{n}\left(q^{2}\right)
$$

where $\mathrm{Fr}:\left(m_{i, j}\right) \longmapsto\left(m_{i, j}^{q}\right)$
Parabolic induction and restriction yield an adjoint pair of exact functors

$$
k \mathrm{GU}_{n}(q)-\underset{ }{\overparen{m o d}} \begin{array}{lll}
F & k G U \\
n+2
\end{array}(q)-\bmod
$$

$$
" \mathrm{GU}_{n}(q)=\mathrm{GL}_{n}(-q) "
$$

The finite unitary groups

Underlying algebraic group $\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$

$$
\mathrm{GU}_{n}(q):=\left\{M \in \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right) \mid M^{t} \operatorname{Fr}(M)=I_{n}\right\} \subset \mathrm{GL}_{n}\left(q^{2}\right)
$$

where $\operatorname{Fr}:\left(m_{i, j}\right) \longmapsto\left(m_{i, j}^{q}\right)$
Parabolic induction and restriction yield an adjoint pair of exact functors

$$
" \mathrm{GU}_{n}(q)=\mathrm{GL}_{n}(-q) "
$$

In particular, unipotent characters are still labelled by partitions of n

$$
\begin{aligned}
\operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right) & \longleftrightarrow\{\text { Partitions of } n\} \\
\chi_{\mu} & \longleftrightarrow \mu
\end{aligned}
$$

The finite unitary groups

Underlying algebraic group $\mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right)$

$$
\mathrm{GU}_{n}(q):=\left\{M \in \mathrm{GL}_{n}\left(\overline{\mathbb{F}}_{q}\right) \mid M^{t} \operatorname{Fr}(M)=I_{n}\right\} \subset \mathrm{GL}_{n}\left(q^{2}\right)
$$

where $\mathrm{Fr}:\left(m_{i, j}\right) \longmapsto\left(m_{i, j}^{q}\right)$
Parabolic induction and restriction yield an adjoint pair of exact functors

$$
" \mathrm{GU}_{n}(q)=\mathrm{GL}_{n}(-q) "
$$

In particular, unipotent characters are still labelled by partitions of n

$$
\begin{aligned}
\operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right) & \longleftrightarrow\{\text { Partitions of } n\} \\
\chi_{\mu} & \longleftrightarrow \mu
\end{aligned}
$$

But branching rules are different!

Induction and restriction for $\mathrm{GU}_{n}(q)$

$e=[E]$ and $f=[F]$ act by removing/adding 2-hooks $\square \square$ or \square on unipotent characters

Induction and restriction for $\mathrm{GU}_{n}(q)$

$e=[E]$ and $f=[F]$ act by removing/adding 2-hooks $\square \square$ or \square on unipotent characters

Induction and restriction for $\mathrm{GU}_{n}(q)$

$e=[E]$ and $f=[F]$ act by removing/adding 2-hooks $\square \square$ or \square on unipotent characters

Induction and restriction for $\mathrm{GU}_{n}(q)$

$e=[E]$ and $f=[F]$ act by removing/adding 2-hooks $\square \square$ or \square on unipotent characters

Induction and restriction for $\mathrm{GU}_{n}(q)$

$e=[E]$ and $f=[F]$ act by removing/adding 2-hooks $\square \square$ or \square on unipotent characters

Induction and restriction for $\mathrm{GU}_{n}(q)$

$e=[E]$ and $f=[F]$ act by removing/adding 2-hooks \square or \square on unipotent characters

Induction and restriction for $\mathrm{GU}_{n}(q)$

$e=[E]$ and $f=[F]$ act by removing/adding 2-hooks \square or \square on unipotent characters

Again, one can split $f=\sum f_{a}$ using contents

Induction and restriction for $\mathrm{GU}_{n}(q)$

$e=[E]$ and $f=[F]$ act by removing/adding 2-hooks \square or \square on unipotent characters

Again, one can split $f=\sum f_{a}$ using contents
Up to a sign normalization,

$$
f_{a}=\left[f_{a}^{(\mathrm{GL})}, f_{-q a}^{(\mathrm{GL})}\right]
$$

and $\left\langle e_{a}, f_{a}\right\rangle_{a \in \mathbb{Z}}$ induce an action of $\mathfrak{s}_{\infty}^{\oplus 2}$ on $\bigoplus \mathbb{C U c h}\left(\operatorname{GU}_{n}(q)\right)$ isomorphic to a Fock space representation of level 2.

Positive characteristic

f_{a} is constructed using the $(-q)^{\text {a }}$-eigenspace of a Jucys-Murphy element

Positive characteristic

f_{a} is constructed using the $(-q)^{a}$-eigenspace of a Jucys-Murphy element We set

$$
d=\text { order of }-q \in k^{\times}
$$

and define $f_{\bar{a}}=\sum_{a \in \bar{a}} f_{a}$ and $e_{\bar{a}}=\sum_{a \in \bar{a}} e_{a}$ as before, for $\bar{a} \in \mathbb{Z} / d \mathbb{Z}$

Positive characteristic

f_{a} is constructed using the $(-q)^{\text {a }}$-eigenspace of a Jucys-Murphy element We set

$$
d=\text { order of }-q \in k^{\times}
$$

and define $f_{\bar{a}}=\sum_{a \in \bar{a}} f_{a}$ and $e_{\bar{a}}=\sum_{a \in \bar{a}} e_{a}$ as before, for $\bar{a} \in \mathbb{Z} / d \mathbb{Z}$
Through the decomposition map $\operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right) \longrightarrow K_{0}\left(k \mathrm{GU}_{n}(q)\right.$-mod $\left.{ }^{\mathrm{u}}\right)$, the action of $\left\langle e_{\bar{a}}, f_{\bar{a}}\right\rangle_{\bar{a} \in \mathbb{Z} / d \mathbb{Z}}$ induces an action of

Positive characteristic

f_{a} is constructed using the $(-q)^{\text {a }}$-eigenspace of a Jucys-Murphy element We set

$$
d=\text { order of }-q \in k^{\times}
$$

and define $f_{\bar{a}}=\sum_{a \in \bar{a}} f_{a}$ and $e_{\bar{a}}=\sum_{a \in \bar{a}} e_{a}$ as before, for $\bar{a} \in \mathbb{Z} / d \mathbb{Z}$
Through the decomposition map $\operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right) \longrightarrow K_{0}\left(k \mathrm{GU}_{n}(q)\right.$-mod $\left.{ }^{\mathrm{u}}\right)$, the action of $\left\langle e_{\bar{a}}, f_{\bar{a}}\right\rangle_{\bar{a} \in \mathbb{Z} / d \mathbb{Z}}$ induces an action of

- $\widehat{\mathfrak{s l}}_{d}$ if d is odd (unitary prime case)

Positive characteristic

f_{a} is constructed using the $(-q)^{\text {a }}$-eigenspace of a Jucys-Murphy element We set

$$
d=\text { order of }-q \in k^{\times}
$$

and define $f_{\bar{a}}=\sum_{a \in \bar{a}} f_{a}$ and $e_{\bar{a}}=\sum_{a \in \bar{a}} e_{a}$ as before, for $\bar{a} \in \mathbb{Z} / d \mathbb{Z}$
Through the decomposition map $\operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right) \longrightarrow K_{0}\left(k \mathrm{GU}_{n}(q)\right.$-mod $\left.{ }^{\mathrm{u}}\right)$, the action of $\left\langle e_{\bar{a}}, f_{\bar{a}}\right\rangle_{\bar{a} \in \mathbb{Z} / d \mathbb{Z}}$ induces an action of

- $\widehat{\mathfrak{s l}}_{d}$ if d is odd (unitary prime case)
- $\widehat{\mathfrak{s l}}_{d / 2} \oplus \widehat{\mathfrak{s l}}_{d / 2}$ if d is even (linear prime case)

Positive characteristic

f_{a} is constructed using the $(-q)^{\text {a }}$-eigenspace of a Jucys-Murphy element We set

$$
d=\text { order of }-q \in k^{\times}
$$

and define $f_{\bar{a}}=\sum_{a \in \bar{a}} f_{a}$ and $e_{\bar{a}}=\sum_{a \in \bar{a}} e_{a}$ as before, for $\bar{a} \in \mathbb{Z} / d \mathbb{Z}$
Through the decomposition map $\operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right) \longrightarrow K_{0}\left(k \mathrm{GU}_{n}(q)\right.$-mod $\left.{ }^{\mathrm{u}}\right)$, the action of $\left\langle e_{\bar{a}}, f_{\bar{a}}\right\rangle_{\bar{a} \in \mathbb{Z} / d \mathbb{Z}}$ induces an action of

- $\widehat{\mathfrak{s l}}_{d}$ if d is odd (unitary prime case)
- $\widehat{\mathfrak{s l}}_{d / 2} \oplus \widehat{\mathfrak{s l}}_{d / 2}$ if d is even (linear prime case)
on

$$
K_{0}(\mathcal{C})=\bigoplus_{n \geq 0} K_{0}\left(k G U_{n}(q)-\bmod ^{\mathrm{u}}\right)
$$

Positive characteristic

f_{a} is constructed using the $(-q)^{a}$-eigenspace of a Jucys-Murphy element We set

$$
d=\text { order of }-q \in k^{\times}
$$

and define $f_{\bar{a}}=\sum_{a \in \bar{a}} f_{a}$ and $e_{\bar{a}}=\sum_{a \in \bar{a}} e_{a}$ as before, for $\bar{a} \in \mathbb{Z} / d \mathbb{Z}$
Through the decomposition map $\operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right) \longrightarrow K_{0}\left(k \mathrm{GU}_{n}(q)\right.$-mod $\left.{ }^{\mathrm{u}}\right)$, the action of $\left\langle e_{\bar{a}}, f_{\bar{a}}\right\rangle_{\bar{a} \in \mathbb{Z} / d \mathbb{Z}}$ induces an action of

- $\widehat{\mathfrak{s l}}_{d}$ if d is odd (unitary prime case)
- $\widehat{\mathfrak{s l}}_{d / 2} \oplus \widehat{\mathfrak{s l}}_{d / 2}$ if d is even (linear prime case)
on

$$
K_{0}(\mathcal{C})=\bigoplus_{n \geq 0} K_{0}\left(k G U_{n}(q)-\bmod ^{\mathrm{u}}\right)
$$

Moreover, weight spaces coincide with blocks.

Categorical action

As in the case of $G L_{n}(q)$, the action lifts to a categorical action on \mathcal{C}

Categorical action

As in the case of $\mathrm{GL}_{n}(q)$, the action lifts to a categorical action on \mathcal{C}

Theorem [DSVV]

There exist $X \in \operatorname{End}(F)$ and $T \in \operatorname{End}\left(F^{2}\right)$ such that

- $\left(T-q^{2} \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$
- $\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right)=\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right)$
- $T \circ\left(\operatorname{ld}_{F} X\right) \circ T=q^{2} X \operatorname{ld}_{F}$

Categorical action

As in the case of $G L_{n}(q)$, the action lifts to a categorical action on \mathcal{C}

Theorem [DSVV]

There exist $X \in \operatorname{End}(F)$ and $T \in \operatorname{End}\left(F^{2}\right)$ such that

- $\left(T-q^{2} \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$
- $\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right)=\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right)$
- $T \circ\left(\operatorname{ld}_{F} X\right) \circ T=q^{2} X \operatorname{ld}_{F}$

Moreover, the eigenvalues of X are powers of $-q$.

Categorical action

As in the case of $G L_{n}(q)$, the action lifts to a categorical action on \mathcal{C}

Theorem [DSVV]

There exist $X \in \operatorname{End}(F)$ and $T \in \operatorname{End}\left(F^{2}\right)$ such that

- $\left(T-q^{2} \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$
- $\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right)=\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right)$
- $T \circ\left(\operatorname{ld}_{F} X\right) \circ T=q^{2} X \operatorname{ld}_{F}$

Moreover, the eigenvalues of X are powers of $-q$.
\rightsquigarrow algebra homomorphism $\mathcal{H}_{q^{2}}\left(\widetilde{A}_{m-1}\right) \longrightarrow$ End F^{m}

Categorical action

As in the case of $G L_{n}(q)$, the action lifts to a categorical action on \mathcal{C}

Theorem [DSVV]

There exist $X \in \operatorname{End}(F)$ and $T \in \operatorname{End}\left(F^{2}\right)$ such that

- $\left(T-q^{2} \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$
- $\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right)=\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{ld}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right)$
- $T \circ\left(\operatorname{ld}_{F} X\right) \circ T=q^{2} X \operatorname{ld}_{F}$

Moreover, the eigenvalues of X are powers of $-q$.
\rightsquigarrow algebra homomorphism $\mathcal{H}_{q^{2}}\left(\widetilde{A}_{m-1}\right) \longrightarrow$ End F^{m}

$$
F_{a}:=(-q)^{a} \text {-eigenspace of } X \text { on } F
$$

Categorical action

As in the case of $G L_{n}(q)$, the action lifts to a categorical action on \mathcal{C}

Theorem [DSVV]

There exist $X \in \operatorname{End}(F)$ and $T \in \operatorname{End}\left(F^{2}\right)$ such that

- $\left(T-q^{2} \operatorname{ld}_{F^{2}}\right) \circ\left(T+\operatorname{ld}_{F^{2}}\right)=0$
- $\left(T \mathrm{Id}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{Id}_{F}\right)=\left(\operatorname{ld}_{F} T\right) \circ\left(T \mathrm{ld}_{F}\right) \circ\left(\operatorname{ld}_{F} T\right)$
- $T \circ\left(\operatorname{ld}_{F} X\right) \circ T=q^{2} X \operatorname{ld}_{F}$

Moreover, the eigenvalues of X are powers of $-q$.
\rightsquigarrow algebra homomorphism $\mathcal{H}_{q^{2}}\left(\widetilde{A}_{m-1}\right) \longrightarrow$ End F^{m}

$$
F_{a}:=(-q)^{a} \text {-eigenspace of } X \text { on } F
$$

+ similar results for classical types B, C, D and ${ }^{2} D$

Decategorifying

$\chi_{\mu} \in \operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right)$ is a cuspidal character

Decategorifying

$\chi_{\mu} \in \operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right)$ is a cuspidal character
$\Longleftrightarrow E\left(\chi_{\mu}\right)=0$ (highest weight vector)

Decategorifying

$\chi_{\mu} \in \operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right)$ is a cuspidal character
$\Longleftrightarrow E\left(\chi_{\mu}\right)=0$ (highest weight vector)
\Longleftrightarrow one cannot remove any 2-hook from μ

Decategorifying

$\chi_{\mu} \in \operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right)$ is a cuspidal character
$\Longleftrightarrow E\left(\chi_{\mu}\right)=0$ (highest weight vector)
\Longleftrightarrow one cannot remove any 2-hook from μ
$\Longleftrightarrow \mu=(t, t-1, t-2, \ldots, 1)$ is a triangular partition
(in particular $n=t(t+1) / 2$)

Decategorifying

$\chi_{\mu} \in \operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right)$ is a cuspidal character
$\Longleftrightarrow E\left(\chi_{\mu}\right)=0$ (highest weight vector)
\Longleftrightarrow one cannot remove any 2-hook from μ
$\Longleftrightarrow \mu=(t, t-1, t-2, \ldots, 1)$ is a triangular partition
(in particular $n=t(t+1) / 2$)
Given $t \geq 0$ and $\mu=(t, t-1, t-2, \ldots, 1)$ one recovers that the endomorphism algebra of $F^{m} \chi_{\mu}$ has type B_{m} and parameters $\left(q^{2 t+1}, q^{2}\right)$

Decategorifying

$\chi_{\mu} \in \operatorname{Uch}\left(\mathrm{GU}_{n}(q)\right)$ is a cuspidal character
$\Longleftrightarrow E\left(\chi_{\mu}\right)=0$ (highest weight vector)
\Longleftrightarrow one cannot remove any 2-hook from μ
$\Longleftrightarrow \mu=(t, t-1, t-2, \ldots, 1)$ is a triangular partition
(in particular $n=t(t+1) / 2$)
Given $t \geq 0$ and $\mu=(t, t-1, t-2, \ldots, 1)$ one recovers that the endomorphism algebra of $F^{m} \chi_{\mu}$ has type B_{m} and parameters $\left(q^{2 t+1}, q^{2}\right)$

$$
\begin{gathered}
\mathcal{H}_{q^{2}}\left(\tilde{A}_{m-1}\right)=\left\langle X_{1}, \ldots, X_{m}, T_{1}, \ldots, T_{m-1}\right\rangle \longrightarrow \text { End } F^{m} \\
\left\lvert\, \begin{array}{l}
\left(X_{1}-(-q)^{t}\right)\left(X_{1}-(-q)^{-t-1}\right)=0
\end{array}\right.
\end{gathered}
$$

$$
\mathcal{H}_{q^{2 t+1}, q^{2}}\left(B_{m}\right)=\left\langle X_{1}, T_{1}, \ldots, T_{m-1}\right\rangle \longrightarrow \operatorname{End}_{\mathrm{GU}_{n+m}(q)}\left(F^{m} \chi_{\mu}\right)
$$

Applications to Broué's conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué's conjecture predicts the existence of a derived equivalence between

Applications to Broué's conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué's conjecture predicts the existence of a derived equivalence between

- the block b (global, a block of Γ)

Applications to Broué's conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué's conjecture predicts the existence of a derived equivalence between

- the block b (global, a block of Γ)
- the Brauer correspondent of b (local, a block of $N_{\Gamma}(D)$)

Applications to Broué's conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué's conjecture predicts the existence of a derived equivalence between

- the block b (global, a block of Γ)
- the Brauer correspondent of b (local, a block of $N_{\Gamma}(D)$)

Categorical actions provide derived equivalences between blocks: "global \leftrightarrow global" .

Applications to Broué's conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué's conjecture predicts the existence of a derived equivalence between

- the block b (global, a block of Γ)
- the Brauer correspondent of b (local, a block of $N_{\Gamma}(D)$)

Categorical actions provide derived equivalences between blocks: "global \leftrightarrow global". To go to the local block one needs good blocks.

Theorem [Livesey, 12]
Assume d is even. There is a family of good blocks of $\mathrm{GU}_{n}(q)$ for which Broue's conjecture holds.

Applications to Broué's conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué's conjecture predicts the existence of a derived equivalence between

- the block b (global, a block of Γ)
- the Brauer correspondent of b (local, a block of $N_{\Gamma}(D)$)

Categorical actions provide derived equivalences between blocks: "global \leftrightarrow global". To go to the local block one needs good blocks.

Theorem [Livesey, 12]
Assume d is even. There is a family of good blocks of $\mathrm{GU}_{n}(q)$ for which Broue's conjecture holds.

Theorem [DSVV]

Assume d is even. Each orbit of the action of the Weyl group on \mathcal{C} contains a good block. Consequently, Broué's conjecture holds in that case.

Applications to Broué's conjecture

Given a finite group Γ and a block b with abelian defect group D, Broué's conjecture predicts the existence of a derived equivalence between

- the block b (global, a block of Γ)
- the Brauer correspondent of b (local, a block of $N_{\Gamma}(D)$)

Categorical actions provide derived equivalences between blocks: "global \leftrightarrow global". To go to the local block one needs good blocks.

Theorem [Livesey, 12]

Assume d is even. There is a family of good blocks of $\mathrm{GU}_{n}(q)$ for which Broue's conjecture holds.

Theorem [DSVV]

Assume d is even. Each orbit of the action of the Weyl group on \mathcal{C} contains a good block. Consequently, Broué's conjecture holds in that case.

+ work in progress for type B and C (d odd)

Applications to the branching graph

As a module for the Lie algebra

$$
\mathbb{C} \otimes K_{0}(\mathcal{C}) \simeq \bigoplus_{t \geq 0} \mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)
$$

Applications to the branching graph

As a module for the Lie algebra

$$
\mathbb{C} \otimes K_{0}(\mathcal{C}) \simeq \bigoplus_{t \geq 0} \mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)
$$

where $\mathcal{F}\left(q_{1}, q_{2}\right)$ is a level-2 Fock space representation corresponding to the weight $\left(q_{1}, q_{2}\right)$.

Applications to the branching graph

As a module for the Lie algebra

$$
\mathbb{C} \otimes K_{0}(\mathcal{C}) \simeq \bigoplus_{t \geq 0} \mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)
$$

where $\mathcal{F}\left(q_{1}, q_{2}\right)$ is a level-2 Fock space representation corresponding to the weight $\left(q_{1}, q_{2}\right)$.
Modular branching graph: given a simple module $S, F_{a}(S)$ is either zero or has a simple quotient

Applications to the branching graph

As a module for the Lie algebra

$$
\mathbb{C} \otimes K_{0}(\mathcal{C}) \simeq \bigoplus_{t \geq 0} \mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)
$$

where $\mathcal{F}\left(q_{1}, q_{2}\right)$ is a level-2 Fock space representation corresponding to the weight $\left(q_{1}, q_{2}\right)$.
Modular branching graph: given a simple module $S, F_{a}(S)$ is either zero or has a simple quotient, which one?

Applications to the branching graph

As a module for the Lie algebra

$$
\mathbb{C} \otimes K_{0}(\mathcal{C}) \simeq \bigoplus_{t \geq 0} \mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)
$$

where $\mathcal{F}\left(q_{1}, q_{2}\right)$ is a level-2 Fock space representation corresponding to the weight $\left(q_{1}, q_{2}\right)$.
Modular branching graph: given a simple module $S, F_{a}(S)$ is either zero or has a simple quotient, which one?

Theorem [DSVV]

The modular branching graph coincide with the disjoint union of the crystal graphs of the Fock spaces $\mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)$.

Applications to the branching graph

As a module for the Lie algebra

$$
\mathbb{C} \otimes K_{0}(\mathcal{C}) \simeq \bigoplus_{t \geq 0} \mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)
$$

where $\mathcal{F}\left(q_{1}, q_{2}\right)$ is a level-2 Fock space representation corresponding to the weight $\left(q_{1}, q_{2}\right)$.
Modular branching graph: given a simple module $S, F_{a}(S)$ is either zero or has a simple quotient, which one?

Theorem [DSVV]

The modular branching graph coincide with the disjoint union of the crystal graphs of the Fock spaces $\mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)$.

This is a weak version of a conjecture of Gerber-Hiss-Jacon.

Applications to the branching graph

As a module for the Lie algebra

$$
\mathbb{C} \otimes K_{0}(\mathcal{C}) \simeq \bigoplus_{t \geq 0} \mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)
$$

where $\mathcal{F}\left(q_{1}, q_{2}\right)$ is a level-2 Fock space representation corresponding to the weight $\left(q_{1}, q_{2}\right)$.
Modular branching graph: given a simple module $S, F_{a}(S)$ is either zero or has a simple quotient, which one?

Theorem [DSVV]

The modular branching graph coincide with the disjoint union of the crystal graphs of the Fock spaces $\mathcal{F}\left((-q)^{t},(-q)^{-1-t}\right)$.

This is a weak version of a conjecture of Gerber-Hiss-Jacon.The strong version predicts a isomorphism of graphs inducing the identity on partitions (labelling the vertices of the two graphs).

Decomposition numbers

For $\mathrm{GL}_{n}(q)$, and for $\mathrm{GU}_{n}(q)$ with d even, the basis of simple modules in $K_{0}(\mathcal{C})$ corresponds to the (dual) canonical basis of the Fock spaces.

Decomposition numbers

For $\mathrm{GL}_{n}(q)$, and for $\mathrm{GU}_{n}(q)$ with d even, the basis of simple modules in $K_{0}(\mathcal{C})$ corresponds to the (dual) canonical basis of the Fock spaces.

Question

Is there any Lie-theoretic interpretation of the basis of simple modules when d is odd?

