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The category

O(n) the BGG category O of gl, with modules having integral weights,
i.e., containing modules M such that

@ M is finitely generated

@ M admits a weight space decomposition for a fixed Cartan
subalgebra with integral weights

@ M is locally finite with respect to a fixed Borel subalgebra
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The Grothendieck group of O(n) has a number of natural bases:

{IAM)]}ex(qr) Verma / standard modules

L) rex(at,) simple modules
{[P(M)]}rex(gr,)  indec. projective modules

indexed by the integral weight lattice X(gl,) = ®1<i<nZe; = Z".

The category O(n) admits a nice decomposition into blocks
o(n) =P oy
X

where the blocks are indexed by S, orbits in Z".
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Ogm = @ OX'
xCX(n,m)
Let {v1,...,Vm} C Vi, be a basis with wt(v;) = ¢;. Then

~

Ko(O<m) ®2Q(q) — V2"
[AN)] — v\, ®...Q v

n

Why is this a good candidate for a categorification?
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Using this it follows that for u € C(n, m)

Ko(0) @2 Q@) — (V") s

~ blocks correspond to weight spaces.

Problem:
The g has no categorical meaning!
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Replace O(n) by its graded analogue. This is done block-wise:

(9&% Aﬁ—mod

Beilinson-Ginzburg-Soergel: A,, can be equipped with a positive grading
turning it into a Koszul algebra.

OF := A, — gmod

Letting g act by the grading shift turns Ko(O%) into a Z[q, g~ !]-module.

v

To make everything precise, all categories and functors need to be
replaced by their graded analogues.
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We define functors

F = prey,o(?® L(er))

E = preyo(P®@L(e1)Y)
where L(e1) is the vector representation of gl,, and Pr<,, is the projection
onto O<p,.

These are exact functors, whose graded lifts are biadjoint up to a grading
shift.

Furthermore they can be decomposed

m—1

Fo= @ Fi, with Fjo Pry = Plutesn—e © Fo pry,
i=1
m—1

E = @ &, with Fjo Py = Plyciyte; © Eo pr,,

i=1
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Functors {Djil}lggm can be defined by fixed grading shifts on each
block. Then

{Fiticicm-1, {&iti<i<m—1, {Djﬂ}lg’gm

satisfy the defining relations of U (gl,,).

The functors F;, &;, D; give a (weak) categorification of part (b).

For a strong categorification in the sense of Khovanov-Lauda or Rouquier
one has to show that this really provides an action of the full 2-category
U corresponding to Ug(gl,,)-
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There are two "nice” sets of generators of the Hecke algebra. For both
there are functors satisfying the relations up to natural equivalences

{Hi}1<j<n Coxeter generators ~» {Ti}1<j<n twisting functors
{H;}1<j<n the KL generators  ~» {Z;}1<j<n Zuckerman functors

Problem

Both sets of functors are not exact, so we have to pass to the derived
category.

Remark

| A

As before one can also pass to a 2-category to get a stronger type of
categorification.

N,
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Theorem [Bernstein-Frenkel-Khovanov,

Frenkel-Khovanov-Stroppel,...]

The Schur-Weyl duality is categorified by

&, Fi ~ D*(O<m) ~ LT;

What about all the other structures of the category?

standard modules — standard basis

simple modules <— dual canonical basis
indec. projective modules <— canonical basis

(graded) duality — bar involution



skew Howe duality



skew Howe duality

Ug(gl,,) Vi@V, A Ug(gl,)




skew Howe duality

Ug(glm) ~ N'(Vm® Vr) N Ug(gl)




skew Howe duality

Ug(glm) ~ N'(Vim @ Vr) N Ug(al,)

IR

k
GBKGC(n,r) /\7 Vim

with A5V = A" Vo @ 0 AF V.




skew Howe duality

Ug(glm) ~ N'(Vm @ Vr) N Ug(al,)

IR
IR

k
eBKGC(n,r) A"V GBEEC(n,m) N Ve

with A5V = A" Vo @ 0 AF V.



skew Howe duality

Ug(glm) ~ N'(Vm @ Vr) N Ug(al,)

IR
IR

k
69KeC(n,r) A"V GBEEC(n,m) N Ve

with A5V = A" Vi @ .. 0 AF Vo,
~» categorify this set-up



skew Howe duality

Ug(glm) ~ N'(Vm @ Vr) N Ug(al,)

IR
IR

k
69KeC(n,r) A"V GBEEC(n,m) N Ve

with A5V = A" Vi @ .. 0 AF Vo,
~» categorify this set-up
It is enough to understand:
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k
Z/{Q(g[m) v /\ Vm
(a)

In the case that k = (1,...,1) this is the space from Schur-Weyl duality.

Poblem
How to incorporate a condition on strictly decreasing entries in a weight?
Need a dominance condition for some parabolic subalgebra? \

pk the parabolic subalgebra of gl,
with Levi part gl @ ... ® gl

ke C(n,r)
~»  OF the parabolic version of category O

The definition of Ok is exactly the same as O(n), except that we impose
that py acts locally finite.
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intersect our block decomposition with O% and obtain

Ko| @D 0| @ogen Q@)= A\ Ve

peC(n,m)
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Ok is defined via a finiteness condition, that is obviously stable under
taking the tensor product with a finite dimensional representation.

~ Ok is stable under £ and F
~ & and F; satisfy the same relations as before

~ this categorifies (b)
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@ ooy S P Aoy
keC(n,r) B keC(n,r)
peC(n,m) pn€EC(n,m)

Beilinson-Ginzburg-Soergel, Backelin: This is an equivalence.
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Have the same classes of modules in O(s02,), but now indexed by
X(s020) 2 Z"U(Z+ )"

The Weyl group W(D,,) acts by permutations and even number of sign
changes, hence

X(n,m)={X€(Z+3)"z <INl <m—3}
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As before we have a vector representation L(g1) for s0z,. Define
B:=pre,o(?® L(e1)).

But L(e1) = L(e1)* as soa,-modules, thus B is self-adjoint.

Proposition

The functor B decomposes B = By & @1§i<m B ® B_;.

Theorem [E.-Stroppel]

The B;'s categorify an action of the quantum symmetric pair B(m, 6).

B(m, 0) is the quantum group analogue of the fixed points Lie subalgebra
gl x gl,, C gly,. Itis a (right) coideal subalgebra of Uy(gls,,)- J
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In type A studying these categorifications led to interesting concepts
(Higher Schur-Weyl duality, categorifications of knot invariant,...). What
about type D?

Construct gradings on certain cyclotomic affine VW algebras
[E.-Stroppel].

Construct Koszul gradings on Brauer algebras for arbitrary integral
parameters [E.-Stroppel].

Relate Brauer algebra branching to quantum symmtric pairs (in
progress).

Construct a KLR-algebra analogue for the affine VW algebra (in
progress).

Schur-Weyl duality between Brauer algebras and osp(m|2k) Lie
superalgebras in characteristic # 2 [E.-Stroppel, Lehrer-Zhang].
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