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M is locally finite with respect to a fixed Borel subalgebra



Uq(glm) y V⊗nm
(a)

x Hq(Sn)

The category

O(n) the BGG category O of gln with modules having integral weights

,
i.e., containing modules M such that

M is finitely generated

M admits a weight space decomposition for a fixed Cartan
subalgebra with integral weights

M is locally finite with respect to a fixed Borel subalgebra



Uq(glm) y V⊗nm
(a)

x Hq(Sn)

The category

O(n) the BGG category O of gln with modules having integral weights,
i.e., containing modules M such that

M is finitely generated

M admits a weight space decomposition for a fixed Cartan
subalgebra with integral weights

M is locally finite with respect to a fixed Borel subalgebra



Uq(glm) y V⊗nm
(a)

x Hq(Sn)

The category

O(n) the BGG category O of gln with modules having integral weights,
i.e., containing modules M such that

M is finitely generated

M admits a weight space decomposition for a fixed Cartan
subalgebra with integral weights

M is locally finite with respect to a fixed Borel subalgebra



Uq(glm) y V⊗nm
(a)

x Hq(Sn)

The category

O(n) the BGG category O of gln with modules having integral weights,
i.e., containing modules M such that

M is finitely generated

M admits a weight space decomposition for a fixed Cartan
subalgebra with integral weights

M is locally finite with respect to a fixed Borel subalgebra



Uq(glm) y V⊗nm
(a)

x Hq(Sn)

The Grothendieck group of O(n) has a number of natural bases:

{[∆(λ)]}λ∈X (gln) Verma / standard modules

{[L(λ)]}λ∈X (gln) simple modules
{[P(λ)]}λ∈X (gln) indec. projective modules

indexed by the integral weight lattice X (gln) ∼= ⊕1≤i≤nZεi ∼= Zn.

The category O(n) admits a nice decomposition into blocks

O(n) =
⊕
χ

Oχ

where the blocks are indexed by Sn orbits in Zn.
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Solution:

Replace O(n) by its graded analogue.

This is done block-wise:

Oµ ∼= Aµ −mod

Beilinson-Ginzburg-Soergel: Aµ can be equipped with a positive grading
turning it into a Koszul algebra.

Ogr
µ := Aµ − gmod

Letting q act by the grading shift turns K0(Ogr
µ ) into a Z[q, q−1]-module.

To make everything precise, all categories and functors need to be
replaced by their graded analogues.
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We define functors

F := pr≤m ◦ (?⊗ L(ε1))

E := pr≤m ◦ (?⊗ L(ε1)∗)

where L(ε1) is the vector representation of gln and pr≤m is the projection
onto O≤m.
These are exact functors, whose graded lifts are biadjoint up to a grading
shift.
Furthermore they can be decomposed

F =
m−1⊕
i=1

Fi , with Fi ◦ prµ = prµ+εi+1−εi ◦ F ◦ prµ

E =
m−1⊕
i=1

Ei , with Fi ◦ prµ = prµ−εi+1+εi ◦ E ◦ prµ
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Functors {D±1
j }1≤j≤m can be defined by fixed grading shifts on each

block.

Then

{Fi}1≤i≤m−1, {Ei}1≤i≤m−1, {D±1
j }1≤j≤m

satisfy the defining relations of Uq(glm).

Theorem

The functors Fi , Ei , Dj give a (weak) categorification of part (b).

Remark
For a strong categorification in the sense of Khovanov-Lauda or Rouquier
one has to show that this really provides an action of the full 2-category
U̇ corresponding to Uq(glm).
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Ei ,Fi y O≤m x
(c)
Hq(Sn)

There are two ”nice” sets of generators of the Hecke algebra. For both
there are functors satisfying the relations up to natural equivalences

{Hi}1≤j<n Coxeter generators  {Ti}1≤j<n twisting functors
{H i}1≤j<n the KL generators  {Zi}1≤j<n Zuckerman functors

Problem
Both sets of functors are not exact, so we have to pass to the derived
category.

Remark
As before one can also pass to a 2-category to get a stronger type of
categorification.
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What about all the other structures of the category?

standard modules ←→ standard basis
simple modules ←→ dual canonical basis

indec. projective modules ←→ canonical basis
(graded) duality ←→ bar involution
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In the case that k = (1, . . . , 1) this is the space from Schur-Weyl duality.

Poblem
How to incorporate a condition on strictly decreasing entries in a weight?

Solution
Need a dominance condition for some parabolic subalgebra?

k ∈ C (n, r)  
pk the parabolic subalgebra of gln

with Levi part glk1
⊕ . . .⊕ glkr

 Ok the parabolic version of category O

The definition of Ok is exactly the same as O(n), except that we impose
that pk acts locally finite.
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How to relate both sides?

Solution
Derive both sides and use Koszul duality.
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Db(Ok
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Beilinson-Ginzburg-Soergel, Backelin: This is an equivalence.
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Theorem [E.-Stroppel]
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Db(Ok
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K ◦ F∨i ◦ K−1

categorifies skew Howe duality.

Example

Take n = 6, r = 3, m = 4, k = (1, 2, 3), µ = (2, 1, 2, 1)

What is an allowed weight for a pk parabolic Verma module in the block
corresponding to µ?

For example: λ = (3, 1, 2, 1, 3, 4)

[∆k(λ)] 

µ1 · · · µ4

•
• •
• • •

transpose
 

• •
•
• •
•

flip↔ 

• •
•
• •
•

 [K∆k(λ)]
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Other types:

Replace gln by so2n.

Have the same classes of modules in O(so2n), but now indexed by

X (so2n) ∼= Zn ∪ (Z + 1
2 )n.

The Weyl group W (Dn) acts by permutations and even number of sign
changes, hence

X (n,m) = {λ ∈ (Z + 1
2 )n| 12 ≤ |λi | ≤ m − 1

2}

is stable under the Weyl group. W (Dn)-orbits in X (n,m) are now
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The Bi ’s categorify an action of the quantum symmetric pair B(m, θ).

B(m, θ) is the quantum group analogue of the fixed points Lie subalgebra
glm × glm ⊂ gl2m. It is a (right) coideal subalgebra of Uq(gl2m).



What do we get from this?

Two commuting actions of B(m, θ) and Hq(Dn) on V⊗n2m .

To have them generate each others centralizer we need to enlarge
Hq(Dn) to Hq,1(Bn) (add the parity switch functor).

Can define notion of canonical and dual canonical basis for B(m, θ)
by using the classes of simple modules resp. indec. projective
modules. The bar-involution appears naturally as the graded duality
of the category.

Combinatorics of these bases is given by Kazhdan-Lusztig theory of
type Dn.

Can we also get a skew Howe duality?



What do we get from this?

Two commuting actions of B(m, θ) and Hq(Dn) on V⊗n2m .

To have them generate each others centralizer we need to enlarge
Hq(Dn) to Hq,1(Bn) (add the parity switch functor).

Can define notion of canonical and dual canonical basis for B(m, θ)
by using the classes of simple modules resp. indec. projective
modules. The bar-involution appears naturally as the graded duality
of the category.

Combinatorics of these bases is given by Kazhdan-Lusztig theory of
type Dn.

Can we also get a skew Howe duality?



What do we get from this?

Two commuting actions of B(m, θ) and Hq(Dn) on V⊗n2m .

To have them generate each others centralizer we need to enlarge
Hq(Dn) to Hq,1(Bn) (add the parity switch functor).

Can define notion of canonical and dual canonical basis for B(m, θ)
by using the classes of simple modules resp. indec. projective
modules. The bar-involution appears naturally as the graded duality
of the category.

Combinatorics of these bases is given by Kazhdan-Lusztig theory of
type Dn.

Can we also get a skew Howe duality?



What do we get from this?

Two commuting actions of B(m, θ) and Hq(Dn) on V⊗n2m .

To have them generate each others centralizer we need to enlarge
Hq(Dn) to Hq,1(Bn) (add the parity switch functor).

Can define notion of canonical and dual canonical basis for B(m, θ)
by using the classes of simple modules resp. indec. projective
modules. The bar-involution appears naturally as the graded duality
of the category.

Combinatorics of these bases is given by Kazhdan-Lusztig theory of
type Dn.

Can we also get a skew Howe duality?



What do we get from this?

Two commuting actions of B(m, θ) and Hq(Dn) on V⊗n2m .

To have them generate each others centralizer we need to enlarge
Hq(Dn) to Hq,1(Bn) (add the parity switch functor).

Can define notion of canonical and dual canonical basis for B(m, θ)
by using the classes of simple modules resp. indec. projective
modules. The bar-involution appears naturally as the graded duality
of the category.

Combinatorics of these bases is given by Kazhdan-Lusztig theory of
type Dn.

Can we also get a skew Howe duality?



What do we get from this?

Two commuting actions of B(m, θ) and Hq(Dn) on V⊗n2m .

To have them generate each others centralizer we need to enlarge
Hq(Dn) to Hq,1(Bn) (add the parity switch functor).

Can define notion of canonical and dual canonical basis for B(m, θ)
by using the classes of simple modules resp. indec. projective
modules. The bar-involution appears naturally as the graded duality
of the category.

Combinatorics of these bases is given by Kazhdan-Lusztig theory of
type Dn.

Can we also get a skew Howe duality?
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∧n(Vm ⊗ V2r ) x Uq(gl2r )
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∧n(V2m ⊗ Vr ) we use the same approach with parabolic

category O as before and decompose this with respect to the action of
Uq(gl2m).

k ∈ C (n, r)  
pk the parabolic subalgebra of gln

with Levi part glk1
⊕ . . .⊕ glkr ⊂ gln ⊂ so2n

 Ok the parabolic version of category O
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To obtain both actions at the same time we again use Koszul duality.⊕
k∈C(n,r)
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In type A studying these categorifications led to interesting concepts
(Higher Schur-Weyl duality, categorifications of knot invariant,...).

What
about type D?

Construct gradings on certain cyclotomic affine VW algebras
[E.-Stroppel].

Construct Koszul gradings on Brauer algebras for arbitrary integral
parameters [E.-Stroppel].

Relate Brauer algebra branching to quantum symmtric pairs (in
progress).

Construct a KLR-algebra analogue for the affine VW algebra (in
progress).

Schur-Weyl duality between Brauer algebras and osp(m|2k) Lie
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