Categorification and Quantum Symmetric Pairs

Michael Ehrig
Mathematical Institute, University of Bonn

Bad Honnef, March 12, 2015

Schur-Weyl duality

Schur-Weyl duality

V_{m}

- V_{m} a complex vector space of dimension m

Schur-Weyl duality

$$
\mathfrak{g l}_{m} \curvearrowright V_{m}
$$

- V_{m} a complex vector space of dimension m
- $\mathfrak{g l}_{m}$ the Lie algebra of endomorphisms of V_{m}

Schur-Weyl duality

$$
\mathcal{U}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}
$$

- V_{m} a complex vector space of dimension m
- $\mathfrak{g l}_{m}$ the Lie algebra of endomorphisms of V_{m}

Schur-Weyl duality

$$
\mathcal{U}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n}
$$

- V_{m} a complex vector space of dimension m
- $\mathfrak{g l}_{m}$ the Lie algebra of endomorphisms of V_{m}

Schur-Weyl duality

$$
\mathcal{U}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft S_{n}
$$

- V_{m} a complex vector space of dimension m
- $\mathfrak{g l}_{m}$ the Lie algebra of endomorphisms of V_{m}
- S_{n} the symmetric group on n symbols

Schur-Weyl duality

$$
\mathcal{U}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft S_{n}
$$

- V_{m} a complex vector space of dimension m
- $\mathfrak{g l}_{m}$ the Lie algebra of endomorphisms of V_{m}
- S_{n} the symmetric group on n symbols
- $\mathcal{U}\left(\mathfrak{g l}_{m}\right)$ and S_{n} enjoy a double centralizing property

Schur-Weyl duality

$$
\mathcal{U}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft S_{n}
$$

\rightsquigarrow quantize this set-up

Schur-Weyl duality

$$
\mathcal{U}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft S_{n}
$$

\rightsquigarrow quantize this set-up

- V_{m} a $\mathbb{Q}(q)$-vector space of dimension m

Schur-Weyl duality

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft S_{n}
$$

\rightsquigarrow quantize this set-up

- V_{m} a $\mathbb{Q}(q)$-vector space of dimension m
- $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$ the quantum group of $\mathfrak{g l}_{m}$

Schur-Weyl duality

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

\rightsquigarrow quantize this set-up

- V_{m} a $\mathbb{Q}(q)$-vector space of dimension m
- $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$ the quantum group of $\mathfrak{g l}_{m}$
- $\mathcal{H}_{q}\left(S_{n}\right)$ the Hecke algebra for S_{n}

Schur-Weyl duality

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

\rightsquigarrow quantize this set-up

- V_{m} a $\mathbb{Q}(q)$-vector space of dimension m
- $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$ the quantum group of $\mathfrak{g l}_{m}$
- $\mathcal{H}_{q}\left(S_{n}\right)$ the Hecke algebra for S_{n}
- $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$ and $\mathcal{H}_{q}\left(S_{n}\right)$ enjoy a double centralizing property

Schur-Weyl duality

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

\rightsquigarrow quantize this set-up

- V_{m} a $\mathbb{Q}(q)$-vector space of dimension m
- $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$ the quantum group of $\mathfrak{g l}_{m}$
- $\mathcal{H}_{q}\left(S_{n}\right)$ the Hecke algebra for S_{n}
- $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$ and $\mathcal{H}_{q}\left(S_{n}\right)$ enjoy a double centralizing property
\rightsquigarrow categorify this set-up

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Have three pieces in this set-up.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Have three pieces in this set-up.
(a) the vector space itself

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

(a)

Have three pieces in this set-up.
(a) the vector space itself

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (b) ${ }_{(a)}^{\infty}$

Have three pieces in this set-up.
(a) the vector space itself
(b) the action of the generators of $\mathcal{U}_{q}\left(\mathfrak{g r}_{m}\right)$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(\mathrm{b})}{\curvearrowright} \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \underset{(\mathrm{c})}{\curvearrowleft} \mathcal{H}_{q}\left(S_{n}\right)
$$

Have three pieces in this set-up.
(a) the vector space itself
(b) the action of the generators of $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$
(c) the action of the generators of $\mathcal{H}_{q}\left(S_{n}\right)$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{\substack{\text { (a) }}}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

The category

$\mathcal{O}(n)$ the BGG category \mathcal{O} of $\mathfrak{g l}_{n}$ with modules having integral weights

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

The category

$\mathcal{O}(n)$ the BGG category \mathcal{O} of $\mathfrak{g l}_{n}$ with modules having integral weights, i.e., containing modules M such that

- M is finitely generated

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

The category

$\mathcal{O}(n)$ the BGG category \mathcal{O} of $\mathfrak{g l}_{n}$ with modules having integral weights, i.e., containing modules M such that

- M is finitely generated
- M admits a weight space decomposition for a fixed Cartan subalgebra with integral weights

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

The category

$\mathcal{O}(n)$ the BGG category \mathcal{O} of $\mathfrak{g l}_{n}$ with modules having integral weights, i.e., containing modules M such that

- M is finitely generated
- M admits a weight space decomposition for a fixed Cartan subalgebra with integral weights
- M is locally finite with respect to a fixed Borel subalgebra

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

The Grothendieck group of $\mathcal{O}(n)$ has a number of natural bases:

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

The Grothendieck group of $\mathcal{O}(n)$ has a number of natural bases:

$$
\{[\Delta(\lambda)]\}_{\lambda \in X\left(\mathfrak{g l}_{n}\right)} \quad \text { Verma / standard modules }
$$

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (a)

The Grothendieck group of $\mathcal{O}(n)$ has a number of natural bases:

$$
\begin{array}{lc}
\{[\Delta(\lambda)]\}_{\lambda \in X(\mathfrak{g l})} & \text { Verma / standard modules } \\
\{[L(\lambda)]\}_{\lambda \in X\left(\mathfrak{g r}_{n}\right)} & \text { simple modules }
\end{array}
$$

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (a)

The Grothendieck group of $\mathcal{O}(n)$ has a number of natural bases:
$\{[\Delta(\lambda)]\}_{\lambda \in X\left(\mathfrak{g r}_{n}\right)}$ Verma / standard modules
$\{[L(\lambda)]\}_{\lambda \in X\left(\mathfrak{g} \mathfrak{g}_{n}\right)} \quad$ simple modules $\{[P(\lambda)]\}_{\lambda \in X\left(\mathfrak{g r}_{n}\right)} \quad$ indec. projective modules
indexed by the integral weight lattice $X\left(\mathfrak{g l}_{n}\right) \cong \oplus_{1 \leq i \leq n} \mathbb{Z} \varepsilon_{i} \cong \mathbb{Z}^{n}$.

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

The Grothendieck group of $\mathcal{O}(n)$ has a number of natural bases:

$$
\begin{array}{lc}
\{[\Delta(\lambda)]\}_{\lambda \in X\left(\mathfrak{g r}_{n}\right)} & \text { Verma / standard modules } \\
\{[L(\lambda)]\}_{\lambda \in X\left(\mathfrak{g}_{n}\right)} & \text { simple modules } \\
\{[P(\lambda)]\}_{\lambda \in X\left(\mathfrak{g}_{n}\right)} & \text { indec. projective modules }
\end{array}
$$

indexed by the integral weight lattice $X\left(\mathfrak{g l}_{n}\right) \cong \oplus_{1 \leq i \leq n} \mathbb{Z} \varepsilon_{i} \cong \mathbb{Z}^{n}$.
The category $\mathcal{O}(n)$ admits a nice decomposition into blocks

$$
\mathcal{O}(n)=\bigoplus_{\chi} \mathcal{O}_{\chi}
$$

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

The Grothendieck group of $\mathcal{O}(n)$ has a number of natural bases:

$$
\begin{array}{lc}
\{[\Delta(\lambda)]\}_{\lambda \in X\left(\mathfrak{g r}_{n}\right)} & \text { Verma / standard modules } \\
\{[L(\lambda)]\}_{\lambda \in X\left(\mathfrak{g}_{n}\right)} & \text { simple modules } \\
\{[P(\lambda)]\}_{\lambda \in X\left(\mathfrak{g}_{n}\right)} & \text { indec. projective modules }
\end{array}
$$

indexed by the integral weight lattice $X\left(\mathfrak{g l}_{n}\right) \cong \oplus_{1 \leq i \leq n} \mathbb{Z} \varepsilon_{i} \cong \mathbb{Z}^{n}$.
The category $\mathcal{O}(n)$ admits a nice decomposition into blocks

$$
\mathcal{O}(n)=\bigoplus_{\chi} \mathcal{O}_{\chi}
$$

where the blocks are indexed by S_{n} orbits in \mathbb{Z}^{n}.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Define $X(n, m)=\left\{\lambda \in \mathbb{Z}^{n} \mid 1 \leq \lambda_{i} \leq m\right\}$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Define $X(n, m)=\left\{\lambda \in \mathbb{Z}^{n} \mid 1 \leq \lambda_{i} \leq m\right\}$ (this is obviously S_{n}-stable)

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Define $X(n, m)=\left\{\lambda \in \mathbb{Z}^{n} \mid 1 \leq \lambda_{i} \leq m\right\}$ (this is obviously S_{n}-stable) and

$$
\mathcal{O}_{\leq m}:=\bigoplus_{\chi \subset X(n, m)} \mathcal{O}_{\chi}
$$

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (a)

Define $X(n, m)=\left\{\lambda \in \mathbb{Z}^{n} \mid 1 \leq \lambda_{i} \leq m\right\}$ (this is obviously S_{n}-stable) and

$$
\mathcal{O}_{\leq m}:=\bigoplus_{\chi \subset X(n, m)} \mathcal{O}_{\chi}
$$

Let $\left\{v_{1}, \ldots, v_{m}\right\} \subset V_{m}$ be a basis with $\operatorname{wt}\left(v_{i}\right)=\varepsilon_{i}$.

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

Define $X(n, m)=\left\{\lambda \in \mathbb{Z}^{n} \mid 1 \leq \lambda_{i} \leq m\right\}$ (this is obviously S_{n}-stable) and

$$
\mathcal{O}_{\leq m}:=\bigoplus_{\chi \subset X(n, m)} \mathcal{O}_{\chi}
$$

Let $\left\{v_{1}, \ldots, v_{m}\right\} \subset V_{m}$ be a basis with $\operatorname{wt}\left(v_{i}\right)=\varepsilon_{i}$. Then

$$
\begin{aligned}
K_{0}\left(\mathcal{O}_{\leq m}\right) \otimes_{\mathbb{Z}} \mathbb{Q}(q) & \xrightarrow{\cong} V_{m}^{\otimes n} \\
{[\Delta(\lambda)] } & \longmapsto v_{\lambda_{1}} \otimes \ldots \otimes v_{\lambda_{n}}
\end{aligned}
$$

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

Define $X(n, m)=\left\{\lambda \in \mathbb{Z}^{n} \mid 1 \leq \lambda_{i} \leq m\right\}$ (this is obviously S_{n}-stable) and

$$
\mathcal{O}_{\leq m}:=\bigoplus_{\chi \subset X(n, m)} \mathcal{O}_{\chi}
$$

Let $\left\{v_{1}, \ldots, v_{m}\right\} \subset V_{m}$ be a basis with $\operatorname{wt}\left(v_{i}\right)=\varepsilon_{i}$. Then

$$
\begin{aligned}
K_{0}\left(\mathcal{O}_{\leq m}\right) \otimes_{\mathbb{Z}} \mathbb{Q}(q) & \stackrel{\cong}{\longrightarrow} V_{m}^{\otimes n} \\
{[\Delta(\lambda)] } & \longmapsto v_{\lambda_{1}} \otimes \ldots \otimes v_{\lambda_{n}}
\end{aligned}
$$

Why is this a good candidate for a categorification?

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

$$
\left\{\begin{array}{c}
S_{n} \text {-orbits in } \\
X(n, m)
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{c}
\text { compositions of } n \text { into } \\
m \text { pieces (with } 0 \text { allowed) }
\end{array}\right\}=: C(n, m)
$$

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

$$
\left\{\begin{array}{c}
S_{n} \text {-orbits in } \\
X(n, m)
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{c}
\text { compositions of } n \text { into } \\
m \text { pieces (with } 0 \text { allowed) }
\end{array}\right\}=: C(n, m)
$$

Using this it follows that for $\underline{\mu} \in C(n, m)$

$$
K_{0}\left(\mathcal{O}_{\underline{\mu}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}(q) \xrightarrow{\cong}\left(V_{m}^{\otimes n}\right)_{\mu_{1} \varepsilon_{1}+\ldots+\mu_{m} \varepsilon_{m}}
$$

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

$$
\left\{\begin{array}{c}
S_{n} \text {-orbits in } \\
X(n, m)
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{c}
\text { compositions of } n \text { into } \\
m \text { pieces (with } 0 \text { allowed) }
\end{array}\right\}=: C(n, m)
$$

Using this it follows that for $\underline{\mu} \in C(n, m)$

$$
K_{0}\left(\mathcal{O}_{\underline{\mu}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}(q) \stackrel{\cong}{\cong}\left(V_{m}^{\otimes n}\right)_{\mu_{1} \varepsilon_{1}+\ldots+\mu_{m} \varepsilon_{m}}
$$

\rightsquigarrow blocks correspond to weight spaces.

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

$$
\left\{\begin{array}{c}
S_{n} \text {-orbits in } \\
X(n, m)
\end{array}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\begin{array}{c}
\text { compositions of } n \text { into } \\
m \text { pieces (with } 0 \text { allowed) }
\end{array}\right\}=: C(n, m)
$$

Using this it follows that for $\underline{\mu} \in C(n, m)$

$$
K_{0}\left(\mathcal{O}_{\underline{\mu}}\right) \otimes_{\mathbb{Z}} \mathbb{Q}(q) \stackrel{\cong}{\cong}\left(V_{m}^{\otimes n}\right)_{\mu_{1} \varepsilon_{1}+\ldots+\mu_{m} \varepsilon_{m}}
$$

\rightsquigarrow blocks correspond to weight spaces.

Problem:

The q has no categorical meaning!

$$
\begin{aligned}
& \mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right) \\
& \text { (a) }
\end{aligned}
$$

Solution:

Replace $\mathcal{O}(n)$ by its graded analogue.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Solution:

Replace $\mathcal{O}(n)$ by its graded analogue. This is done block-wise:

$$
\mathcal{O}_{\underline{\mu}} \cong A_{\underline{\mu}}-\bmod
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Solution:

Replace $\mathcal{O}(n)$ by its graded analogue. This is done block-wise:

$$
\mathcal{O}_{\underline{\mu}} \cong A_{\underline{\mu}}-\bmod
$$

Beilinson-Ginzburg-Soergel: $A_{\underline{\mu}}$ can be equipped with a positive grading turning it into a Koszul algebra.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underset{(\mathrm{a})}{V_{m}^{\otimes n}} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Solution:

Replace $\mathcal{O}(n)$ by its graded analogue. This is done block-wise:

$$
\mathcal{O}_{\underline{\mu}} \cong A_{\underline{\mu}}-\bmod
$$

Beilinson-Ginzburg-Soergel: A_{μ} can be equipped with a positive grading turning it into a Koszul algebra.

$$
\mathcal{O}_{\underline{\mu}}^{\mathrm{gr}}:=A_{\underline{\mu}}-\operatorname{gmod}
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

(a)

Solution:

Replace $\mathcal{O}(n)$ by its graded analogue. This is done block-wise:

$$
\mathcal{O}_{\underline{\mu}} \cong A_{\underline{\mu}}-\bmod
$$

Beilinson-Ginzburg-Soergel: $A_{\underline{\mu}}$ can be equipped with a positive grading turning it into a Koszul algebra.

$$
\mathcal{O}_{\underline{\mu}}^{\mathrm{gr}}:=A_{\underline{\mu}}-\operatorname{gmod}
$$

Letting q act by the grading shift turns $K_{0}\left(\mathcal{O}_{\underline{\mu}}^{\text {gr }}\right)$ into a $\mathbb{Z}\left[q, q^{-1}\right]$-module.

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright V_{m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$

(a)

Solution:

Replace $\mathcal{O}(n)$ by its graded analogue. This is done block-wise:

$$
\mathcal{O}_{\underline{\mu}} \cong A_{\underline{\mu}}-\bmod
$$

Beilinson-Ginzburg-Soergel: $A_{\underline{\mu}}$ can be equipped with a positive grading turning it into a Koszul algebra.

$$
\mathcal{O}_{\underline{\mu}}^{\operatorname{gr}}:=A_{\underline{\mu}}-\operatorname{gmod}
$$

Letting q act by the grading shift turns $K_{0}\left(\mathcal{O}_{\underline{\mu}}^{\text {gr }}\right)$ into a $\mathbb{Z}\left[q, q^{-1}\right]$-module.

To make everything precise, all categories and functors need to be replaced by their graded analogues.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(b)}{\curvearrowright} \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

We define functors

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (b)

We define functors

$$
\begin{aligned}
\mathcal{F} & :=\mathrm{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)\right) \\
\mathcal{E} & :=\operatorname{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)^{*}\right)
\end{aligned}
$$

where $L\left(\varepsilon_{1}\right)$ is the vector representation of $\mathfrak{g l}_{n}$ and $\mathrm{pr}_{\leq m}$ is the projection onto $\mathcal{O}_{\leq m}$.

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (b)

We define functors

$$
\begin{aligned}
\mathcal{F} & :=\operatorname{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)\right) \\
\mathcal{E} & :=\operatorname{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)^{*}\right)
\end{aligned}
$$

where $L\left(\varepsilon_{1}\right)$ is the vector representation of $\mathfrak{g l}_{n}$ and $\mathrm{pr}_{\leq m}$ is the projection onto $\mathcal{O}_{\leq m}$.
These are exact functors, whose graded lifts are biadjoint up to a grading shift.

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (b)

We define functors

$$
\begin{aligned}
\mathcal{F} & :=\operatorname{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)\right) \\
\mathcal{E} & :=\operatorname{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)^{*}\right)
\end{aligned}
$$

where $L\left(\varepsilon_{1}\right)$ is the vector representation of $\mathfrak{g l}_{n}$ and $\mathrm{pr}_{\leq m}$ is the projection onto $\mathcal{O}_{\leq m}$.
These are exact functors, whose graded lifts are biadjoint up to a grading shift.
Furthermore they can be decomposed

$$
\begin{aligned}
\mathcal{F} & =\bigoplus_{i=1}^{m-1} \mathcal{F}_{i}, \text { with } \mathcal{F}_{i} \circ \operatorname{pr}_{\underline{\mu}}=\operatorname{pr}_{\underline{\mu}+\varepsilon_{i+1}-\varepsilon_{i}} \circ \mathcal{F} \circ \operatorname{pr}_{\underline{\mu}} \\
\mathcal{E} & =\bigoplus_{i=1}^{m-1} \mathcal{E}_{i}, \text { with } \mathcal{F}_{i} \circ \operatorname{pr}_{\underline{\mu}}=\operatorname{pr}_{\underline{\mu}-\varepsilon_{i+1}+\varepsilon_{i}} \circ \mathcal{E} \circ \operatorname{pr}_{\underline{\mu}}
\end{aligned}
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(\mathrm{b})}{\curvearrowright} \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Functors $\left\{\mathcal{D}_{j}^{ \pm 1}\right\}_{1 \leq j \leq m}$ can be defined by fixed grading shifts on each block.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(\mathrm{b})}{\curvearrowright} \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Functors $\left\{\mathcal{D}_{j}^{ \pm 1}\right\}_{1 \leq j \leq m}$ can be defined by fixed grading shifts on each block. Then

$$
\left\{\mathcal{F}_{i}\right\}_{1 \leq i \leq m-1}, \quad\left\{\mathcal{E}_{i}\right\}_{1 \leq i \leq m-1}, \quad\left\{\mathcal{D}_{j}^{ \pm 1}\right\}_{1 \leq j \leq m}
$$

satisfy the defining relations of $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(\mathrm{b})}{\curvearrowright} \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Functors $\left\{\mathcal{D}_{j}^{ \pm 1}\right\}_{1 \leq j \leq m}$ can be defined by fixed grading shifts on each block. Then

$$
\left\{\mathcal{F}_{i}\right\}_{1 \leq i \leq m-1}, \quad\left\{\mathcal{E}_{i}\right\}_{1 \leq i \leq m-1}, \quad\left\{\mathcal{D}_{j}^{ \pm 1}\right\}_{1 \leq j \leq m}
$$

satisfy the defining relations of $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$.

Theorem

The functors $\mathcal{F}_{i}, \mathcal{E}_{i}, \mathcal{D}_{j}$ give a (weak) categorification of part (b).

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(b)}{\curvearrowright} \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)
$$

Functors $\left\{\mathcal{D}_{j}^{ \pm 1}\right\}_{1 \leq j \leq m}$ can be defined by fixed grading shifts on each block. Then

$$
\left\{\mathcal{F}_{i}\right\}_{1 \leq i \leq m-1}, \quad\left\{\mathcal{E}_{i}\right\}_{1 \leq i \leq m-1}, \quad\left\{\mathcal{D}_{j}^{ \pm 1}\right\}_{1 \leq j \leq m}
$$

satisfy the defining relations of $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$.

Theorem

The functors $\mathcal{F}_{i}, \mathcal{E}_{i}, \mathcal{D}_{j}$ give a (weak) categorification of part (b).

Remark

For a strong categorification in the sense of Khovanov-Lauda or Rouquier one has to show that this really provides an action of the full 2-category $\dot{\mathcal{U}}$ corresponding to $\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right)$.

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \mathcal{O}_{\leq m} \underset{(c)}{ } \mathcal{H}_{q}\left(S_{n}\right)
$$

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \mathcal{O}_{\leq m} \underset{(\mathrm{c})}{\curvearrowleft} \mathcal{H}_{q}\left(S_{n}\right)
$$

There are two " nice" sets of generators of the Hecke algebra.

$\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$ (c)

There are two " nice" sets of generators of the Hecke algebra. For both there are functors satisfying the relations up to natural equivalences

$\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$ (c)

There are two " nice" sets of generators of the Hecke algebra. For both there are functors satisfying the relations up to natural equivalences
$\left\{H_{i}\right\}_{1 \leq j<n}$ Coxeter generators

$\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$ (c)

There are two " nice" sets of generators of the Hecke algebra. For both there are functors satisfying the relations up to natural equivalences
$\left\{H_{i}\right\}_{1 \leq j<n}$ Coxeter generators $\rightsquigarrow\left\{\mathcal{T}_{i}\right\}_{1 \leq j<n}$ twisting functors

$\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (c)

There are two " nice" sets of generators of the Hecke algebra. For both there are functors satisfying the relations up to natural equivalences
$\left\{H_{i}\right\}_{1 \leq j<n}$ Coxeter generators $\rightsquigarrow\left\{\mathcal{T}_{i}\right\}_{1 \leq j<n}$ twisting functors $\left\{\underline{H}_{i}\right\}_{1 \leq j<n}$ the KL generators

$\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (c)

There are two "nice" sets of generators of the Hecke algebra. For both there are functors satisfying the relations up to natural equivalences

$$
\begin{array}{lll}
\left\{H_{i}\right\}_{1 \leq j<n} \text { Coxeter generators } & \rightsquigarrow\left\{\mathcal{T}_{i}\right\}_{1 \leq j<n} \text { twisting functors } \\
\left\{\underline{H}_{i}\right\}_{1 \leq j<n} \text { the KL generators } & \rightsquigarrow\left\{\mathcal{Z}_{i}\right\}_{1 \leq j<n} \text { Zuckerman functors }
\end{array}
$$

$\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (c)

There are two " nice" sets of generators of the Hecke algebra. For both there are functors satisfying the relations up to natural equivalences
$\left\{H_{i}\right\}_{1 \leq j<n}$ Coxeter generators $\rightsquigarrow\left\{\mathcal{T}_{i}\right\}_{1 \leq j<n}$ twisting functors $\left\{\underline{H}_{i}\right\}_{1 \leq j<n}$ the KL generators $\rightsquigarrow\left\{\mathcal{Z}_{i}\right\}_{1 \leq j<n}$ Zuckerman functors

Problem

Both sets of functors are not exact, so we have to pass to the derived category.

$\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \mathcal{O}_{\leq m} \curvearrowleft \mathcal{H}_{q}\left(S_{n}\right)$
 (c)

There are two " nice" sets of generators of the Hecke algebra. For both there are functors satisfying the relations up to natural equivalences
$\left\{H_{i}\right\}_{1 \leq j<n}$ Coxeter generators $\rightsquigarrow\left\{\mathcal{T}_{i}\right\}_{1 \leq j<n}$ twisting functors $\left\{\underline{H}_{i}\right\}_{1 \leq j<n}$ the KL generators $\rightsquigarrow\left\{\mathcal{Z}_{i}\right\}_{1 \leq j<n}$ Zuckerman functors

Problem

Both sets of functors are not exact, so we have to pass to the derived category.

Remark

As before one can also pass to a 2-category to get a stronger type of categorification.

Theorem [Bernstein-Frenkel-Khovanov,
 Frenkel-Khovanov-Stroppel, ...]

The Schur-Weyl duality is categorified by

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright D^{b}\left(\mathcal{O}_{\leq m}\right) \curvearrowleft \mathcal{L} \mathcal{T}_{j}
$$

Theorem [Bernstein-Frenkel-Khovanov,
 Frenkel-Khovanov-Stroppel, ...]

The Schur-Weyl duality is categorified by

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright D^{b}\left(\mathcal{O}_{\leq m}\right) \curvearrowleft \mathcal{L} \mathcal{T}_{j}
$$

What about all the other structures of the category?

Theorem [Bernstein-Frenkel-Khovanov,
 Frenkel-Khovanov-Stroppel, ...]

The Schur-Weyl duality is categorified by

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright D^{b}\left(\mathcal{O}_{\leq m}\right) \curvearrowleft \mathcal{L} \mathcal{T}_{j}
$$

What about all the other structures of the category? standard modules $\quad \longleftrightarrow \quad$ standard basis

Theorem [Bernstein-Frenkel-Khovanov, Frenkel-Khovanov-Stroppel, ...]

The Schur-Weyl duality is categorified by

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright D^{b}\left(\mathcal{O}_{\leq m}\right) \curvearrowleft \mathcal{L} \mathcal{T}_{j}
$$

What about all the other structures of the category?

standard modules simple modules	\longleftrightarrow	standard basis
dual canonical basis		

Theorem [Bernstein-Frenkel-Khovanov, Frenkel-Khovanov-Stroppel, ...]

The Schur-Weyl duality is categorified by

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright D^{b}\left(\mathcal{O}_{\leq m}\right) \curvearrowleft \mathcal{L} \mathcal{T}_{j}
$$

What about all the other structures of the category?

standard modules simple modules indec. projective modules

standard basis dual canonical basis canonical basis

Theorem [Bernstein-Frenkel-Khovanov, Frenkel-Khovanov-Stroppel, ...]

The Schur-Weyl duality is categorified by

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright D^{b}\left(\mathcal{O}_{\leq m}\right) \curvearrowleft \mathcal{L} \mathcal{T}_{j}
$$

What about all the other structures of the category?

standard modules simple modules	\longleftrightarrow	standard basis
indec. projective modules	\longleftrightarrow	dual canonical basis
(graded) duality	\longleftrightarrow	canonical basis
		bar involution

skew Howe duality

skew Howe duality

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \quad V_{m} \otimes V_{r} \quad \curvearrowleft \mathcal{U}_{q}\left(\mathfrak{g l}_{r}\right)
$$

skew Howe duality

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \quad \Lambda^{n}\left(V_{m} \otimes V_{r}\right) \quad \curvearrowleft \mathcal{U}_{q}\left(\mathfrak{g l}_{r}\right)
$$

skew Howe duality

$$
\begin{aligned}
& \quad \mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \Lambda^{n}\left(V_{m} \otimes V_{r}\right) \quad \curvearrowleft \mathcal{U}_{q}\left(\mathfrak{g l}_{r}\right) \\
& \oplus_{\underline{k} \in C(n, r)} \Lambda^{\underline{k}} V_{m} \\
& \text { with } \Lambda^{\underline{K}} V_{m}=\Lambda^{k_{1}} V_{m} \otimes \ldots \otimes \Lambda^{k_{r}} V_{m} .
\end{aligned}
$$

skew Howe duality

skew Howe duality

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \underbrace{n}(V_{m} \otimes V_{r, r)} \Lambda^{\underline{k}} V_{m} \cong \underbrace{\cong}_{\oplus_{\underline{\mu} \in C(n, m)} \Lambda^{\underline{\mu}} V_{r}} \curvearrowleft \mathcal{U}_{q}\left(\mathfrak{g l}_{r}\right)
$$

with $\Lambda^{\underline{k}} V_{m}=\Lambda^{k_{1}} V_{m} \otimes \ldots \otimes \Lambda^{k_{k}} V_{m}$.
\rightsquigarrow categorify this set-up

skew Howe duality

with $\bigwedge^{\underline{k}} V_{m}=\bigwedge^{k_{1}} V_{m} \otimes \ldots \otimes \bigwedge^{k_{r}} V_{m}$.
\rightsquigarrow categorify this set-up
It is enough to understand:

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright_{\text {(b) }} \bigwedge_{\text {(a) }}^{\underline{k}} V_{m}
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \bigwedge_{(\mathrm{a})}^{\underline{k}} V_{m}
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \bigwedge^{\underline{k}} V_{m}
$$

(a)

In the case that $\underline{k}=(1, \ldots, 1)$ this is the space from Schur-Weyl duality.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \bigwedge^{\underline{k}} V_{m}
$$

(a)

In the case that $\underline{k}=(1, \ldots, 1)$ this is the space from Schur-Weyl duality.

Poblem

How to incorporate a condition on strictly decreasing entries in a weight?

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \bigwedge^{\underline{k}} V_{m}
$$

(a)

In the case that $\underline{k}=(1, \ldots, 1)$ this is the space from Schur-Weyl duality.

Poblem

How to incorporate a condition on strictly decreasing entries in a weight?

Solution

Need a dominance condition for some parabolic subalgebra?

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \bigwedge^{\underline{k}} V_{m}
$$

(a)

In the case that $\underline{k}=(1, \ldots, 1)$ this is the space from Schur-Weyl duality.

Poblem

How to incorporate a condition on strictly decreasing entries in a weight?

Solution

Need a dominance condition for some parabolic subalgebra?

$$
\underline{k} \in C(n, r)
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \bigwedge^{\underline{k}} V_{m}
$$

(a)

In the case that $\underline{k}=(1, \ldots, 1)$ this is the space from Schur-Weyl duality.

Poblem

How to incorporate a condition on strictly decreasing entries in a weight?

Solution

Need a dominance condition for some parabolic subalgebra?

$$
\underline{k} \in C(n, r) \rightsquigarrow \quad \begin{aligned}
& \mathfrak{p}_{\underline{k}} \text { the parabolic subalgebra of } \mathfrak{g l}_{n} \\
& \text { with Levi part } \mathfrak{g l}_{k_{1}} \oplus \ldots \oplus \mathfrak{g l}_{k_{r}}
\end{aligned}
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \bigwedge^{\underline{k}} V_{m}
$$

(a)

In the case that $\underline{k}=(1, \ldots, 1)$ this is the space from Schur-Weyl duality.

Poblem

How to incorporate a condition on strictly decreasing entries in a weight?

Solution

Need a dominance condition for some parabolic subalgebra?

$$
\begin{aligned}
\underline{k} \in C(n, r) & \rightsquigarrow \quad \mathfrak{p}_{\underline{k}} \text { the parabolic subalgebra of } \mathfrak{g l}_{n} \\
& \rightsquigarrow \mathcal{O}^{\underline{k}} \text { the parabolic version of category } \mathcal{O}
\end{aligned}
$$

$\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \bigwedge^{\underline{k}} V_{m}$

(a)

In the case that $\underline{k}=(1, \ldots, 1)$ this is the space from Schur-Weyl duality.

Poblem

How to incorporate a condition on strictly decreasing entries in a weight?

Solution

Need a dominance condition for some parabolic subalgebra?

$$
\begin{aligned}
\underline{k} \in C(n, r) & \rightsquigarrow \mathfrak{p}_{\underline{k}} \text { the parabolic subalgebra of } \mathfrak{g l}_{n} \\
& \rightsquigarrow \mathcal{O}^{\underline{k}} \text { the parabolic version of category } \mathcal{O}
\end{aligned}
$$

The definition of \mathcal{O} k is exactly the same as $\mathcal{O}(n)$, except that we impose that $\mathfrak{p}_{\underline{k}}$ acts locally finite.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \bigwedge_{(\mathrm{a})}^{\underline{k}} V_{m}
$$

$$
u_{q}\left(\mathfrak{I I}_{m}\right) \curvearrowright \Lambda^{\underline{k}} v_{m}
$$

(8)

Taking modules with weights inside $X(n, m)$ still makes sense and we can intersect our block decomposition with $\mathcal{O}^{\underline{k}}$

$$
u_{q}\left(\mathfrak{g}_{m}\right) \sim \Lambda^{\underline{\varepsilon}} v_{m}
$$

(a)

Taking modules with weights inside $X(n, m)$ still makes sense and we can intersect our block decomposition with $\mathcal{O}^{\underline{k}}$ and obtain

$$
K_{0}\left(\bigoplus_{\underline{\mu} \in C(n, m)} \mathcal{O}_{\underline{\underline{k}}}^{\underline{\underline{k}}}\right) \otimes_{\mathbb{Z}\left[q, q^{-1}\right]} \mathbb{Q}(q) \cong \bigwedge^{\underline{k}} V_{m}
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(\mathrm{b})}{\curvearrowright} \bigoplus_{\underline{\mu} \in C(n, m)} \mathcal{O} \frac{\underline{k}}{\underline{\mu}}
$$

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(b)}{\curvearrowright} \bigoplus_{\underline{\mu} \in C(n, m)} \mathcal{O} \frac{\underline{k}}{\underline{\mu}}
$$

$\mathcal{O} \underline{k}$ is defined via a finiteness condition

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(\mathrm{b})}{\curvearrowright} \bigoplus_{\underline{\mu} \in C(n, m)} \mathcal{O}_{\underline{\underline{k}}}^{\underline{\underline{k}}}
$$

\mathcal{O}^{k} ́ is defined via a finiteness condition, that is obviously respected when taking the tensor product with a finite dimensional representation.

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(\mathrm{b})}{\curvearrowright} \bigoplus_{\underline{\mu} \in C(n, m)} \mathcal{O}_{\underline{\underline{\mu}}}^{\underline{\underline{k}}}
$$

\mathcal{O}^{k} is defined via a finiteness condition, that is obviously respected when taking the tensor product with a finite dimensional representation.
$\rightsquigarrow \mathcal{O}^{k}$ is stable under \mathcal{E} and \mathcal{F}

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(\mathrm{b})}{\curvearrowright} \bigoplus_{\underline{\mu} \in C(n, m)} \mathcal{O}_{\underline{\underline{\mu}}}^{\underline{\underline{k}}}
$$

\mathcal{O}^{k} is defined via a finiteness condition, that is obviously respected when taking the tensor product with a finite dimensional representation.
$\rightsquigarrow \mathcal{O}^{k}$ is stable under \mathcal{E} and \mathcal{F}
$\rightsquigarrow \mathcal{E}_{i}$ and \mathcal{F}_{i} satisfy the same relations as before

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \underset{(\mathrm{b})}{\curvearrowright} \bigoplus_{\underline{\mu} \in C(n, m)} \mathcal{O}_{\underline{\underline{\mu}}}^{\underline{\underline{k}}}
$$

\mathcal{O}^{k} is defined via a finiteness condition, that is obviously respected when taking the tensor product with a finite dimensional representation.
$\rightsquigarrow \mathcal{O}^{k}$ is stable under \mathcal{E} and \mathcal{F}
$\rightsquigarrow \mathcal{E}_{i}$ and \mathcal{F}_{i} satisfy the same relations as before
\rightsquigarrow this categorifies (b)

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \bigoplus_{\underline{\mu} \in C(n, m)} \mathcal{O} \frac{\underline{k}}{\underline{\mu}}
$$

\mathcal{O}^{k} is defined via a finiteness condition, that is obviously stable under taking the tensor product with a finite dimensional representation.
$\rightsquigarrow \mathcal{O}^{k}$ is stable under \mathcal{E} and \mathcal{F}
$\rightsquigarrow \mathcal{E}_{i}$ and \mathcal{F}_{i} satisfy the same relations as before
\rightsquigarrow this categorifies (b)

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}} \mathcal{O} \frac{k}{\underline{\mu}} \stackrel{?}{\longleftrightarrow} \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}} \mathcal{O} \frac{\mu}{\underline{k}} \curvearrowleft \mathcal{E}_{i}^{\vee}, \mathcal{F}_{i}^{\vee}
$$

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}} \mathcal{O}_{\underline{\underline{k}}}^{\underline{k}} \stackrel{?}{\longleftrightarrow} \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}} \mathcal{O}_{\underline{\underline{k}}}^{\underline{\mu}} \curvearrowleft \mathcal{E}_{i}^{\vee}, \mathcal{F}_{i}^{\vee}
$$

How to relate both sides?

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}} \mathcal{O}_{\underline{\mu}}^{\underline{k}} \stackrel{?}{\longleftrightarrow} \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}} \mathcal{O}_{\underline{\underline{k}}} \curvearrowleft \mathcal{E}_{i}^{\vee}, \mathcal{F}_{i}^{\vee}
$$

How to relate both sides?

Solution

Derive both sides and use Koszul duality.

$$
\mathcal{E}_{i}, \mathcal{F}_{i} \curvearrowright \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}} \mathcal{O}_{\underline{\underline{\mu}}} \stackrel{k}{\longleftrightarrow} \stackrel{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}}{ } \mathcal{O}_{\underline{\underline{\mu}}} \curvearrowleft \mathcal{E}_{i}^{\vee}, \mathcal{F}_{i}^{\vee}
$$

How to relate both sides?

Solution

Derive both sides and use Koszul duality.

$$
\bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}} D^{b}\left(\mathcal{O}_{\underline{\underline{\mu}}}^{\underline{k}}\right) \xrightarrow{K} \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m)}} D^{b}\left(\mathcal{O}_{\underline{\underline{k}}}^{\underline{\underline{k}}}\right)
$$

Beilinson-Ginzburg-Soergel, Backelin: This is an equivalence.

Theorem [E.-Stroppel]

$$
\mathcal{E}_{i} \curvearrowright \bigoplus_{i} \curvearrowright \bigoplus_{\substack{k \in C(n, r) \\
\underline{\mu} \in C(n, m)}} D^{b}\left(\mathcal{O}_{\underline{\underline{\mu}}}^{\frac{k}{u}}\right) \curvearrowleft \begin{aligned}
& K \circ \mathcal{E}_{i}^{\vee} \circ K^{-1} \\
& K \circ \mathcal{F}_{i}^{\vee} \circ K^{-1}
\end{aligned}
$$

categorifies skew Howe duality.

Theorem [E.-Stroppel]

$$
\mathcal{E}_{i} \curvearrowright \bigoplus_{\mathcal{F}_{i}} \curvearrowright D_{\substack{\underline{k} \in C(n, r) \\
\underline{\mu} \in C(n, m)}} D^{b}\left(\mathcal{O} \frac{k}{\underline{\mu}}\right) \curvearrowleft \begin{aligned}
& K \circ \mathcal{E}_{i}^{\vee} \circ K^{-1} \\
& K \circ \mathcal{F}_{i}^{\vee} \circ K^{-1}
\end{aligned}
$$

categorifies skew Howe duality.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1)$

Theorem [E.-Stroppel]

$$
\mathcal{E}_{i} \curvearrowright \mathcal{F}_{i} \curvearrowright \bigoplus_{\substack{k \in C(n, r) \\
\underline{\mu} \in C(n, m)}} D^{b}\left(\mathcal{O}_{\underline{\underline{\mu}}}^{\underline{\mu}}\right) \curvearrowleft \begin{aligned}
& K \circ \mathcal{E}_{i}^{\vee} \circ K^{-1} \\
& K \circ \mathcal{F}_{i}^{\vee} \circ K^{-1}
\end{aligned}
$$

categorifies skew Howe duality.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1)$
What is an allowed weight for a $\mathfrak{p}_{\underline{k}}$ parabolic Verma module in the block corresponding to $\underline{\mu}$?

Theorem [E.-Stroppel]

$$
\mathcal{E}_{i} \curvearrowright \mathcal{F}_{i} \curvearrowright \bigoplus_{\substack{k \in C(n, r) \\
\underline{\mu} \in C(n, m)}} D^{b}\left(\mathcal{O}_{\underline{\underline{\mu}}}^{\underline{\mu}}\right) \curvearrowleft \begin{aligned}
& K \circ \mathcal{E}_{i}^{\vee} \circ K^{-1} \\
& K \circ \mathcal{F}_{i}^{\vee} \circ K^{-1}
\end{aligned}
$$

categorifies skew Howe duality.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1)$
What is an allowed weight for a $\mathfrak{p}_{\underline{k}}$ parabolic Verma module in the block corresponding to $\underline{\mu}$?
For example: $\lambda=(3,1,2,1,3,4)$

Theorem [E.-Stroppel]

$$
\mathcal{E}_{i} \curvearrowright \mathcal{F}_{i} \curvearrowright \bigoplus_{\substack{k \in C(n, r) \\
\underline{\mu} \in C(n, m)}} D^{b}\left(\mathcal{O}_{\underline{\underline{\mu}}}^{\underline{\mu}}\right) \curvearrowleft \begin{aligned}
& K \circ \mathcal{E}_{i}^{\vee} \circ K^{-1} \\
& K \circ \mathcal{F}_{i}^{\vee} \circ K^{-1}
\end{aligned}
$$

categorifies skew Howe duality.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1)$
What is an allowed weight for a $\mathfrak{p}_{\underline{k}}$ parabolic Verma module in the block corresponding to $\underline{\mu}$?
For example: $\lambda=(3,1,2,1,3,4)$
$\left[\Delta{ }^{k}(\lambda)\right] \rightsquigarrow$

Theorem [E.-Stroppel]

$$
\begin{aligned}
& \mathcal{E}_{i} \\
& \mathcal{F}_{i}
\end{aligned} \bigoplus_{\substack{\underline{k} \in C(n, r) \\
\underline{\mu} \in C(n, m)}} D^{b}(\mathcal{O} \underline{\underline{k}}) \curvearrowleft \begin{aligned}
& K \circ \mathcal{E}_{i}^{\vee} \circ K^{-1} \\
& K \circ \mathcal{F}_{i}^{\vee} \circ K^{-1}
\end{aligned}
$$

categorifies skew Howe duality.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1)$
What is an allowed weight for a \mathfrak{p}_{k} parabolic Verma module in the block corresponding to $\underline{\mu}$?
For example: $\lambda=(3,1,2,1,3,4)$

Theorem [E.-Stroppel]

$$
\begin{aligned}
& \mathcal{E}_{i} \\
& \mathcal{F}_{i}
\end{aligned} \bigoplus_{\substack{\underline{k} \in C(n, r) \\
\underline{\mu} \in C(n, m)}} D^{b}\left(\mathcal{O} \frac{k}{\mu}\right) \curvearrowleft \begin{aligned}
& K \circ \mathcal{E}_{i}^{\vee} \circ K^{-1} \\
& K \circ \mathcal{F}_{i}^{\vee} \circ K^{-1}
\end{aligned}
$$

categorifies skew Howe duality.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1)$
What is an allowed weight for a \mathfrak{p}_{k} parabolic Verma module in the block corresponding to $\underline{\mu}$?
For example: $\lambda=(3,1,2,1,3,4)$

Theorem [E.-Stroppel]

$$
\begin{aligned}
& \begin{array}{l}
\mathcal{E}_{i} \\
\mathcal{F}_{i} \\
\\
\\
\\
D^{b}\left(\mathcal{O} \frac{k}{\underline{\mu}}\right) \curvearrowleft K \circ \mathcal{E}_{i}^{\vee} \circ K^{-1} \\
\hline
\end{array} \\
& \underline{k} \in C(n, r) \\
& \underline{\underline{\mu}} \in C(n, m) \\
& K \circ \mathcal{F}_{i}^{\vee} \circ K^{-1}
\end{aligned}
$$

categorifies skew Howe duality.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1)$
What is an allowed weight for a $\mathfrak{p}_{\underline{k}}$ parabolic Verma module in the block corresponding to $\underline{\mu}$?
For example: $\lambda=(3,1,2,1,3,4)$

Theorem [E.-Stroppel]

$$
\mathcal{E}_{i} \mathcal{F}_{i} \curvearrowright \bigoplus_{\substack{k \in C(n, r) \\
\underline{\mu} \in C(n, m)}} D^{b}\left(\mathcal{O}_{\underline{k}}^{\underline{\mu}}\right) \curvearrowleft \begin{aligned}
& K \circ \mathcal{E}_{i}^{\vee} \circ K^{-1} \\
& K \circ \mathcal{F}_{i}^{\vee} \circ K^{-1}
\end{aligned}
$$

categorifies skew Howe duality.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1)$
What is an allowed weight for a $\mathfrak{p}_{\underline{k}}$ parabolic Verma module in the block corresponding to $\underline{\mu}$?
For example: $\lambda=(3,1,2,1,3,4)$

Other types:

Other types:

Replace $\mathfrak{g l}_{n}$ by $\mathfrak{s o}_{2 n}$.

Other types:

Replace $\mathfrak{g l}_{n}$ by $\mathfrak{s o}_{2 n}$.
Have the same classes of modules in $\mathcal{O}\left(\mathfrak{5 0}_{2 n}\right)$

Other types:

Replace $\mathfrak{g l}_{n}$ by $\mathfrak{s o}_{2 n}$.
Have the same classes of modules in $\mathcal{O}\left({50_{2 n}}\right)$, but now indexed by

$$
X\left(\mathfrak{s o}_{2 n}\right) \cong \mathbb{Z}^{n} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{n} .
$$

Other types:

Replace $\mathfrak{g l}_{n}$ by $\mathfrak{s o}_{2 n}$.
Have the same classes of modules in $\mathcal{O}\left(\mathfrak{5 o}_{2 n}\right)$, but now indexed by

$$
X\left(\mathfrak{s o}_{2 n}\right) \cong \mathbb{Z}^{n} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{n} .
$$

The Weyl group $W\left(D_{n}\right)$ acts by permutations and even number of sign changes

Other types:

Replace $\mathfrak{g l}_{n}$ by $\mathfrak{s o}_{2 n}$.
Have the same classes of modules in $\mathcal{O}\left(\mathfrak{5 o}_{2 n}\right)$, but now indexed by

$$
X\left(\mathfrak{s o}_{2 n}\right) \cong \mathbb{Z}^{n} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{n} .
$$

The Weyl group $W\left(D_{n}\right)$ acts by permutations and even number of sign changes, hence

$$
X(n, m)=\left\{\lambda \in\left(\mathbb{Z}+\frac{1}{2}\right)^{n}\left|\frac{1}{2} \leq\left|\lambda_{i}\right| \leq m-\frac{1}{2}\right\}\right.
$$

is stable under the Weyl group.

Other types:

Replace $\mathfrak{g l}_{n}$ by $\mathfrak{s o}_{2 n}$.
Have the same classes of modules in $\mathcal{O}\left(\mathfrak{5 o}_{2 n}\right)$, but now indexed by

$$
X\left(\mathfrak{s o}_{2 n}\right) \cong \mathbb{Z}^{n} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{n} .
$$

The Weyl group $W\left(D_{n}\right)$ acts by permutations and even number of sign changes, hence

$$
X(n, m)=\left\{\lambda \in\left(\mathbb{Z}+\frac{1}{2}\right)^{n}\left|\frac{1}{2} \leq\left|\lambda_{i}\right| \leq m-\frac{1}{2}\right\}\right.
$$

is stable under the Weyl group. $W\left(D_{n}\right)$-orbits in $X(n, m)$ are now indexed by $C(n, m) \times \mathbb{Z} / 2 \mathbb{Z}$.

Other types:

Replace $\mathfrak{g l}_{n}$ by $\mathfrak{s o}_{2 n}$.
Have the same classes of modules in $\mathcal{O}\left(\mathfrak{s o}_{2 n}\right)$, but now indexed by

$$
X\left(\mathfrak{s o}_{2 n}\right) \cong \mathbb{Z}^{n} \cup\left(\mathbb{Z}+\frac{1}{2}\right)^{n} .
$$

The Weyl group $W\left(D_{n}\right)$ acts by permutations and even number of sign changes, hence

$$
X(n, m)=\left\{\lambda \in\left(\mathbb{Z}+\frac{1}{2}\right)^{n}\left|\frac{1}{2} \leq\left|\lambda_{i}\right| \leq m-\frac{1}{2}\right\}\right.
$$

is stable under the Weyl group. $W\left(D_{n}\right)$-orbits in $X(n, m)$ are now indexed by $C(n, m) \times \mathbb{Z} / 2 \mathbb{Z}$.
Define

$$
\mathcal{O}_{\leq m}=\bigoplus_{\substack{\mu \in C(n, m) \\ \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} \mathcal{O}_{\underline{\mu}, \varepsilon}
$$

Twisting functors exists as before, now for the generators of the Weyl group of type D_{n}, thus $D^{b}\left(\mathcal{O}_{\leq m}\right)$ gives a categorification of

$$
V_{2 m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(D_{n}\right) .
$$

Twisting functors exists as before, now for the generators of the Weyl group of type D_{n}, thus $D^{b}\left(\mathcal{O}_{\leq m}\right)$ gives a categorification of

$$
? \curvearrowright V_{2 m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(D_{n}\right) .
$$

Twisting functors exists as before, now for the generators of the Weyl group of type D_{n}, thus $D^{b}\left(\mathcal{O}_{\leq m}\right)$ gives a categorification of

$$
? \curvearrowright V_{2 m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(D_{n}\right) .
$$

As before we have a vector representation $L\left(\varepsilon_{1}\right)$ for $\mathfrak{s o}_{2 n}$. Define

$$
\mathcal{B}:=\operatorname{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)\right) .
$$

Twisting functors exists as before, now for the generators of the Weyl group of type D_{n}, thus $D^{b}\left(\mathcal{O}_{\leq m}\right)$ gives a categorification of

$$
? \curvearrowright V_{2 m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(D_{n}\right) .
$$

As before we have a vector representation $L\left(\varepsilon_{1}\right)$ for $\mathfrak{s o}_{2 n}$. Define

$$
\mathcal{B}:=\operatorname{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)\right) .
$$

But $L\left(\varepsilon_{1}\right) \cong L\left(\varepsilon_{1}\right)^{*}$ as $\mathfrak{s o}_{2 n}$-modules, thus \mathcal{B} is self-adjoint.

Twisting functors exists as before, now for the generators of the Weyl group of type D_{n}, thus $D^{b}\left(\mathcal{O}_{\leq m}\right)$ gives a categorification of

$$
? \curvearrowright V_{2 m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(D_{n}\right) .
$$

As before we have a vector representation $L\left(\varepsilon_{1}\right)$ for $\mathfrak{s o}_{2 n}$. Define

$$
\mathcal{B}:=\mathrm{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)\right) .
$$

But $L\left(\varepsilon_{1}\right) \cong L\left(\varepsilon_{1}\right)^{*}$ as $\mathfrak{s o}_{2 n}$-modules, thus \mathcal{B} is self-adjoint.

Proposition

The functor \mathcal{B} decomposes $\mathcal{B}=\mathcal{B}_{0} \oplus \bigoplus_{1 \leq i<m} \mathcal{B}_{i} \oplus \mathcal{B}_{-i}$.

Twisting functors exists as before, now for the generators of the Weyl group of type D_{n}, thus $D^{b}\left(\mathcal{O}_{\leq m}\right)$ gives a categorification of

$$
? \curvearrowright V_{2 m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(D_{n}\right) .
$$

As before we have a vector representation $L\left(\varepsilon_{1}\right)$ for $\mathfrak{s o}_{2 n}$. Define

$$
\mathcal{B}:=\mathrm{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)\right) .
$$

But $L\left(\varepsilon_{1}\right) \cong L\left(\varepsilon_{1}\right)^{*}$ as $\mathfrak{s o}_{2 n}$-modules, thus \mathcal{B} is self-adjoint.

Proposition

The functor \mathcal{B} decomposes $\mathcal{B}=\mathcal{B}_{0} \oplus \bigoplus_{1 \leq i<m} \mathcal{B}_{i} \oplus \mathcal{B}_{-i}$.

Theorem [E.-Stroppel]

The \mathcal{B}_{i} 's categorify an action of the quantum symmetric pair $B(m, \theta)$.

Twisting functors exists as before, now for the generators of the Weyl group of type D_{n}, thus $D^{b}\left(\mathcal{O}_{\leq m}\right)$ gives a categorification of

$$
? \curvearrowright V_{2 m}^{\otimes n} \curvearrowleft \mathcal{H}_{q}\left(D_{n}\right) .
$$

As before we have a vector representation $L\left(\varepsilon_{1}\right)$ for $\mathfrak{s o}_{2 n}$. Define

$$
\mathcal{B}:=\operatorname{pr}_{\leq m} \circ\left(? \otimes L\left(\varepsilon_{1}\right)\right) .
$$

But $L\left(\varepsilon_{1}\right) \cong L\left(\varepsilon_{1}\right)^{*}$ as $\mathfrak{s o}_{2 n}$-modules, thus \mathcal{B} is self-adjoint.

Proposition

The functor \mathcal{B} decomposes $\mathcal{B}=\mathcal{B}_{0} \oplus \bigoplus_{1 \leq i<m} \mathcal{B}_{i} \oplus \mathcal{B}_{-i}$.

Theorem [E.-Stroppel]

The \mathcal{B}_{i} 's categorify an action of the quantum symmetric pair $B(m, \theta)$.
$B(m, \theta)$ is the quantum group analogue of the fixed points Lie subalgebra $\mathfrak{g l}_{m} \times \mathfrak{g l}_{m} \subset \mathfrak{g l}_{2 m}$. It is a (right) coideal subalgebra of $\mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right)$.

What do we get from this?

What do we get from this?

- Two commuting actions of $B(m, \theta)$ and $\mathcal{H}_{q}\left(D_{n}\right)$ on $V_{2 m}^{\otimes n}$.

What do we get from this?

- Two commuting actions of $B(m, \theta)$ and $\mathcal{H}_{q}\left(D_{n}\right)$ on $V_{2 m}^{\otimes n}$.
- To have them generate each others centralizer we need to enlarge $\mathcal{H}_{q}\left(D_{n}\right)$ to $\mathcal{H}_{q, 1}\left(B_{n}\right)$ (add the parity switch functor).

What do we get from this?

- Two commuting actions of $B(m, \theta)$ and $\mathcal{H}_{q}\left(D_{n}\right)$ on $V_{2 m}^{\otimes n}$.
- To have them generate each others centralizer we need to enlarge $\mathcal{H}_{q}\left(D_{n}\right)$ to $\mathcal{H}_{q, 1}\left(B_{n}\right)$ (add the parity switch functor).
- Can define notion of canonical and dual canonical basis for $B(m, \theta)$ by using the classes of simple modules resp. indec. projective modules. The bar-involution appears naturally as the graded duality of the category.

What do we get from this?

- Two commuting actions of $B(m, \theta)$ and $\mathcal{H}_{q}\left(D_{n}\right)$ on $V_{2 m}^{\otimes n}$.
- To have them generate each others centralizer we need to enlarge $\mathcal{H}_{q}\left(D_{n}\right)$ to $\mathcal{H}_{q, 1}\left(B_{n}\right)$ (add the parity switch functor).
- Can define notion of canonical and dual canonical basis for $B(m, \theta)$ by using the classes of simple modules resp. indec. projective modules. The bar-involution appears naturally as the graded duality of the category.
- Combinatorics of these bases is given by Kazhdan-Lusztig theory of type D_{n}.

What do we get from this?

- Two commuting actions of $B(m, \theta)$ and $\mathcal{H}_{q}\left(D_{n}\right)$ on $V_{2 m}^{\otimes n}$.
- To have them generate each others centralizer we need to enlarge $\mathcal{H}_{q}\left(D_{n}\right)$ to $\mathcal{H}_{q, 1}\left(B_{n}\right)$ (add the parity switch functor).
- Can define notion of canonical and dual canonical basis for $B(m, \theta)$ by using the classes of simple modules resp. indec. projective modules. The bar-involution appears naturally as the graded duality of the category.
- Combinatorics of these bases is given by Kazhdan-Lusztig theory of type D_{n}.

Can we also get a skew Howe duality?

$$
\mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right) \curvearrowright \bigwedge^{n}\left(V_{2 m} \otimes V_{r}\right) \curvearrowleft \mathcal{U}_{q}\left(\mathfrak{g l}_{r}\right)
$$

$$
\begin{aligned}
& \mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right) \curvearrowright \Lambda^{n}\left(V_{2 m} \otimes V_{r}\right) \curvearrowleft \mathcal{U}_{q}\left(\mathfrak{g l}_{r}\right) \\
& \mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) \curvearrowright \Lambda^{n}\left(V_{m} \otimes V_{2 r}\right) \curvearrowleft \mathcal{U}_{q}\left(\mathfrak{g l}_{2 r}\right)
\end{aligned}
$$

$$
\begin{array}{ccccc}
\mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right) & \curvearrowright & \Lambda^{n}\left(V_{2 m} \otimes V_{r}\right) & \curvearrowleft & \mathcal{U}_{q}\left(\mathfrak{g l}_{r}\right) \\
\cup & & \| & & \cap \\
B(m, \theta) & \curvearrowright & \mathbb{V} & \curvearrowleft & B(r, \theta) \\
\cup & & \| & & \cap \\
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) & & \curvearrowright & \Lambda^{n}\left(V_{m} \otimes V_{2 r}\right) & \curvearrowleft \\
\mathcal{U}_{q}\left(\mathfrak{g l}_{2 r}\right)
\end{array}
$$

To categorify $\bigwedge^{n}\left(V_{2 m} \otimes V_{r}\right)$ we use the same approach with parabolic category \mathcal{O} as before and decompose this with respect to the action of $\mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right)$.

To categorify $\bigwedge^{n}\left(V_{2 m} \otimes V_{r}\right)$ we use the same approach with parabolic category \mathcal{O} as before and decompose this with respect to the action of $\mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right)$.

$$
\underline{k} \in C(n, r)
$$

To categorify $\bigwedge^{n}\left(V_{2 m} \otimes V_{r}\right)$ we use the same approach with parabolic category \mathcal{O} as before and decompose this with respect to the action of $\mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right)$.

$$
\underline{k} \in C(n, r) \rightsquigarrow
$$

$\mathfrak{p}_{\underline{k}}$ the parabolic subalgebra of $\mathfrak{g l}_{n}$ with Levi part $\mathfrak{g l}_{k_{1}} \oplus \ldots \oplus \mathfrak{g l}_{k_{r}} \subset \mathfrak{g l}_{n} \subset \mathfrak{s o}_{2 n}$

$$
\begin{array}{ccccc}
\mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right) & \curvearrowright & \Lambda^{n}\left(V_{2 m} \otimes V_{r}\right) & \curvearrowleft & \mathcal{U}_{q}\left(\mathfrak{g l}_{r}\right) \\
\cup & & \| & & \cap \\
B(m, \theta) & \curvearrowright & \mathbb{V} & \curvearrowleft & B(r, \theta) \\
\cup & & \| & & \cap \\
\mathcal{U}_{q}\left(\mathfrak{g l}_{m}\right) & \curvearrowright & \Lambda^{n}\left(V_{m} \otimes V_{2 r}\right) & \curvearrowleft & \mathcal{U}_{q}\left(\mathfrak{g l}_{2 r}\right)
\end{array}
$$

To categorify $\bigwedge^{n}\left(V_{2 m} \otimes V_{r}\right)$ we use the same approach with parabolic category \mathcal{O} as before and decompose this with respect to the action of $\mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right)$.

$$
\begin{aligned}
& \underline{k} \in C(n, r) \rightsquigarrow \quad \mathfrak{p}_{\underline{k}} \text { the parabolic subalgebra of } \mathfrak{g l}_{n} \\
& \text { with Levi part } \mathfrak{g l}_{k_{1}} \oplus \ldots \oplus \mathfrak{g l}_{k_{r}} \subset \mathfrak{g l}_{n} \subset \mathfrak{5 o}_{2 n} \\
& \rightsquigarrow \mathcal{O}^{\underline{k}} \text { the parabolic version of category } \mathcal{O}
\end{aligned}
$$

To categorify $\bigwedge^{n}\left(V_{2 m} \otimes V_{r}\right)$ we use the same approach with parabolic category \mathcal{O} as before and decompose this with respect to the action of $\mathcal{U}_{q}\left(\mathfrak{g l}_{2 m}\right)$.

$$
\begin{aligned}
\underline{k} \in C(n, r) & \rightsquigarrow \quad \quad \quad \begin{array}{l}
\mathfrak{p}_{\underline{k}} \text { the parabolic subalgebra of } \mathfrak{g l}_{n} \\
\\
\\
\end{array} \quad \text { with Levi part } \mathfrak{g l}_{k_{1}} \oplus \ldots \oplus \mathfrak{O}^{\underline{k}} \text { the parabolic version of category } \mathcal{O}
\end{aligned}
$$

Theorem [E.-Stroppel]

The \mathcal{B}_{i} 's and $\bigoplus \mathcal{O}_{\underline{\mu}, \varepsilon}^{\underline{k}}$ categorify the action of $B(m, \theta)$ on \mathbb{V}.

To obtain both actions at the same time we again use Koszul duality.

$$
\bigoplus_{\underline{\mu} \in C^{\underline{k} \in C(n, r)}(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}} D^{b}\left(\mathcal{O} \frac{k}{\underline{\mu}}, \varepsilon\right) \xrightarrow{\substack{\underline{\mu} \in C(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} \prod_{\substack{\underline{k} \in C(n, r)}} D^{b}\left(\mathcal{O} \frac{\mu}{\underline{k}, \varepsilon}\right)
$$

To obtain both actions at the same time we again use Koszul duality.

Theorem [E.-Stroppel]

$$
\mathcal{B}_{i} \curvearrowright \bigoplus_{\substack{\underline{\mu} \in C(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} D^{b}\left(\mathcal{O}_{\underline{\underline{u}}, \varepsilon}^{\underline{k}}\right) \curvearrowleft K \circ \mathcal{B}_{i}^{\vee} \circ K^{-1}
$$

categorifies skew Howe duality for $B(m, \theta)$ and $B(r, \theta)$ on \mathbb{V}.

To obtain both actions at the same time we again use Koszul duality.

Theorem [E.-Stroppel]

$$
\mathcal{B}_{i} \curvearrowright \bigoplus_{\substack{\underline{\mu} \in C(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} D^{b}\left(\mathcal{O}_{\underline{\underline{u}}, \varepsilon}\right) \curvearrowleft K \circ \mathcal{B}_{i}^{\vee} \circ K^{-1}
$$

categorifies skew Howe duality for $B(m, \theta)$ and $B(r, \theta)$ on \mathbb{V}.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1), \varepsilon=1$

To obtain both actions at the same time we again use Koszul duality.

Theorem [E.-Stroppel]

$$
\mathcal{B}_{i} \curvearrowright \bigoplus_{\substack{\underline{\mu} \in C(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} D^{b}\left(\mathcal{O}_{\underline{\underline{u}}, \varepsilon}\right) \curvearrowleft K \circ \mathcal{B}_{i}^{\vee} \circ K^{-1}
$$

categorifies skew Howe duality for $B(m, \theta)$ and $B(r, \theta)$ on \mathbb{V}.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1), \varepsilon=1$
$\lambda=\left(\frac{5}{2},-\frac{1}{2}, \frac{1}{2},-\frac{5}{2},-\frac{3}{2}, \frac{7}{2}\right)$

To obtain both actions at the same time we again use Koszul duality.

Theorem [E.-Stroppel]

$$
\mathcal{B}_{i} \curvearrowright \bigoplus_{\substack{\underline{\mu} \in C(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} D^{b}\left(\mathcal{O}_{\underline{\underline{u}}, \varepsilon}^{\underline{k}}\right) \curvearrowleft K \circ \mathcal{B}_{i}^{\vee} \circ K^{-1}
$$

categorifies skew Howe duality for $B(m, \theta)$ and $B(r, \theta)$ on \mathbb{V}.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1), \varepsilon=1$
$\lambda=\left(\frac{5}{2},-\frac{1}{2}, \frac{1}{2},-\frac{5}{2},-\frac{3}{2}, \frac{7}{2}\right)$
$\left[\Delta^{k}(\lambda)\right] \rightsquigarrow$

To obtain both actions at the same time we again use Koszul duality.

Theorem [E.-Stroppel]

$$
\mathcal{B}_{i} \curvearrowright \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} D^{b}\left(\mathcal{O}_{\underline{\mu}, \varepsilon}^{\underline{k}}\right) \curvearrowleft K \circ \mathcal{B}_{i}^{\vee} \circ K^{-1}
$$

categorifies skew Howe duality for $B(m, \theta)$ and $B(r, \theta)$ on \mathbb{V}.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1), \varepsilon=1$
$\lambda=\left(\frac{5}{2},-\frac{1}{2}, \frac{1}{2},-\frac{5}{2},-\frac{3}{2}, \frac{7}{2}\right)$
$\left[\Delta^{k}(\lambda)\right] \rightsquigarrow$

		+	
\pm			
	-	-	+
	μ_{1}	\cdots	μ_{4}

To obtain both actions at the same time we again use Koszul duality.

Theorem [E.-Stroppel]

$$
\mathcal{B}_{i} \curvearrowright \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} D^{b}\left(\mathcal{O}_{\underline{\mu}, \varepsilon}^{\underline{k}}\right) \curvearrowleft K \circ \mathcal{B}_{i}^{\vee} \circ K^{-1}
$$

categorifies skew Howe duality for $B(m, \theta)$ and $B(r, \theta)$ on \mathbb{V}.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1), \varepsilon=1$
$\lambda=\left(\frac{5}{2},-\frac{1}{2}, \frac{1}{2},-\frac{5}{2},-\frac{3}{2}, \frac{7}{2}\right)$
$\left[\Delta^{k}(\lambda)\right] \rightsquigarrow$

transpose \leadsto

	\pm	
		-
+		-
		+

To obtain both actions at the same time we again use Koszul duality.

Theorem [E.-Stroppel]

$$
\mathcal{B}_{i} \curvearrowright \bigoplus_{\substack{\underline{\mu} \in C(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} D^{b}\left(\mathcal{O}_{\underline{\underline{\mu}}, \varepsilon}^{\underline{k}}\right) \curvearrowleft K \circ \mathcal{B}_{i}^{\vee} \circ K^{-1}
$$

categorifies skew Howe duality for $B(m, \theta)$ and $B(r, \theta)$ on \mathbb{V}.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1), \varepsilon=1$
$\lambda=\left(\frac{5}{2},-\frac{1}{2}, \frac{1}{2},-\frac{5}{2},-\frac{3}{2}, \frac{7}{2}\right)$
$\left[\Delta^{k}(\lambda)\right] \rightsquigarrow$

$\xrightarrow[\sim]{\text { transpose }}$

invert all signs

To obtain both actions at the same time we again use Koszul duality.

Theorem [E.-Stroppel]

$$
\mathcal{B}_{i} \curvearrowright \bigoplus_{\substack{\underline{k} \in C(n, r) \\ \underline{\mu} \in C(n, m), \varepsilon \in \mathbb{Z} / 2 \mathbb{Z}}} D^{b}\left(\mathcal{O}_{\underline{\mu}, \varepsilon}^{\underline{k}}\right) \curvearrowleft K \circ \mathcal{B}_{i}^{\vee} \circ K^{-1}
$$

categorifies skew Howe duality for $B(m, \theta)$ and $B(r, \theta)$ on \mathbb{V}.

Example

Take $n=6, r=3, m=4, \underline{k}=(1,2,3), \underline{\mu}=(2,1,2,1), \varepsilon=1$
$\lambda=\left(\frac{5}{2},-\frac{1}{2}, \frac{1}{2},-\frac{5}{2},-\frac{3}{2}, \frac{7}{2}\right)$
$\left[\Delta^{k}(\lambda)\right] \rightsquigarrow$

invert
 $\rightsquigarrow[K \Delta \underline{k}(\lambda)]$

In type A studying these categorifications led to interesting concepts (Higher Schur-Weyl duality, categorifications of knot invariant,...).

In type A studying these categorifications led to interesting concepts (Higher Schur-Weyl duality, categorifications of knot invariant,...). What about type D ?

In type A studying these categorifications led to interesting concepts (Higher Schur-Weyl duality, categorifications of knot invariant,...). What about type D ?

- Construct gradings on certain cyclotomic affine VW algebras [E.-Stroppel].

In type A studying these categorifications led to interesting concepts (Higher Schur-Weyl duality, categorifications of knot invariant,...). What about type D ?

- Construct gradings on certain cyclotomic affine VW algebras [E.-Stroppel].
- Construct Koszul gradings on Brauer algebras for arbitrary integral parameters [E.-Stroppel].

In type A studying these categorifications led to interesting concepts (Higher Schur-Weyl duality, categorifications of knot invariant,...). What about type D ?

- Construct gradings on certain cyclotomic affine VW algebras [E.-Stroppel].
- Construct Koszul gradings on Brauer algebras for arbitrary integral parameters [E.-Stroppel].
- Relate Brauer algebra branching to quantum symmtric pairs (in progress).

In type A studying these categorifications led to interesting concepts (Higher Schur-Weyl duality, categorifications of knot invariant,...). What about type D ?

- Construct gradings on certain cyclotomic affine VW algebras [E.-Stroppel].
- Construct Koszul gradings on Brauer algebras for arbitrary integral parameters [E.-Stroppel].
- Relate Brauer algebra branching to quantum symmtric pairs (in progress).
- Construct a KLR-algebra analogue for the affine VW algebra (in progress).

In type A studying these categorifications led to interesting concepts (Higher Schur-Weyl duality, categorifications of knot invariant,...). What about type D ?

- Construct gradings on certain cyclotomic affine VW algebras [E.-Stroppel].
- Construct Koszul gradings on Brauer algebras for arbitrary integral parameters [E.-Stroppel].
- Relate Brauer algebra branching to quantum symmtric pairs (in progress).
- Construct a KLR-algebra analogue for the affine VW algebra (in progress).
- Schur-Weyl duality between Brauer algebras and $\mathfrak{o s p}(m \mid 2 k)$ Lie superalgebras in characteristic $\neq 2$ [E.-Stroppel, Lehrer-Zhang].

Thank You!

