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Notation

I k algebraically closed field

I char k = p ≥ 0

I A finite dimensional k-algebra

I mod A category of finite dimensional (left) A-modules

I M ∈ mod A [M], the isomorphism class of M

I ind A = {[M] |M ∈ mod A indecomposable}
I indd A = {[M] |M ∈ ind A, dim M = d}
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Finite representation type

Definition

An algebra A is called representation-finite if | ind A| <∞.
Otherwise it is called representation-infinite.

Examples

I semisimple algebras are representation-finite

I kCn is representation-finite

I k(C2 × C2) is representation-infinite for char k = 2
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Schur algebras

Let V = kn.

V⊗d ΣdGLn

The Schur algebra occurs in two ways:
S(n, d) = EndkΣd

(V⊗d) = Im(k GLn → End(V⊗d))

Theorem (Schur 1901)

There is an idempotent e ∈ S(n, d), such that

mod S(n, d)→ mod eS(n, d)e ∼= mod kΣd

M 7→ eM

is an equivalence for char k = 0 and n ≥ d.

For n ≥ d : mod S(n, d) ∼= category of strict polynomial functors
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Representation-finite blocks of Schur algebras

Theorem (Xi ’92–’93, Erdmann ’93, Donkin, Reiten ’94)

The Schur algebra S(n, d) has finite representation type exactly in
the following cases:

1 n ≥ 3, d < 2p

2 n = 2, d < p2

3 n = 2, d = 5, 7

The representation-finite blocks of S(n, d) are Morita equivalent to
the path algebra of

1 2 · · · m
α1

β1

α2

β2

αm−1

βm−1

with relations αi−1βi−1 = βiαi , αm−1βm−1, αiαi−1, βi−1βi
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Tame and wild for A representation-infinite

Definition

An algebra A is called tame if for each dimension d there exist

finitely many A-k[x ]-bimodules N
(d)
1 , . . . ,N

(d)
m(d), finitely generated

as k[x ]-modules, such that

indd A ⊆
{

[N
(d)
i ⊗ X ] |X ∈ mod k[x ], i = 1, . . . ,m(d)

}
.

Definition

An algebra A is called wild if there is an A-k〈x , y〉-bimodule N
such that N is finitely generated projective as a k〈x , y〉-module and

N ⊗k〈x ,y〉 − : mod k〈x , y〉 → mod A

preserves indecomposability and isomorphism classes.
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Tame-wild dichotomy

Theorem (Drozd ’80)

Any finite dimensional algebra is either representation-finite, tame
or wild.
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Tame Schur algebras

Theorem (Doty, Erdmann, Martin, Nakano ’99)

The Schur algebra S(n, d) is tame exactly in the following cases:

1 p = 2, n = 2, d = 4, 9

2 p = 3, n = 3, d = 7

3 p = 3, n = 3, d = 8

4 p = 3, n = 2, d = 9, 10, 11
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Blocks of tame Schur algebras
Theorem (Continued)

Their blocks are Morita equivalent to the following quivers with
relations:

1 3 1 2
α1

β1

β2

α2
, β1α1 = β2α2 = α2β2α1 = β1α2β2 = 0

2 4 3 2 1
α3

β3

α2

β2

α1

β1

,
β3α3 = α2α3 = β3β2 = 0,
α3β3 = β2α2, α2β2 = β1α1

3

3

4 2 1

α2

α1

β2

β1

β3

α3

β1α1 = β1α2 = β1α3 = 0,
β2α1 = β2α2 = β3α1 = 0,
α3β3 = α1β1 + α2β2

4
β1α1 = β2α2 = β1α3 = 0
β2α3 = β3α1 = β3α2 = 0,
α2β2 = α3β3
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Representation type of subcategories

Let A be a finite dimensional algebra.

Question

1 Under which conditions does there exist a tame-wild
dichotomy theorem for C ⊂ mod A?

2 Is a particular C representation-finite, tame or wild?
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Quasi-hereditary algebras

Definition

An algebra is called quasi-hereditary if there exist modules ∆(i)
with End(∆(i)) = k and Exts(∆(i),∆(j)) 6= 0⇒ i < j and
A ∈ F(∆), where
F(∆) := {N | 0 = N0 ⊂ N1 ⊂ · · · ⊂ Nt = N, Ni/Ni−1

∼= ∆(ji )}.

Example

The Schur algebra S(n, d) is quasi-hereditary.
The ∆(i) are the Weyl modules.

Theorem (Hemmer, Nakano ’04)

For char k = p > 3 and n ≥ d the Schur functor restricts to an
equivalence F(∆)→ F(S), where S are the Specht modules.
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Filtered representation type

Question

1 Does there exist a tame-wild dichotomy theorem for
F(∆) ⊆ mod A?

2 For a particular class of quasi-hereditary algebras, is F(∆)
representation-finite, tame, or wild?
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Differential biquivers - Motivation

Let A =

(
k 0
k k

)
∼= k( 1 2a ). Representations of A:

V1 V2

W1 W2

ω1

Va

ω2

Wa

0 k

k k

id

id

Indecomposable representations 0 k , k kid , k 0
The following also describes mod A:

V ′2 V ′3 V ′1

W ′
2 W ′

3 W ′
1

ω2
ι π

ω3 ω1

k 0 0

0 k 0

id
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Differential biquivers

Definition

1 A biquiver is a quiver with two types of arrows, solid
(deg = 0) and dashed (deg = 1).

2 A differential biquiver is a biquiver together with a linear
map ∂ : kQ → kQ of degree 1 such that ∂(ei ) = 0 for all i
and ∂ is a differential, i.e. ∂2 = 0 and
∂(ab) = ∂(a)b + (−1)deg aa∂(b).

Example

4

3 2 1

b′ π

b

ι
∂(b) = b′ι
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Representations of differential biquivers
Definition

The category of representations of a differential biquiver is
given as follows:

Objects: Representations of the solid part.

Morphisms: Pairs ((αi )i∈Q0 , (αϕ)ϕ dashed ) such that
commutativity deformed by ∂(solid) holds.

Composition: Given by ∂(dashed arrows)

Example

V2 V3 V4 V1

W2 W3 W4 W1

ω2
ι

Vb

ω3 π
ω4

Vb′

ω1

Wb Wb′

ω3Vb′ = Wb′ω4

ω3Vb = Wbω2 + Wb′ι
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Example of the reduction algorithm

3 2 1
b a

4

3 2 1

b′

π

b

ι
∂(b) = b′ι

5

4

3 2 1

π′π′π̃̃π

ππ

ι̃̃ι

b′′ ι′

bb

ιι

∂(b′′) = ι′, ∂(π′) = ππ̃

5

4

3 2 1

π′π̃

π

ι̃

b

ι

∂(π′) = ππ̃

5

6 4

3 2 1

π′π̃ι̃′

π̃′

π̂ πι̂

ι̃

ι

∂(π′) = ππ̃, ∂(ι̃) = ι̃′ι̂
∂(π̃′) = π̃ι̃′ + ι̃π̂
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Passing to a hereditary situation

Definition

Let P(A) be the category with

objects P
f→ Q, where P,Q ∈ proj A

morphisms

P Q

P ′ Q ′

α

f

β

f ′

with βf = f ′α

Let P1(A) be the full subcategory with Im f ⊆ rad Q.

Proposition

The functor Coker : P1(A) \ 〈(P → 0)〉 → mod A, f 7→ Coker f is
full, dense, preserves indecomposability and isomorphism classes.
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Transforming P(A) to a differential biquiver

Define the following biquiver:

I 2n vertices i and i

I Solid arrow i → j for each basis vector of radA(Pi ,Pj)

I Dashed arrow i j for each basis vector of radA(Pi ,Pj)

In P1(A):

objects: P → Q =

⊕Pni
i

Aij→ ⊕P
mj

j

morphisms:

P Q

P ′ Q ′

α

f

β

f ′

In rep(Q, ∂):

objects: (kni on i)
Aij→ (kmj on j),

morphisms:

kni kmj

knĩ kmj̃

αi ĩ

Aij

βj j̃
A′
ĩ j̃
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Example of the reduction algorithm

k[x ]/(x2) ∼= kC2

1 1ϕ x
ϕ

2

1 1

ϕ22 ϕ22

ϕ21

π

ϕ12

ϕ21

ϕ
ι

ϕ12

ϕ

∂(ϕ) = ιϕ21

∂(ϕ) = −ϕ21ι
∂(ϕ22) = −ϕ21π
∂(ϕ12) = −ϕπ + πϕ22

∂(ϕ22) = ιϕ21

∂(ϕ12) = ιϕ− ϕ22ι

2

1

ϕ21ι

ϕ
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Directed biquivers

Theorem (Koenig-K-Ovsienko ’14)

For every quasi-hereditary algebra A, there exists a directed
biquiver (with relations) (Q, I , ∂) with

F(∆) ∼= rep(Q, I , ∂).

No relations if and only if A is strongly quasi-hereditary, i.e.
projdim ∆(i) ≤ 1 for all i .

Corollary

For every strongly quasi-hereditary algebra A, F(∆) is either
representation-finite, tame or wild.
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A strongly quasi-hereditary example

A = k( 1 2
a

b
)/(ab). ∆(1) = S(1) = 1,∆(2) = P(2) =

2
1

Differential biquiver: ∆(1) ∆(2)
a

ϕ

Reduction:

∆(1)
∆(2)

=
1
2
1

1 = ∆(1) ∆(2) =
2
1

ϕ33

ϕ13

π

ϕ31

ϕ

ι

∂ϕ13 = ϕπ
∂ϕ31 = ιϕ
∂ϕ33 = ιϕ13 + ϕ31π
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Boxes of tame Schur algebras

Proposition (K ’14)

The following are the differential biquivers with relations for the
tame Schur algebras:

1 1 2 3

c

r

a

ϕ

b

ψ
, ∂(c) = bϕ, ∂(r) = ba

2 1 2 3 4

c

χ

a

ϕ

r

d

b

ψ

e

ρ
,
∂(χ) = ψϕ, ∂(r) = eb
∂(c) = bϕ+ ψa,
∂(d) = eψ + ρb
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Boxes of tame Schur algebras

Proposition (Continued)

3 1 2 3 4

t

f
c

χ

a

ϕ

σ

e

b

ψ
,
∂(χ) = ψϕ, ∂(t) = ea,
∂(c) = bϕ+ ψa
∂(f ) = eϕ+ σa

4
1 2 3 4

t

c

r

a

ϕ

s

e

b

ψ

d

χ

,

∂(r) = ba, ∂(s) = db
∂(t) = ea + dc ,
∂(c) = bϕ+ ψa
∂(e) = dψ
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Tame Schur algebras are filtered-finite

Theorem (K-Thiel ’14)

The category F(∆) is representation-finite for the tame Schur
algebras.

Proposition (Burt-Butler ’91)

If the underlying solid quiver with relations is of finite
representation type, then F(∆) is of finite representation type.

Proof.

I Compute their differential biquivers with relations,

I for 1 & 4 use the Proposition, the underlying algebras are
special biserial

I for 2 & 3 use a computer to reduce.
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Filtered-finite wild Schur algebras

Theorem (Erdmann, de la Peña, Sáenz ’02)

There are wild blocks of the Schur algebras S(2, p2),S(2, p2 + 1)
with F(∆) representation-finite, e.g. the following for n ≥ 5:

m

m − 2 m − 3 . . . 1

m − 1

α1

β1

β2

γ3

δ3

γ4

δ4

γn−1

δn−1α2

with relations: β1α1 = β2α2 = β2δ3 = β1δ3 = γ3α2 = γ3α1 = 0
α2β2α1 = β1α2β2 = γi+1γi = δiδi+1 = 0, δ3γ3 = α2β2,
γiδi = δi+1γi+1.
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General strategy for filtered representation type

I Take your favourite quasi-hereditary algebra,

I determine the standard modules,

I compute the (A∞-structure on the) Ext-algebra of the
standard modules,

I dualise, to get a differential biquiver (with relations),

I reduce this biquiver.
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