Representation type, boxes, and Schur algebras

Julian Külshammer

University of Stuttgart, Germany

10.03.2015

Julian Külshammer

University of Stuttgart, Germany

Notation

- k algebraically closed field
- char $k = p \ge 0$
- A finite dimensional k-algebra
- mod A category of finite dimensional (left) A-modules
- $M \in \text{mod } A \rightsquigarrow [M]$, the isomorphism class of M
- ind $A = \{[M] \mid M \in \text{mod } A \text{ indecomposable}\}$
- $\operatorname{ind}_d A = \{ [M] \mid M \in \operatorname{ind} A, \dim M = d \}$

Julian Külshammer

Finite representation type

Definition

An algebra A is called **representation-finite** if $|\operatorname{ind} A| < \infty$. Otherwise it is called **representation-infinite**.

Examples

- semisimple algebras are representation-finite
- ▶ *kC_n* is representation-finite
- $k(C_2 \times C_2)$ is representation-infinite for char k = 2

Julian Külshammer

Schur algebras

Let
$$V = k^n$$
.

$$\operatorname{GL}_n \overset{}{\bigcirc} V^{\otimes d} \overset{}{\bigcirc} \Sigma_d$$

The Schur algebra occurs in two ways: $S(n,d) = \operatorname{End}_{k\Sigma_d}(V^{\otimes d}) = \operatorname{Im}(k\operatorname{GL}_n \to \operatorname{End}(V^{\otimes d}))$

Theorem (Schur 1901)

There is an idempotent $e \in S(n, d)$, such that

$$\mathsf{mod}\, S(n,d) o \mathsf{mod}\, eS(n,d) e \cong \mathsf{mod}\, k\Sigma_d$$
 $M\mapsto eM$

is an equivalence for char k = 0 and $n \ge d$.

For $n \ge d$: mod $S(n, d) \cong$ category of strict polynomial functors

Julian Külshamme

Representation-finite blocks of Schur algebras

Theorem (Xi '92–'93, Erdmann '93, Donkin, Reiten '94)

The Schur algebra S(n, d) has finite representation type exactly in the following cases:

- **1** $n \ge 3, d < 2p$
- 2 $n = 2, d < p^2$

$$n = 2, d = 5, 7$$

The representation-finite blocks of S(n, d) are Morita equivalent to the path algebra of

$$1 \xrightarrow[\beta_1]{\alpha_1} 2 \xrightarrow[\beta_2]{\alpha_2} \cdots \xrightarrow[\beta_{m-1}]{\alpha_{m-1}} m$$

with relations
$$\alpha_{i-1}\beta_{i-1} = \beta_i \alpha_i, \alpha_{m-1}\beta_{m-1}, \alpha_i \alpha_{i-1}, \beta_{i-1}\beta_i$$

Julian Külshamme

University of Stuttgart, Germany

Tame and wild for A representation-infinite

Definition

An algebra A is called **tame** if for each dimension d there exist finitely many $A \cdot k[x]$ -bimodules $N_1^{(d)}, \ldots, N_{m(d)}^{(d)}$, finitely generated as k[x]-modules, such that

$$\operatorname{ind}_{d} A \subseteq \left\{ \left[N_{i}^{(d)} \otimes X \right] | X \in \operatorname{mod} k[x], i = 1, \dots, m(d) \right\}.$$

Definition

An algebra A is called **wild** if there is an $A-k\langle x, y \rangle$ -bimodule N such that N is finitely generated projective as a $k\langle x, y \rangle$ -module and

$$N \otimes_{k\langle x,y
angle} -: \mod k\langle x,y
angle o \mod A$$

preserves indecomposability and isomorphism classes.

Julian Külshamme

Tame-wild dichotomy

Theorem (Drozd '80)

Any finite dimensional algebra is either representation-finite, tame or wild.

Julian Külshammer

Tame Schur algebras

Theorem (Doty, Erdmann, Martin, Nakano '99)

The Schur algebra S(n, d) is tame exactly in the following cases:

$$p = 2, \ n = 2, \ d = 4, 9$$

2
$$p = 3, n = 3, d = 7$$

3
$$p = 3, n = 3, d = 8$$

4
$$p = 3$$
, $n = 2$, $d = 9, 10, 11$

Julian Külshammer

Blocks of tame Schur algebras

Theorem (Continued)

Their blocks are Morita equivalent to the following quivers with relations:

Julian Külshammer

mathen physik

Representation type of subcategories

Let A be a finite dimensional algebra.

Question

- Under which conditions does there exist a tame-wild dichotomy theorem for C ⊂ mod A?
- $\ensuremath{ 2 \ }$ Is a particular $\ensuremath{ \mathcal{C} \ }$ representation-finite, tame or wild?

Julian Külshammer

Quasi-hereditary algebras

Definition

An algebra is called **quasi-hereditary** if there exist modules $\Delta(i)$ with $\operatorname{End}(\Delta(i)) = k$ and $\operatorname{Ext}^{s}(\Delta(i), \Delta(j)) \neq 0 \Rightarrow i < j$ and $A \in \mathcal{F}(\Delta)$, where $\mathcal{F}(\Delta) := \{N \mid 0 = N_0 \subset N_1 \subset \cdots \subset N_t = N, \quad N_i/N_{i-1} \cong \Delta(j_i)\}.$

Example

The Schur algebra S(n, d) is quasi-hereditary. The $\Delta(i)$ are the **Weyl modules**.

Theorem (Hemmer, Nakano '04)

For char k = p > 3 and $n \ge d$ the Schur functor restricts to an equivalence $\mathcal{F}(\Delta) \to \mathcal{F}(S)$, where S are the Specht modules.

Julian Külshammer

Filtered representation type

Question

- Ooes there exist a tame-wild dichotomy theorem for F(Δ) ⊆ mod A?
- **2** For a particular class of quasi-hereditary algebras, is $\mathcal{F}(\Delta)$ representation-finite, tame, or wild?

Julian Külshammer

Differential biquivers - Motivation

Let
$$A = \begin{pmatrix} k & 0 \\ k & k \end{pmatrix} \cong k(1 \xrightarrow{a} 2)$$
. Representations of A :
 $V_1 \xrightarrow{V_a} V_2 \qquad 0 \longrightarrow k$
 $\downarrow \omega_1 \qquad \downarrow \omega_2 \qquad \downarrow \qquad \downarrow id$
 $W_1 \xrightarrow{W_a} W_2 \qquad k \xrightarrow{id} k$

Indecomposable representations $0 \rightarrow k$, $k \stackrel{\text{id}}{\rightarrow} k$, $k \rightarrow 0$ The following also describes mod *A*:

Julian Külshammer

Differential biquivers

Definition

- A biquiver is a quiver with two types of arrows, solid (deg = 0) and dashed (deg = 1).
- A differential biquiver is a biquiver together with a linear map ∂: kQ → kQ of degree 1 such that ∂(e_i) = 0 for all i and ∂ is a differential, i.e. ∂² = 0 and ∂(ab) = ∂(a)b + (-1)^{deg a}a∂(b).

Julian Külshammer

Representations of differential biquivers

Definition

The category of **representations of a differential biquiver** is given as follows:

Objects: Representations of the solid part.

Morphisms: Pairs $((\alpha_i)_{i \in Q_0}, (\alpha_{\varphi})_{\varphi \text{ dashed}})$ such that commutativity deformed by $\partial(\text{solid})$ holds.

Composition: Given by ∂ (dashed arrows)

Example

$$\omega_3 V_{b'} = W_{b'} \omega_4$$
$$\omega_3 V_b = W_b \omega_2 + W_{b'} \iota$$

Julian Külshammer

Example of the reduction algorithm

Julian Külshammer

Passing to a hereditary situation

Definition

Let $\mathcal{P}(A)$ be the category with objects $P \xrightarrow{f} Q$, where $P, Q \in \text{proj } A$ morphisms $\downarrow \alpha \qquad \qquad \downarrow_{\beta} \ \text{with } \beta f = f' \alpha$ $P' \xrightarrow{f'} Q'$

Let $\mathcal{P}^1(A)$ be the full subcategory with $\text{Im } f \subseteq \text{rad } Q$.

Proposition

The functor Coker: $\mathcal{P}^1(A) \setminus \langle (P \to 0) \rangle \to \text{mod } A, f \mapsto \text{Coker } f$ is full, dense, preserves indecomposability and isomorphism classes.

Julian Külshammer

Transforming $\mathcal{P}(A)$ to a differential biquiver

Define the following biquiver:

- 2n vertices *i* and \overline{i}
- ▶ Solid arrow $i \rightarrow \overline{j}$ for each basis vector of $rad_A(P_i, P_j)$
- ▶ Dashed arrow $i \rightarrow j$ for each basis vector of $rad_A(P_i, P_j)$

In
$$\mathcal{P}^{1}(A)$$
:
objects: $P \to Q =$
 $\oplus P_{i}^{n_{i}} \stackrel{A_{ij}}{\to} \oplus P_{j}^{m_{j}}$
morphisms: $P \stackrel{f}{\longrightarrow} Q$
 $P' \stackrel{f'}{\longrightarrow} Q'$
 $p' \stackrel{f'}{\longrightarrow} Q'$
In rep (Q, ∂) :
objects: $(k^{n_{i}} \text{ on } i) \stackrel{A_{ij}}{\to} (k^{m_{j}} \text{ on } \overline{j}),$
 $k^{n_{i}} \stackrel{A_{ij}}{\longrightarrow} k^{m_{j}}$
 $k^{n_{i}} \stackrel{A_{ij}}{\longrightarrow} k^{m_{j}}$
 $k^{n_{i}} \stackrel{A_{ij}}{\longrightarrow} k^{m_{j}}$

Julian Külshammer

Example of the reduction algorithm

 $k[x]/(x^2) \cong kC_2$

$$\varphi \rightleftharpoons 1 \xrightarrow{\hspace{1.5cm} \mathsf{x} \hspace{1.5cm}} \overline{1} \xrightarrow{\hspace{1.5cm} \mathsf{x} \hspace{1.5cm}} \overline{1} \xrightarrow{\hspace{1.5cm} \mathsf{z} } \overline{\varphi}$$

Julian Külshammer

Theorem (Koenig-K-Ovsienko '14)

For every quasi-hereditary algebra A, there exists a directed biquiver (with relations) (Q, I, ∂) with

 $\mathcal{F}(\Delta) \cong \operatorname{rep}(Q, I, \partial).$

No relations if and only if A is strongly quasi-hereditary, i.e. projdim $\Delta(i) \leq 1$ for all i.

Corollary

For every strongly quasi-hereditary algebra A, $\mathcal{F}(\Delta)$ is either representation-finite, tame or wild.

Julian Külshammer

A strongly quasi-hereditary example $A = k(1 \stackrel{a}{\longleftrightarrow} 2)/(ab). \quad \Delta(1) = S(1) = 1, \Delta(2) = P(2) = \frac{2}{1}$ Differential biquiver: $\Delta(1) \xrightarrow{a} \Delta(2)$ Reduction: φ_{33} $\partial \varphi_{13} = \varphi \pi$ $\partial \varphi_{31} = \iota \varphi$ $\partial \varphi_{33} = \iota \varphi_{13} + \varphi_{31} \pi$ $\Delta(2) = \frac{2}{1}$ $1 = \Delta(1)$

Julian Külshamme

Boxes of tame Schur algebras

Proposition (K '14)

The following are the differential biquivers with relations for the tame Schur algebras:

1

$$a \rightarrow 2 \rightarrow 2$$

 $c \rightarrow 3$, $\partial(c) = b\varphi$, $\partial(r) = ba$
 $\partial(\chi) = \psi\varphi$, $\partial(r) = eb$
 $\partial(\chi) = \psi\varphi$, $\partial(r) = eb$

Julian Külshammer

Boxes of tame Schur algebras

Proposition (Continued)

Julian Külshammer

University of Stuttgart, Germany

Tame Schur algebras are filtered-finite

Theorem (K-Thiel '14)

The category $\mathcal{F}(\Delta)$ is representation-finite for the tame Schur algebras.

Proposition (Burt-Butler '91)

If the underlying solid quiver with relations is of finite representation type, then $\mathcal{F}(\Delta)$ is of finite representation type.

Proof.

- Compute their differential biquivers with relations,
- ▶ for 1 & 4 use the Proposition, the underlying algebras are special biserial
- ▶ for 2 & 3 use a computer to reduce.

Julian Külshammeı

Filtered-finite wild Schur algebras

Theorem (Erdmann, de la Peña, Sáenz '02)

There are wild blocks of the Schur algebras $S(2, p^2), S(2, p^2 + 1)$ with $\mathcal{F}(\Delta)$ representation-finite, e.g. the following for $n \ge 5$:

with relations: $\beta_1 \alpha_1 = \beta_2 \alpha_2 = \beta_2 \delta_3 = \beta_1 \delta_3 = \gamma_3 \alpha_2 = \gamma_3 \alpha_1 = 0$ $\alpha_2 \beta_2 \alpha_1 = \beta_1 \alpha_2 \beta_2 = \gamma_{i+1} \gamma_i = \delta_i \delta_{i+1} = 0, \ \delta_3 \gamma_3 = \alpha_2 \beta_2,$ $\gamma_i \delta_i = \delta_{i+1} \gamma_{i+1}.$

Julian Külshammeı

General strategy for filtered representation type

- Take your favourite quasi-hereditary algebra,
- determine the standard modules,
- ▶ compute the (A_∞-structure on the) Ext-algebra of the standard modules,
- dualise, to get a differential biquiver (with relations),
- reduce this biquiver.

Julian Külshammer