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Notation physik:::!

v

k algebraically closed field
chark=p>0

A finite dimensional k-algebra

v

v

v

mod A category of finite dimensional (left) A-modules

v

M € mod A ~ [M], the isomorphism class of M
ind A= {[M]| M € mod A indecomposable}
indg A= {[M]| M € ind A, dim M = d}

v

v
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Finite representation type mathemati

An algebra A is called representation-finite if | ind A| < co.
Otherwise it is called representation-infinite.

» semisimple algebras are representation-finite
» kC, is representation-finite

» k(G x @) is representation-infinite for char k = 2
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Schur algebras peyaematic
Let V = k".
oL, 2 ved T s,

The Schur algebra occurs in two ways:
S(n,d) = Endks, (V®9) = Im(k GL, — End(V®?))

Theorem (Schur 1901)
There is an idempotent e € S(n, d), such that

mod S(n, d) — mod eS(n, d)e = mod kX4
M — eM

is an equivalence for chark =0 and n > d.

For n > d: mod S(n, d) = category of strict polynomial functors
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Representation-finite blocks of Schur algebras AT

Theorem (Xi '92-'93, Erdmann '93, Donkin, Reiten '94)

The Schur algebra S(n, d) has finite representation type exactly in
the following cases:

@ n>3,d<2p

®n=2d<p?

®n=2,d=5,7
The representation-finite blocks of S(n, d) are Morita equivalent to
the path algebra of

with relations o;_18i-1 = Bictj, dm-1Bm—1, ajcj—1, Bi—1Bi
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Tame and wild for A representation-infinite PRy RS

Definition

An algebra A is called tame if for each dimension d there exist
finitely many A-k[x]-bimodules N{®, ... ij?d), finitely generated
as k[x]-modules, such that

indg A C {[N,(d)®X] |X € mod k[x], i = 1,...,m(d)}.

Definition
An algebra A is called wild if there is an A-k(x, y)-bimodule N
such that N is finitely generated projective as a k(x, y)-module and

N ®g(x,yy —: mod k(x,y) — mod A

preserves indecomposability and isomorphism classes.
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Tame-wild dichotomy mathemati

Theorem (Drozd '80)

Any finite dimensional algebra is either representation-finite, tame
or wild.
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Tame Schur algebras mamatic

Theorem (Doty, Erdmann, Martin, Nakano '99)

The Schur algebra S(n, d) is tame exactly in the following cases:
@p=2,n=2,d=49
®@p=3,n=3,d=7
®p=3,n=3,d=38
O p=3n=2,d=91011
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Blocks of tame Schur algebras
Theorem (Continued)

Their blocks are Morita equivalent to the following quivers with

relations:
a B
@ 321 é 2, pra1 = Prar = azfron = Pranfr =0
b1 2
« « e = = =0
483B,8 Baaz = axas = B35 =0,
@ 578 Th as3fl3 = Baaz, azfe = Bran
3 Bray = Praz = Braz =0,
(3] B laz paoy = Pran = P3ar =0,
o B aszf3 = a1f1 + a2
0 ‘g2g1

proq = Poay = fraz =0
Boaz = B3y = Bza =0,
oo = 033
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Representation type of subcategories mathemati

Let A be a finite dimensional algebra.

@ Under which conditions does there exist a tame-wild
dichotomy theorem for C C mod A?

@ s a particular C representation-finite, tame or wild?
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Quasi-hereditary algebras mathematix

Definition

An algebra is called quasi-hereditary if there exist modules A(/)
with End(A(7)) = k and Ext®(A(i), A(j)) #0 =i < j and

A€ F(A), where

.F(A)::{N‘OIN()CNlC"-CNt:N, N,'/N,'_lgA(j,')}.

Example

The Schur algebra S(n, d) is quasi-hereditary.
The A(i) are the Weyl modules.

Theorem (Hemmer, Nakano '04)

For chark = p > 3 and n > d the Schur functor restricts to an
equivalence F(A) — F(S), where S are the Specht modules.
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Filtered representation type mathematik

@ Does there exist a tame-wild dichotomy theorem for
F(A) € mod A?

@ For a particular class of quasi-hereditary algebras, is F(A)
representation-finite, tame, or wild?
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Differential biquivers - Motivation

Let A = (Z 2) >~ k(1 —2— 2 ). Representations of A:

mathematik’
physik e

V1 L) V2

0 —— k
I I I I
jw1 jw2 | lid
+ + + +
W, id
W, —— W, k—— k
Indecomposable representations 0 - k , k Ly , k=0
The following also describes mod A:
/ / !/
Vo V3 Vi k 0 0
+ NEE NEA 3 v Sy v
74 Wj wy 0 k 0
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Differential biquivers HavRE

@ A biquiver is a quiver with two types of arrows, solid
(deg = 0) and dashed (deg = 1).

® A differential biquiver is a biquiver together with a linear
map 0: kQ — kQ of degree 1 such that d(e;) = 0 for all
and 9 is a differential, i.e. 82 =0 and
d(ab) = 9(a)b + (—1)%&229(b).

b NG d(b) = b
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Representations of differential biquivers

h

The category of representations of a differential biquiver is
given as follows:

Objects: Representations of the solid part.

Morphisms: Pairs ((c)ieQqs (@) dashed ) Such that
commutativity deformed by J(solid) holds.

Composition: Given by d(dashed arrows)

V, Vs
V2 N b > V3 L V4 V1
| T~a U 4 [N | w3 Vb/ = Wb/w4
o T wep NI w
+ &Sy + Sy w3V = Wywo + Wiyt
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Example of the reduction algorithm mathematfic
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Passing to a hereditary situation ?ﬁ&?ﬁ?‘a‘"‘
Let P(A) be the category with
objects P LA Q, where P, Q € proj A
P—=Q
morphisms o ig with 8f = f'«

I
hd

;/ f! Q'
Let P1(A) be the full subcategory with Im f C rad Q.

The functor Coker: P1(A)\ {(P — 0)) — mod A, f + Coker f is
full, dense, preserves indecomposability and isomorphism classes.
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Transforming P(A) to a differential biquiver ?ﬁ&'s‘ﬁ{“a‘"‘

Define the following biquiver:
» 2n vertices i and i

» Solid arrow i — j for each basis vector of rada(P;, P;)

» Dashed arrow i --» j for each basis vector of rada(P;, P;)

In PL(A): In rep(Q, 9):
objects: P — 6‘)": objects: (k" on i)ﬁ (k™ on j),
P = oP"
ni A m;
P —f> Q . k. — k, J
morphisms: o 5 morphisms: \i’aﬁ y \Lj]
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Example of the reduction algorithm phyaic.

k[x]/(x?) = kG,

prl — X 1 PR

w2 2 ANp) = vpa
17N 22 o -
N AP) = —Port 5
o2 -5 2 T P O(p22) = —pum S iom
VAN N I(p12) = —om + TP e
-3 f‘ifz ’ AN Re \T o INP22) = 1P 1209
. 7 0(P12) = 1 — Pyt
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Directed biquivers Byanciats

Theorem (Koenig-K-Ovsienko '14)

For every quasi-hereditary algebra A, there exists a directed
biquiver (with relations) (Q, I, ) with

F(A) =rep(Q,1,0).

No relations if and only if A is strongly quasi-hereditary, i.e.
projdim A(i) <1 for all i.

Corollary

For every strongly quasi-hereditary algebra A, F(A) is either
representation-finite, tame or wild.

Julian Kiilshammer University of Stuttgart, Germany

Representation type, boxes, and Schur algebras



A strongly quasi-hereditary example

A=k(1 <—T> 2)/(ab). A1) =5(1)=1,A(2) = P(2) = f

Differential biquiver: A(1) %; A(2)
Reduction:
¥33
7l
1
Al
A(z) =2 Op13 = om0
N . P31 = Lp
on NS Oz = wp13 + pam
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Boxes of tame Schur algebras

Proposition (K '14)
The following are the differential biquivers with relations for the
tame Schur algebras:

543 (c) = by, 8(r) = ba

e e L 8(X) QPQO, (r) —eb
: 3 4, 0(c) = by + 1pa,
a(d) = ey + pb
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Boxes of tame Schur algebras

Proposition (Continued)

A(x) = Yo, O(t) = ea,
4,9(c) = bp+1a
I(f)=ep+o0a

P d(r) = ba, 0(s) = db
......... ........ ) 8(t) = ea + dC,

(4) 13;25‘(3 d’é4'a(c)=b¢+wa

d(e) = dy
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Tame Schur algebras are filtered-finite Plvaneate

Theorem (K-Thiel '14)

The category F(A) is representation-finite for the tame Schur
algebras.

Proposition (Burt-Butler '91)

If the underlying solid quiver with relations is of finite
representation type, then F(A) is of finite representation type.

Proof.
» Compute their differential biquivers with relations,

» for 1 & 4 use the Proposition, the underlying algebras are
special biserial

» for 2 & 3 use a computer to reduce. O
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Filtered-finite wild Schur algebras Mo aemati

Theorem (Erdmann, de la Pefa, Sdenz '02)

There are wild blocks of the Schur algebras S(2, p?), S(2,p? + 1)
with F(A) representation-finite, e.g. the following for n > 5:

m
&
B V3 Y4 Yn—1
m—2——m-3— —1
y 03 04 On—1
o
m-—1

with relations: Bian = Brap = (203 = P103 = Y3ap = y3c1 =0
az2Br01 = Bronfr = viy17Yi = 6idiy1 = 0, 03713 = azfs,
Yibi = diy17Yiy1-
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General strategy for filtered representation type

» Take your favourite quasi-hereditary algebra,
> determine the standard modules,

» compute the (As-structure on the) Ext-algebra of the
standard modules,

» dualise, to get a differential biquiver (with relations),

> reduce this biquiver.
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