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Symmetric algebras

A finite-dimensional algebra A over a field K is symmetric

if A ' HomK(A,K) as A-A-bimodules.

Equivalently, there exists a linear form λ : A→ K such that

λ(xy) = λ(yx) for all x, y ∈ A and ker λ does not contain

any non-zero left ideal of A.

The triangulated category perA of perfect complexes over

a symmetric algebra A is 0-Calabi-Yau, i.e.

HomperA(X,Y ) ' DHomperA(Y,X) X,Y ∈ perA
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Periodicity of modules

If A is self-injective, the stable module category

modA ' Db(modA)/perA [Rickard 1989]

is triangulated with suspension Ω−1
A .

syzygy ΩAM ↪→ PM �M , cosyzygy M ↪→ IM � Ω−1
A M .

M ∈ modA is Ω-periodic if Ωr
AM 'M for some r > 0.

When A is symmetric,

• ΩA = τ2
A, hence Ω-periodic implies τ-periodic.

• modA is (−1)-Calabi-Yau, i.e.

HomA(M,N) ' DHomA(N,ΩAM).

Example. A = K[x]/xp, M = xiA, Ω2
AM 'M (0 < i < p).
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Algebras of quaternion type [Erdmann]

A finite-dimensional algebra A is of quaternion type if:

• A is symmetric, indecomposable;

• A is of tame representation type;

• Ω4
AM 'M for every non-projective A-module M ;

• detCA 6= 0.

Erdmann produced a list of the possible quivers and rela-
tions of such algebras. In particular,

• The number of simple modules is at most 3.

• Blocks whose defect group is generalized quaternion
are of quaternion type.
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Triangulation quivers

A triangulation quiver is a pair (Q, f), where

• Q is a finite quiver (directed graph, loops and multiple
edges allowed) such that the in-degree and out-degree
of each vertex are 2;

''•
f(α) ''

77

α

77

• f is a permutation on the arrows of Q such that for
each arrow α,

– f(α) starts where α ends;

– f3(α) = α.
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Triangulation quivers (continued)

•
ᾱ

77

α
''

''•
f(α) ''

g(α)
77

α

77

• ᾱ is the other arrow starting at the same vertex as α.

• We have another permutation g defined by g(α) = f(α).

• PSL2(Z) acts on the set of arrows via α 7→ f(α) and

α 7→ ᾱ.

Example. •α
((

β
vv

, f(α) = α, f(β) = β.
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Surface triangulations

A marked bordered surface is a pair (S,M) consisting of:

• a compact, connected, oriented surface S

(possibly with boundary),

• a finite set M ⊂ S of marked points, containing at least
one point on each boundary component of S.

(S,M) is unpunctured if M ⊂ ∂S.

An arc is a path in S whose ends are marked points,
considered up to isotopy.

A triangulation of (S,M) is
a maximal collection of compatible arcs.
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Quivers from surface triangulations

A surface triangulation gives rise to a triangulation quiver

• whose vertices are the sides of the triangles,

• inside each triangle, a 3-cycle of arrows oriented clock-

wise according to the surface orientation

◦

k◦

i

j

◦

•j f(α)
&&•k

xx•i

α

OO

and f(α) follows α in the cycle,

• at each side on the boundary, a loop β with f(β) = β.
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Triangulation vs. adjacency quivers

The construction of a triangulation quiver is inspired from

that of the adjacency quiver [Fomin-Shapiro-Thurston 2008] of

a triangulation, but there are some differences:

• Sides on the boundary are also considered;

• Self-folded triangles are treated differently;

• No removal of 2-cycles.

However, for any “nice” triangulation of a closed surface,

the triangulation quiver and the adjacency quiver coincide.
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Some triangulation quivers

Surface Triangulation Quiver

Monogon, ◦1 •1α
++

β
ss

unpunctured (α)(β)

Monogon, ◦ 1 ◦
2

2

•1α --
β
//•2 η

ssγ
oo

one puncture (αβγ)(η)

Triangle, ◦
3

1 2

•3

α3
��

β3
��•1α1 -- β1

//•2 α2
ss

β2
\\

unpunctured (α1)(α2)(α3)(β1β2β3)
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Surface Triangulation Quiver

Sphere,

◦ 3 ◦

2

◦
1

•3
α3

��
β3

��•1 α1
//

β1

DD

•2
β2oo

α2

ZZ

three punctures (α1α2α3)(β3β2β1)

◦ 1 ◦
2

2

3 ◦ •1α --
β
//•2

δ
//

γ
oo •3 ξ

ssη
oo

(αβγ)(δξη)

Torus,

◦
2

◦
1

3 ◦
1◦2

•3
α2

��

α5

��•1 α0
//

α3 //•2

α1

ZZ

α4

ZZ

one puncture (α4α2α0)(α5α3α1) 12
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Path algebras of quivers

Q – quiver, K – field.

The path algebra KQ is the K-algebra

• spanned by all paths in Q,

• with multiplication given by composition of paths.

The complete path algebra K̂Q is the completion of KQ

with respect to the ideal generated by all arrows. It is a

topological algebra.

Example. • x
vv

. The path algebra is K[x], its completion

is K[[x]].
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Algebras from triangulation quivers

Let (Q, f) be a triangulation quiver.

Any arrow α gives rise to a cycle ωα and almost cycle ω′α
by ωα = α · g(α) · . . . · gnα−1(α),

ω′α = α · g(α) · . . . · gnα−2(α),

where nα ≥ 1 is the minimal n ≥ 1 such that gn(α) = α.

•
α

FF

ᾱ

��•

g−1(α)=f−1(ᾱ)
??

•
f−2(ᾱ)=f(ᾱ)
oog−2(α) 88

Note: ω′α is parallel to ᾱ · f(ᾱ).
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Brauer graph algebra

Given a triangulation quiver (Q, f)
and g-invariant multiplicities mα ∈ Z>0, mg(α) = mα, define
the Brauer graph algebra

Γ = KQ/〈ᾱ · f(ᾱ), ωmα
α − ωmᾱ

ᾱ 〉all arrows α.

Γ is:

• finite-dimensional,

• symmetric,

• special biserial, hence of tame representation type.

Example. For a sphere with three punctures, Γ = KA4 if
K is algebraically closed with charK = 2.
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Triangulation algebra

Given a triangulation quiver (Q, f)

and g-invariant multiplicities mα ∈ Z>0, mg(α) = mα, define

the triangulation algebra

Λ = K̂Q/〈ᾱ · f(ᾱ)− ωmα−1
α · ω′α〉all arrows α

(under the admissibility conditions nαmα ≥ 3 for all α).

This concept unifies two classes of algebras:

• Jacobian algebras of quivers with potentials associated

by [Labardini 2009] to triangulations of closed surfaces;

• Erdmann’s algebras of quaternion type.
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Theorem [L.] on triangulation algebras

Let Λ be a triangulation algebra. Then:

(a) Λ is finite-dimensional.

(b) Λ is symmetric.

(c) Λ is of tame representation type.

(d) Λ is 2-CY-tilted, i.e. there is a 2-Calabi-Yau triangu-
lated category C and a cluster-tilting object T in C such
that Λ ' EndC(T ).

(e) Ω4
ΛM 'M for all M ∈ mod Λ.

(f) Any algebra EndC(T
′) for a cluster-tilting object T ′ in C

reachable from T by a sequence of mutations is derived
equivalent to Λ and has the same properties (a)-(e)
above.
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Significance

• New tame symmetric algebras with periodic modules

which seem not to appear in [Erdmann-Skowronski 2006].

• New symmetric 2-CY-tilted algebras, in addition to the

ones arising from odd-dimensional isolated hypersur-

face singularities [Burban-Iyama-Keller-Reiten 2008].

• New proof that the algebras in Erdmann’s lists are of

quaternion type.

• The algebras of quaternion type are 2-CY-tilted.

• The Jacobian algebras arising from triangulations of

closed surfaces [Labardini 2009] are finite-dimensional.

18



From groups to clusters

Remarks on finite-dimensionality

Consider a zig-zag path α · f(α) · g(f(α))

• f(α)
&&

•

•
α

88

•
f2(α)

oo gf(α)

88

Repeatedly invoking the defining commutativity relations
of the algebra Λ, one gets arbitrarily long paths

α · f(α) · gf(α) = . . . · β · g(β) · fg(β) · . . .
= . . . · γ · f(γ) · gf(γ) · . . .
= 0

whose image vanishes since Λ is a quotient of a closure of
an ideal.
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Remarks on being 2-CY-tilted

2-Calabi-Yau triangulated categories with cluster-tilting ob-

ject are generalizations of cluster categories [BMRRT 2006].

They play significant role in the additive categorification

of skew-symmetric cluster algebras.

The 2-CY-tilted algebras are generalizations of cluster-

tilted algebras [Buan-Marsh-Reiten 2006, Keller-Reiten 2007].

Quivers with potentials [Derksen-Weyman-Zelevinsky 2008] can

be used to construct such categories and algebras [Amiot

2009, Keller 2011].
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Potentials

A potential W on a quiver Q is a linear combination of
cycles in K̂Q.

Its Jacobian algebra is the quotient of K̂Q by the closure
of the ideal generated by all the cyclic derivatives of W .

Finite-dimensional Jacobian algebras are 2-CY-tilted.

Example. The triangulation algebra

Λ = K̂Q/〈ᾱ · f(ᾱ)− ωmα−1
α · ω′α〉all arrows α.

is a Jacobian algebra of a potential of the form

W =
∑
β

βf(β)f2(β)−
∑
α

1

mα
ωmα
α

under some restrictions on the characteristic of K.
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Hyperpotentials

Sometimes the characteristic of K does not allow us to
integrate the defining relations of an algebra to a potential.

Example. K[x]/(xp−1) is a Jacobian algebra of a potential
if and only if charK 6= p.

To overcome this problem, we define a hyperpotential as
a collection of elements (ρα)arrows α ⊂ K̂Q such that:

• If i
α−→ j, then ρα is a linear combination of paths from

j to i,

•
∑
α[α, ρα] = 0 in K̂Q.

(i.e. we consider HH1(K̂Q) instead of HH0(K̂Q)).

Observation. All categorical constructions for potentials
carry over to hyperpotentials.
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Remarks on the remaining properties

The property Ω4
ΛM 'M as well as the derived equivalences

in the theorem are true for any algebra Λ which is both

symmetric and 2-CY-tilted.

The derived equivalences between neighboring symmetric

2-CY-tilted algebras are afforded by tilting complexes of

two-term projectives which have many incarnations:

• Okuyama-Rickard complexes;

• Silting mutation [Aihara-Iyama 2012];

• Perverse equivalence [Chuang-Rouquier].
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