From groups to clusters

Sefi Ladkani

Ben-Gurion University of the Negev Be'er Sheva, Israel

http://www.math.uni-bonn.de/people/sefil/

A map of finite-dimensional algebras

Symmetric algebras

A finite-dimensional algebra A over a field K is symmetric if $A \simeq \operatorname{Hom}_{K}(A, K)$ as A-A-bimodules.

Equivalently, there exists a linear form $\lambda \colon A \to K$ such that $\lambda(xy) = \lambda(yx)$ for all $x, y \in A$ and ker λ does not contain any non-zero left ideal of A.

The triangulated category per A of perfect complexes over a symmetric algebra A is 0-Calabi-Yau, i.e.

 $\operatorname{Hom}_{\operatorname{per} A}(X,Y) \simeq D\operatorname{Hom}_{\operatorname{per} A}(Y,X) \qquad X,Y \in \operatorname{per} A$

Periodicity of modules

If A is self-injective, the stable module category $\underbrace{\text{mod} A \simeq \mathcal{D}^b(\text{mod} A)/\text{per} A} \qquad [\text{Rickard 1989}]$ is triangulated with suspension Ω_A^{-1} . $\underbrace{\text{syzygy} \ \Omega_A M \hookrightarrow P_M \twoheadrightarrow M, \ \text{cosyzygy} \ M \hookrightarrow I_M \twoheadrightarrow \Omega_A^{-1}M.$ $M \in \underline{\text{mod}} A \text{ is } \Omega\text{-periodic if } \Omega_A^r M \simeq M \text{ for some } r > 0.$

When A is symmetric,

- $\Omega_A = \tau_A^2$, hence Ω -periodic implies τ -periodic.
- $\underline{\text{mod}} A$ is (-1)-Calabi-Yau, i.e.

<u>Hom</u>_A(M, N) $\simeq D$ <u>Hom</u>_A($N, \Omega_A M$).

Example. $A = K[x]/x^p$, $M = x^i A$, $\Omega_A^2 M \simeq M$ (0 < i < p).

Algebras of quaternion type [Erdmann]

A finite-dimensional algebra A is of quaternion type if:

- *A* is symmetric, indecomposable;
- *A* is of tame representation type;
- $\Omega_A^4 M \simeq M$ for every non-projective A-module M;
- det $C_A \neq 0$.

Erdmann produced a list of the possible quivers and relations of such algebras. In particular,

- The number of simple modules is at most 3.
- Blocks whose defect group is generalized quaternion are of quaternion type.

Triangulation quivers

A triangulation quiver is a pair (Q, f), where

• Q is a finite quiver (directed graph, loops and multiple edges allowed) such that the in-degree and out-degree of each vertex are 2;

- f is a permutation on the arrows of Q such that for each arrow α ,
 - $f(\alpha)$ starts where α ends;

$$-f^3(\alpha)=\alpha.$$

Triangulation quivers (continued)

- $\bar{\alpha}$ is the other arrow starting at the same vertex as α .
- We have another permutation g defined by $g(\alpha) = \overline{f(\alpha)}$.
- $\mathsf{PSL}_2(\mathbb{Z})$ acts on the set of arrows via $\alpha \mapsto f(\alpha)$ and $\alpha \mapsto \overline{\alpha}$.

Example. $\alpha \subset \bullet \supset \beta$, $f(\alpha) = \alpha$, $f(\beta) = \beta$.

Surface triangulations

A marked bordered surface is a pair (S, M) consisting of:

- a compact, connected, oriented surface S (possibly with boundary),
- a finite set $M \subset S$ of *marked points*, containing at least one point on each boundary component of S.

(S, M) is unpunctured if $M \subset \partial S$.

An arc is a path in S whose ends are marked points, considered up to isotopy.

A *triangulation* of (S, M) is a maximal collection of compatible arcs.

Quivers from surface triangulations

A surface triangulation gives rise to a triangulation quiver

- whose *vertices* are the *sides* of the triangles,
- inside each triangle, a 3-cycle of arrows oriented clockwise according to the surface orientation

and $f(\alpha)$ follows α in the cycle,

• at each side on the boundary, a loop β with $f(\beta) = \beta$.

Triangulation vs. adjacency quivers

The construction of a triangulation quiver is inspired from that of the *adjacency quiver* [Fomin-Shapiro-Thurston 2008] of a triangulation, but there are some differences:

- Sides on the boundary are also considered;
- Self-folded triangles are treated differently;
- No removal of 2-cycles.

However, for any "nice" triangulation of a *closed* surface, the triangulation quiver and the adjacency quiver coincide.

Some triangulation quivers

Surface	Triangulation	Quiver
Monogon, unpunctured	1(0	lpha (ullet 1) eta (\alpha)(\beta)
Monogon,		$\alpha(\bullet_1 \underbrace{\overset{\gamma}{\overleftarrow{\beta}}}_{\beta} \bullet_2)\eta$
one puncture	2	$(lphaeta\gamma)(\eta)$
Triangle,	$1^{\bigcirc}2$	$\begin{array}{c} \alpha_{3} \\ \beta_{3} \\ \alpha_{1} \\ \bullet_{1} \\ \hline \beta_{1} \\ \hline \beta_{1} \\ \bullet_{2} \\ \end{pmatrix} \alpha_{2} \\ \alpha_{2} \\ \end{array}$
unpunctured		$(\alpha_1)(\alpha_2)(\alpha_3)(\beta_1\beta_2\beta_3)$

Path algebras of quivers

Q – quiver, K – field.

The *path algebra* KQ is the *K*-algebra

- spanned by all paths in Q,
- with multiplication given by composition of paths.

The complete path algebra \widehat{KQ} is the completion of KQ with respect to the ideal generated by all arrows. It is a topological algebra.

Example. • $\Im x$. The path algebra is K[x], its completion is K[[x]].

Algebras from triangulation quivers

Let (Q, f) be a triangulation quiver.

Any arrow α gives rise to a cycle ω_{α} and almost cycle ω'_{α} by $\omega_{\alpha} = \alpha \cdot g(\alpha) \cdot \ldots \cdot g^{n_{\alpha}-1}(\alpha),$ $\omega'_{\alpha} = \alpha \cdot g(\alpha) \cdot \ldots \cdot g^{n_{\alpha}-2}(\alpha),$

where $n_{\alpha} \geq 1$ is the minimal $n \geq 1$ such that $g^n(\alpha) = \alpha$.

Note: ω'_{α} is parallel to $\bar{\alpha} \cdot f(\bar{\alpha})$.

Brauer graph algebra

Given a triangulation quiver (Q, f)and *g*-invariant *multiplicities* $m_{\alpha} \in \mathbb{Z}_{>0}$, $m_{g(\alpha)} = m_{\alpha}$, define the *Brauer graph algebra*

$$\Gamma = KQ/\langle \bar{\alpha} \cdot f(\bar{\alpha}), \omega_{\alpha}^{m_{\alpha}} - \omega_{\bar{\alpha}}^{m_{\bar{\alpha}}} \rangle_{\text{all arrows } \alpha}.$$

☐ is:

- finite-dimensional,
- symmetric,
- special biserial, hence of tame representation type.

Example. For a sphere with three punctures, $\Gamma = KA_4$ if *K* is algebraically closed with char K = 2.

Triangulation algebra

Given a triangulation quiver (Q, f)and *g*-invariant *multiplicities* $m_{\alpha} \in \mathbb{Z}_{>0}$, $m_{g(\alpha)} = m_{\alpha}$, define the *triangulation algebra*

$$\Lambda = \widehat{KQ} / \overline{\langle \bar{\alpha} \cdot f(\bar{\alpha}) - \omega_{\alpha}^{m_{\alpha}-1} \cdot \omega_{\alpha}' \rangle}_{\text{all arrows } \alpha}$$

(under the admissibility conditions $n_{\alpha}m_{\alpha} \geq 3$ for all α).

This concept unifies two classes of algebras:

- Jacobian algebras of quivers with potentials associated by [Labardini 2009] to triangulations of closed surfaces;
- Erdmann's algebras of quaternion type.

Theorem [L.] on triangulation algebras

- Let Λ be a triangulation algebra. Then:
- (a) Λ is finite-dimensional.
- (b) Λ is symmetric.
- (c) Λ is of tame representation type.
- (d) Λ is 2-CY-tilted, i.e. there is a 2-Calabi-Yau triangulated category C and a cluster-tilting object T in C such that $\Lambda \simeq \operatorname{End}_{\mathcal{C}}(T)$.
- (e) $\Omega^4_{\Lambda}M \simeq M$ for all $M \in \underline{\text{mod}} \Lambda$.
- (f) Any algebra $\operatorname{End}_{\mathcal{C}}(T')$ for a cluster-tilting object T' in \mathcal{C} reachable from T by a sequence of mutations is *derived equivalent* to Λ and has the same properties (a)-(e) above.

Significance

- New tame symmetric algebras with periodic modules which seem not to appear in [Erdmann-Skowronski 2006].
- New symmetric 2-CY-tilted algebras, in addition to the ones arising from odd-dimensional isolated hypersurface singularities [Burban-Iyama-Keller-Reiten 2008].
- New proof that the algebras in Erdmann's lists are of quaternion type.
- The algebras of quaternion type are 2-CY-tilted.
- The Jacobian algebras arising from triangulations of closed surfaces [Labardini 2009] are finite-dimensional.

Remarks on finite-dimensionality

Consider a *zig-zag* path $\alpha \cdot f(\alpha) \cdot g(f(\alpha))$

Repeatedly invoking the defining commutativity relations of the algebra Λ , one gets arbitrarily long paths

$$\alpha \cdot f(\alpha) \cdot gf(\alpha) = \dots \cdot \beta \cdot g(\beta) \cdot fg(\beta) \cdot \dots$$
$$= \dots \cdot \gamma \cdot f(\gamma) \cdot gf(\gamma) \cdot \dots$$
$$= 0$$

whose image vanishes since Λ is a quotient of a closure of an ideal.

Remarks on being 2-CY-tilted

2-Calabi-Yau triangulated categories with cluster-tilting object are generalizations of *cluster categories* [BMRRT 2006].

They play significant role in the additive categorification of skew-symmetric cluster algebras.

The 2-CY-tilted algebras are generalizations of *clustertilted algebras* [Buan-Marsh-Reiten 2006, Keller-Reiten 2007].

Quivers with potentials [Derksen-Weyman-Zelevinsky 2008] can be used to construct such categories and algebras [Amiot 2009, Keller 2011].

Potentials

A *potential* W on a quiver Q is a linear combination of cycles in \widehat{KQ} .

Its Jacobian algebra is the quotient of \widehat{KQ} by the closure of the ideal generated by all the cyclic derivatives of W.

Finite-dimensional Jacobian algebras are 2-CY-tilted.

Example. The triangulation algebra

$$\Lambda = \widehat{KQ} / \overline{\langle \bar{\alpha} \cdot f(\bar{\alpha}) - \omega_{\alpha}^{m_{\alpha}-1} \cdot \omega_{\alpha}' \rangle}_{\text{all arrows } \alpha}.$$

is a Jacobian algebra of a potential of the form

$$W = \sum_{\beta} \beta f(\beta) f^{2}(\beta) - \sum_{\alpha} \frac{1}{m_{\alpha}} \omega_{\alpha}^{m_{\alpha}}$$

under some restrictions on the characteristic of K.

Hyperpotentials

Sometimes the characteristic of K does not allow us to integrate the defining relations of an algebra to a potential. **Example.** $K[x]/(x^{p-1})$ is a Jacobian algebra of a potential if and only if char $K \neq p$.

To overcome this problem, we define a hyperpotential as a collection of elements $(\rho_{\alpha})_{\text{arrows }\alpha} \subset \widehat{KQ}$ such that:

- If $i \xrightarrow{\alpha} j$, then ρ_{α} is a linear combination of paths from j to i,
- $\sum_{\alpha} [\alpha, \rho_{\alpha}] = 0$ in \widehat{KQ} .

(i.e. we consider $HH_1(\widehat{KQ})$ instead of $HH_0(\widehat{KQ})$).

Observation. All categorical constructions for potentials carry over to hyperpotentials.

Remarks on the remaining properties

The property $\Omega_{\Lambda}^4 M \simeq M$ as well as the derived equivalences in the theorem are true for any algebra Λ which is both symmetric and 2-CY-tilted.

The derived equivalences between neighboring symmetric 2-CY-tilted algebras are afforded by tilting complexes of two-term projectives which have many incarnations:

- Okuyama-Rickard complexes;
- Silting mutation [Aihara-Iyama 2012];
- Perverse equivalence [Chuang-Rouquier].