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Symmetric algebras

A finite-dimensional algebra A over a field K is symmetric
if A~ Hompg (A, K) as A-A-bimodules.

Equivalently, there exists a linear form A: A — K such that
AMxy) = Ayzx) for all z,y € A and ker A does not contain
any non-zero left ideal of A.

The triangulated category per A of perfect complexes over
a symmetric algebra A is O-Calabi-Yau, i.e.
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Periodicity of modules

If A is self-injective, the stable module category

mod A ~ D’(mod A) /per A [Rickard 1989]
IS triangulated with suspension Qzl.
syzygy QQ2aM — Py — M, cosyzygy M — Iy —» QZlM.
M € mod A is Q2-periodic if 2"y M ~ M for some r > 0.

When A is symmetric,
e 24 =72, hence Q-periodic implies T-periodic.
e mod A is (—1)-Calabi-Yau, i.e.
Hom 4 (M, N) ~ DHom 4 (N, Q2 4 M).

Example. A = K[z]/zP, M = 2'A, Q3M ~ M (0 <i < p).
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Algebras of quaternion type [Erdmann]

A finite-dimensional algebra A is of quaternion type if:
e A is symmetric, indecomposable;
e A is of tame representation type;
° QjM ~ M for every non-projective A-module M:;
e det(Cy # 0.

Erdmann produced a list of the possible quivers and rela-
tions of such algebras. In particular,

e T he number of simple modules is at most 3.

e Blocks whose defect group is generalized quaternion
are of quaternion type.
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Triangulation quivers

A triangulation quiver is a pair (Q, f), where

e () is a finite quiver (directed graph, loops and multiple
edges allowed) such that the in-degree and out-degree
of each vertex are 2;

~.,

T

e f is a permutation on the arrows of () such that for
each arrow «a,

— f(«) starts where o ends;

— 3(a) = a.
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Triangulation quivers (continued)

S L
R / f(a)

° IS the other arrow starting at the same vertex as o.
e We have another permutation g defined by g(a) = f(«).

e PSL,(Z) acts on the set of arrows via a — f(«a) and

a — Q.

Example. aCe)p, f(a) =, f(B) = B.
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Surface triangulations

A marked bordered surface is a pair (S, M) consisting of:

e a compact, connected, oriented surface S
(possibly with boundary),

e a finite set M C S of marked points, containing at least
one point on each boundary component of S.

(S, M) is unpunctured if M C 0S.

An arc is a path in S whose ends are marked points,
considered up to isotopy.

A triangulation of (S, M) is
a maximal collection of compatible arcs.
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Quivers from surface triangulations

A surface triangulation gives rise to a triangulation quiver

whose vertices are the sides of the triangles,

inside each triangle, a 3-cycle of arrows oriented clock-
wise according to the surface orientation

/o ®; (@)
i\o)’“ |

1
and f(«) follows « in the cycle,

®k

at each side on the boundary, a loop 8 with f(8) = 8.
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Triangulation vs. adjacency quivers

The construction of a triangulation quiver is inspired from
that of the adjacency quiver [Fomin-Shapiro-Thurston 2008] of
a triangulation, but there are some differences:

e Sides on the boundary are also considered;
e Self-folded triangles are treated differently;
e NO removal of 2-cycles.

However, for any “nice” triangulation of a closed surface,
the triangulation quiver and the adjacency quiver coincide.
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Some triangulation quivers

Surface Triangulation Quiver
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Surface Triangulation Quiver
Sphere, / %&B\\
three punctures (a1a2a3)(53/3261)
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Path algebras of quivers
() — quiver, K — field.

The path algebra K@ is the K-algebra
e spanned by all paths in @,
e Wwith multiplication given by composition of paths.

The complete path algebra KQ is the completion of KQ
with respect to the ideal generated by all arrows. It is a
topological algebra.

Example. e)z. The path algebra is K[xz], its completion
is K[[x]].
13
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Algebras from triangulation quivers
Let (Q, f) be a triangulation quiver.

Any arrow « gives rise to a cycle wo and almost cycle wg
by wa = a - g(a) ....~gna—;<a>,
wo = gla) ... g" % (),

where nq > 1 is the minimal n > 1 such that ¢"(«a) = «.

/

g‘l(a)zfl(y Y

2
S

Note: W/, is parallel to a- f(a).
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Brauer graph algebra

Given a triangulation quiver (Q, f)
and g-invariant multiplicities mq € Z~q, Mg(q) = Ma, define
the Brauer graph algebra

[ = KQ/<54 : f(&)awgla — Wg&>all arrows «-
[ is:
e finite-dimensional,
e symmetric,

e sSpecial biserial, hence of tame representation type.

Example. For a sphere with three punctures, [ = KA, if
K is algebraically closed with char K = 2.
15
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Triangulation algebra

Given a triangulation quiver (Q, f)
and g-invariant multiplicities mq € Z~q, Mg(q) = Ma, define
the triangulation algebra

T _ a—1
N=KQ/{a- f(a)— wa' ‘ W/o)all arrows «

(under the admissibility conditions nqamea > 3 for all a).

T his concept unifies two classes of algebras:

e Jacobian algebras of quivers with potentials associated
by [Labardini 2009] to triangulations of closed surfaces;

e Erdmann’s algebras of quaternion type.
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Theorem [L.] on triangulation algebras

Let A be a triangulation algebra. Then:

(2)
(b)
(c)
(d)

(e)
(f)

A is finite-dimensional.
/\ IS symmetric.
/\ is of tame representation type.

N\ is 2-CY-tilted, i.e. there is a 2-Calabi-Yau triangu-
lated category C and a cluster-tilting object T' in C such
that A ~ Endc(T).

QAM ~ M for all M € modA.

Any algebra Endg(T") for a cluster-tilting object 77 in C
reachable from T by a sequence of mutations is derived
equivalent to A and has the same properties (a)-(e)
above.
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Significance
e New tame symmetric algebras with periodic modules
which seem not to appear in [Erdmann-Skowronski 2006].

e New symmetric 2-CY-tilted algebras, in addition to the
ones arising from odd-dimensional isolated hypersur-
face singularities [Burban-lyama-Keller-Reiten 2008].

e New proof that the algebras in Erdmann’s lists are of
quaternion type.

e [ he algebras of quaternion type are 2-CY-tilted.

e [ he Jacobian algebras arising from triangulations of
closed surfaces [Labardini 2009] are finite-dimensional.

18
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Remarks on finite-dimensionality

Consider a zig-zag path o f(«a) - g(f(«))

%‘ ()
o o 9/(c)

Repeatedly invoking the defining commutativity relations
of the algebra A, one gets arbitrarily long paths

a- f(a) gf(a) =...-8-9(B)- fg(B) ...
vy f) g f(y) -
=0

whose image vanishes since A is a quotient of a closure of
an ideal.
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Remarks on being 2-CY-tilted

2-Calabi-Yau triangulated categories with cluster-tilting ob-
ject are generalizations of cluster categories [BMRRT 2006].

They play significant role in the additive categorification

of skew-symmetric cluster algebras.

The 2-CY-tilted algebras are generalizations of cluster-
tilted algebras [Buan-Marsh-Reiten 2006, Keller-Reiten 2007].

Quivers with potentials [Derksen-Weyman-Zelevinsky 2008] can

be used to construct such categories and algebras [Amiot
2009, Keller 2011].
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Potentials

A potential W on a quiver ( is a linear combination of
cycles in KQ).

Its Jacobian algebra is the quotient of @ by the closure
of the ideal generated by all the cyclic derivatives of W.

Finite-dimensional Jacobian algebras are 2-CY-tilted.

Example. The triangulation algebra

A=KQ/@- f(@) —who 1w

a>a|l arrows o
iIs a Jacobian algebra of a potential of the form

W= BF(8)2(B) — 3 ——wme
B

under some restrictions on the characteristic of K.
21
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Hyperpotentials

Sometimes the characteristic of K does not allow us to
integrate the defining relations of an algebra to a potential.

Example. K[z]/(zP~1) is a Jacobian algebra of a potential
if and only if char K # p.

To overcome this problem, we define a/ﬁyperpotentia/ as
a collection of elements (pa)arrows o C K@ such that:

o If 2 &j, then po is a linear combination of paths from
7 to 1,
® Za[aapa] — O iﬂ @
(i.e. we consider HH1(KQ) instead of HHg(KQ)).

Observation. All categorical constructions for potentials
carry over to hyperpotentials.
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Remarks on the remaining properties

The property Qj*\M ~ M as well as the derived equivalences
in the theorem are true for any algebra A which is both
symmetric and 2-CY-tilted.

The derived equivalences between neighboring symmetric
2-CY-tilted algebras are afforded by tilting complexes of
two-term projectives which have many incarnations:

e Okuyama-Rickard complexes;
e Silting mutation [Aihara-Iyama 2012];

e Perverse equivalence [Chuang-Rouquier].
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