Langlands Duality and *T*-Duality

Thomas Nikolaus Mathematical Institute of the University of Bonn

SPP 1388 Meeting 2015 mostly joint work with Ulrich Bunke

Theorem (Daenzer-van Erp, Bunke-N.)

G: compact Lie group, without B,C factors

G^L: Langlands dual Lie group

Then G and G^L are (topologically) T-dual to each other.

Dual Tori

$$T$$
: Torus (abelian, compact, connected Lie group)
$$T\cong V/\Gamma\cong U(1)^n.$$

 \hat{T} : dual torus

$$\hat{T} := \operatorname{Hom} \bigl(H_1 \, T, \, U(1) \bigr) \cong V^* / \Gamma^* \cong U(1)^n$$

Dual Tori

T: Torus

(abelian, compact, connected Lie group)

$$T\cong V/\Gamma\cong U(1)^n$$
.

 \hat{T} : dual torus

$$\hat{\mathcal{T}}:=\operatorname{Hom}\big(H_1\,\mathcal{T},\,U(1)\big)\cong V^*/\Gamma^*\cong U(1)^n$$

Dual Tori

(abelian, compact, connected Lie group)

$$T\cong V/\Gamma\cong U(1)^n$$
.

 \hat{T} : dual torus

$$\hat{T} := \operatorname{Hom}(H_1T, U(1)) \cong V^*/\Gamma^* \cong U(1)^n$$

Example $\begin{array}{c} P & \text{Poincar\'e bundle} \\ \downarrow & \\ T \times \hat{T} \\ q \end{array}$

$$c_1(P) = \sum_{i=1}^n \theta_i \cup \hat{\theta}_i$$

$$\theta_i \in H^1(T)\,\hat{\theta}_i \in H^1(\hat{T})$$

Isomorphisms

$$K^{*}(T) \cong K^{*-\dim \hat{T}}(\hat{T}) \qquad \qquad \alpha \mapsto q_{!}(p^{*}\alpha \cup [P])$$

$$HP^{*}(T, \mathbb{Q}) \cong HP^{*-\dim \hat{T}}(\hat{T}, \mathbb{Q}) \qquad \qquad \alpha \mapsto q_{!}(p^{*}\alpha \cup \operatorname{ch}[P])$$

$$D(\operatorname{Sky} T) \cong D(\operatorname{Loc} \hat{T}) \qquad \qquad \alpha \mapsto q_{*}(p^{*}\alpha \otimes P)$$

Parametrised version: T-Duality

Parametrised version: T-Duality

<u>Problem:</u> The bundles E and \hat{E} have to be trivial!

Parametrised version: T-Duality

Problem: The bundles E and \hat{E} have to be trivial! Solution: Allow twisted Poincaré bundle.

Twists and twisted vector bundles

- ullet A twist over M is a U(1)-gerbe $\mathcal{G} o M$ (classified by $\check{H}^2(M,U(1))\cong H^3(M,\mathbb{Z})$)
- For simplicity: open covering $\{U_i\}$ + cech 2-cocycle

$$g_{ijk}:U_i\cap U_j\cap U_k\to U(1)$$

Twists and twisted vector bundles

- ullet A twist over M is a U(1)-gerbe $\mathcal{G} o M$ (classified by $\check{H}^2(M,U(1))\cong H^3(M,\mathbb{Z})$)
- For simplicity: open covering $\{U_i\}$ + cech 2-cocycle

$$g_{ijk}:U_i\cap U_j\cap U_k\to U(1)$$

- A twisted vector bundle is given by
 - **1** vector bundles $L_i \rightarrow U_i$
 - 2 transition functions $\varphi_{ij}: L_i|_{U_i} \to L_j|_{U_i}$
- Twisted K-theory $K^0_{\mathfrak{S}}(M)$: Grothendieck group of twisted vector bundles

T-Duality

Definition (Mathai et al., Bunke-Schick,...)

A T-Duality is a diagram

T-Duality

Definition (Mathai et al., Bunke-Schick,...)

A T-Duality is a diagram

Warning

 (E, \mathfrak{G}) does not determine $(\hat{E}, \hat{\mathfrak{G}})$.

1
$$(S^3,0) \sim_T (S^2 \times S^1,1)$$

- **1** $(L(p,1),q) \sim_T (L(q,1),p)$
- **5** $(S^3,2) \sim_T (\mathbb{R}P^3,1)$

- **1** $(L(p,1),q) \sim_T (L(q,1),p)$
- **5** $(S^3,2) \sim_T (\mathbb{R}P^3,1)$
- **1** $(SU(2),2) \sim_T (SO(3),1)$

Physical interpretation/motivation: $(E, T) \sim_T (\hat{E}, \hat{T})$ \sim WZW models with target E and \hat{E} are equivalent

Consequences

Theorem

For
$$(E, \mathcal{G}) \sim_T (\hat{E}, \hat{\mathcal{G}})$$
 we have isomorphism

$$K_{\mathfrak{G}}^*(E) \xrightarrow{\sim} K_{\hat{\mathfrak{G}}}^{*-\dim \hat{T}}(\hat{E})$$

$$H\!P_{\mathfrak{G}}^*(E,\mathbb{Q})\xrightarrow{\sim} H\!P_{\hat{\mathfrak{G}}}^{*-dim\;\hat{T}}(\hat{E},\mathbb{Q})$$

Consequences

Theorem

For
$$(E, \mathfrak{G}) \sim_T (\hat{E}, \hat{\mathfrak{G}})$$
 we have isomorphism

$$K_{\mathfrak{G}}^*(E) \xrightarrow{\sim} K_{\hat{\mathfrak{G}}}^{*-\dim \hat{T}}(\hat{E})$$

(Bunke-Schick)

$$HP_{\mathfrak{G}}^{*}(E,\mathbb{Q}) \xrightarrow{\sim} HP_{\hat{\mathfrak{G}}}^{*-dim\;\hat{T}}(\hat{E},\mathbb{Q})$$

(Mathai-Rosenberg)

Example

- $\bullet \ \ \mathcal{K}^0_{[1]}(S^2\times S^1)\cong \mathcal{K}^1(S^3)\cong \mathbb{Z}$
- $K^1_{[1]}(SO(3)) \cong K^0_{[2]}(SU(2)) \cong \mathbb{Z}/2$

Consequences

Theorem

For $(E, \mathfrak{G}) \sim_{\mathcal{T}} (\hat{E}, \hat{\mathfrak{G}})$ we have isomorphism

$$\mathcal{K}_{\mathfrak{G}}^*(E) \xrightarrow{\sim} \mathcal{K}_{\hat{\mathfrak{G}}}^{*-dim \, \hat{T}}(\hat{E})$$

(Bunke-Schick)

$$HP_{\mathfrak{G}}^{*}(E,\mathbb{Q}) \xrightarrow{\sim} HP_{\hat{\mathfrak{G}}}^{*-dim\;\hat{T}}(\hat{E},\mathbb{Q})$$

(Mathai-Rosenberg)

Example

- $\bullet \ \ \mathcal{K}^0_{[1]}(S^2\times S^1)\cong \mathcal{K}^1(S^3)\cong \mathbb{Z}$
- $K^1_{[1]}(SO(3)) \cong K^0_{[2]}(SU(2)) \cong \mathbb{Z}/2$

Theorem

$$D(\operatorname{Sky}_{\mathfrak{S}} T) \xrightarrow{\sim} D(\operatorname{Loc}_{\hat{\mathfrak{G}}} \hat{T})$$

(Ruderer)

$$\widehat{K}_{\mathfrak{S}}^{*}(E) \xrightarrow{\sim} \widehat{K}_{\hat{\mathfrak{S}}}^{*-\dim \hat{T}}(\hat{E})$$

(Kahle-Valentino)

Theorem (Daenzer-van Erp, Bunke-N.)

G: compact Lie group, without B,C factors

G^L: Langlands dual Lie group

Then

$$(G,\mathfrak{G})\sim_{\mathcal{T}}(G^L,\hat{\mathfrak{G}})$$

for suitable \mathfrak{G} and $\hat{\mathfrak{G}}$.

Then

Theorem (Daenzer-van Erp, Bunke-N.)

G: compact Lie group, without B,C factors G^L : Langlands dual Lie group

$$(G, \mathfrak{G}) \sim_{\mathcal{T}} (G^L, \hat{\mathfrak{G}})$$

for suitable \mathfrak{G} and $\hat{\mathfrak{G}}$.

Example

- $(SU(n), 2) \simeq_T (PU(n), 1)$
- $(E_8,1) \simeq_T (E_8,1)$

Theorem (Daenzer-van Erp, Bunke-N.)

 $G: compact \ Lie \ group, \ without \ B,C \ factors \ G^L: \ Langlands \ dual \ Lie \ group \ Then$

$$(G,\mathfrak{G})\sim_{\mathcal{T}}(G^L,\hat{\mathfrak{G}})$$

for suitable \mathfrak{G} and $\hat{\mathfrak{G}}$.

Example

- $(SU(n), 2) \simeq_T (PU(n), 1)$
- $(E_8,1) \simeq_T (E_8,1)$

Corollary

$$K^{*+\hat{g}}(G) \cong K^{*-\operatorname{rank} G + \hat{g}}(G^L)$$

General Method: $E \rightarrow B$ torus $T = V/\Gamma$ bundle, Leray-Serre:

$$H^p(B) \otimes \Lambda^q(\Gamma^*) \Rightarrow H^{p+q}(E)$$

$$\mathfrak{G} \to E$$
 twist, $[\mathfrak{G}] \in H^3(E)$

General Method: $E \rightarrow B$ torus $T = V/\Gamma$ bundle, Leray-Serre:

$$H^p(B) \otimes \Lambda^q(\Gamma^*) \Rightarrow H^{p+q}(E)$$

 $\mathfrak{G} \to E$ twist, $[\mathfrak{G}] \in H^3(E)$

Lemma

- (E, \mathfrak{G}) admits T-dual $\Leftrightarrow [\mathfrak{G}] \in F^2H^3(E)$
- $\left\{T\text{-duals for }(\hat{E},\hat{\S})\right\}$ $\stackrel{1-1}{\longleftrightarrow} \left\{Representatives (e,f) \text{ for } [\S] \text{ in } H^3B \oplus H^2B \otimes \Gamma^*\right\}$
- $c_i \hat{E} = f(\theta_i)$

- ullet G compact Lie, $\mathcal{T}\subset G$ maximal torus
- $R \subset t^*$ roots, $C \subset t$ coroots
- $\Gamma^* = \operatorname{Hom}(T, U(1)) = H^1 T$ weight lattice
- $\Gamma = \operatorname{Hom}(U(1), T) = H_1 T$ coweight lattice

- ullet G compact Lie, $\mathcal{T}\subset G$ maximal torus
- $R \subset t^*$ roots, $C \subset t$ coroots
- $\Gamma^* = \operatorname{Hom}(T, U(1)) = H^1 T$ weight lattice
- $\Gamma = \operatorname{Hom}(U(1), T) = H_1 T$ coweight lattice
- $(C \subset \Gamma, R \subset \Gamma^*)$ root datum of G(aside: $\pi_1(G) = \Gamma/C$, $ZG = (\Gamma^*/R)^*$)
- $(R \subset \Gamma^*, C \subset \Gamma)$ root datum of G^L

- ullet G compact Lie, $T\subset G$ maximal torus
- $R \subset t^*$ roots, $C \subset t$ coroots
- $\Gamma^* = \operatorname{Hom}(T, U(1)) = H^1 T$ weight lattice
- $\Gamma = \operatorname{Hom}(U(1), T) = H_1 T$ coweight lattice
- $(C \subset \Gamma, R \subset \Gamma^*)$ root datum of G(aside: $\pi_1(G) = \Gamma/C$, $ZG = (\Gamma^*/R)^*$)
- $(R \subset \Gamma^*, C \subset \Gamma)$ root datum of G^L

Facts

• H*(B) torsion free, even

$$H^2B = \Gamma_C^*$$
 $H^4B = \operatorname{Sym}^2(\Gamma_C)_W^*$

- ullet G compact Lie, $\mathcal{T}\subset G$ maximal torus
- $R \subset t^*$ roots, $C \subset t$ coroots
- $\Gamma^* = \operatorname{Hom}(T, U(1)) = H^1 T$ weight lattice
- $\Gamma = \operatorname{Hom}(U(1), T) = H_1 T$ coweight lattice
- $(C \subset \Gamma, R \subset \Gamma^*)$ root datum of G(aside: $\pi_1(G) = \Gamma/C$, $ZG = (\Gamma^*/R)^*$)
- $(R \subset \Gamma^*, C \subset \Gamma)$ root datum of G^L

Facts

• $H^*(B)$ torsion free, even

$$H^2B = \Gamma_C^*$$
 $H^4B = \operatorname{Sym}^2(\Gamma_C)_W^*$

- If G has no B, C factors

 - $\exists G/T \xrightarrow{\sim} G^L/T^L$

Take element in $\Gamma_C^* \otimes \Gamma^* = \operatorname{Hom}(\Gamma_C, \Gamma^*)$ induced by

$$C \longrightarrow \Gamma \longrightarrow \mathfrak{t}$$

$$\downarrow^{f|_C} \qquad \qquad \downarrow^{f}$$

$$R \longrightarrow \Gamma^* \longrightarrow \mathfrak{t}^*$$

Thomas Nikolaus

Langlands Duality and T-Duality

Questions

• G simple, simply connected $H^3(G,\mathbb{Z})=\mathbb{Z}=$ Cohomology of sequence

$$\Lambda^2\Gamma^*\to\Gamma^*\otimes\Gamma^*\to\mathrm{Sym}^2(\Gamma_C)_W^*$$

Level of $f \in \Gamma_* \otimes \Gamma_*$?

- Why is T-dual of $G \to G/T$ a group?
- Relation to geometric Langlands correspondences?

T-Duality isomorphisms

Question: T-Duality isomorphisms in other cohomology theories?

T-Duality isomorphisms

Question: T-Duality isomorphisms in other cohomology theories?

Proposition

Every cohomology theory E* which admits T-Duality isomorphisms can be expressed in terms of complex K-theory. More precisely: E is a KU-module spectrum.

Proof uses Snaith's Theorem $\Sigma^{\infty}_+ K(\mathbb{Z},2)[b^{-1}] \simeq KU$.

T-Duality isomorphisms

Question: T-Duality isomorphisms in other cohomology theories?

Proposition

Every cohomology theory E* which admits T-Duality isomorphisms can be expressed in terms of complex K-theory. More precisely: E is a KU-module spectrum.

Proof uses Snaith's Theorem $\Sigma^{\infty}_+ K(\mathbb{Z},2)[b^{-1}] \simeq KU$.

Corollary

There is an equivalence of categories between

{Cohomology theories with T-Duality isomorphisms}

and

$$D(\mathbb{Z}[b, b^{-1}]) \leftarrow derived \ category, |b| = 2$$

Thomas Nikolaus

- M: manifold, dimension $n \le 6$, framed
- [M] element in $\Omega_n^{fr} \cong \pi_n^{st}$

- M: manifold, dimension $n \le 6$, framed
- [M] element in $\Omega_n^{fr} \cong \pi_n^{st}$
- $H \in H^3(E) \rightsquigarrow$ new framing $M_H \in \Omega_n^{fr}$ since:

$$H^3(M) \cong [M, K(\mathbb{Z}, 3)] \cong [M, \operatorname{Spin}_{\infty}] \to [M, O_{\infty}]$$

- M: manifold, dimension $n \le 6$, framed
- [M] element in $\Omega_n^{fr} \cong \pi_n^{st}$
- $H \in H^3(E) \rightsquigarrow$ new framing $M_H \in \Omega_n^{fr}$ since:

$$H^3(M)\cong [M,K(\mathbb{Z},3)]\cong [M,\mathrm{Spin}_\infty]\to [M,\mathcal{O}_\infty]$$

Theorem (N.)

Assume $(E, \mathcal{G}) \sim_T (\hat{E}, \hat{\mathcal{G}})$ over B, B stably framed, dim $E \leq 6$. Then

$$E_{[\mathfrak{G}]} = \hat{E}_{[\hat{\mathfrak{G}}]} \qquad \in \Omega^{fr}_*$$

- M: manifold, dimension $n \le 6$, framed
- [M] element in $\Omega_n^{fr} \cong \pi_n^{st}$
- $H \in H^3(E) \rightsquigarrow$ new framing $M_H \in \Omega_n^{fr}$ since:

$$H^3(M)\cong [M,K(\mathbb{Z},3)]\cong [M,\mathrm{Spin}_\infty]\to [M,\mathcal{O}_\infty]$$

Theorem (N.)

Assume $(E, \mathcal{G}) \sim_T (\hat{E}, \hat{\mathcal{G}})$ over B, B stably framed, dim $E \leq 6$. Then

$$E_{[\mathfrak{G}]} = \hat{E}_{[\hat{\mathfrak{G}}]} \qquad \in \Omega^{fr}_*$$

Example

$$(SU(2), 2) \sim_T (SO(3), 1)$$
 over S^2
 $\Omega_3^{fr} \cong \pi_3^{st} \cong \mathbb{Z}/24\nu$
 $SU(2)_2 = \nu + 2\nu$
 $SO(3)_1 = 2\nu + \nu$

Generalization

- $\mathcal{E} \to \operatorname{Spec} R$ elliptic curve with certain properties \leadsto elliptic cohomology theory
- 'Universal' elliptic curve over $\overline{\mathcal{M}}_{ell}$ \sim cohomology theory tmf (topological modular forms)

Generalization

- $\mathcal{E} \to \operatorname{Spec} R$ elliptic curve with certain properties \leadsto elliptic cohomology theory
- 'Universal' elliptic curve over $\overline{\mathbb{M}}_{ell}$ \sim cohomology theory tmf (topological modular forms)
- ullet $\pi_*(\mathrm{tmf})$ known, but complicated (at p=2,3)
- $\pi_*(\operatorname{tmf}) \cong \pi_*^{st}$ for $* \leq 6$
- \exists morphism $\sigma: H^3(M) \to \operatorname{tmf}^0(M)$ $\sigma(a+b) = \sigma(a) \cdot \sigma(b)$

Generalization

- $\mathcal{E} \to \operatorname{Spec} R$ elliptic curve with certain properties \leadsto elliptic cohomology theory
- 'Universal' elliptic curve over $\overline{\mathbb{M}}_{\textit{ell}}$ \leadsto cohomology theory tmf (topological modular forms)
- ullet $\pi_*(\mathrm{tmf})$ known, but complicated (at p=2,3)
- $\pi_*(\operatorname{tmf}) \cong \pi_*^{st}$ for $* \leq 6$
- \exists morphism $\sigma: H^3(M) \to \operatorname{tmf}^0(M)$ $\sigma(a+b) = \sigma(a) \cdot \sigma(b)$

Conjecture (N.)

For $(E, \mathcal{G}) \sim_T (\hat{E}, \hat{\mathcal{G}})$ over B, the classes

$$\int_{E/B} \sigma(\S)$$
 and $\int_{\hat{E}/B} \sigma(\hat{\S})$

in $tmf^{-\dim T}(B)$ agree.