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Introduction: multiplicity-free manifolds

K = connected compact Lie group,

M = compact multiplicity-free Hamiltonian manifold,
P(M) = moment polytope of M,

Theorem (Knop)

P(M) and the principal isotropy group determine M uniquely.

Problem: given P polytope,

1 decide whether ∃M with P = P(M),

2 describe M.
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The local problem

The problem is local in P (as for Delzant polytopes):
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= Γ

Then Γ must be the weight monoid of a smooth affine spherical
variety, which gives a “local model” of M.

G = connected reductive algebraic group /C
X = smooth affine spherical G -variety, Γ(X ) = its weight monoid

“Local” problem: given Γ monoid of dominant weights,
1 decide whether ∃X with Γ = Γ(X ),

2 describe X .
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The local problem

“Local” problem: given Γ monoid of dominant weights,

1 decide whether ∃X with Γ = Γ(X ),

2 describe X .

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1),

and provides the Luna-Vust invariants of X .

The criterion is quite involved due to a lack of an easy smoothness
criterion for spherical varieties.
Example: G = SL(2), X exists if and only if

1 Γ = Λ+ = Γ(C2),

2 Γ = 2Λ+

= Γ(G/T ), and 2ω ∈ Σ(G/T ),

3 Γ = 4Λ+

= Γ(G/NGT ), and 4ω ∈ Σ(G/NGT ).
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The moduli space

Question: what about other varieties Y with Γ(Y ) = Γ(X ) ?

Theorem (Losev, 2007)

X is the unique smooth one.

Since X is smooth, it corresponds to a general point of an
irreducible component of the moduli space MΓ.

Conjecture

MΓ is irreducible if it has a point corresponding to a smooth variety.

Theorem (P., 2015)

The conjecture is true if X is factorial,

or if X = G/H is
homogeneous.
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From the invariants to X

Problem: Extract (geometrical) information on X from its
Luna-Vust invariants.

Recall:

Luna-Vust invariants =

Homogeneous spherical datum
(determines the open G -orbit G/H ⊆ X )

+
colored fan (given G/H, determines X )

Theorem (Bravi, P., 2011)

For any homogeneous spherical datum, there exists a corresponding
G/H, and the subgroup H can be described explicitely.

The description of H rests ultimately on a list of ∼ 30 basic cases.

Guido Pezzini Spherical varieties Part II



From the invariants to X

Problem: Extract (geometrical) information on X from its
Luna-Vust invariants.
Recall:

Luna-Vust invariants =

Homogeneous spherical datum
(determines the open G -orbit G/H ⊆ X )

+
colored fan (given G/H, determines X )

Theorem (Bravi, P., 2011)

For any homogeneous spherical datum, there exists a corresponding
G/H, and the subgroup H can be described explicitely.

The description of H rests ultimately on a list of ∼ 30 basic cases.

Guido Pezzini Spherical varieties Part II



From the invariants to X

Problem: Extract (geometrical) information on X from its
Luna-Vust invariants.
Recall:

Luna-Vust invariants =
Homogeneous spherical datum

(determines the open G -orbit G/H ⊆ X )

+
colored fan (given G/H, determines X )

Theorem (Bravi, P., 2011)

For any homogeneous spherical datum, there exists a corresponding
G/H, and the subgroup H can be described explicitely.

The description of H rests ultimately on a list of ∼ 30 basic cases.

Guido Pezzini Spherical varieties Part II



From the invariants to X

Problem: Extract (geometrical) information on X from its
Luna-Vust invariants.
Recall:

Luna-Vust invariants =
Homogeneous spherical datum

(determines the open G -orbit G/H ⊆ X )
+

colored fan (given G/H, determines X )

Theorem (Bravi, P., 2011)

For any homogeneous spherical datum, there exists a corresponding
G/H, and the subgroup H can be described explicitely.

The description of H rests ultimately on a list of ∼ 30 basic cases.

Guido Pezzini Spherical varieties Part II



From the invariants to X

Problem: Extract (geometrical) information on X from its
Luna-Vust invariants.
Recall:

Luna-Vust invariants =
Homogeneous spherical datum

(determines the open G -orbit G/H ⊆ X )
+

colored fan (given G/H, determines X )

Theorem (Bravi, P., 2011)

For any homogeneous spherical datum, there exists a corresponding
G/H, and the subgroup H can be described explicitely.

The description of H rests ultimately on a list of ∼ 30 basic cases.

Guido Pezzini Spherical varieties Part II



From the invariants to X

Problem: Extract (geometrical) information on X from its
Luna-Vust invariants.
Recall:

Luna-Vust invariants =
Homogeneous spherical datum

(determines the open G -orbit G/H ⊆ X )
+

colored fan (given G/H, determines X )

Theorem (Bravi, P., 2011)

For any homogeneous spherical datum, there exists a corresponding
G/H, and the subgroup H can be described explicitely.

The description of H rests ultimately on a list of ∼ 30 basic cases.

Guido Pezzini Spherical varieties Part II



From the invariants to X

Question: What about other information on X ?

B = Borel subgroup of G

Goal: describe the finite set

B(X ) = {B-orbits of X}
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B-orbits: strongly solvable case

Let X = G/H be spherical

with H ⊆ B.

Let P be the convex envelope of {wλ | w ∈W } where λ is a
regular dominant weight. Let S (P) be the set of its subpolytopes.

Theorem (Gandini, P., 2014)

There is a natural

W-equivariant

injection

s : B(G/H)→ S (P)

such that BwH 7→ {wλ}. If s(Z ) ⊂ s(Y ) then Z ⊂ Y .

The converse of the last statement is false,

the Bruhat order in
B(G/H) is still unknown.
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B-orbits: example

G = Sp(4)
H = TUα2Uα4

Ψ = {α1, α3}

-
6
�
��

@
@I

α1

α2 α3 α4

Subpolytopes: wλ+ (P ∩ w(Qαi1 + . . .+ Qαik )) provided αij ∈ Ψ
and w(αij ) < 0 for all j .

P
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�� @@
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w0λqq
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Generalizations I: non-reductive group actions

X = complete smooth variety,

D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle
TX (− log D) is generated by global sections.

Examples: smooth complete toric varieties, semiabelic varieties,
X = P(Cn+1), D = hyperplane at ∞.

Goal: Classify log-homogeneous varieties.

If X is log-homogeneous and A = Aut◦(X ,D) is linear, then X is
spherical under the action of a Levi subgroup G of A (Brion).

Proposition (P., 2014)

Suppose that A is linear.

Then X is log-homogeneous if and only if
it is spherical under G and any B-stable prime divisor containing
an A-orbit is A-stable.
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Generalizations I: non-reductive group actions

Let X be log-homogeneous with A linear (G = Levi of A).

Define
VA(X ) = {A− invariant discrete valuations of C(X )} ⊆ V(X ).

Theorem (P., 2014)

VA(X ) ⊆ Ξ∗Q is a polyhedral convex cone.

Definition

Define the spherical roots ΣA(X ) of the A-action to be such that

VA(X ) = {〈ΣA(X ),−〉 ≤ 0}

Example: X = P(Cn+1),

Cn = open A-orbit, G = GL(n),
Σ(X ) = ∅, ΣA(X ) = highest weight of (Cn)∗.

Project: Classify log-homogeneous varieties using the Luna-Vust
invariants (as a G -variety) +ΣA(X ).
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Generalizations II: Kac-Moody groups

G = Kac-Moody group,

P = (negative) parabolic subgroup with finite-dimensional Levi L,
H = subgroup of P.

Definition

H is a spherical subgroup of finite type of G

if P/H is a spherical
L-variety.

It is possible to define the homogeneous spherical datum of G/H
using P/H, e.g.

Σ(G/H) = ΣP(P/H)

Example: H = T n (Bu−,Bu−), (B− = standard negative Borel)

Σ(G/H) = { all simple roots }, Luna diagram for G of type A
(1)
1 :q qpppppppppp ppppppppppppppppppppppppppppppqee qee
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Kac-Moody groups: results

Theorem (P., 2014)

The homogeneous spherical datum of G/H satisfies the same
combinatorial axioms as in the finite-dimensional case,

plus one
axiom corresponding to the existence of P.

Theorem (P., 2014)

The homogeneous spherical datum of G/H does not depend on P,

and is invariant under conjugation of H in G.

Conjecture

The homogeneous spherical datum of G/H determines H up to
conjugation.

(true if the Cartan matrix of G has size 2 or 3)
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