Spherical varieties: interactions with representation theory and generalizations Part II

Guido Pezzini

DFG SPP 1388 Darstellungstheorie Schwerpunkttagung 2015

March 12, 2015

K =connected compact Lie group,

- K =connected compact Lie group,
- M =compact multiplicity-free Hamiltonian manifold,

K = connected compact Lie group, M = compact multiplicity-free Hamiltonian manifold, P(M)

P(M) =moment polytope of M,

Theorem (Knop)

P(M) and the principal isotropy group determine M uniquely.

Theorem (Knop)

P(M) and the principal isotropy group determine M uniquely.

Problem: given P polytope,

Theorem (Knop)

P(M) and the principal isotropy group determine M uniquely.

Problem: given P polytope,

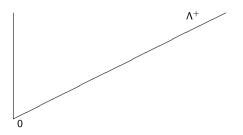
• decide whether $\exists M$ with P = P(M),

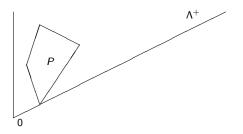
Theorem (Knop)

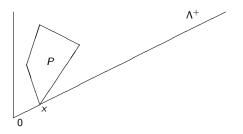
P(M) and the principal isotropy group determine M uniquely.

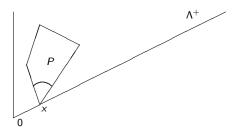
Problem: given P polytope,

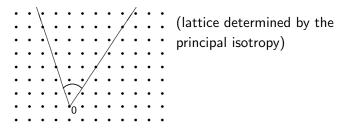
- **1** decide whether $\exists M$ with P = P(M),
- **2** describe *M*.

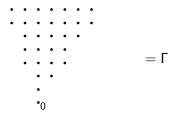




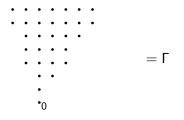






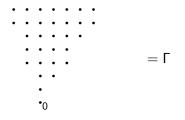


The problem is local in *P* (as for *Delzant polytopes*):



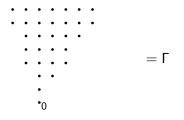
Then Γ must be the weight monoid of a smooth affine spherical variety,

The problem is local in *P* (as for *Delzant polytopes*):



Then Γ must be the weight monoid of a smooth affine spherical variety, which gives a "local model" of M.

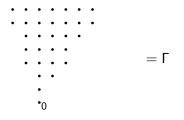
The problem is local in *P* (as for *Delzant polytopes*):



Then Γ must be the weight monoid of a smooth affine spherical variety, which gives a "local model" of M.

 ${\it G}=$ connected reductive algebraic group $/\mathbb{C}$

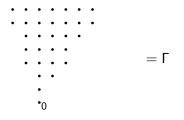
The problem is local in *P* (as for *Delzant polytopes*):



Then Γ must be the weight monoid of a smooth affine spherical variety, which gives a "local model" of M.

- ${\it G}=$ connected reductive algebraic group $/\mathbb{C}$
- X = smooth affine spherical *G*-variety,

The problem is local in *P* (as for *Delzant polytopes*):

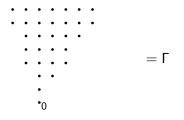


Then Γ must be the weight monoid of a smooth affine spherical variety, which gives a "local model" of M.

 ${\it G}=$ connected reductive algebraic group $/\mathbb{C}$

X = smooth affine spherical *G*-variety, $\Gamma(X) =$ its weight monoid

The problem is local in *P* (as for *Delzant polytopes*):



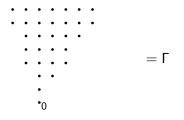
Then Γ must be the weight monoid of a smooth affine spherical variety, which gives a "local model" of M.

 ${\it G}=$ connected reductive algebraic group $/\mathbb{C}$

X = smooth affine spherical *G*-variety, $\Gamma(X) =$ its weight monoid

"Local" problem: given Γ monoid of dominant weights,

The problem is local in *P* (as for *Delzant polytopes*):



Then Γ must be the weight monoid of a smooth affine spherical variety, which gives a "local model" of M.

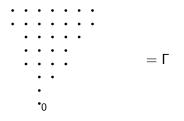
 ${\it G}=$ connected reductive algebraic group $/\mathbb{C}$

X = smooth affine spherical *G*-variety, $\Gamma(X) =$ its weight monoid

"Local" problem: given Γ monoid of dominant weights,

• decide whether $\exists X$ with $\Gamma = \Gamma(X)$,

The problem is local in *P* (as for *Delzant polytopes*):



Then Γ must be the weight monoid of a smooth affine spherical variety, which gives a "local model" of M.

- ${\it G}=$ connected reductive algebraic group $/\mathbb{C}$
- X = smooth affine spherical *G*-variety, $\Gamma(X) =$ its weight monoid

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- \bigcirc describe X.

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

/₽ ► < ∃ ►

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- \bigcirc describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1),

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1), and provides the Luna-Vust invariants of X.

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1), and provides the Luna-Vust invariants of X.

The criterion is quite involved due to a lack of an easy smoothness criterion for spherical varieties.

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1), and provides the Luna-Vust invariants of X.

The criterion is quite involved due to a lack of an easy smoothness criterion for spherical varieties.

Example: G = SL(2), X exists if and only if

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1), and provides the Luna-Vust invariants of X.

The criterion is quite involved due to a lack of an easy smoothness criterion for spherical varieties.

Example: G = SL(2), X exists if and only if

$$\bullet \ \Gamma = \Lambda^+$$

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1), and provides the Luna-Vust invariants of X.

The criterion is quite involved due to a lack of an easy smoothness criterion for spherical varieties.

Example: G = SL(2), X exists if and only if

$$\Gamma = \Lambda^+$$

$$\Gamma = 2\Lambda^+$$

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1), and provides the Luna-Vust invariants of X.

The criterion is quite involved due to a lack of an easy smoothness criterion for spherical varieties.

Example: G = SL(2), X exists if and only if

$$\bigcirc$$
 $\Gamma = 2\Lambda^+$

 ${\small \bigcirc ~} \Gamma = 4\Lambda^+$

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1), and provides the Luna-Vust invariants of X.

The criterion is quite involved due to a lack of an easy smoothness criterion for spherical varieties.

Example: G = SL(2), X exists if and only if

$$\bullet \Gamma = \Lambda^+$$

2
$$\Gamma = 2\Lambda^+ = \Gamma(G/T)$$
, and $2\omega \in \Sigma(G/T)$,

 $\bigcirc \ \Gamma = 4\Lambda^+$

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1), and provides the Luna-Vust invariants of X.

The criterion is quite involved due to a lack of an easy smoothness criterion for spherical varieties.

Example: G = SL(2), X exists if and only if

$$\bullet \ \Gamma = \Lambda^+$$

2)
$$\Gamma = 2\Lambda^+ = \Gamma(G/T)$$
, and $2\omega \in \Sigma(G/T)$,

③ $\Gamma = 4\Lambda^+ = \Gamma(G/N_G T)$, and $4\omega \in \Sigma(G/N_G T)$.

"Local" problem: given Γ monoid of dominant weights,

- decide whether $\exists X$ with $\Gamma = \Gamma(X)$,
- **2** describe X.

Theorem (P., Van Steirteghem, 2014)

There is an explicit combinatorial criterion that solves problem (1), and provides the Luna-Vust invariants of X.

The criterion is quite involved due to a lack of an easy smoothness criterion for spherical varieties.

Example: G = SL(2), X exists if and only if

2)
$$\Gamma = 2\Lambda^+ = \Gamma(G/T)$$
, and $2\omega \in \Sigma(G/T)$,

3 $\Gamma = 4\Lambda^+ = \Gamma(G/N_G T)$, and $4\omega \in \Sigma(G/N_G T)$.

Question: what about other varieties Y with $\Gamma(Y) = \Gamma(X)$?

/⊒ > < ∃ >

Theorem (Losev, 2007)

X is the unique smooth one.

Theorem (Losev, 2007)

X is the unique smooth one.

Since X is smooth, it corresponds to a general point of an irreducible component of the moduli space M_{Γ} .

Theorem (Losev, 2007)

X is the unique smooth one.

Since X is smooth, it corresponds to a general point of an irreducible component of the moduli space M_{Γ} .

Conjecture

 M_{Γ} is irreducible if it has a point corresponding to a smooth variety.

Theorem (Losev, 2007)

X is the unique smooth one.

Since X is smooth, it corresponds to a general point of an irreducible component of the moduli space M_{Γ} .

Conjecture

 M_{Γ} is irreducible if it has a point corresponding to a smooth variety.

Theorem (P., 2015)

The conjecture is true if X is factorial,

Theorem (Losev, 2007)

X is the unique smooth one.

Since X is smooth, it corresponds to a general point of an irreducible component of the moduli space M_{Γ} .

Conjecture

 M_{Γ} is irreducible if it has a point corresponding to a smooth variety.

Theorem (P., 2015)

The conjecture is true if X is factorial, or if X = G/H is homogeneous.

<u>Problem</u>: Extract (geometrical) information on X from its Luna-Vust invariants.

<u>Problem:</u> Extract (geometrical) information on X from its Luna-Vust invariants. Recall:

Luna-Vust invariants =

<u>Problem</u>: Extract (geometrical) information on X from its Luna-Vust invariants. Recall:

> Luna-Vust invariants = Homogeneous spherical datum (determines the open *G*-orbit $G/H \subseteq X$)

<u>Problem:</u> Extract (geometrical) information on X from its Luna-Vust invariants. Recall:

> Luna-Vust invariants = Homogeneous spherical datum (determines the open *G*-orbit $G/H \subseteq X$) + colored fan (given G/H, determines X)

<u>Problem:</u> Extract (geometrical) information on X from its Luna-Vust invariants.

Recall:

Luna-Vust invariants = Homogeneous spherical datum (determines the open *G*-orbit $G/H \subseteq X$) + colored fan (given G/H, determines X)

Theorem (Bravi, P., 2011)

For any homogeneous spherical datum, there exists a corresponding G/H, and the subgroup H can be described explicitely.

<u>Problem:</u> Extract (geometrical) information on X from its Luna-Vust invariants.

Recall:

Luna-Vust invariants = Homogeneous spherical datum (determines the open *G*-orbit $G/H \subseteq X$) + colored fan (given G/H, determines X)

Theorem (Bravi, P., 2011)

For any homogeneous spherical datum, there exists a corresponding G/H, and the subgroup H can be described explicitely.

The description of H rests ultimately on a list of \sim 30 basic cases.

Question: What about other information on X?

Question: What about other information on X?

B = Borel subgroup of G

Goal: describe the finite set

 $\mathfrak{B}(X) = \{B\text{-orbits of } X\}$

B-orbits: strongly solvable case

Let X = G/H be spherical

/₽ ► < ∃ ►

B-orbits: strongly solvable case

Let X = G/H be spherical with $H \subseteq B$.

白 ト ・ ヨ ト ・

Let P be the convex envelope of $\{w\lambda \mid w \in W\}$ where λ is a regular dominant weight.

Let *P* be the convex envelope of $\{w\lambda \mid w \in W\}$ where λ is a regular dominant weight. Let $\mathscr{S}(P)$ be the set of its subpolytopes.

Let P be the convex envelope of $\{w\lambda \mid w \in W\}$ where λ is a regular dominant weight. Let $\mathscr{S}(P)$ be the set of its subpolytopes.

Theorem (Gandini, P., 2014)		
There is a natural	injection	
$s\colon \mathfrak{B}(G/H) ightarrow \mathscr{S}(P)$		

Let P be the convex envelope of $\{w\lambda \mid w \in W\}$ where λ is a regular dominant weight. Let $\mathscr{S}(P)$ be the set of its subpolytopes.

Theorem (Gandini, P., 2014)			
There is a natural	injection		
$s\colon\mathfrak{B}(G/H)\to\mathscr{S}(P)$			
such that $BwH \mapsto \{w\lambda\}$.			

Let P be the convex envelope of $\{w\lambda \mid w \in W\}$ where λ is a regular dominant weight. Let $\mathscr{S}(P)$ be the set of its subpolytopes.

Theorem (Gandini, P., 2014)

There is a natural W-equivariant injection

 $s \colon \mathfrak{B}(G/H) \to \mathscr{S}(P)$

such that $BwH \mapsto \{w\lambda\}$.

Let P be the convex envelope of $\{w\lambda \mid w \in W\}$ where λ is a regular dominant weight. Let $\mathscr{S}(P)$ be the set of its subpolytopes.

Theorem (Gandini, P., 2014)

There is a natural W-equivariant injection

 $s:\mathfrak{B}(G/H)\to \mathscr{S}(P)$

such that $BwH \mapsto \{w\lambda\}$. If $s(Z) \subset s(Y)$ then $Z \subset \overline{Y}$.

Let P be the convex envelope of $\{w\lambda \mid w \in W\}$ where λ is a regular dominant weight. Let $\mathscr{S}(P)$ be the set of its subpolytopes.

Theorem (Gandini, P., 2014)

There is a natural W-equivariant injection

 $s:\mathfrak{B}(G/H)\to \mathscr{S}(P)$

such that $BwH \mapsto \{w\lambda\}$. If $s(Z) \subset s(Y)$ then $Z \subset \overline{Y}$.

The converse of the last statement is false,

Let P be the convex envelope of $\{w\lambda \mid w \in W\}$ where λ is a regular dominant weight. Let $\mathscr{S}(P)$ be the set of its subpolytopes.

Theorem (Gandini, P., 2014)

There is a natural W-equivariant injection

$$s:\mathfrak{B}(G/H)\to\mathscr{S}(P)$$

such that $BwH \mapsto \{w\lambda\}$. If $s(Z) \subset s(Y)$ then $Z \subset \overline{Y}$.

The converse of the last statement is <u>false</u>, the Bruhat order in $\mathfrak{B}(G/H)$ is still unknown.

$$G = Sp(4)$$

 $H = TU_{\alpha_2}U_{\alpha_4}$

@▶ ∢ ≣▶

æ

≣ ।•

$$G = \mathsf{Sp(4)}$$
$$H = TU_{\alpha_2}U_{\alpha_4}$$
$$\Psi = \{\alpha_1, \alpha_3\}$$

・聞き ・ ほき・ ・ ほき

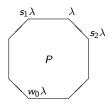
æ

Subpolytopes: $w\lambda + (P \cap w(\mathbb{Q}\alpha_{i_1} + \ldots + \mathbb{Q}\alpha_{i_k}))$ provided $\alpha_{i_i} \in \Psi$

□ > < = > <

Subpolytopes: $w\lambda + (P \cap w(\mathbb{Q}\alpha_{i_1} + \ldots + \mathbb{Q}\alpha_{i_k}))$ provided $\alpha_{i_j} \in \Psi$ and $w(\alpha_{i_j}) < 0$ for all j.

Subpolytopes: $w\lambda + (P \cap w(\mathbb{Q}\alpha_{i_1} + \ldots + \mathbb{Q}\alpha_{i_k}))$ provided $\alpha_{i_j} \in \Psi$ and $w(\alpha_{i_j}) < 0$ for all j.



Subpolytopes: $w\lambda + (P \cap w(\mathbb{Q}\alpha_{i_1} + \ldots + \mathbb{Q}\alpha_{i_k}))$ provided $\alpha_{i_j} \in \Psi$ and $w(\alpha_{i_j}) < 0$ for all j.

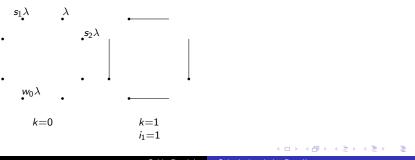
$$s_1\lambda$$
 λ
 $s_2\lambda$
 $w_0\lambda$
 $k=0$

٠

•

- ∢ ≣ ▶

Subpolytopes: $w\lambda + (P \cap w(\mathbb{Q}\alpha_{i_1} + \ldots + \mathbb{Q}\alpha_{i_k}))$ provided $\alpha_{i_j} \in \Psi$ and $w(\alpha_{i_j}) < 0$ for all j.



$$G = Sp(4)$$

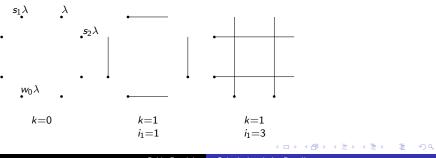
$$H = TU_{\alpha_2}U_{\alpha_4}$$

$$\Psi = \{\alpha_1, \alpha_3\}$$

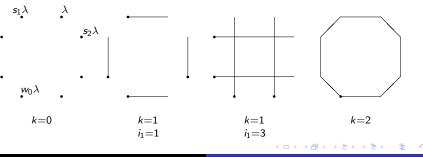
$$\alpha_2 \quad \alpha_3 \quad \alpha_4$$

$$\varphi = \{\alpha_1, \alpha_3\}$$

Subpolytopes: $w\lambda + (P \cap w(\mathbb{Q}\alpha_{i_1} + \ldots + \mathbb{Q}\alpha_{i_k}))$ provided $\alpha_{i_j} \in \Psi$ and $w(\alpha_{i_j}) < 0$ for all j.



Subpolytopes: $w\lambda + (P \cap w(\mathbb{Q}\alpha_{i_1} + \ldots + \mathbb{Q}\alpha_{i_k}))$ provided $\alpha_{i_j} \in \Psi$ and $w(\alpha_{i_j}) < 0$ for all j.



Guido Pezzini Spherical varieties Part II

X = complete smooth variety,

X = complete smooth variety, D = divisor with normal crossings.

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $\mathcal{T}_X(-\log D)$ is generated by global sections.

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $\mathcal{T}_X(-\log D)$ is generated by global sections.

Examples: smooth complete toric varieties,

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $T_X(-\log D)$ is generated by global sections.

Examples: smooth complete toric varieties, semiabelic varieties,

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $\mathcal{T}_X(-\log D)$ is generated by global sections.

Examples: smooth complete toric varieties, semiabelic varieties, $X = \mathbb{P}(\mathbb{C}^{n+1})$, D = hyperplane at ∞ .

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $\mathcal{T}_X(-\log D)$ is generated by global sections.

Examples: smooth complete toric varieties, semiabelic varieties, $X = \mathbb{P}(\mathbb{C}^{n+1})$, D = hyperplane at ∞ .

Goal: Classify log-homogeneous varieties.

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $\mathcal{T}_X(-\log D)$ is generated by global sections.

Examples: smooth complete toric varieties, semiabelic varieties, $X = \mathbb{P}(\mathbb{C}^{n+1})$, D = hyperplane at ∞ .

Goal: Classify log-homogeneous varieties.

If X is log-homogeneous and $A = Aut^{\circ}(X, D)$ is linear,

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $\mathcal{T}_X(-\log D)$ is generated by global sections.

Examples: smooth complete toric varieties, semiabelic varieties, $X = \mathbb{P}(\mathbb{C}^{n+1})$, D = hyperplane at ∞ .

Goal: Classify log-homogeneous varieties.

If X is log-homogeneous and $A = Aut^{\circ}(X, D)$ is linear, then X is spherical under the action of a Levi subgroup G of A (Brion).

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $\mathcal{T}_X(-\log D)$ is generated by global sections.

Examples: smooth complete toric varieties, semiabelic varieties, $X = \mathbb{P}(\mathbb{C}^{n+1})$, D = hyperplane at ∞ .

Goal: Classify log-homogeneous varieties.

If X is log-homogeneous and $A = Aut^{\circ}(X, D)$ is linear, then X is spherical under the action of a Levi subgroup G of A (Brion).

Proposition (P., 2014)

Suppose that A is linear.

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $\mathcal{T}_X(-\log D)$ is generated by global sections.

Examples: smooth complete toric varieties, semiabelic varieties, $X = \mathbb{P}(\mathbb{C}^{n+1})$, D = hyperplane at ∞ .

Goal: Classify log-homogeneous varieties.

If X is log-homogeneous and $A = Aut^{\circ}(X, D)$ is linear, then X is spherical under the action of a Levi subgroup G of A (Brion).

Proposition (P., 2014)

Suppose that A is linear. Then X is log-homogeneous if and only if it is spherical under G

X = complete smooth variety, D = divisor with normal crossings.

Definition (Brion, 2007)

X is log-homogeneous if the logarithmic tangent bundle $\mathcal{T}_X(-\log D)$ is generated by global sections.

Examples: smooth complete toric varieties, semiabelic varieties, $X = \mathbb{P}(\mathbb{C}^{n+1})$, D = hyperplane at ∞ .

Goal: Classify log-homogeneous varieties.

If X is log-homogeneous and $A = Aut^{\circ}(X, D)$ is linear, then X is spherical under the action of a Levi subgroup G of A (Brion).

Proposition (P., 2014)

Suppose that A is linear. Then X is log-homogeneous if and only if it is spherical under G and any B-stable prime divisor containing an A-orbit is A-stable.

Let X be log-homogeneous with A linear (G = Levi of A).

Let X be log-homogeneous with A linear (G = Levi of A). Define $\mathcal{V}_A(X) = \{A - \text{invariant discrete valuations of } \mathbb{C}(X)\} \subseteq \mathcal{V}(X)$.

Let X be log-homogeneous with A linear (G = Levi of A). Define $\mathcal{V}_A(X) = \{A - \text{invariant discrete valuations of } \mathbb{C}(X)\} \subseteq \mathcal{V}(X)$.

Theorem (P., 2014)

 $\mathcal{V}_A(X) \subseteq \Xi^*_{\mathbb{O}}$ is a polyhedral convex cone.

Let X be log-homogeneous with A linear (G = Levi of A). Define $\mathcal{V}_A(X) = \{A - \text{invariant discrete valuations of } \mathbb{C}(X)\} \subseteq \mathcal{V}(X)$.

Theorem (P., 2014)

 $\mathcal{V}_A(X) \subseteq \Xi^*_{\mathbb{O}}$ is a polyhedral convex cone.

Definition

Define the spherical roots $\Sigma_A(X)$ of the A-action to be such that

$$\mathcal{V}_A(X) = \{ \langle \Sigma_A(X), - \rangle \leq 0 \}$$

Let X be log-homogeneous with A linear (G = Levi of A). Define $\mathcal{V}_A(X) = \{A - \text{invariant discrete valuations of } \mathbb{C}(X)\} \subseteq \mathcal{V}(X)$.

Theorem (P., 2014)

 $\mathcal{V}_A(X) \subseteq \Xi^*_{\mathbb{Q}}$ is a polyhedral convex cone.

Definition

Define the spherical roots $\Sigma_A(X)$ of the A-action to be such that

$$\mathcal{V}_{\mathcal{A}}(X) = \{ \langle \Sigma_{\mathcal{A}}(X), - \rangle \leq 0 \}$$

Example: $X = \mathbb{P}(\mathbb{C}^{n+1})$,

Let X be log-homogeneous with A linear (G = Levi of A). Define $\mathcal{V}_A(X) = \{A - \text{invariant discrete valuations of } \mathbb{C}(X)\} \subseteq \mathcal{V}(X)$.

Theorem (P., 2014)

 $\mathcal{V}_A(X) \subseteq \Xi^*_{\mathbb{Q}}$ is a polyhedral convex cone.

Definition

Define the spherical roots $\Sigma_A(X)$ of the A-action to be such that

$$\mathcal{V}_{\mathcal{A}}(X) = \{ \langle \Sigma_{\mathcal{A}}(X), - \rangle \leq 0 \}$$

Example: $X = \mathbb{P}(\mathbb{C}^{n+1})$, $\mathbb{C}^n = \text{open } A\text{-orbit}$,

Let X be log-homogeneous with A linear (G = Levi of A). Define $\mathcal{V}_A(X) = \{A - \text{invariant discrete valuations of } \mathbb{C}(X)\} \subseteq \mathcal{V}(X)$.

Theorem (P., 2014)

 $\mathcal{V}_A(X) \subseteq \Xi^*_{\mathbb{Q}}$ is a polyhedral convex cone.

Definition

Define the spherical roots $\Sigma_A(X)$ of the A-action to be such that

$$\mathcal{V}_{\mathcal{A}}(X) = \{ \langle \Sigma_{\mathcal{A}}(X), - \rangle \leq 0 \}$$

Example: $X = \mathbb{P}(\mathbb{C}^{n+1})$, $\mathbb{C}^n = \text{open } A\text{-orbit}$, G = GL(n),

Let X be log-homogeneous with A linear (G = Levi of A). Define $\mathcal{V}_A(X) = \{A - \text{invariant discrete valuations of } \mathbb{C}(X)\} \subseteq \mathcal{V}(X)$.

Theorem (P., 2014)

 $\mathcal{V}_A(X) \subseteq \Xi^*_{\mathbb{Q}}$ is a polyhedral convex cone.

Definition

Define the spherical roots $\Sigma_A(X)$ of the A-action to be such that

$$\mathcal{V}_{\mathcal{A}}(X) = \{ \langle \Sigma_{\mathcal{A}}(X), - \rangle \leq 0 \}$$

Example: $X = \mathbb{P}(\mathbb{C}^{n+1})$, $\mathbb{C}^n = \text{open } A\text{-orbit}$, G = GL(n), $\Sigma(X) = \emptyset$,

Let X be log-homogeneous with A linear (G = Levi of A). Define $\mathcal{V}_A(X) = \{A - \text{invariant discrete valuations of } \mathbb{C}(X)\} \subseteq \mathcal{V}(X)$.

Theorem (P., 2014)

 $\mathcal{V}_A(X) \subseteq \Xi^*_{\mathbb{Q}}$ is a polyhedral convex cone.

Definition

Define the spherical roots $\Sigma_A(X)$ of the A-action to be such that

$$\mathcal{V}_{\mathcal{A}}(X) = \{ \langle \Sigma_{\mathcal{A}}(X), - \rangle \leq 0 \}$$

Example: $X = \mathbb{P}(\mathbb{C}^{n+1})$, $\mathbb{C}^n = \text{open } A\text{-orbit}$, G = GL(n), $\Sigma(X) = \emptyset$, $\Sigma_A(X) = \text{highest weight of } (\mathbb{C}^n)^*$.

伺 ト イヨ ト イヨト

Let X be log-homogeneous with A linear (G = Levi of A). Define $\mathcal{V}_A(X) = \{A - \text{invariant discrete valuations of } \mathbb{C}(X)\} \subseteq \mathcal{V}(X)$.

Theorem (P., 2014)

 $\mathcal{V}_A(X) \subseteq \Xi^*_{\mathbb{Q}}$ is a polyhedral convex cone.

Definition

Define the spherical roots $\Sigma_A(X)$ of the A-action to be such that

$$\mathcal{V}_{\mathcal{A}}(X) = \{ \langle \Sigma_{\mathcal{A}}(X), - \rangle \leq 0 \}$$

Example: $X = \mathbb{P}(\mathbb{C}^{n+1})$, $\mathbb{C}^n = \text{open } A\text{-orbit}$, G = GL(n), $\Sigma(X) = \emptyset$, $\Sigma_A(X) = \text{highest weight of } (\mathbb{C}^n)^*$.

<u>Project</u>: Classify log-homogeneous varieties using the Luna-Vust invariants (as a *G*-variety) $+\Sigma_A(X)$.

□ > < E > < E >

 $\mathcal{G}=\mathsf{Kac}\mathsf{-Moody}\;\mathsf{group}\mathsf{,}$

- $\mathcal{G}=\mathsf{Kac}\text{-}\mathsf{Moody}\ \mathsf{group}\text{,}$
- $\mathcal{P} = (\mathsf{negative})$ parabolic subgroup

- $\mathcal{G}=\mathsf{Kac}\mathsf{-Moody}\;\mathsf{group}\mathsf{,}$
- $\mathcal{P} = (negative)$ parabolic subgroup with <u>finite-dimensional</u> Levi L,

- $\mathcal{G}=\mathsf{Kac}\text{-}\mathsf{Moody}\;\mathsf{group}\text{,}$
- $\mathcal{P} = (negative)$ parabolic subgroup with <u>finite-dimensional</u> Levi L,
- $\mathcal{H}=\mathsf{subgroup} \text{ of } \mathcal{P}.$

- $\mathcal{G} = \mathsf{Kac}\operatorname{\mathsf{-Moody}}$ group,
- $\mathcal{P} = (negative)$ parabolic subgroup with <u>finite-dimensional</u> Levi L,
- $\mathcal{H} = \mathsf{subgroup} \text{ of } \mathcal{P}.$

Definition

 ${\mathcal H}$ is a spherical subgroup of finite type of ${\mathcal G}$

- $\mathcal{G} = \mathsf{Kac}\operatorname{\mathsf{-Moody}}$ group,
- $\mathcal{P} = (negative)$ parabolic subgroup with <u>finite-dimensional</u> Levi L,
- $\mathcal{H} = \mathsf{subgroup} \text{ of } \mathcal{P}.$

Definition

 ${\cal H}$ is a spherical subgroup of finite type of ${\cal G}$ if ${\cal P}/{\cal H}$ is a spherical L-variety.

- $\mathcal{G} = \mathsf{Kac}\operatorname{\mathsf{-Moody}}$ group,
- $\mathcal{P} = (\text{negative}) \text{ parabolic subgroup with } \underline{\text{finite-dimensional Levi } L,$
- $\mathcal{H} = \mathsf{subgroup} \text{ of } \mathcal{P}.$

Definition

 ${\cal H}$ is a spherical subgroup of finite type of ${\cal G}$ if ${\cal P}/{\cal H}$ is a spherical L-variety.

It is possible to define the homogeneous spherical datum of \mathcal{G}/\mathcal{H} using $\mathcal{P}/\mathcal{H},$

- $\mathcal{G} = \mathsf{Kac}\operatorname{\mathsf{-Moody}}$ group,
- $\mathcal{P} = (\text{negative}) \text{ parabolic subgroup with } \underline{\text{finite-dimensional Levi } L,$ $\mathcal{H} = \text{subgroup of } \mathcal{P}.$

Definition

 ${\cal H}$ is a spherical subgroup of finite type of ${\cal G}$ if ${\cal P}/{\cal H}$ is a spherical L-variety.

It is possible to define the homogeneous spherical datum of \mathcal{G}/\mathcal{H} using \mathcal{P}/\mathcal{H} , e.g.

$$\Sigma(\mathcal{G}/\mathcal{H}) = \Sigma_{\mathcal{P}}(\mathcal{P}/\mathcal{H})$$

 $\mathcal{G} = \mathsf{Kac}\operatorname{\mathsf{-Moody}}$ group,

 $\mathcal{P} = (\text{negative}) \text{ parabolic subgroup with } \underline{\text{finite-dimensional Levi } L,$ $\mathcal{H} = \text{subgroup of } \mathcal{P}.$

Definition

 ${\cal H}$ is a spherical subgroup of finite type of ${\cal G}$ if ${\cal P}/{\cal H}$ is a spherical L-variety.

It is possible to define the homogeneous spherical datum of \mathcal{G}/\mathcal{H} using \mathcal{P}/\mathcal{H} , e.g.

$$\Sigma(\mathcal{G}/\mathcal{H}) = \Sigma_{\mathcal{P}}(\mathcal{P}/\mathcal{H})$$

Example: $\mathcal{H} = \mathcal{T} \ltimes (\mathcal{B}_{-}^{u}, \mathcal{B}_{-}^{u})$, $(\mathcal{B}_{-} = \text{standard negative Borel})$

 $\mathcal{G} = \mathsf{Kac}\operatorname{\mathsf{-Moody}}$ group,

 $\mathcal{P} = (\text{negative}) \text{ parabolic subgroup with } \underline{\text{finite-dimensional Levi } L,$ $\mathcal{H} = \text{subgroup of } \mathcal{P}.$

Definition

 ${\cal H}$ is a spherical subgroup of finite type of ${\cal G}$ if ${\cal P}/{\cal H}$ is a spherical L-variety.

It is possible to define the homogeneous spherical datum of \mathcal{G}/\mathcal{H} using \mathcal{P}/\mathcal{H} , e.g.

$$\Sigma(\mathcal{G}/\mathcal{H}) = \Sigma_{\mathcal{P}}(\mathcal{P}/\mathcal{H})$$

$$\begin{split} & \mathsf{Example:} \ \mathcal{H} = \mathcal{T} \ltimes (\mathcal{B}_{-}^{u}, \mathcal{B}_{-}^{u}), \qquad (\mathcal{B}_{-} = \mathsf{standard negative Borel}) \\ & \Sigma(\mathcal{G}/\mathcal{H}) = \{ \text{ all simple roots } \}, \end{split}$$

 $\mathcal{G} = \mathsf{Kac}\operatorname{\mathsf{-Moody}}$ group,

 $\mathcal{P} = (\text{negative}) \text{ parabolic subgroup with } \underline{\text{finite-dimensional Levi } L,$ $\mathcal{H} = \text{subgroup of } \mathcal{P}.$

Definition

 ${\cal H}$ is a spherical subgroup of finite type of ${\cal G}$ if ${\cal P}/{\cal H}$ is a spherical L-variety.

It is possible to define the homogeneous spherical datum of \mathcal{G}/\mathcal{H} using \mathcal{P}/\mathcal{H} , e.g.

$$\Sigma(\mathcal{G}/\mathcal{H}) = \Sigma_{\mathcal{P}}(\mathcal{P}/\mathcal{H})$$

 $\begin{array}{l} \mbox{Example: } \mathcal{H} = \mathcal{T} \ltimes (\mathcal{B}_{-}^{u}, \mathcal{B}_{-}^{u}), \qquad (\mathcal{B}_{-} = \mbox{standard negative Borel}) \\ \Sigma(\mathcal{G}/\mathcal{H}) = \{ \mbox{ all simple roots } \}, \mbox{ Luna diagram for } \mathcal{G} \mbox{ of type } \mathsf{A}_{1}^{(1)}: \end{array}$

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} satisfies the same combinatorial axioms as in the finite-dimensional case,

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} satisfies the same combinatorial axioms as in the finite-dimensional case, plus one axiom corresponding to the existence of \mathcal{P} .

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} satisfies the same combinatorial axioms as in the finite-dimensional case, plus one axiom corresponding to the existence of \mathcal{P} .

Theorem (P., 2014)

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} does not depend on \mathcal{P} ,

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} satisfies the same combinatorial axioms as in the finite-dimensional case, plus one axiom corresponding to the existence of \mathcal{P} .

Theorem (P., 2014)

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} does not depend on \mathcal{P} , and is invariant under conjugation of \mathcal{H} in \mathcal{G} .

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} satisfies the same combinatorial axioms as in the finite-dimensional case, plus one axiom corresponding to the existence of \mathcal{P} .

Theorem (P., 2014)

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} does not depend on \mathcal{P} , and is invariant under conjugation of \mathcal{H} in \mathcal{G} .

Conjecture

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} determines \mathcal{H} up to conjugation.

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} satisfies the same combinatorial axioms as in the finite-dimensional case, plus one axiom corresponding to the existence of \mathcal{P} .

Theorem (P., 2014)

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} does not depend on \mathcal{P} , and is invariant under conjugation of \mathcal{H} in \mathcal{G} .

Conjecture

The homogeneous spherical datum of \mathcal{G}/\mathcal{H} determines \mathcal{H} up to conjugation.

(true if the Cartan matrix of G has size 2 or 3)