
Counting representations of free groups

M. Reineke

BU Wuppertal

10 March 2015, Bad Honnef

(joint with S. Mozgovoy, arXiv:1402.6923)

M. Reineke Counting representations of free groups



Motivation 1

Fact

For a finite group Γ,

#{C-irreps of Γ}/ ' = #{conj. classes of Γ}.

Question: What about infinite groups?

Leads to concepts (for certain classes of groups) like

subgroup growth: study the sequence

(#{subgroups of index n})n,

representation growth: study the sequence

(#{irreps of dimension n}/ ')n.
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Motivation 2

Fact

For a finite group,

#{irreps}/ ' = #{conj. classes}.

Question: What about infinite groups?

Today: free groups in m ≥ 1 generators. Fix such m.

Definition

Fm = Z ∗ . . . ∗ Z︸ ︷︷ ︸
m−times

.

Reason: Fm homologically quite simple:

Fact

G finite : gldimCG = 0; gldimCFm = 1.
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Subgroup growth for free groups

We will consider numbers of subgroups and “numbers” of
completely reducible representations of Fm.

Definition

sn = #{index n subgroups of Fm}

Theorem (M. Hall, 1949)

∑
n≥1

sn
tn

n
= log

(
∑
n≥0

(n!)m−1tn

 .

Exercise: Quickly check for m = 1.
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First main result

Approach: To get finite quantities:

Count isomorphism classes of representations of Fm over finite
fields Fq. Completely reducible (=semisimple) representations give
best results.

Definition

an(q) = #{n-dimensional completely reducible Fq-reps of Fm}/ ' .

Theorem

an(q) behaves polynomially in q, i.e.

an(q) ∈ Z[q],

and there is an explicit formula for an(q).

We need some ingredients to state this explicit formula.
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Ingredients for the explicit formula 1

Definition

Formal power series ring R = Q(q)[[t]] with maximal ideal
m = tQ(q)[[t]];

thus 1 + m ⊂ R∗.

Definition

A certain q-hypergeometric function

F (t) =
∑
n≥0

((qn − 1) · . . . · (q − 1))m−1 tn ∈ Q(q)[[t]].

Definition

Shift operator T on R: the Q(q)-linear operator with

T (tn) = q(1−m)(n2)tn.
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Ingredients for the explicit formula 2

Definition

Plethystic operations:

Exp : m→ 1 + m unique operator such that

Exp(f + g) = Exp(f ) · Exp(g) and Ext(qi tn) =
1

1− qi tn

Log : 1 + m→ m inverse to Exp,

Pow : (1 + m)× R → 1 + m defined by

Pow(f , g) = Exp(g · Log(f )).

To summarize, we have three ingredients: explicit series F, shift
operator T, plethystic power Pow.
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First main result - precise formulation

Definition

an(q) = #{n-dimensional completely reducible Fq-reps of Fm}/ ' .

Theorem

an(q) ∈ Z[q],

more precisely∑
n≥0

an(q)tn = Pow(T−1F (t)−1, 1− q).

Remark: This formula conceals a double/triple recursion.

Proof: Later.
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Examples

Examples

a1(q) = (q − 1)m,

an(q) = qn − qn−1 for m = 1,

a2(q) = (q − 1)m · (qm−1(q − 1)m−1
(
(q + 1)m−1 − 1

)
+

+
1

2
q
(
(q + 1)m−1 + (q − 1)m−1

)
).
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Second main result

Theorem

Positivity around q = 1:

an(q) ∈ N[q − 1].

For m ≥ 2, lowest term formula

an(q) = ϕ(n)nm−2 · (q − 1)n + O((q − 1)n+1),

where ϕ is Euler’s totient function.

Thus, the Taylor coefficients of the an(q) around q = 1 count
something intrinsic to Fm. But what do they count? We don’t
know.

(Proof is purely combinatorial in terms of first theorem.)
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Relation to subgroup growth

Definition

Adams operators ψn:

the Q-linear operator on R such that

ψn(qi ) = qni , ψn(td) = tnd ;

Ψ =
∑
n≥1

1

n
ψn.

Theorem

Ψ

 1

q − 1
Log

∑
n≥0

an(q)tn

∣∣∣∣∣∣
t= x

(q−1)m−1 ,q=1

=
∑
n≥0

sn
xn

n

This means: the representation growth knows the subgroup
growth.
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Character varieties

Geometric interpretation of previous results:

Definition

Γ a finitely generated group, G a reductive group:

Hom(Γ,G ) affine variety with G -action,

XΓ(G ) := Hom(Γ,G )//G

character variety.

Here:
XFm(GLn(C)) = GLn(C)m//GLn(C),

GLn(C) acting on m copies of itself via simultaneous conjugation.
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Character varieties - examples

Examples

XFm(C∗) ' (C∗)m,

XF1(GLn(C)) = GLn(C)//GLn(C) ' An \ An−1,

XF2(GL2(C)) ' A5 \ A3.
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Implications for character varieties

Theorem

XFm(GLn(C)) admits model X over Spec(Z),

that is,

XFm(GLn(C)) ' Spec(C)×Spec(Z) X ,

an(q) = #X (Fq),

χ(XFm(PGLn(C))) = ϕ(n)nm−2.

Remark: Positivity property an(q) ∈ N[q − 1] suggests existence
of paving of XFm(GLn(C)) by (quotients by finite groups of) tori.
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Hall algebra

k a finite field.

Definition

Rep = {isoclasses of fin. dim. k-reps of Fm},

H((kFm)) = {functions Rep→ Q}

as Q-vector space; associative algebra via multiplication

(f ∗ g)(V ) =
∑
U⊂V

f (U)g(V /U).

Algebra map (integration)
∫

: H((kFm))→ Q[[t]],∫
f =

∑
V

|k |(1−m)(dim V
2 )

|Aut(V )|
f (V )tdimV .
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Proof of first theorem

Lemma (Key lemma)

1 ∈ H((kFm)) constant function with value 1:

1−1 supported on completely reducible reps,

1−1(
⊕
S

Sms ) =
∏
S

(−1)mS |End(S)|(
mS

2 ).

Corollary (After some calculation)∫
1−1 = Pow

∑
n≥0

an(q)tn,
1

1− q

∣∣∣∣∣∣
q=|k|

.

∫
1−1 =

(∫
1

)−1

= T−1F (t)−1
∣∣
q=|k| .
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The end

This proves the theorem and ends the talk.

Thank you!
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