Counting representations of free groups

M. Reineke

BU Wuppertal

10 March 2015, Bad Honnef

(joint with S. Mozgovoy, arXiv:1402.6923)

Fact

For a finite group Γ ,

 $\#\{\mathbb{C}\text{-irreps of }\Gamma\}/\simeq = \ \#\{\text{conj. classes of }\Gamma\}.$

<ロト <回ト < 回ト < 回ト < 回ト -

3

Fact

For a finite group Γ ,

 $\#\{\mathbb{C}\text{-irreps of }\Gamma\}/\simeq = \ \#\{\text{conj. classes of }\Gamma\}.$

Question: What about infinite groups?

伺 ト く ヨ ト く ヨ ト

Fact

For a finite group Γ ,

 $\#\{\mathbb{C}\text{-irreps of } \Gamma\}/\simeq = \ \#\{\text{conj. classes of } \Gamma\}.$

Question: What about infinite groups?

Leads to concepts (for certain classes of groups) like

• subgroup growth: study the sequence

 $(\#\{\text{subgroups of index } n\})_n$,

• representation growth: study the sequence

 $(\#\{\text{irreps of dimension } n\}/\simeq)_n$.

伺 ト く ヨ ト く ヨ ト

Fact

For a finite group,

$$\#\{irreps\}/\simeq = \#\{conj. classes\}.$$

Question: What about infinite groups?

Э

→ Ξ →

Fact

For a finite group,

$$\#\{irreps\}/\simeq = \#\{conj. classes\}.$$

Question: What about infinite groups?

Today: free groups in $m \ge 1$ generators. Fix such m.

Definition

$$F_m = \underbrace{\mathbb{Z} * \ldots * \mathbb{Z}}_{m-\text{times}}.$$

直 ト イヨト イヨト

Fact

For a finite group,

$$\#\{irreps\}/\simeq = \#\{conj. classes\}.$$

Question: What about infinite groups?

Today: free groups in $m \ge 1$ generators. Fix such m.

Definition

$$F_m = \underbrace{\mathbb{Z} * \ldots * \mathbb{Z}}_{m-\text{times}}.$$

Reason: *F_m* homologically quite simple:

伺 ト く ヨ ト く ヨ ト

Fact

For a finite group,

$$\#\{irreps\}/\simeq = \#\{conj. classes\}.$$

Question: What about infinite groups?

Today: free groups in $m \ge 1$ generators. Fix such m.

Definition

$$F_m = \underbrace{\mathbb{Z} * \ldots * \mathbb{Z}}_{m-\text{times}}.$$

Reason: *F_m* homologically quite simple:

Fact *G* finite : gldim $\mathbb{C}G = 0$; gldim $\mathbb{C}F_m = 1$. M. Reineke Counting representations of free groups

Definition

$$s_n = #\{\text{index } n \text{ subgroups of } F_m\}$$

Definition

$$s_n = #\{ index \ n \ subgroups \ of \ F_m \}$$

Theorem (M. Hall, 1949)

$$\sum_{n\geq 1} s_n \frac{t^n}{n} = \log\left(\left(\sum_{n\geq 0} (n!)^{m-1} t^n \right) \right).$$

ゆ ト く ヨ ト く ヨ ト

Definition

$$s_n = #\{ index \ n \ subgroups \ of \ F_m \}$$

Theorem (M. Hall, 1949)

$$\sum_{n\geq 1} s_n \frac{t^n}{n} = \log\left(\left(\sum_{n\geq 0} (n!)^{m-1} t^n \right) \right)$$

Exercise: Quickly check for m = 1.

ゆう くほう く

Approach: To get finite quantities:

Э

伺 ト く ヨ ト く ヨ ト

Approach: To get finite quantities:

Count isomorphism classes of representations of F_m over finite fields \mathbb{F}_q .

Approach: To get finite quantities:

Count isomorphism classes of representations of F_m over finite fields \mathbb{F}_q . Completely reducible (=semisimple) representations give best results.

Approach: To get finite quantities:

Count isomorphism classes of representations of F_m over finite fields \mathbb{F}_q . Completely reducible (=semisimple) representations give best results.

Definition

 $a_n(q) = \#\{n \text{-dimensional completely reducible } \mathbb{F}_q \text{-reps of } F_m\}/\simeq$.

(*) *) *) *)

Approach: To get finite quantities:

Count isomorphism classes of representations of F_m over finite fields \mathbb{F}_q . Completely reducible (=semisimple) representations give best results.

Definition

 $a_n(q) = \#\{n\text{-dimensional completely reducible } \mathbb{F}_q\text{-reps of } F_m\}/\simeq$.

Theorem

 $a_n(q)$ behaves polynomially in q, i.e.

 $a_n(q) \in \mathbb{Z}[q],$

Approach: To get finite quantities:

Count isomorphism classes of representations of F_m over finite fields \mathbb{F}_q . Completely reducible (=semisimple) representations give best results.

Definition

 $a_n(q) = \#\{n\text{-dimensional completely reducible } \mathbb{F}_q\text{-reps of } F_m\}/\simeq$.

Theorem

 $a_n(q)$ behaves polynomially in q, i.e.

 $a_n(q) \in \mathbb{Z}[q],$

and there is an explicit formula for $a_n(q)$.

Approach: To get finite quantities:

Count isomorphism classes of representations of F_m over finite fields \mathbb{F}_q . Completely reducible (=semisimple) representations give best results.

Definition

 $\mathsf{a}_n(q) = \#\{\textit{n}\text{-dimensional completely reducible } \mathbb{F}_q\text{-reps of } \mathsf{F}_m\}/\simeq.$

Theorem

 $a_n(q)$ behaves polynomially in q, i.e.

 $a_n(q) \in \mathbb{Z}[q],$

and there is an explicit formula for $a_n(q)$.

We need some ingredients to state this explicit formula.

Formal power series ring $R = \mathbb{Q}(q)[[t]]$ with maximal ideal $\mathfrak{m} = t\mathbb{Q}(q)[[t]]$;

• • = • • = •

Formal power series ring $R = \mathbb{Q}(q)[[t]]$ with maximal ideal $\mathfrak{m} = t\mathbb{Q}(q)[[t]]$; thus $1 + \mathfrak{m} \subset R^*$.

ヨト イヨト イヨト

Formal power series ring $R = \mathbb{Q}(q)[[t]]$ with maximal ideal $\mathfrak{m} = t\mathbb{Q}(q)[[t]]$; thus $1 + \mathfrak{m} \subset R^*$.

Definition

A certain q-hypergeometric function

$$F(t)=\sum_{n\geq 0}\left((q^n-1)\cdot\ldots\cdot(q-1)
ight)^{m-1}t^n\in\mathbb{Q}(q)[[t]].$$

Image: A Image: A

Formal power series ring $R = \mathbb{Q}(q)[[t]]$ with maximal ideal $\mathfrak{m} = t\mathbb{Q}(q)[[t]]$; thus $1 + \mathfrak{m} \subset R^*$.

Definition

A certain q-hypergeometric function

$${\mathcal F}(t)=\sum_{n\geq 0}\left((q^n-1)\cdot\ldots\cdot(q-1)
ight)^{m-1}t^n\in {\mathbb Q}(q)[[t]].$$

Definition

Shift operator T on R: the $\mathbb{Q}(q)$ -linear operator with

$$T(t^n) = q^{(1-m)\binom{n}{2}}t^n.$$

Ingredients for the explicit formula 2

Definition

Plethystic operations:

M. Reineke Counting representations of free groups

< ∃ >

Ingredients for the explicit formula 2

Definition

Plethystic operations:

• $\operatorname{Exp}:\mathfrak{m}\to 1+\mathfrak{m}$ unique operator such that

< ∃ >

Plethystic operations:

 $\bullet~\mathrm{Exp}:\mathfrak{m}\to 1+\mathfrak{m}$ unique operator such that

 $\operatorname{Exp}(f+g) = \operatorname{Exp}(f) \cdot \operatorname{Exp}(g)$

→ Ξ →

Plethystic operations:

 $\bullet~\mathrm{Exp}:\mathfrak{m}\to 1+\mathfrak{m}$ unique operator such that

$$\operatorname{Exp}(f+g) = \operatorname{Exp}(f) \cdot \operatorname{Exp}(g)$$
 and $\operatorname{Ext}(q^i t^n) = \frac{1}{1 - q^i t^n}$

- ₹ ∃ →

Plethystic operations:

 $\bullet~\mathrm{Exp}:\mathfrak{m}\to 1+\mathfrak{m}$ unique operator such that

$$\operatorname{Exp}(f+g) = \operatorname{Exp}(f) \cdot \operatorname{Exp}(g)$$
 and $\operatorname{Ext}(q^i t^n) = rac{1}{1-q^i t^n}$

•
$$\operatorname{Log}: 1 + \mathfrak{m} \to \mathfrak{m}$$
 inverse to Exp ,

コン・ヘビン・

Plethystic operations:

• $\operatorname{Exp}:\mathfrak{m}\to 1+\mathfrak{m}$ unique operator such that

$$\operatorname{Exp}(f+g) = \operatorname{Exp}(f) \cdot \operatorname{Exp}(g) \text{ and } \operatorname{Ext}(q^{i}t^{n}) = \frac{1}{1-q^{i}t^{n}}$$

•
$$\operatorname{Log}: 1 + \mathfrak{m} \to \mathfrak{m}$$
 inverse to Exp ,

• $\operatorname{Pow}: (1 + \mathfrak{m}) \times R \to 1 + \mathfrak{m}$ defined by

$$\operatorname{Pow}(f,g) = \operatorname{Exp}(g \cdot \operatorname{Log}(f)).$$

Plethystic operations:

• $\operatorname{Exp}:\mathfrak{m}\to 1+\mathfrak{m}$ unique operator such that

$$\operatorname{Exp}(f+g) = \operatorname{Exp}(f) \cdot \operatorname{Exp}(g) \text{ and } \operatorname{Ext}(q^{i}t^{n}) = \frac{1}{1-q^{i}t^{n}}$$

•
$$\text{Log}: 1 + \mathfrak{m} \to \mathfrak{m}$$
 inverse to Exp ,

•
$$\operatorname{Pow}: (1 + \mathfrak{m}) \times R \to 1 + \mathfrak{m}$$
 defined by

$$\operatorname{Pow}(f,g) = \operatorname{Exp}(g \cdot \operatorname{Log}(f)).$$

To summarize, we have three ingredients: explicit series F, shift operator T, plethystic power **Pow**.

$a_n(q) = \#\{n \text{-dimensional completely reducible } \mathbb{F}_q \text{-reps of } F_m\}/\simeq .$

Theorem

Definition

 $a_n(q) \in \mathbb{Z}[q],$

高 とう きょう く ほうしょう

Definition

 $a_n(q) = \#\{n \text{-dimensional completely reducible } \mathbb{F}_q \text{-reps of } F_m\}/\simeq$.

Theorem

$$a_n(q) \in \mathbb{Z}[q],$$

more precisely

$$\sum_{n\geq 0} a_n(q)t^n = \operatorname{Pow}(T^{-1}F(t)^{-1}, 1-q).$$

高 ト イヨ ト イヨ ト

Definition

 $a_n(q) = \#\{n \text{-dimensional completely reducible } \mathbb{F}_q \text{-reps of } F_m\}/\simeq$.

Theorem

$$a_n(q) \in \mathbb{Z}[q],$$

more precisely

$$\sum_{n\geq 0} a_n(q)t^n = \operatorname{Pow}(T^{-1}F(t)^{-1}, 1-q).$$

Remark: This formula conceals a double/triple recursion.

ゆ ト く ヨ ト く ヨ ト

Definition

 $a_n(q) = \#\{n \text{-dimensional completely reducible } \mathbb{F}_q \text{-reps of } F_m\}/\simeq$.

Theorem

$$a_n(q) \in \mathbb{Z}[q],$$

more precisely

$$\sum_{n\geq 0} a_n(q)t^n = \operatorname{Pow}(T^{-1}F(t)^{-1}, 1-q).$$

Remark: This formula conceals a double/triple recursion.

Proof: Later.

ゆ く き と く ほ と

Examples

$$a_1(q)=(q-1)^m,$$

・ロト ・回ト ・ヨト ・ヨト

Ξ

Examples

$$a_1(q)=(q-1)^m,$$

$$a_n(q) = q^n - q^{n-1}$$
 for $m = 1$,

・ロト ・回ト ・ヨト ・ヨト

Ξ
$$egin{aligned} & a_1(q) = (q-1)^m, \ & a_n(q) = q^n - q^{n-1} ext{ for } m = 1, \ & a_2(q) = (q-1)^m \cdot (q^{m-1}(q-1)^{m-1} \left((q+1)^{m-1} - 1
ight) + \ & + rac{1}{2}q \left((q+1)^{m-1} + (q-1)^{m-1}
ight)). \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

Ξ

Theorem

Positivity around q = 1:

伺 とう ほう とう とう

Theorem

Positivity around q = 1:

 $a_n(q) \in \mathbb{N}[q-1].$

高 とう きょう く ほうしょう

Theorem

Positivity around q = 1:

$$a_n(q)\in \mathbb{N}[q-1].$$

For $m \ge 2$, lowest term formula

$$a_n(q) = \varphi(n)n^{m-2} \cdot (q-1)^n +$$

高 とう きょう く ほうしょう

Theorem

Positivity around q = 1:

$$a_n(q) \in \mathbb{N}[q-1].$$

For $m \ge 2$, lowest term formula

$$a_n(q) = \varphi(n)n^{m-2} \cdot (q-1)^n + O((q-1)^{n+1})$$

回 と く ヨ と く ヨ と …

Theorem

Positivity around q = 1:

$$a_n(q) \in \mathbb{N}[q-1].$$

For $m \ge 2$, lowest term formula

$$a_n(q) = \varphi(n)n^{m-2} \cdot (q-1)^n + O((q-1)^{n+1})$$

where φ is Euler's totient function.

伺 ト く ヨ ト く ヨ ト

Theorem

Positivity around q = 1:

$$a_n(q) \in \mathbb{N}[q-1].$$

For $m \ge 2$, lowest term formula

$$a_n(q) = \varphi(n)n^{m-2} \cdot (q-1)^n + O((q-1)^{n+1})$$

where φ is Euler's totient function.

Thus, the Taylor coefficients of the $a_n(q)$ around q = 1 count something intrinsic to F_m .

Theorem

Positivity around q = 1:

$$a_n(q) \in \mathbb{N}[q-1].$$

For $m \ge 2$, lowest term formula

$$a_n(q) = \varphi(n)n^{m-2} \cdot (q-1)^n + O((q-1)^{n+1})$$

where φ is Euler's totient function.

Thus, the Taylor coefficients of the $a_n(q)$ around q = 1 count something intrinsic to F_m . But what do they count?

Theorem

Positivity around q = 1:

$$a_n(q) \in \mathbb{N}[q-1].$$

For $m \ge 2$, lowest term formula

$$a_n(q) = \varphi(n)n^{m-2} \cdot (q-1)^n + O((q-1)^{n+1})$$

where φ is Euler's totient function.

Thus, the Taylor coefficients of the $a_n(q)$ around q = 1 count something intrinsic to F_m . But what do they count? We don't know.

Theorem

Positivity around q = 1:

$$a_n(q) \in \mathbb{N}[q-1].$$

For $m \ge 2$, lowest term formula

$$a_n(q) = \varphi(n)n^{m-2} \cdot (q-1)^n + O((q-1)^{n+1})$$

where φ is Euler's totient function.

Thus, the Taylor coefficients of the $a_n(q)$ around q = 1 count something intrinsic to F_m . But what do they count? We don't know.

(Proof is purely combinatorial in terms of first theorem.)

Definition

Adams operators ψ_n :

3

- ₹ ₹ >

Definition

Adams operators ψ_n : the Q-linear operator on R such that

$$\psi_n(q^i) = q^{ni}, \quad \psi_n(t^d) = t^{nd};$$

Definition

Adams operators ψ_n : the Q-linear operator on R such that

$$\psi_n(q^i) = q^{ni}, \quad \psi_n(t^d) = t^{nd};$$

$$\Psi = \sum_{n\geq 1} \frac{1}{n} \psi_n.$$

Definition

Adams operators ψ_n : the Q-linear operator on R such that

$$\psi_n(q^i) = q^{ni}, \quad \psi_n(t^d) = t^{nd};$$

$$\Psi = \sum_{n \ge 1} \frac{1}{n} \psi_n.$$

Theorem

$$\Psi\left(\frac{1}{q-1}\mathrm{Log}\left(\sum_{n\geq 0}a_n(q)t^n\right)\right)\bigg|_{t=\frac{x}{(q-1)^{m-1}},q=1}=\sum_{n\geq 0}s_n\frac{x^n}{n}$$

Definition

Adams operators ψ_n : the Q-linear operator on R such that

$$\psi_n(q^i) = q^{ni}, \quad \psi_n(t^d) = t^{nd};$$

$$\Psi = \sum_{n \ge 1} \frac{1}{n} \psi_n.$$

Theorem

$$\Psi\left(\frac{1}{q-1}\operatorname{Log}\left(\sum_{n\geq 0}a_n(q)t^n\right)\right)\bigg|_{t=\frac{x}{(q-1)^{m-1}},q=1}=\sum_{n\geq 0}s_n\frac{x^n}{n}$$

This means: the representation growth knows the subgroup growth.

< ∃ > < ∃ >

Definition

 Γ a finitely generated group, G a reductive group:

• = • •

Definition

 Γ a finitely generated group, G a reductive group:

 $\operatorname{Hom}(\Gamma, G)$ affine variety with G-action,

Definition

 Γ a finitely generated group, G a reductive group:

 $\operatorname{Hom}(\Gamma, G)$ affine variety with G-action,

 $X_{\Gamma}(G) := \operatorname{Hom}(\Gamma, G) / / G$

character variety.

Definition

 Γ a finitely generated group, G a reductive group:

 $\operatorname{Hom}(\Gamma, G)$ affine variety with G-action,

 $X_{\Gamma}(G) := \operatorname{Hom}(\Gamma, G) / / G$

character variety.

Here:

$$X_{F_m}(\mathrm{GL}_n(\mathbb{C})) = \mathrm{GL}_n(\mathbb{C})^m / / \mathrm{GL}_n(\mathbb{C}),$$

Definition

 Γ a finitely generated group, G a reductive group:

 $\operatorname{Hom}(\Gamma, G)$ affine variety with G-action,

 $X_{\Gamma}(G) := \operatorname{Hom}(\Gamma, G) / / G$

character variety.

Here:

$$X_{F_m}(\mathrm{GL}_n(\mathbb{C})) = \mathrm{GL}_n(\mathbb{C})^m / / \mathrm{GL}_n(\mathbb{C}),$$

 $\operatorname{GL}_n(\mathbb{C})$ acting on *m* copies of itself via simultaneous conjugation.

$$X_{F_m}(\mathbb{C}^*)\simeq (\mathbb{C}^*)^m,$$

M. Reineke Counting representations of free groups

直 ト イヨト イヨト

$$X_{F_m}(\mathbb{C}^*)\simeq (\mathbb{C}^*)^m,$$

$$X_{\mathcal{F}_1}(\mathrm{GL}_n(\mathbb{C})) = \mathrm{GL}_n(\mathbb{C}) / / \mathrm{GL}_n(\mathbb{C}) \simeq \mathbb{A}^n \setminus \mathbb{A}^{n-1},$$

同下 イヨト イヨト

$$X_{F_m}(\mathbb{C}^*)\simeq (\mathbb{C}^*)^m,$$

$$X_{F_1}(\mathrm{GL}_n(\mathbb{C})) = \mathrm{GL}_n(\mathbb{C})//\mathrm{GL}_n(\mathbb{C}) \simeq \mathbb{A}^n \setminus \mathbb{A}^{n-1},$$

$$X_{F_2}(\mathrm{GL}_2(\mathbb{C})) \simeq \mathbb{A}^5 \setminus \mathbb{A}^3.$$

▲圖▶ ▲ 国▶ ▲ 国▶

 $X_{F_m}(\operatorname{GL}_n(\mathbb{C}))$ admits model \mathcal{X} over $\operatorname{Spec}(\mathbb{Z})$,

伺 ト く ヨ ト く ヨ ト

 $X_{F_m}(\mathrm{GL}_n(\mathbb{C}))$ admits model \mathcal{X} over $\mathrm{Spec}(\mathbb{Z})$, that is,

$$X_{F_m}(\mathrm{GL}_n(\mathbb{C})) \simeq \mathrm{Spec}(\mathbb{C}) \times_{\mathrm{Spec}(\mathbb{Z})} \mathcal{X},$$

ゆ ト く ヨ ト く ヨ ト

 $X_{F_m}(\mathrm{GL}_n(\mathbb{C}))$ admits model \mathcal{X} over $\mathrm{Spec}(\mathbb{Z})$, that is,

$$X_{F_m}(\operatorname{GL}_n(\mathbb{C})) \simeq \operatorname{Spec}(\mathbb{C}) \times_{\operatorname{Spec}(\mathbb{Z})} \mathcal{X},$$

 $a_n(q) = \# \mathcal{X}(\mathbb{F}_q),$

ヨト イヨト イヨト

 $X_{F_m}(\operatorname{GL}_n(\mathbb{C}))$ admits model $\mathcal X$ over $\operatorname{Spec}(\mathbb{Z})$, that is,

$$X_{F_m}(\operatorname{GL}_n(\mathbb{C})) \simeq \operatorname{Spec}(\mathbb{C}) \times_{\operatorname{Spec}(\mathbb{Z})} \mathcal{X},$$

$$a_n(q) = \# \mathcal{X}(\mathbb{F}_q),$$

$$\chi(X_{F_m}(\mathrm{PGL}_n(\mathbb{C}))) = \varphi(n)n^{m-2}.$$

ゆ ト く ヨ ト く ヨ ト

 $X_{F_m}(\mathrm{GL}_n(\mathbb{C}))$ admits model \mathcal{X} over $\mathrm{Spec}(\mathbb{Z})$, that is,

$$X_{F_m}(\operatorname{GL}_n(\mathbb{C})) \simeq \operatorname{Spec}(\mathbb{C}) \times_{\operatorname{Spec}(\mathbb{Z})} \mathcal{X},$$

$$a_n(q) = \# \mathcal{X}(\mathbb{F}_q),$$

$$\chi(X_{F_m}(\mathrm{PGL}_n(\mathbb{C}))) = \varphi(n)n^{m-2}.$$

Remark: Positivity property $a_n(q) \in \mathbb{N}[q-1]$ suggests existence of paving of $X_{F_m}(\mathrm{GL}_n(\mathbb{C}))$ by (quotients by finite groups of) tori.

k a finite field.

・ロン ・部 と ・ ヨ と ・ ヨ と

k a finite field.

Definition

Rep = {isoclasses of fin. dim. *k*-reps of F_m },

ヘロト 人間 とくほ とくほう

k a finite field.

Definition

Rep = {isoclasses of fin. dim. *k*-reps of
$$F_m$$
},

$$H((kF_m)) = \{ \text{functions } \mathbf{Rep} \to \mathbb{Q} \}$$

as **Q**-vector space;

ヘロト 人間 とくほ とくほう

k a finite field.

Definition

Rep = {isoclasses of fin. dim. *k*-reps of
$$F_m$$
},

$$H((kF_m)) = \{ \text{functions } \mathbf{Rep} \to \mathbb{Q} \}$$

as Q-vector space; associative algebra via multiplication

$$(f*g)(V) = \sum_{U \subset V} f(U)g(V/U).$$

◆ロ > ◆母 > ◆臣 > ◆臣 >

э

k a finite field.

Definition

Rep = {isoclasses of fin. dim. *k*-reps of
$$F_m$$
},

$$H((kF_m)) = \{ \text{functions } \mathbf{Rep} \to \mathbb{Q} \}$$

as Q-vector space; associative algebra via multiplication

$$(f*g)(V) = \sum_{U \subset V} f(U)g(V/U).$$

Algebra map (integration) $\int : H((kF_m)) \to \mathbb{Q}[[t]],$

$$\int f = \sum_{V} \frac{|k|^{(1-m)\binom{\dim V}{2}}}{|\operatorname{Aut}(V)|} f(V) t^{\dim V}.$$

イロト イポト イヨト イヨト

Proof of first theorem

Lemma (Key lemma)

 $\mathbf{1} \in H((kF_m))$ constant function with value 1:

伺 とう ほう とう とう

Proof of first theorem

Lemma (Key lemma)

$\mathbf{1} \in H((kF_m))$ constant function with value 1:

 $\mathbf{1}^{-1}$ supported on completely reducible reps,

ゆ ト く ヨ ト く ヨ ト
Proof of first theorem

Lemma (Key lemma)

$\mathbf{1} \in H((kF_m))$ constant function with value 1:

 $\mathbf{1}^{-1}$ supported on completely reducible reps,

$$\mathbf{1}^{-1}(\bigoplus_{S}S^{m_{s}})=\prod_{S}(-1)^{m_{S}}|\mathrm{End}(S)|^{\binom{m_{S}}{2}}.$$

ゆ ト く ヨ ト く ヨ ト

Proof of first theorem

Lemma (Key lemma)

$\mathbf{1} \in H((kF_m))$ constant function with value 1:

 $\mathbf{1}^{-1}$ supported on completely reducible reps,

$$\mathbf{1}^{-1}(\bigoplus_{S}S^{m_{s}})=\prod_{S}(-1)^{m_{S}}|\mathrm{End}(S)|^{\binom{m_{S}}{2}}.$$

Corollary (After some calculation)

$$\int \mathbf{1}^{-1} = \operatorname{Pow}\left(\sum_{n \ge 0} a_n(q)t^n, \frac{1}{1-q}\right) \bigg|_{q=|k|}$$

Proof of first theorem

Lemma (Key lemma)

$\mathbf{1} \in H((kF_m))$ constant function with value 1:

 $\mathbf{1}^{-1}$ supported on completely reducible reps,

$$\mathbf{1}^{-1}(\bigoplus_{S} S^{m_{s}}) = \prod_{S} (-1)^{m_{S}} |\mathrm{End}(S)|^{\binom{m_{S}}{2}}.$$

Corollary (After some calculation)

$$\begin{split} \int \mathbf{1}^{-1} &= \operatorname{Pow}\left(\sum_{n\geq 0} a_n(q)t^n, \frac{1}{1-q}\right) \bigg|_{q=|k|} \\ &\int \mathbf{1}^{-1} &= \left(\int \mathbf{1}\right)^{-1} = \left. T^{-1}F(t)^{-1} \right|_{q=|k|}. \end{split}$$

This proves the theorem and ends the talk.

御下 くほと くほど

This proves the theorem and ends the talk.

Thank you!

4 ∃ > <</p>

⇒ >