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A motivation: Homological stability

A sequence of spaces or groups with maps

X1 → X2 → · · ·

satisfies homological stability (in degree i) if the maps

Hi (Xn) → Hi (Xn+1)

are isomorphisms for n ≫ 0.

A classical example: Xn is the braid group Bn on n strands and
Xn ⊂ Xn+1 is the inclusion by acting on the first n strands.

A non-example: Xn = ker(Bn → Σn) is the pure braid group:

H1(Xn) ∼= Z(
n
2).
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Representation stability

Idea: enhance homological stability by adding group actions.

For pure braid group, Σn acts on Hi (Xn) and H1(Xn) is the
permutation representation on 2-element subsets.
The image of H1(Xn) in H1(Xn+1) generates as
Σn+1-representation.
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Representation stability

Idea: enhance homological stability by adding group actions.

For pure braid group, Σn acts on Hi (Xn) and H1(Xn) is the
permutation representation on 2-element subsets.
The image of H1(Xn) in H1(Xn+1) generates as
Σn+1-representation.

Church–Ellenberg–Farb packaged this as an FI-module. Let FI be
the category of finite sets and injective maps.

For a finite set S , there is a pure braid group PBS on strands
labeled by S and S 7→ Hi (PBS) is a functor from FI to abelian
groups and it’s finitely generated: there is a finite collection of
elements so that the smallest subfunctor containing them is the
whole functor.
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We could replace FI by some other category C and study its
representations: functors to an abelian category like abelian groups
or vector spaces.

Even for simple-looking categories like FI, there isn’t much hope in
classifying its representations.

The study of its modules is perhaps best viewed from the lens of
commutative algebra.

So we might want to understand things such as noetherian
properties (does finite generation get inherited by
subrepresentations?), Hilbert series, free resolutions, Koszul duality,
etc.

4 / 20



Theme of the talk:

• Reduce representation stability problems to commutative
algebra

• Reduce algebraic problems to combinatorial problems

• Combinatorial tools: Gröbner bases and formal languages

Joint work with Andrew Snowden and Andy Putman.
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Classical examples:

• Hilbert basis theorem (Let k be noetherian. Every ideal in
A = k[x1, . . . , xn] is finitely generated.)

follows from

Dickson’s lemma (The poset Zn
≥0 under termwise

comparison contains no infinite antichains.)

• “Finitely generated A-modules have rational Hilbert series”

follows from

“Every regular language has a rational generating function”
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Some applications of the ideas:

• Lannes–Schwartz artinian conjecture: every subfunctor of
a finitely generated endofunctor on the category of vector
spaces over a finite field is finitely generated

• Stembridge’s conjecture: Let gλ,µ,ν be Kronecker
coefficient, i.e., tensor product multiplicity of symmetric group
representations.

Then gdα,dβ,dγ = 1 for d ≥ 1 implies gλ+dα,µ+dβ,ν+dγ is
constant for d ≫ 0.

(α = β = γ = (1) is Murnaghan’s stability theorem)
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Definitions

Let C be a small category and let k be a ring.
A representation of C is a functor F : C → Modk where Modk is
the category of left k-modules.

Equivalently, let k[C] be the algebra over k with basis given by
morphisms between objects in C and multiplication given by
composition (if possible) or 0 (if not possible).
Then a representation is the same as a left k[C]-module.
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Definitions

Let C be a small category and let k be a ring.
A representation of C is a functor F : C → Modk where Modk is
the category of left k-modules.

Equivalently, let k[C] be the algebra over k with basis given by
morphisms between objects in C and multiplication given by
composition (if possible) or 0 (if not possible).
Then a representation is the same as a left k[C]-module.

In our examples, isomorphism classes of C parametrized by Z≥0, so
one more definition is a Z≥0-graded k-module M =

⊕
i≥0Mi

together with operators Mi → Mj for every morphism i → j that
compose in the obvious way.

If k is a field, define Hilbert series: HM(t) =
∑

i≥0 dimk(Mi )t
i .
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Examples

• C = FI is the category of finite sets and injective maps. So
there is one operation Mi → Mj for each injection [i ] → [j ].

• C = FSop is the opposite of the category of finite sets and
surjective maps. So there is one operation Mi → Mj for each
surjection [j ] → [i ].

• C = VI(Fq) is the category of finite-dimensional Fq-vector
spaces and injective linear maps. So there is one operation
Mi → Mj for each linear injection Fi

q → F
j
q.

• G -sets, weighted sets, colored injections, symplectic vector
spaces, etc.
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k[C]-modules have a natural notion of “finite generation” and
“submodule”. A module M is noetherian if every submodule of it
is finitely generated.
k[C] is noetherian if every finitely generated module is noetherian
(this forces k to be noetherian).

Note: k[C] is not finitely generated over itself if C has infinitely
many isomorphism classes of objects.
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k[C]-modules have a natural notion of “finite generation” and
“submodule”. A module M is noetherian if every submodule of it
is finitely generated.
k[C] is noetherian if every finitely generated module is noetherian
(this forces k to be noetherian).

Note: k[C] is not finitely generated over itself if C has infinitely
many isomorphism classes of objects.

Theorem (Sam–Snowden)

If k is left noetherian, then k[C] is left noetherian for the examples

on the last slide.

If k is a field, f.g. modules have rational Hilbert series.

The proof uses ideas from Gröbner bases which we review next.

C = FI was proven first in paper of Church, Ellenberg, Farb,
Nagpal (their technique doesn’t apply to the other examples).
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Gröbner bases

A term order is an ordering of monomials in k[x1, . . . , xn] so that

• no infinite descending chains

• m < m′ implies m′′m < m′′m′

For f ∈ k[x1, . . . , xn] define init(f ) to be its maximal monomial
and for an ideal I , let init(I ) be the k-span of init(f ) for f ∈ I .

Basic properties:

• A generating set for init(I ) gives one for I

• For I homogeneous, I and init(I ) have same Hilbert series

So we can reduce problems of noetherianity and rationality of
Hilbert series to monomial ideals.
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• If I is a monomial ideal with infinite generating set
m1,m2, . . . so that no mi divides any other mj , then their
exponents would be an infinite antichain in Zn

≥0; now use
Dickson’s lemma

• A degree d monomial in n variables can be encoded as a
sequence of “stars and bars” with n − 1 “bars” and d “stars”,
e.g., x32x

2
3x5 ↔ | ∗ ∗ ∗ | ∗ ∗||∗

The set of monomials divisible by a given one is a regular
language on the alphabet {∗, |}, i.e., can be encoded as the
set of walks in a weighted graph, so has a rational generating
function.
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Back to C-modules: basic idea

For each object i , there is a projective C-module P(i) with

P(i)j = k[HomC(i , j)].

Intuitively, P(i)j is the set of all operations that get you from Mi

to Mj , so for any choice of element x ∈ Mi one can define a map
P(i) → M.

These spaces have distinguished bases, which we should think of as
monomials.

Non-trivial torsion automorphisms prevent us from defining term
orders:
e.g., if g2 = 1 then g < 1 would imply 1 < g and vice versa.
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A basic reduction

Given a functor Φ: C′ → C, a k[C]-module M pulls back to a
k[C′]-module Φ∗(M).

Lemma

Suppose that Φ is essentially surjective and that Φ∗(M) is finitely
generated whenever M is finitely generated.

If k[C′] is noetherian, then k[C] is noetherian.

We say that Φ satisfies “Property (F)”.
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A basic reduction

Given a functor Φ: C′ → C, a k[C]-module M pulls back to a
k[C′]-module Φ∗(M).

Lemma

Suppose that Φ is essentially surjective and that Φ∗(M) is finitely
generated whenever M is finitely generated.

If k[C′] is noetherian, then k[C] is noetherian.

We say that Φ satisfies “Property (F)”.

Proof.

An infinite increasing chain of submodules in M would lead to an
infinite increasing chain of submodules of Φ∗(M).
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Since non-trivial automorphisms in C are an issue, the solution is
to find C′ with no non-trivial automorphisms and a functor
Φ: C′ → C satisfying property (F).

To check Property (F), just need to check projectives
Pi (j) = k[HomC(i , j)] and it reduces to a combinatorial problem
about factoring morphisms:

For every object x ∈ C, there exist y1 . . . , yn ∈ C′ and
fi : x → Φ(yi ) such that for all y ∈ C′, every f : x → Φ(y) can be
written as Φ(g) ◦ fi for some g : yi → y
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Since non-trivial automorphisms in C are an issue, the solution is
to find C′ with no non-trivial automorphisms and a functor
Φ: C′ → C satisfying property (F).

To check Property (F), just need to check projectives
Pi (j) = k[HomC(i , j)] and it reduces to a combinatorial problem
about factoring morphisms:

For every object x ∈ C, there exist y1 . . . , yn ∈ C′ and
fi : x → Φ(yi ) such that for all y ∈ C′, every f : x → Φ(y) can be
written as Φ(g) ◦ fi for some g : yi → y

We illustrate one example. Let OI be the category of finite ordered
sets and order-preserving injections. The forgetful functor
Φ: OI → FI satisfies property (F):
if x ∈ FI, then y1, . . . , yn are all of the different n = |x |! ordered
sets on x and the fi are identity maps.
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Well-quasi-orderings and formal languages

Suppose we can define term orderings for representations of a
category C. To prove noetherian properties, we need an analog of
Dickson’s lemma which asserts that an associated poset is a
well-quasi-ordering. Formally, this means that for every sequence
x1, x2, . . . there exists i < j such that xi ≤ xj .

To study Hilbert series of monomial representations, one approach
is to put the monomials in bijection with words in a language such
that finitely generated representations correspond to well-behaved
classes, like regular languages, or unambiguous context-free
languages.
Then one can use basic results about their Hilbert series.

These parts are more combinatorial; we skip them.
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Lannes–Schwartz artinian conjecture

Let Vec(Fq) be the category of finite-dimensional Fq-vector spaces.

Theorem (Putman, Sam, Snowden)

Fq[Vec(Fq)] is noetherian.

The inclusion VI(Fq) → Vec(Fq) satisfies property (F).
(Recall that VI is the subcategory with linear injections.)

This was conjectured by Jean Lannes and Lionel Schwartz. Their
interest comes from a connection of these modules with unstable
modules over the Steenrod algebra.

This formulation is misleading: in fact one can prove the statement
for k[Vec(R)] with k noetherian and R a finite (commutative) ring.
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Syzygies of Segre embeddings

Let P(V ) be the projectivization of a vector space V .
The Segre embedding is the map

P(V1)× · · · × P(Vn) → P(V1 ⊗ · · · ⊗ Vn)

([v1], . . . , [vn]) 7→ [v1 ⊗ · · · ⊗ vn].

Three ways to get equations that vanish on the image:
1. Reduce from n to n − 1 by considering the composition

P(V1)× · · · × P(Vn−1)× P(Vn) → P(V1)× · · · × P(Vn−1 ⊗ Vn)

→ P(V1 ⊗ · · · ⊗ Vn)

2. Permute factors
3. Use linear maps Vi → V ′

i .
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These operations also extend to other things like higher syzygies
(call this Tori )

This was formalized by Snowden in the notion of a ∆-module.

But 1. and 2. are similar to the operations given by C = FSop.
This can made rigorous; intuitively the result is:

Theorem (Sam–Snowden)

For each i , there is a finite list of Segre embeddings whose Tori
groups allow one to build all others under operations 1., 2., and 3.

This was previously shown by Snowden when k is a field of
characteristic 0; relied on classification of polynomial functors.

The combinatorial (Gröbner) approach ends up being simpler and
more general.
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More representation stability

Let OK be the ring of integers in a number field and let p ⊂ OK

be a prime. Define

SLn(OK , p) = ker(SLn(OK ) → SLn(OK/p)),

Sp2n(OK , p) = ker(Sp2n(OK ) → Sp2n(OK/p)).

Theorem (Putman–Sam)

{SLn(OK , p)} and {Sp2n(OK , p)} satisfy representation stability.

In other words, their homology groups are finitely generated
representations over suitably modified versions of the categories
VI(Fq) where one can prove noetherian results and use
Quillen-type arguments to prove these statements.

There are also versions where SLn(OK ) is replaced by the
automorphism group of a free group or a mapping class group of
an oriented surface.
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