ASYMPTOTICS OF BRANCHING LAWS AND INVARIANTS BY GLOBAL QUOTIENTS

Henrik Seppänen

Georg-August-Universität Göttingen

Schwerpunkttagung SPP 1388 Bad-Honnef March 10 2015

向下 イヨト イヨト

Branching laws

- G' complex semisimple Lie group
- (π, V_{λ}) finite dim. irreducible rep. of G'
- $G \subseteq G'$ semisimple subgroup

Problem

Decompose V into G-irreducibles

$$\mathcal{W}_{\lambda} = \bigoplus_{\mu} m_{\mu,\lambda} \mathcal{W}_{\mu},$$

where W_{μ} is a G-irrep. and

$$\mathit{m}_{\mu,\lambda} = \mathit{dim}(\mathit{Hom}_{G}(\mathit{W}_{\mu}, \mathit{V}_{\lambda}))$$

is its multiplicity.

伺 ト イヨト イヨト

Borel-Weil:

$$m_{\mu,\lambda} = \dim (W^*_{\mu} \otimes V_{\lambda})^G = \dim H^0(G/B \times G'/B', L_{\mu,\lambda})^G.$$

where $L_{\mu,\lambda}$ is a line bundle over $X := G/B \times G'/B'$.

(1日) (日) (日)

Borel-Weil:

$$m_{\mu,\lambda} = \dim (W^*_\mu \otimes V_\lambda)^{\mathcal{G}} = \dim H^0(\mathcal{G}/B imes \mathcal{G}'/B', L_{\mu,\lambda})^{\mathcal{G}}.$$

where $L_{\mu,\lambda}$ is a line bundle over $X := G/B \times G'/B'$.

Question

Can the space of G-invariant sections be replaced by the space of all sections of some line bundle $\widetilde{L_{\mu,\lambda}}$ over some variety $Y_{\mu,\lambda}$, i.e., is there an identity

$$H^0(G/B \times G'/B', L_{\mu,\lambda})^G \cong H^0(Y_{\mu,\lambda}, \widetilde{L_{\mu,\lambda}})?$$

伺下 イヨト イヨト

Borel-Weil:

$$m_{\mu,\lambda} = \dim (W^*_\mu \otimes V_\lambda)^G = \dim H^0(G/B imes G'/B', L_{\mu,\lambda})^G.$$

where $L_{\mu,\lambda}$ is a line bundle over $X := G/B \times G'/B'$.

Question

Can the space of G-invariant sections be replaced by the space of all sections of some line bundle $\widetilde{L_{\mu,\lambda}}$ over some variety $Y_{\mu,\lambda}$, i.e., is there an identity

$$H^{0}(G/B \times G'/B', L_{\mu,\lambda})^{G} \cong H^{0}(Y_{\mu,\lambda}, \widetilde{L_{\mu,\lambda}})^{?}$$

Yes (almost): for

$$Y_{\mu,\lambda} := X^{ss}(L_{\mu,\lambda})//G$$

(GIT-quotient), there is a $k \in \mathbb{N}$ such that

$$H^{0}(G/B \times G'/B', L^{m}_{k\mu,k\lambda})^{G} \cong H^{0}(Y_{\mu,\lambda}, \widetilde{L^{m}_{k\mu,k\lambda}}), \ m \in \mathbb{N}.$$

Question

Is there some GIT-quotient Y which works for all line bundles, i.e., that for every (μ, λ) there exists a $k \in \mathbb{N}$ and a line bundle $\widetilde{L_{k\mu,k\lambda}}$ on Y such that

$$H^{0}(G/B \times G'/B', L^{m}_{k\mu,k\lambda})^{G} \cong H^{0}(Y, \widetilde{L_{k\mu,k\lambda}}^{m}),$$

 $m \in \mathbb{N}?$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

VGIT

If $L \to X$ is an ample line bundle, the <u>unstable locus</u> of L (w.r.t. G) is

$$X^{us}(L) := \{x \in X \mid \forall k \forall s \in H^0(X, L^k)^G s(x) = 0\}.$$

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

VGIT

If $L \to X$ is an ample line bundle, the <u>unstable locus</u> of L (w.r.t. G) is

$$X^{us}(L) := \{ x \in X \mid \forall k \forall s \in H^0(X, L^k)^G s(x) = 0 \}.$$

The complement is the semi-stable locus of L (w.r.t. G);

$$X^{ss}(L) := \{x \in X \mid \exists k \exists s \in H^0(X, L^k)^G s(x) = 0\}.$$

・ロン ・回 と ・ 回 と ・ 回 と

If $L \to X$ is an ample line bundle, the <u>unstable locus</u> of L (w.r.t. G) is

$$X^{us}(L) := \{x \in X \mid \forall k \forall s \in H^0(X, L^k)^G s(x) = 0\}.$$

The complement is the <u>semi-stable locus</u> of L (w.r.t. G);

$$X^{ss}(L) := \{x \in X \mid \exists k \exists s \in H^0(X, L^k)^G s(x) = 0\}.$$

▶ $R(X, L) := \bigoplus_{k \ge 0} H^0(X, L^k)$ be the section ring of L ▶ $R(X, L)^G = \bigoplus_{k \ge 0} H^0(X, L^k)^G$ the ring of *G*-invariants

- 4 回 5 - 4 日 5 - - - 日

If $L \to X$ is an ample line bundle, the <u>unstable locus</u> of L (w.r.t. G) is

$$X^{us}(L) := \{x \in X \mid \forall k \forall s \in H^0(X, L^k)^G s(x) = 0\}.$$

The complement is the <u>semi-stable locus</u> of L (w.r.t. G);

$$X^{ss}(L) := \{x \in X \mid \exists k \exists s \in H^0(X, L^k)^G s(x) = 0\}.$$

•
$$R(X,L) := \bigoplus_{k \ge 0} H^0(X,L^k)$$
 be the section ring of L

•
$$R(X,L)^{G} = \bigoplus_{k \ge 0} H^{0}(X,L^{k})^{G}$$
 the ring of *G*-invariants

Question

How does the quotient $Y(L) := X^{ss}(L)//G \cong Proj(R(X,L)^G)$ depend on L?

the <u>G-ample cone</u> C^G(X) in Pic(X)_ℝ:= the closed convex cone generated by ample line bundles L with X^{ss}(L) ≠ Ø,

▲□→ ▲注→ ▲注→

- the <u>G-ample cone</u> C^G(X) in Pic(X)_ℝ:= the closed convex cone generated by ample line bundles L with X^{ss}(L) ≠ Ø,
- ► GIT-equivalence: the relation between line bundles in C^G(X) given by having the same semi-stable locus extends to an equivalence relation on C^G(X)

- the <u>G-ample cone</u> C^G(X) in Pic(X)_ℝ:= the closed convex cone generated by ample line bundles L with X^{ss}(L) ≠ Ø,
- ► GIT-equivalence: the relation between line bundles in C^G(X) given by having the same semi-stable locus extends to an equivalence relation on C^G(X)
- ► the quotient Y(L) = X^{ss}(L)//G = X^{ss}(C)//G depends only on the GIT-equivalence class C of L.

・吊り ・ヨン ・ヨン ・ヨ

- the <u>G-ample cone</u> C^G(X) in Pic(X)_ℝ:= the closed convex cone generated by ample line bundles L with X^{ss}(L) ≠ Ø,
- ► GIT-equivalence: the relation between line bundles in C^G(X) given by having the same semi-stable locus extends to an equivalence relation on C^G(X)

► the quotient Y(L) = X^{ss}(L)//G = X^{ss}(C)//G depends only on the GIT-equivalence class C of L.

Theorem (VGIT ; Thaddeus ('96), Dolgachev-Hu ('98)) There are only finitely many GIT-equivalence classes C, and hence only finitely many quotients

$$Y(C) := X^{ss}(C) / / G.$$

(4月) (4日) (4日) 日

Let $L \in C^{G}(X)$ be an ample line bundle

- ▶ w.l.o.g. R(X, L)^G generated in degree one over C (OK for the purpose of studying Proj(R(X, L)^G))
- ► F:=divisorial component of X^{us}(L) = V(H⁰(X, L)^G) (counted with multiplicities of irr. components)
- ▶ $F = V(s_F), s_F \in H^0(X, \mathcal{O}_X(F))^G$ the defining section
- sections in $H^0(X, L^k)^G$ vanish to order k along F

マボン イラン イラン 一日

Lemma

$$X^{ss}(L)//G \cong X^{ss}(L \otimes \mathcal{O}_X(-F))//G$$

Proof.

There is a natural isomorphism of graded rings $\varphi : R(X, L)^G \to R(X, L \otimes \mathcal{O}_X(-F))^G$;

$$\varphi(s) := rac{s}{s_F^k}, \quad s \in H^0(X, L^k)^G.$$

Hence $\operatorname{Proj}(R(X,L)^{\mathcal{G}}) \cong \operatorname{Proj}(R(X,L \otimes \mathcal{O}_X(-F))^{\mathcal{G}}).$

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

Let $M^{G}(X)$ denote closure of the union of the GIT-equivalence classes C in $C^{G}(X)$ with $\operatorname{codim}(X^{us}(C)) \geq 2$.

Corollary

For big enough $k \in \mathbb{N}$, the multiplicity function $k \mapsto m_{k\mu,k\lambda}$ equals a multiplicity function $k \mapsto m_{k\mu_0,k\lambda_0}$, for a line bundle L_{μ_0,λ_0} with $\operatorname{codim} X^{us}(L_{\mu_0,\lambda_0}) \geq 2$.

(4月) (4日) (4日) 日

Remark If C is a GIT-equivalence class in $M^G(X)$, $\pi : X^{ss}(C) \mapsto Y := X^{ss}(C)//G$, and L is a line bundle on X with $L = \pi^* E$ on $X^{ss}(C)$, for a line bundle $E \to Y$, then the identity

$$H^0(X,L)^G \cong H^0(Y,E)$$

holds by Hartog's theorem.

Question

Which line bundles L on X are of the form $L = \pi^* E$, for a line bundle $E \rightarrow Y$? (Which line bundles on X descend to Y?)

Theorem (S. 2014)

a) If the GIT-equivalence class $C \subseteq M^G(X)$ is of full dimension in the cone $M^G(X)$, then for every line bundle $L \in M^G(X)$ there exists $k \in \mathbb{N}$ and a line bundle $E \to Y := Y(C)$ such that

$$L^k = \pi^* E$$
 on $X^{ss}(C)$

and

$$H^0(X, L^{mk})^G \cong H^0(Y, E^m), \quad m \in \mathbb{N}.$$

Theorem (S. 2014)

a) If the GIT-equivalence class $C \subseteq M^G(X)$ is of full dimension in the cone $M^G(X)$, then for every line bundle $L \in M^G(X)$ there exists $k \in \mathbb{N}$ and a line bundle $E \to Y := Y(C)$ such that

$$L^k = \pi^* E$$
 on $X^{ss}(C)$

and

$$H^0(X, L^{mk})^G \cong H^0(Y, E^m), \quad m \in \mathbb{N}.$$

b) If $C \subseteq M^{G}(X)$ is also of full dimension in $C^{G}(X)$, then 1. $Pic(Y)_{\mathbb{Q}} \cong Pic(X)_{\mathbb{Q}}$ and $\overline{Eff}(Y) \cong C^{G}(X)$, 2. Y is a <u>Mori dream space</u>.

マボン イラン イラン 一日

Corollary

All multiplicity functions $k \mapsto m_{k\mu,k\lambda}$ describing branching laws from G' to G are given by (for k big enough) dimension functions $k \mapsto h^0(Y, E^k)$ for line bundles E on the quotient Y.

The theorem also holds when X is a flag variety $X := \widetilde{G}/\widetilde{B}$ and $G \subseteq \widetilde{G}$ is a semisimple subgroup of G.

(日本)(日本)(日本)

The theorem also holds when X is a flag variety $X := \widetilde{G}/\widetilde{B}$ and $G \subseteq \widetilde{G}$ is a semisimple subgroup of G.

Question

When does $M^{G}(X)$ contain classes C which are of full dimension in $C^{G}(X)$?

The theorem also holds when X is a flag variety $X := \widetilde{G}/\widetilde{B}$ and $G \subseteq \widetilde{G}$ is a semisimple subgroup of G.

Question

When does $M^{G}(X)$ contain classes C which are of full dimension in $C^{G}(X)$?

Theorem (Tsanov, S. 2015)

If $G \subseteq \widetilde{G}$ is a <u>principal</u> SL₂-subgroup, and every simple factor of \widetilde{G} has at least 5 positive roots, then $M^G(X)$ admits maximal dimensional GIT-equivalence classes C, and hence the quotient Y = Y(C) is a Mori dream space.

Theorem (S., 2014)

There exists a closed convex cone $\Delta(Y)$ and a surjective linear map $q: \Delta(Y) \to \overline{Eff}(Y)$ such that for every (μ, λ) with $L_{\mu,\lambda} = \pi^* E$,

- the leading coefficient of the polynomial k → m_{kµ,kλ} equals the volume of the slice q⁻¹(E) ⊆ Δ(Y),
- the multiplicities m_{kµ,kλ} are approximately given by counting lattice points in a convex body;

$$m_{k\mu,k\lambda} \simeq \# \left\{ q^{-1}(E) \cap \frac{1}{k} \mathbb{Z}^r
ight\},$$

where $r := \dim q^{-1}(E)$.

The cone $\Delta(Y)$ is not unique; it depends on a flag

$${pt} = Y_n \subseteq \cdots \subseteq Y_1 \subseteq Y_0 := Y$$

of closed irreducible subvarieties with codim $Y_i = i$; $\Delta(Y) = \Delta_{Y_{\bullet}}(Y)$ – the global Okounkov body of Y w.r.t. Y_{\bullet} .

The cone $\Delta(Y)$ is not unique; it depends on a flag

$${pt} = Y_n \subseteq \cdots \subseteq Y_1 \subseteq Y_0 := Y$$

of closed irreducible subvarieties with codim $Y_i = i$; $\Delta(Y) = \Delta_{Y_{\bullet}}(Y)$ – the global Okounkov body of Y w.r.t. Y_{\bullet} .

Question

Is there a flag Y_{\bullet} for which $\Delta_{Y_{\bullet}}(Y)$ is a rational polyhedral cone?

マボン イラン イラン 一日

The cone $\Delta(Y)$ is not unique; it depends on a flag

$${pt} = Y_n \subseteq \cdots \subseteq Y_1 \subseteq Y_0 := Y$$

of closed irreducible subvarieties with codim $Y_i = i$; $\Delta(Y) = \Delta_{Y_{\bullet}}(Y)$ – the global Okounkov body of Y w.r.t. Y_{\bullet} .

Question

Is there a flag Y_{\bullet} for which $\Delta_{Y_{\bullet}}(Y)$ is a rational polyhedral cone?

Conjecture

If $C \subseteq M^{G}(X)$ is of maximal dimension in $C^{G}(X)$, so that Y = Y(C) is a MDS, then Y admits a rational polyhedral global Okounkov body.

THE END

THANK YOU FOR YOUR ATTENTION !

H. Seppänen Asymptotics of branching laws and invariants by global quotien

<ロ> (四) (四) (三) (三) (三) (三)