Reduction Theorems for local-global conjectures – revisited

Britta Späth

March 2015

Dade's Conjecture

- 2 The Reduction Theorem for Dade's Conjecture
- 3 The Reduction Theorem for McKay Conjecture revisited

Other Consequences

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_p$

When decomposing OG into minimal two-sided ideals B_i

$$\mathcal{O}G=B_1\oplus\cdots\oplus B_s,$$

 B_1, \ldots, B_s are called the *p*-blocks of *G*. We write $BI(G) = \{B_1, \ldots, B_s\}.$

This gives decompositions

$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B) \text{ and } \operatorname{IBr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{IBr}(B),$$

where $\mathsf{IBr}(G)$ is the set of isomorphism classes of simple $\overline{\mathbb{F}}_{p}G$ -modules.

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_p$

When decomposing $\mathcal{O}G$ into minimal two-sided ideals B_i

$$\mathcal{O}G=B_1\oplus\cdots\oplus B_s,$$

 B_1, \ldots, B_s are called the *p*-blocks of *G*. We write $BI(G) = \{B_1, \ldots, B_s\}.$

This gives decompositions

$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B) \text{ and } \operatorname{IBr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{IBr}(B),$$

where $\mathsf{IBr}(G)$ is the set of isomorphism classes of simple $\overline{\mathbb{F}}_pG$ -modules.

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_p$

When decomposing $\mathcal{O}G$ into minimal two-sided ideals B_i

$$\mathcal{O}G=B_1\oplus\cdots\oplus B_s,$$

 B_1, \ldots, B_s are called the *p*-blocks of *G*. We write Bl(*G*) = { B_1, \ldots, B_s }.

This gives decompositions

$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B) \text{ and } \operatorname{IBr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{IBr}(B),$$

where $\mathsf{IBr}(G)$ is the set of isomorphism classes of simple $\overline{\mathbb{F}}_pG$ -modules.

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_p$

When decomposing $\mathcal{O}G$ into minimal two-sided ideals B_i

$$\mathcal{O}G = B_1 \oplus \cdots \oplus B_s,$$

 B_1, \ldots, B_s are called the *p*-blocks of *G*. We write Bl(*G*) = { B_1, \ldots, B_s }.

This gives decompositions

$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B) \text{ and } \operatorname{IBr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{IBr}(B),$$

where IBr(G) is the set of isomorphism classes of simple $\overline{\mathbb{F}}_{p}G$ -modules.

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_p$

When decomposing $\mathcal{O}G$ into minimal two-sided ideals B_i

$$\mathcal{O}G=B_1\oplus\cdots\oplus B_s,$$

 B_1, \ldots, B_s are called the *p*-blocks of *G*. We write $Bl(G) = \{B_1, \ldots, B_s\}.$

This gives decompositions

$$\operatorname{Irr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{Irr}(B) \text{ and } \operatorname{IBr}(G) = \bigcup_{B \in \operatorname{Bl}(G)} \operatorname{IBr}(B),$$

where IBr(G) is the set of isomorphism classes of simple $\overline{\mathbb{F}}_pG$ -modules.

One associates to $B \in Bl(G)$:

- defect group $D \leq G$, a *p*-subgroup
- Brauer correspondent $B' \in Bl(N_G(D))$

For every $B \in Bl(G)$ with the defect group D:

 $\chi(1)_p|D| \ge |G|_p$ for all $\chi \in Irr(B)$.

Block Induction

One associates to $B \in Bl(G)$:

- defect group $D \leq G$, a *p*-subgroup
- Brauer correspondent $B' \in Bl(N_G(D))$

For every $B \in Bl(G)$ with the defect group D:

 $\chi(1)_{\rho}|D| \ge |G|_{\rho}$ for all $\chi \in Irr(B)$.

Block Induction

One associates to $B \in Bl(G)$:

- defect group $D \leq G$, a *p*-subgroup
- Brauer correspondent $B' \in Bl(N_G(D))$

For every $B \in Bl(G)$ with the defect group D:

 $\chi(1)_{\rho}|D| \ge |G|_{\rho}$ for all $\chi \in Irr(B)$.

Block Induction

One associates to $B \in Bl(G)$:

- defect group $D \leq G$, a *p*-subgroup
- Brauer correspondent $B' \in Bl(N_G(D))$

For every $B \in Bl(G)$ with the defect group D:

 $\chi(1)_{\rho}|D| \ge |G|_{\rho}$ for all $\chi \in Irr(B)$.

Block Induction

One associates to $B \in Bl(G)$:

- defect group $D \leq G$, a *p*-subgroup
- Brauer correspondent $B' \in Bl(N_G(D))$

For every $B \in Bl(G)$ with the defect group D:

 $\chi(1)_{\rho}|D| \ge |G|_{\rho}$ for all $\chi \in Irr(B)$.

Block Induction

One associates to $B \in Bl(G)$:

- defect group $D \leq G$, a *p*-subgroup
- Brauer correspondent $B' \in Bl(N_G(D))$

For every $B \in Bl(G)$ with the defect group D:

 $\chi(1)_{\rho}|D| \ge |G|_{\rho}$ for all $\chi \in Irr(B)$.

Block Induction

One associates to $B \in Bl(G)$:

- defect group $D \leq G$, a *p*-subgroup
- Brauer correspondent $B' \in Bl(N_G(D))$

For every $B \in Bl(G)$ with the defect group D:

 $\chi(1)_{\rho}|D| \ge |G|_{\rho}$ for all $\chi \in Irr(B)$.

Block Induction

B p-block of G, D defect group of B

A weight of $B \in Bl(G)$ is a pair (Q, ψ) , such that

- $Q \leq G$ is a *p*-group,
- $\psi \in \operatorname{Irr}(\operatorname{N}_G(Q)/Q)$ satisfies $\psi(1)_p = |\operatorname{N}_G(Q)/Q|_p$ and
- ψ belongs to a block $C \in Bl(N_G(Q))$ with $C^G = B$.

Alperin's weight Conjecture (1986)

 $|\operatorname{IBr}(B)|$ is the number of *G*-conjugacy classes of weights of *B*.

If D is abelian, Alperin's weight conjecture for B states $|\operatorname{IBr}(B)| = |\operatorname{IBr}(B')|,$

B p-block of G, D defect group of B

A weight of $B \in Bl(G)$ is a pair (Q, ψ) , such that

- $Q \leq G$ is a *p*-group,
- $\psi \in \operatorname{Irr}(\operatorname{N}_{G}(Q)/Q)$ satisfies $\psi(1)_{p} = |\operatorname{N}_{G}(Q)/Q|_{p}$ and
- ψ belongs to a block $C \in Bl(N_G(Q))$ with $C^G = B$.

Alperin's weight Conjecture (1986)

 $|\operatorname{IBr}(B)|$ is the number of *G*-conjugacy classes of weights of *B*.

If D is abelian, Alperin's weight conjecture for B states $|\operatorname{IBr}(B)| = |\operatorname{IBr}(B')|,$

B p-block of G, D defect group of B

A weight of $B \in Bl(G)$ is a pair (Q, ψ) , such that

- $Q \leq G$ is a *p*-group,
- $\psi \in \operatorname{Irr}(\operatorname{N}_G(Q)/Q)$ satisfies $\psi(1)_p = |\operatorname{N}_G(Q)/Q|_p$ and
- ψ belongs to a block $C \in Bl(N_G(Q))$ with $C^G = B$.

Alperin's weight Conjecture (1986)

 $|\operatorname{IBr}(B)|$ is the number of *G*-conjugacy classes of weights of *B*.

If D is abelian, Alperin's weight conjecture for B states $|\operatorname{IBr}(B)| = |\operatorname{IBr}(B')|,$

B p-block of G, D defect group of B

A weight of $B \in Bl(G)$ is a pair (Q, ψ) , such that

- $Q \leq G$ is a *p*-group,
- $\psi \in \operatorname{Irr}(\operatorname{N}_G(Q)/Q)$ satisfies $\psi(1)_p = |\operatorname{N}_G(Q)/Q|_p$ and
- ψ belongs to a block $C \in Bl(N_G(Q))$ with $C^G = B$.

Alperin's weight Conjecture (1986)

 $|\operatorname{IBr}(B)|$ is the number of *G*-conjugacy classes of weights of *B*.

If D is abelian, Alperin's weight conjecture for B states $|\operatorname{IBr}(B)| = |\operatorname{IBr}(B')|,$

B p-block of G, D defect group of B

A weight of $B \in Bl(G)$ is a pair (Q, ψ) , such that

- $Q \leq G$ is a *p*-group,
- $\psi \in \operatorname{Irr}(\operatorname{N}_G(Q)/Q)$ satisfies $\psi(1)_p = |\operatorname{N}_G(Q)/Q|_p$ and
- ψ belongs to a block $C \in Bl(N_G(Q))$ with $C^G = B$.

Alperin's weight Conjecture (1986)

 $|\operatorname{IBr}(B)|$ is the number of *G*-conjugacy classes of weights of *B*.

If D is abelian, Alperin's weight conjecture for B states $|\operatorname{IBr}(B)| = |\operatorname{IBr}(B')|,$

B p-block of G, D defect group of B

A weight of $B \in Bl(G)$ is a pair (Q, ψ) , such that

- $Q \leq G$ is a *p*-group,
- $\psi \in \operatorname{Irr}(\operatorname{N}_G(Q)/Q)$ satisfies $\psi(1)_{
 ho} = |\operatorname{N}_G(Q)/Q|_{
 ho}$ and
- ψ belongs to a block $C \in Bl(N_G(Q))$ with $C^G = B$.

Alperin's weight Conjecture (1986)

 $|\operatorname{IBr}(B)|$ is the number of *G*-conjugacy classes of weights of *B*.

If D is abelian, Alperin's weight conjecture for B states $|\operatorname{IBr}(B)| = |\operatorname{IBr}(B')|,$

B p-block of G, D defect group of B

A weight of $B \in Bl(G)$ is a pair (Q, ψ) , such that

- $Q \leq G$ is a *p*-group,
- $\psi \in \operatorname{Irr}(\operatorname{N}_G(Q)/Q)$ satisfies $\psi(1)_{
 ho} = |\operatorname{N}_G(Q)/Q|_{
 ho}$ and
- ψ belongs to a block $C \in Bl(N_G(Q))$ with $C^G = B$.

Alperin's weight Conjecture (1986)

|Br(B)| is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states $|\operatorname{IBr}(B)| = |\operatorname{IBr}(B')|,$

B p-block of G, D defect group of B

A weight of $B \in Bl(G)$ is a pair (Q, ψ) , such that

- $Q \leq G$ is a *p*-group,
- $\psi \in \operatorname{Irr}(\operatorname{N}_G(Q)/Q)$ satisfies $\psi(1)_{
 ho} = |\operatorname{N}_G(Q)/Q|_{
 ho}$ and
- ψ belongs to a block $C \in Bl(N_G(Q))$ with $C^G = B$.

Alperin's weight Conjecture (1986)

|Br(B)| is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states |IBr(B)| = |IBr(B')|,

C(G) := strictly ascending chains of *p*-subgroups of *G* starting in $\{1\}$

 $\mathbb{D} \quad : \quad \{1\} \lneq D_2 \lneq \ldots \lneq D_r$

 $|\mathbb{D}|$ length of \mathbb{D} , here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in BI(G)$ with non-trivial defect group

$$\sum_{C \in \mathcal{C}(G)/\sim G} (-1)^{|\mathbb{D}|} \sum_{C \in \mathsf{Bl}(\mathsf{N}_G(\mathbb{D})) \text{ with } C^G = B} |\operatorname{Irr}(C)| = 0.$$

- the set of chains of radical p-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal *p*-chains

C(G) := strictly ascending chains of *p*-subgroups of *G* starting in $\{1\}$

 $\mathbb{D} \quad : \quad \{1\} \lneq D_2 \lneq \ldots \lneq D_r$

 $|\mathbb{D}|$ length of \mathbb{D} , here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in BI(G)$ with non-trivial defect group

$$\sum_{C \in \mathcal{C}(G)/\sim G} (-1)^{|\mathbb{D}|} \sum_{C \in \mathsf{Bl}(\mathsf{N}_G(\mathbb{D})) \text{ with } C^G = B} |\operatorname{Irr}(C)| = 0.$$

- the set of chains of radical *p*-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal *p*-chains

C(G) := strictly ascending chains of *p*-subgroups of *G* starting in $\{1\}$

 $\mathbb{D} \quad : \quad \{1\} \lneq D_2 \lneq \ldots \lneq D_r$

 $|\mathbb{D}|$ length of \mathbb{D} , here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in BI(G)$ with non-trivial defect group

$$\sum_{C \in \mathcal{C}(G)/\sim G} (-1)^{|\mathbb{D}|} \sum_{C \in \mathsf{Bl}(\mathsf{N}_G(\mathbb{D})) \text{ with } C^G = B} |\operatorname{Irr}(C)| = 0$$

- the set of chains of radical *p*-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal *p*-chains

C(G) := strictly ascending chains of *p*-subgroups of *G* starting in $\{1\}$

 $\mathbb{D} \quad : \quad \{1\} \lneq D_2 \lneq \ldots \lneq D_r$

 $|\mathbb{D}|$ length of \mathbb{D} , here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in BI(G)$ with non-trivial defect group

$$\sum_{C \in \mathcal{C}(G)/\sim G} (-1)^{|\mathbb{D}|} \sum_{C \in \mathsf{Bl}(\mathsf{N}_G(\mathbb{D})) \text{ with } C^G = B} |\operatorname{Irr}(C)| = 0.$$

- the set of chains of radical *p*-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal *p*-chains

C(G) := strictly ascending chains of *p*-subgroups of *G* starting in $\{1\}$

 $\mathbb{D} \quad : \quad \{1\} \lneq D_2 \lneq \ldots \lneq D_r$

 $|\mathbb{D}|$ length of \mathbb{D} , here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- \bullet for every group G and every $B\in {\sf BI}(G)$ with non-trivial defect group

$$\sum_{C \in \mathcal{C}(G)/\sim G} (-1)^{|\mathbb{D}|} \sum_{C \in \mathsf{Bl}(\mathsf{N}_{\mathsf{G}}(\mathbb{D})) ext{ with } C^{\mathsf{G}} = B} |\operatorname{Irr}(C)| = 0$$

- the set of chains of radical *p*-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal *p*-chains

C(G) := strictly ascending chains of *p*-subgroups of *G* starting in $\{1\}$

 $\mathbb{D} \quad : \quad \{1\} \lneq D_2 \lneq \ldots \lneq D_r$

 $|\mathbb{D}|$ length of \mathbb{D} , here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- \bullet for every group G and every $B\in {\sf BI}(G)$ with non-trivial defect group

$$\sum_{C \in \mathcal{C}(G)/\sim G} (-1)^{|\mathbb{D}|} \sum_{C \in \mathsf{Bl}(\mathsf{N}_G(\mathbb{D})) \text{ with } C^G = B} |\operatorname{Irr}(C)| = 0.$$

The set C(G) can be replaced by

- the set of chains of radical *p*-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal *p*-chains

Let

$$\begin{aligned} \mathsf{Irr}^d(C) &:= & \{\chi \in \mathsf{Irr}(C) \mid \chi(1)_p p^d = |G|_p\} \text{ for } C \in \mathsf{BI}(G) \\ \mathsf{O}_p(G) & \text{maximal normal } p\text{-subgroup of } G \end{aligned}$$

Dade's Conjecture (1990)

Let G be a finite group with $O_p(G) = 1$, $B \in Bl(G)$ and d > 0. Then:

$$\sum_{\mathbb{D}\in\mathcal{C}(G)/\sim G} (-1)^{|\mathbb{D}|} \sum_{C\in\mathsf{Bl}(\mathsf{N}_G(\mathbb{D})) \text{ with } C^G=B} |\operatorname{Irr}^d(C)| = 0$$

Let

$$\begin{aligned} \mathsf{Irr}^d(C) &:= & \{\chi \in \mathsf{Irr}(C) \mid \chi(1)_p p^d = |G|_p\} \text{ for } C \in \mathsf{Bl}(G) \\ \mathsf{O}_p(G) & \text{maximal normal p-subgroup of G} \end{aligned}$$

Dade's Conjecture (1990)

Let G be a finite group with $O_p(G) = 1$, $B \in Bl(G)$ and d > 0. Then:

$$\sum_{\mathbb{D}\in\mathcal{C}(G)/\sim G} (-1)^{|\mathbb{D}|} \sum_{C\in\mathsf{Bl}(\mathsf{N}_G(\mathbb{D})) \text{ with } C^G=B} |\mathsf{Irr}^d(C)| = 0$$

Let

$$\begin{aligned} \mathsf{Irr}^d(C) &:= & \{\chi \in \mathsf{Irr}(C) \mid \chi(1)_p p^d = |G|_p\} \text{ for } C \in \mathsf{Bl}(G) \\ \mathsf{O}_p(G) & \text{maximal normal } p\text{-subgroup of } G \end{aligned}$$

Dade's Conjecture (1990)

Let G be a finite group with $O_p(G) = 1$, $B \in Bl(G)$ and d > 0. Then:

$$\sum_{\mathbb{D}\in\mathcal{C}(G)/\sim G}(-1)^{|\mathbb{D}|}\sum_{C\in\mathsf{Bl}(\mathsf{N}_G(\mathbb{D}))\text{ with }C^G=B}|\operatorname{Irr}^d(C)|=0.$$

- all sporadic groups (for p ≠ 2) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_n (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996 - 2007)
- p-solvable groups (Robinson 2000)
- G ≥ Sym_n if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

- all sporadic groups (for p ≠ 2) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_n (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996 - 2007)
- p-solvable groups (Robinson 2000)
- G ≥ Sym_n if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

- all sporadic groups (for p ≠ 2) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_n (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996 - 2007)
- p-solvable groups (Robinson 2000)
- G ≥ Sym_n if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

- all sporadic groups (for p ≠ 2) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_n (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996 - 2007)
- p-solvable groups (Robinson 2000)
- G ≥ Sym_n if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

- all sporadic groups (for p ≠ 2) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_n (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996 - 2007)
- p-solvable groups (Robinson 2000)
- G ≥ Sym_n if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)
Theorem

Dade's Conjecture holds for

- all sporadic groups (for p ≠ 2) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_n (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996 - 2007)
- p-solvable groups (Robinson 2000)
- $G \wr \operatorname{Sym}_n$ if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

Theorem

Dade's Conjecture holds for

- all sporadic groups (for p ≠ 2) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_n (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996 - 2007)
- p-solvable groups (Robinson 2000)
- $G \wr \operatorname{Sym}_n$ if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $|\overline{\mathfrak{S}_+(B)}| = |\overline{\mathfrak{S}_-(B)}|$, where

$$\mathfrak{S}_{\epsilon}(B) = \left\{ (\mathbb{D}, \theta) \middle| \begin{array}{l} \mathbb{D} \in \mathcal{C}(G) \text{ with } (-1)^{|\mathbb{D}|} = \epsilon \\ \text{and } \theta \in \operatorname{Irr}^{d}(C) \text{ for } C \in \operatorname{Bl}(\operatorname{N}_{G}(\mathbb{D})) \text{ with } C^{G} = B \end{array} \right\}$$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $|\overline{\mathfrak{S}_+(B)}| = |\overline{\mathfrak{S}_-(B)}|$, where

$$\mathfrak{S}_{\epsilon}(B) = \left\{ (\mathbb{D}, \theta) \middle| \begin{array}{l} \mathbb{D} \in \mathcal{C}(G) \text{ with } (-1)^{|\mathbb{D}|} = \epsilon \\ \text{and } \theta \in \operatorname{Irr}^{d}(C) \text{ for } C \in \operatorname{Bl}(\operatorname{N}_{G}(\mathbb{D})) \text{ with } C^{G} = B \end{array} \right\}$$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $|\overline{\mathfrak{S}_+(B)}| = |\overline{\mathfrak{S}_-(B)}|$, where

$$\mathfrak{S}_{\epsilon}(B) = \left\{ (\mathbb{D}, \theta) \middle| \begin{array}{l} \mathbb{D} \in \mathcal{C}(G) \text{ with } (-1)^{|\mathbb{D}|} = \epsilon \\ \text{and } \theta \in \operatorname{Irr}^{d}(C) \text{ for } C \in \operatorname{Bl}(\mathsf{N}_{G}(\mathbb{D})) \text{ with } C^{G} = B \end{array} \right\}$$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $|\overline{\mathfrak{S}_+(B)}| = |\overline{\mathfrak{S}_-(B)}|$, where

$$\mathfrak{S}_{\epsilon}(B) = \left\{ (\mathbb{D}, \theta) \middle| \begin{array}{l} \mathbb{D} \in \mathcal{C}(G) \text{ with } (-1)^{|\mathbb{D}|} = \epsilon \\ \text{and } \theta \in \operatorname{Irr}^{d}(C) \text{ for } C \in \operatorname{Bl}(\mathsf{N}_{G}(\mathbb{D})) \text{ with } C^{G} = B \end{array} \right\}$$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $|\overline{\mathfrak{S}_+(B)}| = |\overline{\mathfrak{S}_-(B)}|$, where

$$\mathfrak{S}_{\epsilon}(B) = \left\{ (\mathbb{D}, \theta) \middle| \begin{array}{l} \mathbb{D} \in \mathcal{C}(G) \text{ with } (-1)^{|\mathbb{D}|} = \epsilon \\ \text{and } \theta \in \operatorname{Irr}^{d}(C) \text{ for } C \in \operatorname{Bl}(\mathsf{N}_{G}(\mathbb{D})) \text{ with } C^{G} = B \end{array} \right\}$$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $|\overline{\mathfrak{S}_+(B)}| = |\overline{\mathfrak{S}_-(B)}|$, where

$$\mathfrak{S}_{\epsilon}(B) = \left\{ (\mathbb{D}, \theta) \middle| \begin{array}{l} \mathbb{D} \in \mathcal{C}(G) \text{ with } (-1)^{|\mathbb{D}|} = \epsilon \\ \text{and } \theta \in \operatorname{Irr}^{d}(C) \text{ for } C \in \operatorname{Bl}(\mathsf{N}_{G}(\mathbb{D})) \text{ with } C^{G} = B \end{array} \right\}$$

(X, G, θ) is a **character triple** \iff $G \triangleleft X$, $\theta \in Irr(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \triangleleft X$ and $(\mathbb{D}, \theta), (\mathbb{D}', \theta') \in \mathfrak{S}_+(B) \cup \mathfrak{S}_-(B)$. Then we write

 $(\mathsf{N}_X(\mathbb{D},\theta),\mathsf{N}_G(\mathbb{D}),\theta)\approx_G (\mathsf{N}_X(\mathbb{D}',\theta'),\mathsf{N}_G(\mathbb{D}'),\theta'),$

if

• $G N_X(\mathbb{D}, \theta) = G N_X(\mathbb{D}', \theta')$

in general: there exist projective representations of N_X(D, θ) and N_X(D', θ') associated with θ and θ' having analogous properties, in particular: if there exists an extension θ ∈ Irr(N_X(D, θ)) of θ, then there exists an extension θ ∈ Irr(N_X(D, θ)) of θ, then there exists an extension θ ∈ Irr(N_X(D', θ')) of θ' such that

- $\widetilde{ heta}_{C_X(G)}$ and $\widetilde{ heta}_{C_X(G)}'$ are multiples of the same irreducible character,
- $\operatorname{bl}(\hat{\theta}_{\mathsf{N}_{J}(\mathbb{D},\theta)})^{J} = \operatorname{bl}(\hat{\theta}'_{\mathsf{N}_{J}(\mathbb{D}',\theta')})^{J}$ for every $G \leq J \leq G \operatorname{N}_{X}(\mathbb{D},\theta)$.

(X, G, θ) is a **character triple** \iff $G \triangleleft X$, $\theta \in Irr(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \lhd X$ and $(\mathbb{D}, \theta), (\mathbb{D}', \theta') \in \mathfrak{S}_+(B) \cup \mathfrak{S}_-(B)$. Then we write

 $(\mathsf{N}_X(\mathbb{D},\theta),\mathsf{N}_G(\mathbb{D}),\theta)\approx_G (\mathsf{N}_X(\mathbb{D}',\theta'),\mathsf{N}_G(\mathbb{D}'),\theta'),$

if

$G \mathsf{N}_X(\mathbb{D},\theta) = G \mathsf{N}_X(\mathbb{D}',\theta')$

in general: there exist projective representations of N_X(D, θ) and N_X(D', θ') associated with θ and θ' having analogous properties, in particular: if there exists an extension θ̃ ∈ Irr(N_X(D, θ)) of θ, then there exists an extension θ̃' ∈ Irr(N_X(D', θ')) of θ' such that

• $\widetilde{ heta}_{\mathsf{C}_{\mathsf{X}}(G)}$ and $\widetilde{ heta}'_{\mathsf{C}_{\mathsf{X}}(G)}$ are multiples of the same irreducible character,

• $\operatorname{bl}(\hat{\theta}_{\mathsf{N}_{J}(\mathbb{D},\theta)})^{J} = \operatorname{bl}(\hat{\theta}'_{\mathsf{N}_{J}(\mathbb{D}',\theta')})^{J}$ for every $G \leq J \leq G \operatorname{N}_{X}(\mathbb{D},\theta)$.

 (X, G, θ) is a **character triple** \iff $G \triangleleft X$, $\theta \in Irr(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \lhd X$ and $(\mathbb{D}, \theta), (\mathbb{D}', \theta') \in \mathfrak{S}_+(B) \cup \mathfrak{S}_-(B)$. Then we write

 $(\mathsf{N}_X(\mathbb{D},\theta),\mathsf{N}_G(\mathbb{D}),\theta)\approx_G (\mathsf{N}_X(\mathbb{D}',\theta'),\mathsf{N}_G(\mathbb{D}'),\theta'),$

if

$G \mathsf{N}_X(\mathbb{D},\theta) = G \mathsf{N}_X(\mathbb{D}',\theta')$

in general: there exist projective representations of N_X(D, θ) and N_X(D', θ') associated with θ and θ' having analogous properties, in particular: if there exists an extension θ̃ ∈ Irr(N_X(D, θ)) of θ, then there exists an extension θ̃' ∈ Irr(N_X(D', θ')) of θ' such that

• $\tilde{\theta}_{C_X(G)}$ and $\tilde{\theta}'_{C_X(G)}$ are multiples of the same irreducible character,

• $\operatorname{bl}(\widetilde{\theta}_{N_J(\mathbb{D},\theta)})^J = \operatorname{bl}(\widetilde{\theta}'_{N_J(\mathbb{D}',\theta')})^J$ for every $G \leq J \leq G \operatorname{N}_X(\mathbb{D},\theta)$.

 (X, G, θ) is a **character triple** \iff $G \triangleleft X$, $\theta \in Irr(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \lhd X$ and $(\mathbb{D}, \theta), (\mathbb{D}', \theta') \in \mathfrak{S}_+(B) \cup \mathfrak{S}_-(B)$. Then we write

 $(\mathsf{N}_X(\mathbb{D},\theta),\mathsf{N}_G(\mathbb{D}),\theta)\approx_G (\mathsf{N}_X(\mathbb{D}',\theta'),\mathsf{N}_G(\mathbb{D}'),\theta'),$

if

- $G \mathsf{N}_X(\mathbb{D},\theta) = G \mathsf{N}_X(\mathbb{D}',\theta')$
- in general: there exist projective representations of N_X(D, θ) and N_X(D', θ') associated with θ and θ' having analogous properties, in particular: if there exists an extension θ̃ ∈ Irr(N_X(D, θ)) of θ, then there exists an extension θ̃' ∈ Irr(N_X(D', θ')) of θ' such that

•
$$\tilde{\theta}_{C_X(G)}$$
 and $\tilde{\theta}'_{C_X(G)}$ are multiples of the same irreducible character,

• $\operatorname{bl}(\widetilde{\theta}_{\mathsf{N}_{J}(\mathbb{D},\theta)})^{J} = \operatorname{bl}(\widetilde{\theta}'_{\mathsf{N}_{J}(\mathbb{D}',\theta')})^{J}$ for every $G \leq J \leq G \operatorname{N}_{X}(\mathbb{D},\theta)$.

 (X, G, θ) is a **character triple** \iff $G \triangleleft X$, $\theta \in Irr(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \lhd X$ and $(\mathbb{D}, \theta), (\mathbb{D}', \theta') \in \mathfrak{S}_+(B) \cup \mathfrak{S}_-(B)$. Then we write

 $(\mathsf{N}_X(\mathbb{D},\theta),\mathsf{N}_G(\mathbb{D}),\theta)\approx_G (\mathsf{N}_X(\mathbb{D}',\theta'),\mathsf{N}_G(\mathbb{D}'),\theta'),$

if

- $G \mathsf{N}_X(\mathbb{D},\theta) = G \mathsf{N}_X(\mathbb{D}',\theta')$
- in general: there exist projective representations of N_X(D, θ) and N_X(D', θ') associated with θ and θ' having analogous properties, in particular: if there exists an extension θ̃ ∈ Irr(N_X(D, θ)) of θ, then there exists an extension θ̃' ∈ Irr(N_X(D', θ')) of θ' such that
 - $\tilde{\theta}_{C_{\chi}(G)}$ and $\tilde{\theta}'_{C_{\chi}(G)}$ are multiples of the same irreducible character,
 - $\operatorname{bl}(\widetilde{\theta}_{\mathsf{N}_{J}(\mathbb{D},\theta)})^{J} = \operatorname{bl}(\widetilde{\theta}'_{\mathsf{N}_{J}(\mathbb{D}',\theta')})^{J}$ for every $G \leq J \leq G \operatorname{N}_{X}(\mathbb{D},\theta)$.

 (X, G, θ) is a **character triple** \iff $G \triangleleft X$, $\theta \in Irr(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \lhd X$ and $(\mathbb{D}, \theta), (\mathbb{D}', \theta') \in \mathfrak{S}_+(B) \cup \mathfrak{S}_-(B)$. Then we write

 $(\mathsf{N}_X(\mathbb{D},\theta),\mathsf{N}_G(\mathbb{D}),\theta)\approx_G (\mathsf{N}_X(\mathbb{D}',\theta'),\mathsf{N}_G(\mathbb{D}'),\theta'),$

if

- $G \mathsf{N}_X(\mathbb{D},\theta) = G \mathsf{N}_X(\mathbb{D}',\theta')$
- in general: there exist projective representations of N_X(D, θ) and N_X(D', θ') associated with θ and θ' having analogous properties, in particular: if there exists an extension θ̃ ∈ Irr(N_X(D, θ)) of θ, then there exists an extension θ̃' ∈ Irr(N_X(D', θ')) of θ' such that
 - $\tilde{\theta}_{C_X(G)}$ and $\tilde{\theta}'_{C_X(G)}$ are multiples of the same irreducible character,
 - $\operatorname{bl}(\widetilde{\theta}_{\mathsf{N}_{J}(\mathbb{D},\theta)})^{J} = \operatorname{bl}(\widetilde{\theta}'_{\mathsf{N}_{J}(\mathbb{D}',\theta')})^{J}$ for every $G \leq J \leq G \operatorname{N}_{X}(\mathbb{D},\theta)$.

S a non-abelian simple group

The inductive Dade condition (iDade) for S

Let \widehat{S} be a group with $\widehat{S}/Z(\widehat{S}) \cong S$ and $\widehat{S} = [\widehat{S}, \widehat{S}]$, B a block of \widehat{S} with non-normal defect group and let $d \ge 0$. Then there exists some $\operatorname{Aut}(\widehat{S})_{B}$ -equivariant bijection

$$\Omega:\overline{\mathfrak{S}_+(B)}\to\overline{\mathfrak{S}_-(B)},$$

such that for $X := \widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_B$ and every $(\mathbb{D}, \theta) \in \mathfrak{S}_+(B)$ and $(\mathbb{D}', \theta') \in \Omega(\overline{(\mathbb{D}, \theta)})$ we have

 $(\mathsf{N}_X(\mathbb{D},\theta),\mathsf{N}_{\widehat{S}}(\mathbb{D}),\theta) \approx_{\widehat{S}} (\mathsf{N}_X(\mathbb{D}',\theta'),\mathsf{N}_{\widehat{S}}(\mathbb{D}'),\theta').$

S a non-abelian simple group

The inductive Dade condition (iDade) for S

Let \widehat{S} be a group with $\widehat{S}/Z(\widehat{S}) \cong S$ and $\widehat{S} = [\widehat{S}, \widehat{S}]$, B a block of \widehat{S} with non-normal defect group and let $d \ge 0$. Then there exists some $\operatorname{Aut}(\widehat{S})_B$ -equivariant bijection

$$\Omega:\overline{\mathfrak{S}_+(B)}
ightarrow\overline{\mathfrak{S}_-(B)},$$

such that for $X := \widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_B$ and every $(\mathbb{D}, \theta) \in \mathfrak{S}_+(B)$ and $(\mathbb{D}', \theta') \in \Omega(\overline{(\mathbb{D}, \theta)})$ we have

 $(\mathsf{N}_X(\mathbb{D},\theta),\mathsf{N}_{\widehat{S}}(\mathbb{D}),\theta) \approx_{\widehat{S}} (\mathsf{N}_X(\mathbb{D}',\theta'),\mathsf{N}_{\widehat{S}}(\mathbb{D}'),\theta').$

S a non-abelian simple group

The inductive Dade condition (iDade) for S

Let \widehat{S} be a group with $\widehat{S}/Z(\widehat{S}) \cong S$ and $\widehat{S} = [\widehat{S}, \widehat{S}]$, B a block of \widehat{S} with non-normal defect group and let $d \ge 0$. Then there exists some $\operatorname{Aut}(\widehat{S})_B$ -equivariant bijection

$$\Omega:\overline{\mathfrak{S}_+(B)}\to\overline{\mathfrak{S}_-(B)},$$

such that for $X := \widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_B$ and every $(\mathbb{D}, \theta) \in \mathfrak{S}_+(B)$ and $(\mathbb{D}', \theta') \in \Omega(\overline{(\mathbb{D}, \theta)})$ we have

 $(\mathsf{N}_X(\mathbb{D},\theta),\mathsf{N}_{\widehat{S}}(\mathbb{D}),\theta)\approx_{\widehat{S}}(\mathsf{N}_X(\mathbb{D}',\theta'),\mathsf{N}_{\widehat{S}}(\mathbb{D}'),\theta').$

• Induction on |G : Z(G)|

- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
- Results about the equivalence relation on the character triples apply in a more general context.
- New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

- Induction on |G:Z(G)|
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
- Results about the equivalence relation on the character triples apply in a more general context.
- New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

- Induction on |G : Z(G)|
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
- Results about the equivalence relation on the character triples apply in a more general context.
- New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

- Induction on |G : Z(G)|
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
- Results about the equivalence relation on the character triples apply in a more general context.
- New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

- Induction on |G : Z(G)|
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
- Results about the equivalence relation on the character triples apply in a more general context.
- New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

- Induction on |G : Z(G)|
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples

Results about the equivalence relation on the character triples apply in a more general context.

One winsights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

- Induction on |G : Z(G)|
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
- Results about the equivalence relation on the character triples apply in a more general context.
- New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

Let $\operatorname{Irr}_{p'}(G) := \{ \chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1) \}.$

McKay Conjecture (1972)

Let $P \in Syl_p(G)$. Then:

 $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(\mathsf{N}_G(P))|.$

- all *p*-solvable groups (Okuyama-Wajima 1979)
- all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S., Wilson 1976 2010)

Let $\operatorname{Irr}_{p'}(G) := \{ \chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1) \}.$

McKay Conjecture (1972)

Let $P \in Syl_p(G)$. Then:

 $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(\mathsf{N}_G(P))|.$

- all *p*-solvable groups (Okuyama-Wajima 1979)
- all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S., Wilson 1976 2010)

Let $\operatorname{Irr}_{p'}(G) := \{ \chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1) \}.$

McKay Conjecture (1972) Let $P \in Syl_p(G)$. Then: $|Irr_{p'}(G)| = |Irr_{p'}(N_G(P))|.$

- all *p*-solvable groups (Okuyama-Wajima 1979)
- all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S., Wilson 1976 2010)

Let $\operatorname{Irr}_{p'}(G) := \{ \chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1) \}.$

McKay Conjecture (1972) Let $P \in Syl_p(G)$. Then: $|\operatorname{Irr}_{p'}(G)| = |\operatorname{Irr}_{p'}(N_G(P))|.$

- all *p*-solvable groups (Okuyama-Wajima 1979)
- all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S., Wilson 1976 2010)

McKay Conjecture - a relative version

Let $\nu \in Irr(Z(G))$ and $Irr_{p'}(G|\nu) := \{\chi \in Irr_{p'}(G) \mid \chi \text{ is a constituent of } \nu^G \}.$

Relative McKay Conjecture

Let $P \in Syl_p(G)$. Then:

 $|\operatorname{Irr}_{p'}(G|\nu)| = |\operatorname{Irr}_{p'}(\operatorname{N}_G(P)|\nu)|.$

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all groups H with |H : Z(H)| < |G : Z(G)|.

Then one of the following holds

the McKay conjecture holds for G, or

G = K N_G(P) for some group K ⊲ G, where K / Z(K) ≅ S × · · · × S for some non-abelian simple group S.

McKay Conjecture - a relative version

Let $\nu \in \operatorname{Irr}(Z(G))$ and $\operatorname{Irr}_{p'}(G|\nu) := \{\chi \in \operatorname{Irr}_{p'}(G) \mid \chi \text{ is a constituent of } \nu^G \}.$

Relative McKay Conjecture

Let $P \in Syl_p(G)$. Then:

 $|\operatorname{Irr}_{p'}(G|\nu)| = |\operatorname{Irr}_{p'}(\operatorname{N}_G(P)|\nu)|.$

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all groups H with |H : Z(H)| < |G : Z(G)|. Then one of the following holds

- 1) the McKay conjecture holds for G, or
- ② $G = K N_G(P)$ for some group $K \triangleleft G$, where $K/Z(K) \cong S \times \cdots \times S$ for some non-abelian simple group *S*.

McKay Conjecture - a relative version

Let $\nu \in Irr(Z(G))$ and $Irr_{p'}(G|\nu) := \{\chi \in Irr_{p'}(G) \mid \chi \text{ is a constituent of } \nu^G \}.$

Relative McKay Conjecture Let $P \in Syl_p(G)$. Then:

$$|\operatorname{Irr}_{p'}(G|\nu)| = |\operatorname{Irr}_{p'}(\mathsf{N}_G(P)|\nu)|.$$

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all groups H with |H : Z(H)| < |G : Z(G)|. Then one of the following holds

- 1) the McKay conjecture holds for G, or
- ② $G = K N_G(P)$ for some group $K \triangleleft G$, where $K/Z(K) \cong S \times \cdots \times S$ for some non-abelian simple group *S*.
McKay Conjecture - a relative version

Let $\nu \in Irr(Z(G))$ and $Irr_{p'}(G|\nu) := \{\chi \in Irr_{p'}(G) \mid \chi \text{ is a constituent of } \nu^G \}.$

Relative McKay Conjecture

Let $P \in Syl_p(G)$. Then:

 $|\operatorname{Irr}_{p'}(G|\nu)| = |\operatorname{Irr}_{p'}(\mathsf{N}_G(P)|\nu)|.$

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all groups H with |H : Z(H)| < |G : Z(G)|. Then one of the following holds

• the McKay conjecture holds for G, or

② $G = K N_G(P)$ for some group $K \triangleleft G$, where $K/Z(K) \cong S \times \cdots \times S$ for some non-abelian simple group *S*.

Definition (Equivalence relation on character triples)

Let $G \triangleleft X$, $\theta \in Irr(G)$ and $\theta' \in Irr(N_G(P))$. Then we write

 $(X_{\theta}, G, \theta) \sim_G (\mathsf{N}_X(P)_{\theta'}, \mathsf{N}_G(P), \theta'),$

if

 $X_{\theta} = G \ \mathsf{N}_X(P)_{\theta'}$

in general: there exist projective representations *P* and *P'* of X_θ and N_X(P)_{θ'} associated with θ and θ' having similar properties

Definition (Equivalence relation on character triples)

Let $G \triangleleft X$, $\theta \in Irr(G)$ and $\theta' \in Irr(N_G(P))$. Then we write

 $(X_{\theta}, G, \theta) \sim_G (\mathsf{N}_X(P)_{\theta'}, \mathsf{N}_G(P), \theta'),$

if

$X_{\theta} = G \ \mathsf{N}_X(P)_{\theta'}$

In general: there exist projective representations *P* and *P'* of X_θ and N_X(P)_{θ'} associated with θ and θ' having similar properties

Definition (Equivalence relation on character triples)

Let $G \triangleleft X$, $\theta \in Irr(G)$ and $\theta' \in Irr(N_G(P))$. Then we write

$$(X_{\theta}, G, \theta) \sim_G (\mathsf{N}_X(P)_{\theta'}, \mathsf{N}_G(P), \theta'),$$

if

 $X_{\theta} = G \ \mathsf{N}_X(P)_{\theta'}$

One in general: there exist projective representations P and P' of X_θ and N_X(P)_{θ'} associated with θ and θ' having similar properties

(iMcK) – the inductive McKay condition II

S a non-abelian simple group

The inductive McKay condition for S'

Let \widehat{S} be a group with $\widehat{S}/Z(\widehat{S}) \cong S$ and $\widehat{S} = [\widehat{S}, \widehat{S}]$. For every $P \in Syl_p(\widehat{S})$ there exists some $Aut(\widehat{S})_{P}$ -equivariant bijection

$$\Omega: \mathrm{Irr}_{p'}(\widehat{S}) \to \mathrm{Irr}_{p'}(\mathsf{N}_{\widehat{S}}(P)),$$

such that for $X := \widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_P$ and every $\theta \in \operatorname{Irr}_{p'}(\widehat{S})$ we have

 $(X_{\theta}, \widehat{S}, \theta) \sim_{\widehat{S}} (\mathbb{N}_X(P)_{\Omega(\theta)}, \mathbb{N}_{\widehat{S}}(P), \Omega(\theta)).$

(iMcK) – the inductive McKay condition II

S a non-abelian simple group

The inductive McKay condition for S

Let \widehat{S} be a group with $\widehat{S}/Z(\widehat{S}) \cong S$ and $\widehat{S} = [\widehat{S}, \widehat{S}]$. For every $P \in Syl_p(\widehat{S})$ there exists some Aut $(\widehat{S})_P$ -equivariant bijection

$$\Omega: \operatorname{Irr}_{p'}(\widehat{S}) \to \operatorname{Irr}_{p'}(\operatorname{N}_{\widehat{S}}(P)),$$

such that for $X := \widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_P$ and every $\theta \in \operatorname{Irr}_{p'}(\widehat{S})$ we have

 $(X_{\theta}, \widehat{S}, \theta) \sim_{\widehat{S}} (\mathbb{N}_X(P)_{\Omega(\theta)}, \mathbb{N}_{\widehat{S}}(P), \Omega(\theta)).$

(iMcK) – the inductive McKay condition II

S a non-abelian simple group

The inductive McKay condition for S

Let \widehat{S} be a group with $\widehat{S}/Z(\widehat{S}) \cong S$ and $\widehat{S} = [\widehat{S}, \widehat{S}]$. For every $P \in Syl_p(\widehat{S})$ there exists some Aut $(\widehat{S})_P$ -equivariant bijection

$$\Omega: \operatorname{Irr}_{p'}(\widehat{S}) \to \operatorname{Irr}_{p'}(\mathsf{N}_{\widehat{S}}(P)),$$

such that for $X := \widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_P$ and every $\theta \in \operatorname{Irr}_{p'}(\widehat{S})$ we have

$$(X_{\theta},\widehat{S},\theta)\sim_{\widehat{S}}(\mathsf{N}_X(P)_{\Omega(\theta)},\mathsf{N}_{\widehat{S}}(P),\Omega(\theta)).$$

- $K \lhd G$, where $K \cong S$ for some non-abelian simple group S
- $G = S \rtimes Aut(S)$

Then (iMcK) for S implies:

 for P ∈ Syl_p(K) there exists some Aut(K)_P-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(X_{\theta}, K, \theta) \sim_{K} (N_{G}(P)_{\Omega(\theta)}, N_{K}(P), \Omega(\theta)).$

- $K \lhd G$, where $K \cong S$ for some non-abelian simple group S
- $G = S \rtimes Aut(S)$

Then (iMcK) for S implies:

for P ∈ Syl_p(K) there exists some Aut(K)_P-equivariant bijection
 Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(X_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta)).$

- $K \lhd G$, where $K \cong S$ for some non-abelian simple group S
- $G = S \rtimes Aut(S)$

Then (iMcK) for S implies:

for P ∈ Syl_p(K) there exists some Aut(K)_P-equivariant bijection
 Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(X_{\theta}, K, \theta) \sim_{\mathcal{K}} (\mathsf{N}_{\mathcal{G}}(P)_{\Omega(\theta)}, \mathsf{N}_{\mathcal{K}}(P), \Omega(\theta)).$

- $K \lhd G$, where $K \cong S$ for some non-abelian simple group S
- $G = S \rtimes Aut(S)$

Then (iMcK) for S implies:

for P ∈ Syl_p(K) there exists some Aut(K)_P-equivariant bijection
 Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(X_{\theta}, K, \theta) \sim_{\mathcal{K}} (\mathsf{N}_{\mathcal{G}}(P)_{\Omega(\theta)}, \mathsf{N}_{\mathcal{K}}(P), \Omega(\theta)).$

- $K \lhd G$, where $K \cong S$ for some non-abelian simple group S
- $G = S \rtimes Aut(S)$

Then (iMcK) for S implies:

for P ∈ Syl_p(K) there exists some Aut(K)_P-equivariant bijection
 Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(X_{\theta}, K, \theta) \sim_{\mathcal{K}} (\mathsf{N}_{\mathcal{G}}(P)_{\Omega(\theta)}, \mathsf{N}_{\mathcal{K}}(P), \Omega(\theta)).$

- $K \lhd G$ with $K \cong S^r$ for some simple group S
- $G = S^r \rtimes \operatorname{Aut}(S)^r$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with direct products.

 Gor P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

(2) such that for every $\theta \in Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathbb{N}_{G}(P)_{\Omega(\theta)}, \mathbb{N}_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

- $K \lhd G$ with $K \cong S^r$ for some simple group S
- $G = S^r \rtimes \operatorname{Aut}(S)^r$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with direct products.

 for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

(2) such that for every $\theta \in Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (N_{G}(P)_{\Omega(\theta)}, N_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

- $K \lhd G$ with $K \cong S^r$ for some simple group S
- $G = S^r \rtimes \operatorname{Aut}(S)^r$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with direct products.

 for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every $\theta \in Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (N_{G}(P)_{\Omega(\theta)}, N_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

- $K \lhd G$ with $K \cong S^r$ for some simple group S
- $G = S^r \rtimes \operatorname{Aut}(S)^r$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with direct products.

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- ② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

- $K \lhd G$ with $K \cong S^r$ for some simple group S
- $G = S^r \rtimes \operatorname{Aut}(S)^r$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with direct products.

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- ② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

- $K \lhd G$ with $K \cong S^r$ for some simple group S
- $G = S^r \rtimes \operatorname{Aut}(S)^r$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with direct products.

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- ② such that for every $\theta \in Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

• $K \lhd G$ with $K \cong S^r$ for some simple group S

•
$$G = S^r \rtimes \operatorname{Aut}(S^r) = S^r \rtimes (\operatorname{Aut}(S) \wr \operatorname{Sym}_r)$$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with wreath products.

 for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

(2) such that for every $\theta \in Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathbb{N}_{G}(P)_{\Omega(\theta)}, \mathbb{N}_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

- $K \lhd G$ with $K \cong S^r$ for some simple group S
- $G = S^r \rtimes \operatorname{Aut}(S^r) = S^r \rtimes (\operatorname{Aut}(S) \wr \operatorname{Sym}_r)$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with wreath products.

 for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

(2) such that for every $\theta \in Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathbb{N}_{G}(P)_{\Omega(\theta)}, \mathbb{N}_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

• $K \lhd G$ with $K \cong S^r$ for some simple group S

•
$$G = S^r \rtimes \operatorname{Aut}(S^r) = S^r \rtimes (\operatorname{Aut}(S) \wr \operatorname{Sym}_r)$$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with wreath products.

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- ② such that for every $\theta \in Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (N_{G}(P)_{\Omega(\theta)}, N_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

• $K \lhd G$ with $K \cong S^r$ for some simple group S

•
$$G = S^r \rtimes \operatorname{Aut}(S^r) = S^r \rtimes (\operatorname{Aut}(S) \wr \operatorname{Sym}_r)$$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with wreath products.

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- ② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

• $K \lhd G$ with $K \cong S^r$ for some simple group S

•
$$G = S^r \rtimes \operatorname{Aut}(S^r) = S^r \rtimes (\operatorname{Aut}(S) \wr \operatorname{Sym}_r)$$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with wreath products.

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- ② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

• $K \lhd G$ with $K \cong S^r$ for some simple group S

•
$$G = S^r \rtimes \operatorname{Aut}(S^r) = S^r \rtimes (\operatorname{Aut}(S) \wr \operatorname{Sym}_r)$$

The equivalence relation $\sim_{\mathcal{K}}$ is compatible with wreath products.

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- ② such that for every $\theta \in Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta)).$

Again $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

Recall: G is a minimal counterexample, i.e. $\exists K \lhd G: K/Z(K) \cong S \times \cdots \times S$ for some simple group S and $K N_G(\widetilde{P}) = G$ for $\widetilde{P} \in Syl_p(G)$.

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since $K \cong S^r$ and the automorphisms of G induced on K are contained in $S^r \rtimes Aut(S^r)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- **②** such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta))$

Hence $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

Recall: G is a minimal counterexample, i.e. $\exists K \lhd G: K/Z(K) \cong S \times \cdots \times S$ for some simple group S and $K N_G(\widetilde{P}) = G$ for $\widetilde{P} \in Syl_p(G)$.

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since $K \cong S^r$ and the automorphisms of G induced on K are contained in $S^r \rtimes \operatorname{Aut}(S^r)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.

 for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta))$

Hence $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

Recall: G is a minimal counterexample, i.e. $\exists K \lhd G: K/Z(K) \cong S \times \cdots \times S$ for some simple group S and $K N_G(\widetilde{P}) = G$ for $\widetilde{P} \in Syl_p(G)$.

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since $K \cong S^r$ and the automorphisms of *G* induced on *K* are contained in $S^r \rtimes Aut(S^r)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.

 for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta))$

Hence $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

Recall: G is a minimal counterexample, i.e. $\exists K \lhd G: K/Z(K) \cong S \times \cdots \times S$ for some simple group S and $K N_G(\widetilde{P}) = G$ for $\widetilde{P} \in Syl_p(G)$.

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since $K \cong S^r$ and the automorphisms of G induced on K are contained in $S^r \rtimes Aut(S^r)$, we compare it with the situation in Step 3:

The equivalence relation $\sim_{\mathcal{K}}$ only depends on automorphisms induced on \mathcal{K} .

 for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta))$

Hence $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

Recall: G is a minimal counterexample, i.e. $\exists K \lhd G: K/Z(K) \cong S \times \cdots \times S$ for some simple group S and $K N_G(\widetilde{P}) = G$ for $\widetilde{P} \in Syl_p(G)$.

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since $K \cong S^r$ and the automorphisms of G induced on K are contained in $S^r \rtimes Aut(S^r)$, we compare it with the situation in Step 3:

The equivalence relation $\sim_{\mathcal{K}}$ only depends on automorphisms induced on \mathcal{K} .

for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection
 Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),

② such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{K} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta)).$

Hence $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

Recall: G is a minimal counterexample, i.e. $\exists K \lhd G: K/Z(K) \cong S \times \cdots \times S$ for some simple group S and $K N_G(\widetilde{P}) = G$ for $\widetilde{P} \in Syl_p(G)$.

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since $K \cong S^r$ and the automorphisms of G induced on K are contained in $S^r \rtimes Aut(S^r)$, we compare it with the situation in Step 3:

The equivalence relation $\sim_{\mathcal{K}}$ only depends on automorphisms induced on \mathcal{K} .

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection
 Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- **②** such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{\mathcal{K}} (\mathsf{N}_{\mathcal{G}}(P)_{\Omega(\theta)}, \mathsf{N}_{\mathcal{K}}(P), \Omega(\theta)).$

Hence $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

Recall: G is a minimal counterexample, i.e. $\exists K \lhd G: K/Z(K) \cong S \times \cdots \times S$ for some simple group S and $K N_G(\widetilde{P}) = G$ for $\widetilde{P} \in Syl_p(G)$.

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since $K \cong S^r$ and the automorphisms of G induced on K are contained in $S^r \rtimes Aut(S^r)$, we compare it with the situation in Step 3:

The equivalence relation $\sim_{\mathcal{K}}$ only depends on automorphisms induced on \mathcal{K} .

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection
 Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- **②** such that for every θ ∈ $Irr_{p'}(K)$ we have

 $(G_{\theta}, K, \theta) \sim_{\mathcal{K}} (\mathsf{N}_{\mathcal{G}}(P)_{\Omega(\theta)}, \mathsf{N}_{\mathcal{K}}(P), \Omega(\theta)).$

Hence $|\operatorname{Irr}_{p'}(G|\theta)| = |\operatorname{Irr}_{p'}(N_G(P)|\Omega(\theta))|$

Recall: G is a minimal counterexample, i.e. $\exists K \lhd G: K/Z(K) \cong S \times \cdots \times S$ for some simple group S and $K N_G(\widetilde{P}) = G$ for $\widetilde{P} \in Syl_p(G)$.

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since $K \cong S^r$ and the automorphisms of G induced on K are contained in $S^r \rtimes Aut(S^r)$, we compare it with the situation in Step 3:

The equivalence relation $\sim_{\mathcal{K}}$ only depends on automorphisms induced on \mathcal{K} .

- for P ∈ Syl_p(K) there exists some N_G(P)-equivariant bijection
 Ω : Irr_{p'}(K) → Irr_{p'}(N_K(P)),
- **②** such that for every θ ∈ $Irr_{p'}(K)$ we have

$$(G_{\theta}, K, \theta) \sim_{\kappa} (\mathsf{N}_{G}(P)_{\Omega(\theta)}, \mathsf{N}_{K}(P), \Omega(\theta)).$$

Hence $|\operatorname{Irr}_{\rho'}(G|\theta)| = |\operatorname{Irr}_{\rho'}(N_G(P)|\Omega(\theta))|$

This finishes *our revisit* of the reduction theorem of the McKay Conjecture and hence this talk! Thanks! This finishes *our revisit* of the reduction theorem of the McKay Conjecture and hence this talk! Thanks! This finishes *our revisit* of the reduction theorem of the McKay Conjecture and hence this talk! Thanks!