Reduction Theorems for local-global conjectures revisited

Britta Späth

March 2015

Overview

(1) Dade's Conjecture
(2) The Reduction Theorem for Dade's Conjecture
(3) The Reduction Theorem for McKay Conjecture - revisited
(4) Other Consequences

Blocks

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_{p}$
When decomposing $\mathcal{O} G$ into minimal two-sided ideals B_{i}

$$
\mathcal{O} G=B_{1} \oplus \cdots \oplus B_{s},
$$

B_{1}, \ldots, B_{s} are called the p-blocks of G.
We write $\operatorname{BI}(G)=\left\{B_{1}, \ldots, B_{s}\right\}$.
This gives decompositions

$$
\operatorname{Irr}(G)=\bigcup_{B \in \operatorname{BI} \mid(G)} \operatorname{Irr}(B) \text { and } \operatorname{IBr}(G)=\bigcup_{B \in \operatorname{Bi}(G)} \operatorname{IBr}(B)
$$

where $\operatorname{IBr}(G)$ is the set of isomorphism classes of simple $\overline{\mathbb{F}}_{p} G$-modules.

Blocks

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_{p}$
When decomposing $\mathcal{O} G$ into minimal two-sided ideals B_{i}

$$
\mathcal{O} G=B_{1} \oplus \cdots \oplus B_{s},
$$

B_{1}, \ldots, B_{s} are called the p-blocks of G. We write $\operatorname{BI}(G)=\left\{B_{1}, \ldots, B_{s}\right\}$.

This gives decompositions

$$
\operatorname{Irr}(G)=\bigcup_{B \in \operatorname{BI} \mid(G)} \operatorname{Irr}(B) \text { and } \operatorname{IBr}(G)=\bigcup_{B \in \operatorname{B|} \mid(G)} \mid \operatorname{Br}(B)
$$

where $\operatorname{IBr}(G)$ is the set of isomorphism classes of simple $\overline{\mathbb{F}}_{p} G$-modules.

Blocks

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_{p}$
When decomposing $\mathcal{O} G$ into minimal two-sided ideals B_{i}

$$
\mathcal{O} G=B_{1} \oplus \cdots \oplus B_{s},
$$

B_{1}, \ldots, B_{s} are called the p-blocks of G. We write $\operatorname{BI}(G)=\left\{B_{1}, \ldots, B_{s}\right\}$.

This gives decompositions

$$
\operatorname{Irr}(G)=\bigcup_{B \in \operatorname{BI} \mid(G)} \operatorname{Irr}(B) \text { and } \operatorname{IBr}(G)=\bigcup_{B \in \operatorname{BI} \mid(G)} \operatorname{IBr}(B) \text {, }
$$

where $\operatorname{IBr}(G)$ is the set of isomorphism classes of simple $\overline{\mathbb{F}}_{p} G$-modules.

Blocks

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_{p}$
When decomposing $\mathcal{O} G$ into minimal two-sided ideals B_{i}

$$
\mathcal{O} G=B_{1} \oplus \cdots \oplus B_{s},
$$

B_{1}, \ldots, B_{s} are called the p-blocks of G. We write $\operatorname{BI}(G)=\left\{B_{1}, \ldots, B_{s}\right\}$.

This gives decompositions

$$
\operatorname{Irr}(G)=\bigcup_{B \in \operatorname{BI} \mid(G)} \operatorname{Irr}(B) \text { and } \operatorname{IBr}(G)=\bigcup_{B \in \operatorname{BI} \mid(G)} \operatorname{IBr}(B) \text {, }
$$

where $\operatorname{IBr}(G)$ is the set of isomorphism classes of simple $\overline{\mathbb{F}}_{p} G$-modules.

Blocks

G finite group, p a prime, $\mathcal{O} \geq \mathbb{Z}_{p}$
When decomposing $\mathcal{O} G$ into minimal two-sided ideals B_{i}

$$
\mathcal{O} G=B_{1} \oplus \cdots \oplus B_{s},
$$

B_{1}, \ldots, B_{s} are called the p-blocks of G. We write $\operatorname{BI}(G)=\left\{B_{1}, \ldots, B_{s}\right\}$.

This gives decompositions

$$
\operatorname{Irr}(G)=\bigcup_{B \in \mathrm{BI} \mid(G)} \operatorname{Irr}(B) \text { and } \operatorname{IBr}(G)=\bigcup_{B \in \mathrm{BI} \mid(G)} \operatorname{IBr}(B)
$$

where $\operatorname{IBr}(G)$ is the set of isomorphism classes of simple $\overline{\mathbb{F}}_{p} G$-modules.

Brauer Correspondents and Block Induction

One associates to $B \in \mathrm{BI}(G)$:

- defect group $D \leq G$, a p-subgroup
- Brauer correspondent $B^{\prime} \in \mathrm{Bl}\left(\mathrm{N}_{G}(D)\right)$

For every $B \in \operatorname{BI}(G)$ with the defect group D :

$$
\chi(1)_{p}|D| \geq|G|_{p} \text { for all } \chi \in \operatorname{|rr}(B)
$$

Block Induction

For a p-subgroup $Q \leq G$ and $C \in \mathrm{Bl}\left(\mathrm{N}_{G}(Q)\right)$, one denotes by C^{G} a certain block of G. Then C^{G} is the (Brauer) induced block.
If B^{\prime} is the Brauer correspondent of B, then $\left(B^{\prime}\right)^{G}=B$.

Brauer Correspondents and Block Induction

One associates to $B \in \mathrm{BI}(G)$:

- defect group $D \leq G$, a p-subgroup
- Brauer correspondent $B^{\prime} \in \mathrm{BI}\left(\mathrm{N}_{G}(D)\right)$

For every $B \in \operatorname{BI}(G)$ with the defect group D :

$$
\chi(1)_{p}|D| \geq|G|_{p} \text { for all } \chi \in \operatorname{Irr}(B) .
$$

Block Induction

For a p-subgroup $Q \leq G$ and $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$, one denotes by C^{G} a certain block of G. Then C^{G} is the (Brauer) induced block.
If B^{\prime} is the Brauer correspondent of B, then $\left(B^{\prime}\right)^{G}=B$.

Brauer Correspondents and Block Induction

One associates to $B \in \mathrm{BI}(G)$:

- defect group $D \leq G$, a p-subgroup
- Brauer correspondent $B^{\prime} \in \mathrm{Bl}\left(\mathrm{N}_{G}(D)\right)$

For every $B \in \mathrm{BI}(G)$ with the defect group D :

$$
\chi(1)_{p}|D| \geq|G|_{p} \text { for all } \chi \in \operatorname{Irr}(B)
$$

Block Induction

For a p-subgroup $Q \leq G$ and $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$, one denotes by C^{G} a certain block of G. Then C^{G} is the (Brauer) induced block.
If B^{\prime} is the Brauer correspondent of B, then $\left(B^{\prime}\right)^{G}=B$.

Brauer Correspondents and Block Induction

One associates to $B \in \mathrm{BI}(G)$:

- defect group $D \leq G$, a p-subgroup
- Brauer correspondent $B^{\prime} \in \mathrm{BI}\left(\mathrm{N}_{G}(D)\right)$

For every $B \in \operatorname{BI}(G)$ with the defect group D :

$$
\chi(1)_{p}|D| \geq|G|_{p} \text { for all } \chi \in \operatorname{|rr}(B)
$$

Block Induction

For a p-subgroup $Q \leq G$ and $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$, one denotes by C^{G} a certain block of G. Then C^{G} is the (Brauer) induced block.
If B^{\prime} is the Brauer correspondent of B, then $\left(B^{\prime}\right)^{G}=B$

Brauer Correspondents and Block Induction

One associates to $B \in \mathrm{BI}(G)$:

- defect group $D \leq G$, a p-subgroup
- Brauer correspondent $B^{\prime} \in \mathrm{BI}\left(\mathrm{N}_{G}(D)\right)$

For every $B \in \operatorname{BI}(G)$ with the defect group D :

$$
\chi(1)_{p}|D| \geq|G|_{p} \text { for all } \chi \in \operatorname{Irr}(B) .
$$

Block Induction

For a p-subgroup $Q \leq G$ and $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$, one denotes by C^{G} a certain block of G. Then C^{G} is the (Brauer) induced block.
If B^{\prime} is the Brauer correspondent of B, then $\left(B^{\prime}\right)^{G}=B$

Brauer Correspondents and Block Induction

One associates to $B \in \mathrm{BI}(G)$:

- defect group $D \leq G$, a p-subgroup
- Brauer correspondent $B^{\prime} \in \mathrm{Bl}\left(\mathrm{N}_{G}(D)\right)$

For every $B \in \operatorname{BI}(G)$ with the defect group D :

$$
\chi(1)_{p}|D| \geq|G|_{p} \text { for all } \chi \in \operatorname{Irr}(B)
$$

Block Induction

For a p-subgroup $Q \leq G$ and $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$, one denotes by C^{G} a certain block of G. Then C^{G} is the (Brauer) induced block.
If B^{\prime} is the Brauer correspondent of B, then $\left(B^{\prime}\right)^{G}=B$.

Brauer Correspondents and Block Induction

One associates to $B \in \mathrm{BI}(G)$:

- defect group $D \leq G$, a p-subgroup
- Brauer correspondent $B^{\prime} \in \mathrm{Bl}\left(\mathrm{N}_{G}(D)\right)$

For every $B \in \operatorname{BI}(G)$ with the defect group D :

$$
\chi(1)_{p}|D| \geq|G|_{p} \text { for all } \chi \in \operatorname{Irr}(B)
$$

Block Induction

For a p-subgroup $Q \leq G$ and $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$, one denotes by C^{G} a certain block of G. Then C^{G} is the (Brauer) induced block.
If B^{\prime} is the Brauer correspondent of B, then $\left(B^{\prime}\right)^{G}=B$.

Alperin's weight Conjecture - general

B-block of G, D defect group of B
A weight of $B \in \operatorname{BI}(G)$ is a pair (Q, ψ), such that

- $Q \leq G$ is a p-group,
- $\psi \in \operatorname{lrr}\left(\mathrm{N}_{G}(Q) / Q\right)$ satisfies $\psi(1)_{p}=\left|N_{G}(Q) / Q\right|_{p}$ and
- ψ belongs to a block $C \in \mathrm{Bl}\left(\mathrm{N}_{G}(Q)\right)$ with $C^{G}=B$.

Alperin's weight Conjecture (1986)

$|\operatorname{IBr}(B)|$ is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states

$$
\left||\operatorname{Br}(B)|=\left|\operatorname{Br}\left(B^{\prime}\right)\right|,\right.
$$

where B^{\prime} is the Brauer correspondent of B.

Alperin's weight Conjecture - general

$B p$-block of G, D defect group of B
A weight of $B \in \operatorname{BI}(G)$ is a pair (Q, ψ), such that

- $Q \leq G$ is a p-group,
- $\psi \in \operatorname{lrr}\left(\mathrm{N}_{G}(Q) / Q\right)$ satisfies $\psi(1)_{p}=\left|\mathrm{N}_{G}(Q) / Q\right|_{p}$ and
- ψ belongs to a block $C \in \operatorname{BI}\left(\mathrm{~N}_{G}(Q)\right)$ with $C^{G}=B$.

Alperin's weight Conjecture (1986)

$|\operatorname{IBr}(B)|$ is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states

$$
\left||\operatorname{Br}(B)|=\left|\operatorname{Br}\left(B^{\prime}\right)\right|,\right.
$$

where B^{\prime} is the Brauer correspondent of B.

Alperin's weight Conjecture - general

$B p$-block of G, D defect group of B
A weight of $B \in \operatorname{BI}(G)$ is a pair (Q, ψ), such that

- $Q \leq G$ is a p-group,
- $\psi \in \operatorname{lrr}\left(\mathrm{N}_{G}(Q) / Q\right)$ satisfies $\psi(1)_{p}=\left|N_{G}(Q) / Q\right|_{p}$ and
- ψ belongs to a block $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$ with $C^{G}=B$.

Alperin's weight Conjecture (1986)

$|\operatorname{IBr}(B)|$ is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states

$$
\left||\operatorname{Br}(B)|=\left|\operatorname{Br}\left(B^{\prime}\right)\right|,\right.
$$

where B^{\prime} is the Brauer correspondent of B.

Alperin's weight Conjecture - general

$B p$-block of G, D defect group of B
A weight of $B \in \operatorname{BI}(G)$ is a pair (Q, ψ), such that

- $Q \leq G$ is a p-group,
- $\psi \in \operatorname{lrr}\left(\mathrm{N}_{G}(Q) / Q\right)$ satisfies $\psi(1)_{p}=\left|\mathrm{N}_{G}(Q) / Q\right|_{p}$ and
- ψ belongs to a block $C \in \mathrm{Bl}\left(\mathrm{N}_{G}(Q)\right)$ with $C^{G}=B$.

Alperin's weight Conjecture (1986)

$|\operatorname{IBr}(B)|$ is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states

$$
\left||\operatorname{Br}(B)|=\left|\operatorname{Br}\left(B^{\prime}\right)\right|,\right.
$$

where B^{\prime} is the Brauer correspondent of B.

Alperin's weight Conjecture - general

$B p$-block of G, D defect group of B
A weight of $B \in \operatorname{BI}(G)$ is a pair (Q, ψ), such that

- $Q \leq G$ is a p-group,
- $\psi \in \operatorname{lrr}\left(\mathrm{N}_{G}(Q) / Q\right)$ satisfies $\psi(1)_{p}=\left|\mathrm{N}_{G}(Q) / Q\right|_{p}$ and
- ψ belongs to a block $C \in \operatorname{BI}\left(\mathrm{~N}_{G}(Q)\right)$ with $C^{G}=B$.

Alperin's weight Conjecture (1986)

$|\operatorname{IBr}(B)|$ is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states

$$
\left||\operatorname{Br}(B)|=\left|\operatorname{Br}\left(B^{\prime}\right)\right|,\right.
$$

where B^{\prime} is the Brauer correspondent of B.

Alperin's weight Conjecture - general

$B p$-block of G, D defect group of B
A weight of $B \in \operatorname{BI}(G)$ is a pair (Q, ψ), such that

- $Q \leq G$ is a p-group,
- $\psi \in \operatorname{lrr}\left(\mathrm{N}_{G}(Q) / Q\right)$ satisfies $\psi(1)_{p}=\left|\mathrm{N}_{G}(Q) / Q\right|_{p}$ and
- ψ belongs to a block $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$ with $C^{G}=B$.

Alperin's weight Conjecture (1986)

$|\operatorname{Br}(B)|$ is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states

$$
\left||\operatorname{Br}(B)|=\left|\operatorname{Br}\left(B^{\prime}\right)\right|,\right.
$$

where B^{\prime} is the Brauer correspondent of B.

Alperin's weight Conjecture - general

$B p$-block of G, D defect group of B
A weight of $B \in \operatorname{BI}(G)$ is a pair (Q, ψ), such that

- $Q \leq G$ is a p-group,
- $\psi \in \operatorname{lrr}\left(\mathrm{N}_{G}(Q) / Q\right)$ satisfies $\psi(1)_{p}=\left|\mathrm{N}_{G}(Q) / Q\right|_{p}$ and
- ψ belongs to a block $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$ with $C^{G}=B$.

Alperin's weight Conjecture (1986)

$|\operatorname{IBr}(B)|$ is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states

$$
\left||\operatorname{Br}(B)|=\left|\operatorname{Br}\left(B^{\prime}\right)\right|,\right.
$$

where B^{\prime} is the Brauer correspondent of B.

Alperin's weight Conjecture - general

$B p$-block of G, D defect group of B
A weight of $B \in \operatorname{BI}(G)$ is a pair (Q, ψ), such that

- $Q \leq G$ is a p-group,
- $\psi \in \operatorname{lrr}\left(\mathrm{N}_{G}(Q) / Q\right)$ satisfies $\psi(1)_{p}=\left|\mathrm{N}_{G}(Q) / Q\right|_{p}$ and
- ψ belongs to a block $C \in \mathrm{BI}\left(\mathrm{N}_{G}(Q)\right)$ with $C^{G}=B$.

Alperin's weight Conjecture (1986)

$|\operatorname{IBr}(B)|$ is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states

$$
|\operatorname{IBr}(B)|=\left|\operatorname{IBr}\left(B^{\prime}\right)\right|,
$$

where B^{\prime} is the Brauer correspondent of B.

Reformulation of Alperin's weight conjecture

$\mathcal{C}(G):=\quad$ strictly ascending chains of p-subgroups of G starting in $\{1\}$
$\mathbb{D}: \quad\{1\} \leftrightarrows D_{2} \leftrightarrows \ldots \lesseqgtr D_{r}$
$|\mathbb{D}| \quad$ length of \mathbb{D}, here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in \mathrm{BI}(G)$ with non-trivial defect group

$$
\sum_{\mathbb{D} \in \mathcal{C}(G) / \sim G}(-1)^{|\mathbb{D}|} \sum_{C \in \operatorname{BI}\left(N_{G}(\mathbb{D})\right) \text { with } C^{G}=B}|\operatorname{lrr}(C)|=0 .
$$

The set $\mathcal{C}(G)$ can be replaced by

- the set of chains of radical p-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal p-chains

Reformulation of Alperin's weight conjecture

$\mathcal{C}(G):=\quad$ strictly ascending chains of p-subgroups of G starting in $\{1\}$
$\mathbb{D} \quad: \quad\{1\} \lesseqgtr D_{2} \lesseqgtr \ldots \lesseqgtr D_{r}$
$|\mathbb{D}| \quad$ length of \mathbb{D}, here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in \mathrm{BI}(G)$ with non-trivial defect group

$$
\sum_{\mathbb{D} \in \mathcal{C}(G) / \sim G}(-1)^{|\mathbb{D}|} \sum_{C \in B \mid\left(N_{G}(\mathbb{D})\right) \text { with } C^{G}=B}|\operatorname{lrr}(C)|=0 .
$$

The set $\mathcal{C}(G)$ can be replaced by

- the set of chains of radical p-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal p-chains

Reformulation of Alperin's weight conjecture

$\mathcal{C}(G):=\quad$ strictly ascending chains of p-subgroups of G starting in $\{1\}$
$\mathbb{D}: \quad\{1\} \lesseqgtr D_{2} \lesseqgtr \ldots \lesseqgtr D_{r}$
$|\mathbb{D}| \quad$ length of \mathbb{D}, here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in \mathrm{BI}(G)$ with non-trivial defect group

$$
\sum_{\mathbb{D} \in \mathcal{C}(G) / \sim G}(-1)^{|\mathbb{D}|} \sum_{C \in B \mid\left(N_{G}(\mathbb{D})\right) \text { with } C^{G}=B}|\operatorname{lrr}(C)|=0
$$

The set $\mathcal{C}(G)$ can be replaced by

- the set of chains of radical p-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal p-chains

Reformulation of Alperin's weight conjecture

$\mathcal{C}(G):=\quad$ strictly ascending chains of p-subgroups of G starting in $\{1\}$
$\mathbb{D}: \quad\{1\} \lesseqgtr D_{2} \lesseqgtr \ldots \lesseqgtr D_{r}$
$|\mathbb{D}| \quad$ length of \mathbb{D}, here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in \mathrm{BI}(G)$ with non-trivial defect group

$$
\sum_{\mathbb{D} \in \mathcal{C}(G) / \sim G}(-1)^{|\mathbb{D}|} \sum_{C \in B \mid\left(N_{G}(\mathbb{D})\right) \text { with } C^{G}=B}|\operatorname{lrr}(C)|=0
$$

The set $\mathcal{C}(G)$ can be replaced by

- the set of chains of radical p-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal p-chains

Reformulation of Alperin's weight conjecture

$\mathcal{C}(G):=\quad$ strictly ascending chains of p-subgroups of G starting in $\{1\}$
$\mathbb{D}: \quad\{1\} \lesseqgtr D_{2} \lesseqgtr \ldots \lesseqgtr D_{r}$
$|\mathbb{D}| \quad$ length of \mathbb{D}, here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in \mathrm{BI}(G)$ with non-trivial defect group

$$
\sum_{\mathbb{D} \in \mathcal{C}(G) / \sim G}(-1)^{|\mathbb{D}|} \sum_{C \in \operatorname{BI}\left(\mathrm{~N}_{G}(\mathbb{D})\right) \text { with } C^{G}=B}|\operatorname{lrr}(C)|=0 .
$$

The set $\mathcal{C}(G)$ can be replaced by

- the set of chains of radical p-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal p-chains

Reformulation of Alperin's weight conjecture

$\mathcal{C}(G):=\quad$ strictly ascending chains of p-subgroups of G starting in $\{1\}$
$\mathbb{D}: \quad\{1\} \lesseqgtr D_{2} \leftrightarrows \ldots \lesseqgtr D_{r}$
$|\mathbb{D}| \quad$ length of \mathbb{D}, here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

- Alperin's weight conjecture holds
- for every group G and every $B \in \mathrm{BI}(G)$ with non-trivial defect group

$$
\sum_{\mathbb{D} \in \mathcal{C}(G) / \sim G}(-1)^{|\mathbb{D}|} \sum_{C \in \operatorname{BI}\left(\mathrm{~N}_{G}(\mathbb{D})\right) \text { with } C^{G}=B}|\operatorname{lrr}(C)|=0 .
$$

The set $\mathcal{C}(G)$ can be replaced by

- the set of chains of radical p-groups
- the set of chains of elementary abelian p-subgroups
- the set of normal p-chains

Numbers of characters with given p-part

Let

$$
\begin{aligned}
\operatorname{Irr}^{d}(C):= & \left\{\chi \in \operatorname{Irr}(C)\left|\chi(1)_{p} p^{d}=|G|_{p}\right\} \text { for } C \in \mathrm{BI}(G)\right. \\
\mathrm{O}_{p}(G): & \text { maximal normal } p \text {-subgroup of } G
\end{aligned}
$$

Dade's Conjecture (1990)

Let G be a finite group with $\mathrm{O}_{p}(G)=1, B \in \operatorname{BI}(G)$ and $d>0$. Then:

Numbers of characters with given p-part

Let

$$
\begin{aligned}
\operatorname{lrr}^{d}(C):= & \left\{\chi \in \operatorname{lrr}(C)\left|\chi(1)_{p} p^{d}=|G|_{p}\right\} \text { for } C \in \mathrm{BI}(G)\right. \\
\mathrm{O}_{p}(G): & \text { maximal normal } p \text {-subgroup of } G
\end{aligned}
$$

Dade's Conjecture (1990)

Let G be a finite group with $\mathrm{O}_{D}(G)=1, B \in \operatorname{BI}(G)$ and $d>0$. Then:

Numbers of characters with given p-part

Let

$$
\begin{aligned}
\operatorname{lrr}^{d}(C):= & \left\{\chi \in \operatorname{Irr}(C)\left|\chi(1)_{p} p^{d}=|G|_{p}\right\} \text { for } C \in \mathrm{BI}(G)\right. \\
\mathrm{O}_{p}(G) \quad & \text { maximal normal } p \text {-subgroup of } G
\end{aligned}
$$

Dade's Conjecture (1990)

Let G be a finite group with $\mathrm{O}_{p}(G)=1, B \in \mathrm{BI}(G)$ and $d>0$. Then:

$$
\sum_{\mathbb{D} \in \mathcal{C}(G) / \sim G}(-1)^{|\mathbb{D}|} \sum_{C \in B \mid(\mathbb{N}(\mathbb{D})) \text { with }}| | r^{G}=B(C) \mid=0 .
$$

Results on Dade's Conjecture

Theorem

Dade's Conjecture holds for

- all sporadic groups (for $p \neq 2$) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_{n} (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996-2007)
- p-solvable groups (Robinson 2000)
- G Sym $_{n}$ if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

Results on Dade's Conjecture

Theorem

Dade's Conjecture holds for

- all sporadic groups (for $p \neq 2$) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_{n} (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996-2007)
- p-solvable groups (Robinson 2000)
- G 2 Sym $_{n}$ if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

Results on Dade's Conjecture

Theorem

Dade's Conjecture holds for

- all sporadic groups (for $p \neq 2$) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_{n} (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996-2007)
- p-solvable groups (Robinson 2000)
- G Sym $_{n}$ if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

Results on Dade's Conjecture

Theorem

Dade's Conjecture holds for

- all sporadic groups (for $p \neq 2$) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_{n} (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996-2007)
- p-solvable groups (Robinson 2000)
- G $2 \mathrm{Sym}_{n}$ if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

Results on Dade's Conjecture

Theorem

Dade's Conjecture holds for

- all sporadic groups (for $p \neq 2$) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_{n} (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996-2007)
- p-solvable groups (Robinson 2000)
- G l Sym_{n} if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

Results on Dade's Conjecture

Theorem

Dade's Conjecture holds for

- all sporadic groups (for $p \neq 2$) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_{n} (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996-2007)
- p-solvable groups (Robinson 2000)
- $G 2$ Sym $_{n}$ if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

Results on Dade's Conjecture

Theorem

Dade's Conjecture holds for

- all sporadic groups (for $p \neq 2$) (An, Conder, Dade, Entz, Hassan, Himstedt, Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson 1990-2010)
- Sym_{n} (An, Olsson, Uno 1995, 1998)
- some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson, Sukizaki, Uno, Yamada 1996-2007)
- p-solvable groups (Robinson 2000)
- G $2 \mathrm{Sym}_{n}$ if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
- blocks with cyclic defect group (Dade 1996)
- unipotent blocks of finite reductive groups (Broué-Malle-Michel Broué-Fong-Srinivasan 1993-2006)

Results

Theorem (Dade 1994)

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

Simultaneously this gives a new approach for verifying the Alperin-McKay conjecture and Alperin's weight conjecture.

Results

Theorem (Dade 1994)

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

Simultaneously this gives a new approach for verifying the Alperin-McKay conjecture and Alperin's weight conjecture.

Results

Theorem (Dade 1994)

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

Simultaneously this gives a new approach for verifying the Alperin-McKay conjecture and Alperin's weight conjecture.

Results

Theorem (Dade 1994)

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

> Simultaneously this gives a new approach for verifying the Alperin-McKay conjecture and Alperin's weight conjecture.

Results

Theorem (Dade 1994)

If Dade's conjecture holds (for all groups), Alperin's weight conjecture and Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade condition (iDade), Dade's conjecture holds.

Simultaneously this gives a new approach for verifying the Alperin-McKay conjecture and Alperin's weight conjecture.

Towards the inductive Dade condition - two sets

G a finite group with $\mathrm{O}_{p}(G)=1$
B block of G with non-trivial defect group, $d \geq 0$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $\left|\overline{\mathfrak{S}_{+}(B)}\right|=\left|\overline{\mathfrak{S}_{-}(B)}\right|$, where

$$
\mathfrak{S}_{\epsilon}(B)=\left\{(\mathbb{D}, \theta) \left\lvert\, \begin{array}{l}
\mid \mathbb{D} \in C(G) \text { with }(-1)^{|\mathbb{D}|}=\epsilon \\
\text { and } \theta \in \operatorname{Irr} r^{d}(C) \text { for } C \in \operatorname{BI}\left(\mathrm{~N}_{G}(\mathbb{D})\right) \text { with } C^{G}=B
\end{array}\right.\right\}
$$

for $\epsilon \in\{ \pm 1\}$ and $\overline{\mathfrak{S}_{\epsilon}(B)}$ denotes the set of G-orbits in $\mathfrak{S}_{\epsilon}(B)$.

Towards the inductive Dade condition - two sets

G a finite group with $O_{p}(G)=1$
B block of G with non-trivial defect group, $d \geq 0$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $\left|\overline{\mathfrak{S}_{+}(B) \mid}=\left|\widetilde{\mathfrak{S}_{-}(B) \mid}\right|\right.$, where

for $\epsilon \in\{ \pm 1\}$ and $\overline{\mathfrak{S}_{\epsilon}(B)}$ denotes the set of G-orbits in $\mathfrak{S}_{\epsilon}(B)$.

Towards the inductive Dade condition - two sets

G a finite group with $\mathrm{O}_{p}(G)=1$
B block of G with non-trivial defect group, $d \geq 0$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $\left|\overline{\mathfrak{S}_{+}(B)}\right|=\left|\overline{\mathfrak{S}_{-}(B)}\right|$, where

for $\epsilon \in\{ \pm 1\}$ and $\overline{\mathfrak{S}_{\epsilon}(B)}$ denotes the set of G-orbits in $\mathfrak{S}_{\epsilon}(B)$.

Towards the inductive Dade condition - two sets

G a finite group with $\mathrm{O}_{p}(G)=1$
B block of G with non-trivial defect group, $d \geq 0$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $\left|\overline{\mathfrak{S}_{+}(B)}\right|=\left|\overline{\mathfrak{S}_{-}(B)}\right|$, where

$$
\mathfrak{S}_{\epsilon}(B)=\left\{(\mathbb{D}, \theta) \left\lvert\, \begin{array}{l}
\mathbb{D} \in \mathcal{C}(G) \text { with }(-1)^{|\mathbb{D}|}=\epsilon \\
\text { and } \theta \in \operatorname{Irr}^{d}(C) \text { for } C \in \mathrm{BI}\left(\mathrm{~N}_{G}(\mathbb{D})\right) \text { with } C^{G}=B
\end{array}\right.\right\}
$$

for $\epsilon \in\{ \pm 1\}$ and $\overline{\mathfrak{S}_{\epsilon}(B)}$ denotes the set of G-orbits in $\mathfrak{S}_{\epsilon}(B)$.

Towards the inductive Dade condition - two sets

G a finite group with $\mathrm{O}_{p}(G)=1$
B block of G with non-trivial defect group, $d \geq 0$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $\left|\overline{\mathfrak{S}_{+}(B)}\right|=\left|\overline{\mathfrak{S}_{-}(B)}\right|$, where

$$
\mathfrak{S}_{\epsilon}(B)=\left\{(\mathbb{D}, \theta) \left\lvert\, \begin{array}{l}
\mathbb{D} \in \mathcal{C}(G) \text { with }(-1)^{|\mathbb{D}|}=\epsilon \\
\text { and } \theta \in \operatorname{Irr}^{d}(C) \text { for } C \in \mathrm{BI}\left(\mathrm{~N}_{G}(\mathbb{D})\right) \text { with } C^{G}=B
\end{array}\right.\right\}
$$

for $\epsilon \in\{ \pm 1\}$ and $\overline{\mathfrak{S}_{\epsilon}(B)}$ denotes the set of G-orbits in $\mathfrak{S}_{\epsilon}(B)$.

Towards the inductive Dade condition - two sets

G a finite group with $\mathrm{O}_{p}(G)=1$
B block of G with non-trivial defect group, $d \geq 0$

Reformulation of Dade's Conjecture

Dade's conjecture for B is equivalent to $\left|\overline{\mathfrak{S}_{+}(B)}\right|=\left|\overline{\mathfrak{S}_{-}(B)}\right|$, where

$$
\mathfrak{S}_{\epsilon}(B)=\left\{(\mathbb{D}, \theta) \left\lvert\, \begin{array}{l}
\mathbb{D} \in \mathcal{C}(G) \text { with }(-1)^{|\mathbb{D}|}=\epsilon \\
\text { and } \theta \in \operatorname{Irr}^{d}(C) \text { for } C \in \mathrm{BI}\left(\mathrm{~N}_{G}(\mathbb{D})\right) \text { with } C^{G}=B
\end{array}\right.\right\}
$$

for $\epsilon \in\{ \pm 1\} \quad$ and $\overline{\mathfrak{S}_{\epsilon}(B)}$ denotes the set of G-orbits in $\mathfrak{S}_{\epsilon}(B)$.

Towards the inductive Dade condition - character triples

(X, G, θ) is a character triple $\Longleftrightarrow G \triangleleft X, \theta \in \operatorname{Irr}(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \triangleleft X$ and $(\mathbb{D}, \theta),\left(\mathbb{D}^{\prime}, \theta^{\prime}\right) \in \mathfrak{S}_{+}(B) \cup \mathfrak{S}_{-}(B)$. Then we write

$$
\left(\mathbf{N}_{X}(\mathbb{D}, \theta), \mathbf{N}_{G}(\mathbb{D}), \theta\right) \approx_{G}\left(\mathbf{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right), \mathbf{N}_{G}\left(\mathbb{D}^{\prime}\right), \theta^{\prime}\right),
$$

if
(c) $G N_{X}(\mathbb{D}, \theta)=G N_{x}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$
© in general: there exist projective representations of $\mathrm{N}_{X}(\mathbb{D}, \theta)$ and $\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$ associated with θ and θ^{\prime} having analogous properties, in particular: if there exists an extension $\tilde{\theta} \in \operatorname{lrr}\left(\mathrm{N}_{X}(\mathbb{D}, \theta)\right)$ of θ, then there exists an extension $\theta^{\prime} \in \operatorname{lrr}\left(\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)\right)$ of θ^{\prime} such that
 - $\operatorname{bl}\left(\widetilde{\theta}_{N_{J}(\mathbb{D}, \theta)}\right)^{J}=\operatorname{bl}\left(\tilde{\theta}_{N_{\jmath}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)}^{\prime}\right)^{J}$ for every $G \leq J \leq G N_{X}(\mathbb{D}, \theta)$.

Towards the inductive Dade condition - character triples

(X, G, θ) is a character triple $\Longleftrightarrow G \triangleleft X, \theta \in \operatorname{Irr}(G)$ and θ is X-invariant
Definition (Equivalence relation on character triples)
Let $G \triangleleft X$ and $(\mathbb{D}, \theta),\left(\mathbb{D}^{\prime}, \theta^{\prime}\right) \in \mathfrak{S}_{+}(B) \cup \mathfrak{S}_{-}(B)$. Then we write

$$
\left(\mathrm{N}_{X}(\mathbb{D}, \theta), \mathrm{N}_{G}(\mathbb{D}), \theta\right) \approx_{G}\left(\mathrm{~N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right), \mathrm{N}_{G}\left(\mathbb{D}^{\prime}\right), \theta^{\prime}\right),
$$

(1) $G N_{X}(\mathbb{D}, \theta)=G N_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$
(2) in general: there exist projective representations of $\mathrm{N}_{X}(\mathbb{D}, \theta)$ and $\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$ associated with θ and θ^{\prime} having analogous properties, in particular: if there exists an extension $\tilde{\theta} \in \operatorname{lrr}\left(\mathrm{N}_{X}(\mathbb{D}, \theta)\right)$ of θ, then there exists an extension $\theta^{\prime} \in \operatorname{Irr}\left(\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)\right)$ of θ^{\prime} such that

Towards the inductive Dade condition - character triples

(X, G, θ) is a character triple $\Longleftrightarrow G \triangleleft X, \theta \in \operatorname{Irr}(G)$ and θ is X-invariant
Definition (Equivalence relation on character triples)
Let $G \triangleleft X$ and $(\mathbb{D}, \theta),\left(\mathbb{D}^{\prime}, \theta^{\prime}\right) \in \mathfrak{S}_{+}(B) \cup \mathfrak{S}_{-}(B)$. Then we write

$$
\left(\mathrm{N}_{X}(\mathbb{D}, \theta), \mathrm{N}_{G}(\mathbb{D}), \theta\right) \approx_{G}\left(\mathrm{~N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right), \mathrm{N}_{G}\left(\mathbb{D}^{\prime}\right), \theta^{\prime}\right),
$$

if
(1) $G N_{X}(\mathbb{D}, \theta)=G N_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$
(2) in general: there exist projective representations of $\mathrm{N}_{X}(\mathbb{D}, \theta)$ and $\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$ associated with θ and θ^{\prime} having analogous properties, in particular: if there exists an extension $\widetilde{\theta} \in \operatorname{Irr}\left(\mathrm{N}_{X}(\mathbb{D}, \theta)\right)$ of θ, then there exists an extension $\widetilde{\theta^{\prime}} \in \operatorname{lrr}\left(\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)\right)$ of θ^{\prime} such that

Towards the inductive Dade condition - character triples

(X, G, θ) is a character triple $\Longleftrightarrow G \triangleleft X, \theta \in \operatorname{Irr}(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \triangleleft X$ and $(\mathbb{D}, \theta),\left(\mathbb{D}^{\prime}, \theta^{\prime}\right) \in \mathfrak{S}_{+}(B) \cup \mathfrak{S}_{-}(B)$. Then we write

$$
\left(\mathrm{N}_{X}(\mathbb{D}, \theta), \mathrm{N}_{G}(\mathbb{D}), \theta\right) \approx_{G}\left(\mathrm{~N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right), \mathrm{N}_{G}\left(\mathbb{D}^{\prime}\right), \theta^{\prime}\right),
$$

if
(1) $G N_{X}(\mathbb{D}, \theta)=G N_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$
(2) in general: there exist projective representations of $\mathrm{N}_{X}(\mathbb{D}, \theta)$ and $\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$ associated with θ and θ^{\prime} having analogous properties, in particular: if there exists an extension $\widetilde{\theta} \in \operatorname{Irr}\left(\mathrm{N}_{X}(\mathbb{D}, \theta)\right)$ of θ, then there exists an extension $\widetilde{\theta^{\prime}} \in \operatorname{Irr}\left(\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)\right)$ of θ^{\prime} such that

- $\widetilde{\theta}_{C_{X}(G)}$ and $\widetilde{\theta}_{C_{X}(G)}^{\prime}$ are multiples of the same irreducible character,
- $\operatorname{bl}\left(\widetilde{\theta}_{N_{J}(\mathbb{D}, \theta)}\right)^{J}=\operatorname{bl}\left(\widetilde{\theta}_{N_{J}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)}^{\prime}\right)^{J}$ for every $G \leq J \leq G N_{x}(\mathbb{D}, \theta)$.

Towards the inductive Dade condition - character triples

(X, G, θ) is a character triple $\Longleftrightarrow G \triangleleft X, \theta \in \operatorname{Irr}(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \triangleleft X$ and $(\mathbb{D}, \theta),\left(\mathbb{D}^{\prime}, \theta^{\prime}\right) \in \mathfrak{S}_{+}(B) \cup \mathfrak{S}_{-}(B)$. Then we write

$$
\left(\mathrm{N}_{X}(\mathbb{D}, \theta), \mathrm{N}_{G}(\mathbb{D}), \theta\right) \approx_{G}\left(\mathrm{~N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right), \mathrm{N}_{G}\left(\mathbb{D}^{\prime}\right), \theta^{\prime}\right),
$$

if
(1) $G N_{X}(\mathbb{D}, \theta)=G N_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$
(2) in general: there exist projective representations of $\mathrm{N}_{X}(\mathbb{D}, \theta)$ and $\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$ associated with θ and θ^{\prime} having analogous properties, in particular: if there exists an extension $\widetilde{\theta} \in \operatorname{Irr}\left(\mathrm{N}_{X}(\mathbb{D}, \theta)\right)$ of θ, then there exists an extension $\widetilde{\theta^{\prime}} \in \operatorname{Irr}\left(\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)\right)$ of θ^{\prime} such that

- $\tilde{\theta}_{C_{X}(G)}$ and $\widetilde{\theta}_{C_{X}(G)}^{\prime}$ are multiples of the same irreducible character,
- $\operatorname{bl}\left(\widetilde{\theta}_{N_{J}(\mathbb{D}, \theta)}\right)^{J}=\operatorname{bl}\left(\widetilde{\theta}_{N_{,}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)}^{\prime}\right)^{J}$ for every $G \leq J \leq G N_{x}(\mathbb{D}, \theta)$.

Towards the inductive Dade condition - character triples

(X, G, θ) is a character triple $\Longleftrightarrow G \triangleleft X, \theta \in \operatorname{Irr}(G)$ and θ is X-invariant

Definition (Equivalence relation on character triples)

Let $G \triangleleft X$ and $(\mathbb{D}, \theta),\left(\mathbb{D}^{\prime}, \theta^{\prime}\right) \in \mathfrak{S}_{+}(B) \cup \mathfrak{S}_{-}(B)$. Then we write

$$
\left(\mathrm{N}_{X}(\mathbb{D}, \theta), \mathrm{N}_{G}(\mathbb{D}), \theta\right) \approx_{G}\left(\mathrm{~N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right), \mathrm{N}_{G}\left(\mathbb{D}^{\prime}\right), \theta^{\prime}\right),
$$

if
(1) $G N_{X}(\mathbb{D}, \theta)=G N_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$
(2) in general: there exist projective representations of $\mathrm{N}_{X}(\mathbb{D}, \theta)$ and $\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)$ associated with θ and θ^{\prime} having analogous properties, in particular: if there exists an extension $\widetilde{\theta} \in \operatorname{Irr}\left(\mathrm{N}_{X}(\mathbb{D}, \theta)\right)$ of θ, then there exists an extension $\widetilde{\theta^{\prime}} \in \operatorname{lrr}\left(\mathrm{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)\right)$ of θ^{\prime} such that

- $\tilde{\theta}_{C_{X}(G)}$ and $\widetilde{\theta}_{C_{X}(G)}^{\prime}$ are multiples of the same irreducible character,
- $\operatorname{bl}\left(\widetilde{\theta}_{N_{J}(\mathbb{D}, \theta)}\right)^{J}=\operatorname{bl}\left(\widetilde{\theta}_{N_{J}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right)}^{\prime}\right)^{J}$ for every $G \leq J \leq G N_{X}(\mathbb{D}, \theta)$.

The inductive Dade condition

S a non-abelian simple group

The inductive Dade condition (iDade) for S

Let \widehat{S} be a group with $\widehat{S} / \mathrm{Z}(\widehat{S}) \cong S$ and $\widehat{S}=[\widehat{S}, \widehat{S}], B$ a block of \widehat{S} with non-normal defect group and let $d \geq 0$. Then there exists some Aut $(\widehat{S})_{B}$-equivariant bijection

$$
\Omega: \overline{\mathfrak{S}_{+}(B)} \rightarrow \overline{\mathfrak{S}_{-}(B)},
$$

such that for $X:=\widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_{B}$ and every $(\mathbb{D}, \theta) \in \mathfrak{S}_{+}(B)$ and $\left(\mathbb{D}^{\prime}, \theta^{\prime}\right) \in \Omega(\overline{(\mathbb{D}, \theta)})$ we have

$$
\left(\mathrm{N}_{X}(\mathbb{D}, \theta), \mathrm{N}_{\widehat{s}}(\mathbb{D}), \theta\right) \approx_{\widehat{s}}\left(\mathrm{~N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right), \mathrm{N}_{\widehat{s}}\left(\mathbb{D}^{\prime}\right), \theta^{\prime}\right) .
$$

The inductive Dade condition

S a non-abelian simple group

The inductive Dade condition (iDade) for S

Let \widehat{S} be a group with $\widehat{S} / \mathrm{Z}(\widehat{S}) \cong S$ and $\widehat{S}=[\widehat{S}, \widehat{S}], B$ a block of \widehat{S} with non-normal defect group and let $d \geq 0$. Then there exists some Aut $(\widehat{S})_{B}$-equivariant bijection

$$
\Omega: \overline{\mathfrak{S}_{+}(B)} \rightarrow \overline{\mathfrak{S}_{-}(B)},
$$

such that for $X:=\widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_{B}$ and every $(\mathbb{D}, \theta) \in \mathfrak{S}_{+}(B)$ and $\left(\mathbb{D}^{\prime}, \theta^{\prime}\right) \in \Omega(\overline{(\mathbb{D}, \theta)})$ we have

$$
\left(\mathbf{N}_{X}(\mathbb{D}, \theta), \mathbf{N}_{\widehat{s}}(\mathbb{D}), \theta\right) \approx_{\hat{S}}\left(\mathbf{N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right), \mathbf{N}_{\widehat{S}}\left(\mathbb{D}^{\prime}\right), \theta^{\prime}\right) .
$$

The inductive Dade condition

S a non-abelian simple group

The inductive Dade condition (iDade) for S

Let \widehat{S} be a group with $\widehat{S} / \mathrm{Z}(\widehat{S}) \cong S$ and $\widehat{S}=[\widehat{S}, \widehat{S}], B$ a block of \widehat{S} with non-normal defect group and let $d \geq 0$. Then there exists some Aut $(\widehat{S})_{B}$-equivariant bijection

$$
\Omega: \overline{\mathfrak{S}_{+}(B)} \rightarrow \overline{\mathfrak{S}_{-}(B)},
$$

such that for $X:=\widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_{B}$ and every $(\mathbb{D}, \theta) \in \mathfrak{S}_{+}(B)$ and $\left(\mathbb{D}^{\prime}, \theta^{\prime}\right) \in \Omega(\overline{(\mathbb{D}, \theta)})$ we have

$$
\left(\mathrm{N}_{X}(\mathbb{D}, \theta), \mathrm{N}_{\widehat{s}}(\mathbb{D}), \theta\right) \approx_{\widehat{s}}\left(\mathrm{~N}_{X}\left(\mathbb{D}^{\prime}, \theta^{\prime}\right), \mathrm{N}_{\widehat{s}}\left(\mathbb{D}^{\prime}\right), \theta^{\prime}\right) .
$$

Proving the reduction theorem of Dade's Conjecture

- Induction on $|G: Z(G)|$
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
(1) Results about the equivalence relation on the character triples apply in a more general context.
(3) New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

> HERE: How to prove the reduction theorem of the McKay conjecture (Isaacs-Malle-Navarro 2007).

Proving the reduction theorem of Dade's Conjecture

- Induction on $|G: Z(G)|$
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
(1) Results about the equivalence relation on the character triples apply in a more general context.
(3) New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010)

> HERE: How to prove the reduction theorem of the McKay conjecture (Isaacs-Malle-Navarro 2007)

Proving the reduction theorem of Dade's Conjecture

- Induction on $|G: Z(G)|$
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
(1) Results about the equivalence relation on the character triples apply in a more general context.
(3) New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010)

> HERE: How to prove the reduction theorem of the McKay conjecture (Isaacs-Malle-Navarro 2007)

Proving the reduction theorem of Dade's Conjecture

- Induction on $|G: Z(G)|$
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
(1) Results about the equivalence relation on the character triples apply in a more general context.
(3) New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010)

> HERE: How to prove the reduction theorem of the McKay conjecture (Isaacs-Malle-Navarro 2007)

Proving the reduction theorem of Dade's Conjecture

- Induction on $|G: Z(G)|$
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
(1) Results about the equivalence relation on the character triples apply in a more general context.
(3) New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010)

> HERE: How to prove the reduction theorem of the McKay conjecture (Isaacs-Malle-Navarro 2007)

Proving the reduction theorem of Dade's Conjecture

- Induction on $|G: Z(G)|$
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
(1) Results about the equivalence relation on the character triples apply in a more general context.
(2) New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

```
HERE: How to prove the reduction theorem of the McKay conjecture
(Isaacs-Malle-Navarro 2007).
```


Proving the reduction theorem of Dade's Conjecture

- Induction on $|G: Z(G)|$
- Description of a minimal counter-example (Eaton-Robinson 2002)
- Interpreting a minimal counter-example in terms of groups related to simple groups (Robinson 2002)
- Study of the equivalence relation on character triples
(1) Results about the equivalence relation on the character triples apply in a more general context.
(2) New insights into the proof of the reduction theorems of the McKay, Alperin-McKay and Alperin's weight conjectures (Isaacs-Malle-Navarro 2007 and Navarro-Tiep 2010).

HERE: How to prove the reduction theorem of the McKay conjecture (Isaacs-Malle-Navarro 2007).

McKay Conjecture

$$
\begin{aligned}
& \text { Let } \operatorname{Irr}_{p^{\prime}}(G):=\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\} . \\
& \text { McKay Conjecture }(1972) \\
& \text { Let } P \in \operatorname{Syl}_{p}(G) \text {. Then: } \\
& \qquad\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right| .
\end{aligned}
$$

Known for:

- all p-solvable groups (Okuyama-Wajima 1979)
- all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S., Wilson 1976-2010)

McKay Conjecture

$$
\text { Let } \operatorname{Irr}_{p^{\prime}}(G):=\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\} .
$$

McKay Conjecture (1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then:

$$
\left|\left|\operatorname{lr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|\right. \text {. }
$$

Known for:

- all p-solvable groups (Okuyama-Wajima 1979)
- all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S., Wilson 1976-2010)

McKay Conjecture

$$
\text { Let } \operatorname{Irr}_{p^{\prime}}(G):=\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\} .
$$

McKay Conjecture (1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then:

$$
\left|\left|\operatorname{lr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right| .\right.
$$

Known for:

- all p-solvable groups (Okuyama-Wajima 1979)
- all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S., Wilson 1976-2010)

McKay Conjecture

$$
\text { Let } \operatorname{Irr}_{p^{\prime}}(G):=\{\chi \in \operatorname{Irr}(G) \mid p \nmid \chi(1)\} .
$$

McKay Conjecture (1972)

Let $P \in \operatorname{Syl}_{p}(G)$. Then:

$$
\left|\left|\operatorname{lr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right| .\right.
$$

Known for:

- all p-solvable groups (Okuyama-Wajima 1979)
- all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S., Wilson 1976-2010)

McKay Conjecture - a relative version

Let $\nu \in \operatorname{Irr}(Z(G))$ and $\operatorname{Irr}_{p^{\prime}}(G \mid \nu):=\left\{\chi \in \operatorname{Irr}_{p^{\prime}}(G) \mid\right.$ χ is a constituent of $\left.\nu^{G}\right\}$.

Relative McKay Conjecture

Let $P \in \operatorname{Syl}_{p}(G)$. Then:

$$
\left|\operatorname{Irr}_{p^{\prime}}(G \mid \nu)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathbb{N}_{G}(P) \mid \nu\right)\right|
$$

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all groups H with $|H: Z(H)|<|G: Z(G)|$.
Then one of the following holds
(1) the McKay conjecture holds for G, or
(2) $G=K N_{G}(P)$ for some group $K \triangleleft G$, where $K / Z(K) \cong S \times \cdots \times S$ for some non-abelian simple group S

McKay Conjecture - a relative version

Let $\nu \in \operatorname{Irr}(Z(G))$ and $\operatorname{Irr}_{p^{\prime}}(G \mid \nu):=\left\{\chi \in \operatorname{Irr}_{p^{\prime}}(G) \mid\right.$ χ is a constituent of $\left.\nu^{G}\right\}$.

Relative McKay Conjecture

Let $P \in \operatorname{Syl}_{p}(G)$. Then:

$$
\left|\left|r r_{p^{\prime}}(G \mid \nu)\right|=\left|\left|\operatorname{lr} r_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \nu\right)\right| .\right.\right.
$$

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all groups H with $|H: Z(H)|<|G: Z(G)|$.
Then one of the following holds
(1) the McKay conjecture holds for G, or
(2) $G=K N_{G}(P)$ for some group $K \triangleleft G$, where $K / Z(K) \cong S \times \cdots \times S$ for some non-abelian simple group S.

McKay Conjecture - a relative version

Let $\nu \in \operatorname{Irr}(Z(G))$ and $\operatorname{Irr}_{p^{\prime}}(G \mid \nu):=\left\{\chi \in \operatorname{Irr}_{p^{\prime}}(G) \mid\right.$ χ is a constituent of $\left.\nu^{G}\right\}$.

Relative McKay Conjecture

Let $P \in \operatorname{Syl}_{p}(G)$. Then:

$$
\left|\operatorname{lr}_{p^{\prime}}(G \mid \nu)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \nu\right)\right| .
$$

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all groups H with $|H: Z(H)|<|G: Z(G)|$.
Then one of the following holds
(1) the McKay conjecture holds for G, or
(2) $G=K N_{G}(P)$ for some group $K \triangleleft G$, where $K / Z(K) \cong S \times \cdots \times S$ for some non-abelian simple group S.

McKay Conjecture - a relative version

Let $\nu \in \operatorname{Irr}(Z(G))$ and $\operatorname{Irr}_{p^{\prime}}(G \mid \nu):=\left\{\chi \in \operatorname{Irr}_{p^{\prime}}(G) \mid\right.$
 χ is a constituent of $\left.\nu^{G}\right\}$.

Relative McKay Conjecture

Let $P \in \operatorname{Syl}_{p}(G)$. Then:

$$
\left|\left|\operatorname{lr}_{p^{\prime}}(G \mid \nu)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \nu\right)\right| .\right.
$$

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all groups H with $|H: Z(H)|<|G: Z(G)|$.
Then one of the following holds
(1) the McKay conjecture holds for G, or
(2) $G=K N_{G}(P)$ for some group $K \triangleleft G$, where $K / Z(K) \cong S \times \cdots \times S$ for some non-abelian simple group S.

(iMcK) - the inductive McKay condition I

Definition (Equivalence relation on character triples)

Let $G \triangleleft X, \theta \in \operatorname{Irr}(G)$ and $\theta^{\prime} \in \operatorname{Irr}\left(\mathrm{N}_{G}(P)\right)$. Then we write

$$
\left(X_{\theta}, G, \theta\right) \sim_{G}\left(N_{X}(P)_{\theta^{\prime}}, N_{G}(P), \theta^{\prime}\right)
$$

(1) $X_{\theta}=G \quad N_{X}(P)_{\theta^{\prime}}$
© in general: there exist projective representations \mathcal{P} and \mathcal{P}^{\prime} of X_{θ} and $N_{X}(P)_{\theta^{\prime}}$ associated with θ and θ^{\prime} having similar properties

(iMcK) - the inductive McKay condition I

Definition (Equivalence relation on character triples)

Let $G \triangleleft X, \theta \in \operatorname{Irr}(G)$ and $\theta^{\prime} \in \operatorname{Irr}\left(\mathrm{N}_{G}(P)\right)$. Then we write

$$
\left(X_{\theta}, G, \theta\right) \sim_{G}\left(N_{X}(P)_{\theta^{\prime}}, \mathrm{N}_{G}(P), \theta^{\prime}\right),
$$

if
(1) $X_{\theta}=G \quad \mathrm{~N}_{X}(P)_{\theta^{\prime}}$
(2) in general: there exist projective representations \mathcal{P} and \mathcal{P}^{\prime} of X_{θ} and $\mathrm{N}_{X}(P)_{\theta^{\prime}}$ associated with θ and θ^{\prime} having similar properties

(iMcK) - the inductive McKay condition I

Definition (Equivalence relation on character triples)

Let $G \triangleleft X, \theta \in \operatorname{Irr}(G)$ and $\theta^{\prime} \in \operatorname{Irr}\left(\mathrm{N}_{G}(P)\right)$. Then we write

$$
\left(X_{\theta}, G, \theta\right) \sim_{G}\left(N_{X}(P)_{\theta^{\prime}}, \mathrm{N}_{G}(P), \theta^{\prime}\right),
$$

if
(1) $X_{\theta}=G \quad \mathrm{~N}_{X}(P)_{\theta^{\prime}}$
(2) in general: there exist projective representations \mathcal{P} and \mathcal{P}^{\prime} of X_{θ} and $\mathrm{N}_{X}(P)_{\theta^{\prime}}$ associated with θ and θ^{\prime} having similar properties

(iMcK) - the inductive McKay condition II

S a non-abelian simple group
The inductive McKay condition for S
Let \widehat{S} be a group with $\widehat{S} / Z(\widehat{S}) \cong S$ and $\widehat{S}=[\widehat{S}, \widehat{S}]$. For every $P \in \operatorname{Syl}_{p}(\widehat{S})$ there exists some $\operatorname{Aut}(\widehat{S})_{p-e q u i v a r i a n t ~ b i j e c t i o n ~}$

$$
\Omega: \operatorname{lrr}_{p^{\prime}}(\widehat{S}) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{\widehat{S}}(P)\right),
$$

such that for $X:=\widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_{P}$ and every $\theta \in \operatorname{Irr}_{p^{\prime}}(\widehat{S})$ we have

$$
\left(X_{\theta}, \widehat{S}, \theta\right) \sim_{\hat{S}}\left(N_{X}(P)_{\Omega(\theta)}, N_{\widehat{S}}(P), \Omega(\theta)\right)
$$

(iMcK) - the inductive McKay condition II

S a non-abelian simple group

The inductive McKay condition for S

Let \widehat{S} be a group with $\widehat{S} / Z(\widehat{S}) \cong S$ and $\widehat{S}=[\widehat{S}, \widehat{S}]$. For every $P \in \operatorname{Syl}_{p}(\widehat{S})$ there exists some $\operatorname{Aut}(\widehat{S})_{P}$-equivariant bijection

$$
\Omega: \operatorname{lrr}_{p^{\prime}}(\widehat{S}) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{\widehat{S}}(P)\right),
$$

such that for $X:=\widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_{P}$ and every $\theta \in \operatorname{Irr}_{p^{\prime}}(\widehat{S})$ we have

$$
\left(X_{\theta}, \widehat{S}, \theta\right) \sim_{\widehat{s}}\left(\mathrm{~N}_{X}(P)_{\Omega(\theta)}, \mathrm{N}_{\widehat{S}}(P), \Omega(\theta)\right)
$$

(iMcK) - the inductive McKay condition II

S a non-abelian simple group

The inductive McKay condition for S

Let \widehat{S} be a group with $\widehat{S} / \mathrm{Z}(\widehat{S}) \cong S$ and $\widehat{S}=[\widehat{S}, \widehat{S}]$. For every $P \in \operatorname{Syl}_{p}(\widehat{S})$ there exists some $\operatorname{Aut}(\widehat{S})_{P}$-equivariant bijection

$$
\Omega: \operatorname{lrr}_{p^{\prime}}(\widehat{S}) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{\widehat{S}}(P)\right),
$$

such that for $X:=\widehat{S} \rtimes \operatorname{Aut}(\widehat{S})_{P}$ and every $\theta \in \operatorname{Irr}_{p^{\prime}}(\widehat{S})$ we have

$$
\left(X_{\theta}, \widehat{S}, \theta\right) \sim_{\widehat{s}}\left(\mathrm{~N}_{X}(P)_{\Omega(\theta)}, \mathrm{N}_{\widehat{s}}(P), \Omega(\theta)\right) .
$$

Step 1: Specific case $K=S$ and $G=S \rtimes \operatorname{Aut}(S)$

We assume:

- $K \triangleleft G$, where $K \cong S$ for some non-abelian simple group S
- $G=S \rtimes \operatorname{Aut}(S)$

Then (iMcK) for S implies:
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some Aut $(K)_{P}$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
© such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(X_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 1: Specific case $K=S$ and $G=S \rtimes \operatorname{Aut}(S)$

We assume:

- $K \triangleleft G$, where $K \cong S$ for some non-abelian simple group S
- $G=S \rtimes \operatorname{Aut}(S)$

Then (iMcK) for S implies:
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\operatorname{Aut}(K)_{P \text {-equivariant bijection }}$ $\Omega: \operatorname{lrr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
© such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(X_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 1: Specific case $K=S$ and $G=S \rtimes \operatorname{Aut}(S)$

We assume:

- $K \triangleleft G$, where $K \cong S$ for some non-abelian simple group S
- $G=S \rtimes \operatorname{Aut}(S)$

Then (iMcK) for S implies:
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\operatorname{Aut}(K)_{P}$-equivariant bijection $\Omega: \operatorname{lrr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(X_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{lr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 1: Specific case $K=S$ and $G=S \rtimes \operatorname{Aut}(S)$

We assume:

- $K \triangleleft G$, where $K \cong S$ for some non-abelian simple group S
- $G=S \rtimes \operatorname{Aut}(S)$

Then (iMcK) for S implies:
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\operatorname{Aut}(K)_{P}$-equivariant bijection $\Omega: \operatorname{lrr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(X_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{lr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 1: Specific case $K=S$ and $G=S \rtimes \operatorname{Aut}(S)$

We assume:

- $K \triangleleft G$, where $K \cong S$ for some non-abelian simple group S
- $G=S \rtimes \operatorname{Aut}(S)$

Then (iMcK) for S implies:
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\operatorname{Aut}(K)_{P}$-equivariant bijection $\Omega: \operatorname{lrr}_{p^{\prime}}(K) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(X_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{lr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 2: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

The equivalence relation \sim_{K} is compatible with direct products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{lrr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Again $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{lrr}_{p^{\prime}}(G)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 2: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

The equivalence relation \sim_{K} is compatible with direct products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{lrr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right)
$$

Again $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathbb{N}_{G}(P) \mid \Omega(\theta)\right)\right|$ $\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 2: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

The equivalence relation \sim_{K} is compatible with direct products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(N_{G}(P)_{\Omega(\theta)}, N_{K}(P), \Omega(\theta)\right) .
$$

Again $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{lrr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 2: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

The equivalence relation \sim_{K} is compatible with direct products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Again $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{lrr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 2: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

The equivalence relation \sim_{K} is compatible with direct products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Again $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{lrr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 2: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}(S)^{r}$

The equivalence relation \sim_{K} is compatible with direct products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right)
$$

Again $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{lrr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 3: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)=S^{r} \rtimes\left(\operatorname{Aut}(S)\right.$ Sym $\left._{r}\right)$

The equivalence relation \sim_{K} is compatible with wreath products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{lrr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right)
$$

Again $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 3: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)=S^{r} \rtimes\left(\operatorname{Aut}(S)\right.$ 2 $\left.\operatorname{Sym}_{r}\right)$

The equivalence relation \sim_{K} is compatible with wreath products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{lrr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right)
$$

Again $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathbb{N}_{G}(P) \mid \Omega(\theta)\right)\right|$ $\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 3: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)=S^{r} \rtimes\left(\operatorname{Aut}(S) \imath \operatorname{Sym}_{r}\right)$

The equivalence relation \sim_{K} is compatible with wreath products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Again $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{lrr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Step 3: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)=S^{r} \rtimes\left(\operatorname{Aut}(S) \imath \operatorname{Sym}_{r}\right)$

The equivalence relation \sim_{K} is compatible with wreath products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right)
$$

Again $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{lrr}_{p^{\prime}}(G)\right|=\left|\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|\right.$.

Step 3: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)=S^{r} \rtimes\left(\operatorname{Aut}(S) \imath \operatorname{Sym}_{r}\right)$

The equivalence relation \sim_{K} is compatible with wreath products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right)
$$

Again $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{lrr}_{p^{\prime}}(G)\right|=\left|\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|\right.$.

Step 3: Specific case $K=S^{r}$ and $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$

We assume:

- $K \triangleleft G$ with $K \cong S^{r}$ for some simple group S
- $G=S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)=S^{r} \rtimes\left(\operatorname{Aut}(S) \imath \operatorname{Sym}_{r}\right)$

The equivalence relation \sim_{K} is compatible with wreath products.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(2) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Again $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{lrr}_{p^{\prime}}(G)\right|=\left|\operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Final Step

Recall: G is a minimal counterexample, i.e. $\exists K \triangleleft G: K / Z(K) \cong S \times \cdots \times S$ for some simple group S and $K \mathrm{~N}_{G}(\widetilde{P})=G$ for $\widetilde{P} \in \operatorname{Syl}_{p}(G)$.
Assume that S is a non-abelian simple group with trivial Schur multiplier. Since $K \cong S^{r}$ and the automorphisms of G induced on K are contained in $S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{lr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
© such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Final Step

Recall: G is a minimal counterexample, i.e. $\exists K \triangleleft G: K / Z(K) \cong S \times \cdots \times S$ for some simple group S and $K \mathrm{~N}_{G}(\widetilde{P})=G$ for $\widetilde{P} \in \operatorname{Syl}_{p}(G)$.

Assume that S is a non-abelian simple group with trivial Schur multiplier.
Since $K \cong S^{r}$ and the automorphisms of G induced on K are contained in $S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection
$\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
© such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Final Step

Recall: G is a minimal counterexample, i.e. $\exists K \triangleleft G: K / Z(K) \cong S \times \cdots \times S$ for some simple group S and $K \mathrm{~N}_{G}(\widetilde{P})=G$ for $\widetilde{P} \in \operatorname{Syl}_{p}(G)$.
Assume that S is a non-abelian simple group with trivial Schur multiplier.
Since $K \cong S^{r}$ and the automorphisms of G induced on K are contained in $S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
© such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Final Step

Recall: G is a minimal counterexample, i.e. $\exists K \triangleleft G: K / Z(K) \cong S \times \cdots \times S$ for some simple group S and $K \mathrm{~N}_{G}(\widetilde{P})=G$ for $\widetilde{P} \in \operatorname{Syl}_{p}(G)$.
Assume that S is a non-abelian simple group with trivial Schur multiplier.
Since $K \cong S^{r}$ and the automorphisms of G induced on K are contained in $S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection
$\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
© such that for every $\theta \in \operatorname{lrr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Final Step

Recall: G is a minimal counterexample, i.e. $\exists K \triangleleft G: K / Z(K) \cong S \times \cdots \times S$ for some simple group S and $K \mathrm{~N}_{G}(\widetilde{P})=G$ for $\widetilde{P} \in \operatorname{Syl}_{p}(G)$.
Assume that S is a non-abelian simple group with trivial Schur multiplier.
Since $K \cong S^{r}$ and the automorphisms of G induced on K are contained in $S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
© such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(N_{G}(P)_{\Omega(\theta)}, N_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Final Step

Recall: G is a minimal counterexample, i.e. $\exists K \triangleleft G: K / Z(K) \cong S \times \cdots \times S$ for some simple group S and $K \mathrm{~N}_{G}(\widetilde{P})=G$ for $\widetilde{P} \in \operatorname{Syl}_{p}(G)$.
Assume that S is a non-abelian simple group with trivial Schur multiplier.
Since $K \cong S^{r}$ and the automorphisms of G induced on K are contained in $S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(3) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Final Step

Recall: G is a minimal counterexample, i.e. $\exists K \triangleleft G: K / Z(K) \cong S \times \cdots \times S$ for some simple group S and $K \mathrm{~N}_{G}(\widetilde{P})=G$ for $\widetilde{P} \in \operatorname{Syl}_{p}(G)$.
Assume that S is a non-abelian simple group with trivial Schur multiplier.
Since $K \cong S^{r}$ and the automorphisms of G induced on K are contained in $S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(3) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{Irr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

Final Step

Recall: G is a minimal counterexample, i.e. $\exists K \triangleleft G: K / Z(K) \cong S \times \cdots \times S$ for some simple group S and $K \mathrm{~N}_{G}(\widetilde{P})=G$ for $\widetilde{P} \in \operatorname{Syl}_{p}(G)$.
Assume that S is a non-abelian simple group with trivial Schur multiplier.
Since $K \cong S^{r}$ and the automorphisms of G induced on K are contained in $S^{r} \rtimes \operatorname{Aut}\left(S^{r}\right)$, we compare it with the situation in Step 3:

The equivalence relation \sim_{K} only depends on automorphisms induced on K.
(1) for $P \in \operatorname{Syl}_{p}(K)$ there exists some $\mathrm{N}_{G}(P)$-equivariant bijection $\Omega: \operatorname{Irr}_{p^{\prime}}(K) \rightarrow \operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{K}(P)\right)$,
(3) such that for every $\theta \in \operatorname{Irr}_{p^{\prime}}(K)$ we have

$$
\left(G_{\theta}, K, \theta\right) \sim_{K}\left(\mathrm{~N}_{G}(P)_{\Omega(\theta)}, \mathrm{N}_{K}(P), \Omega(\theta)\right) .
$$

Hence $\left|\operatorname{lrr}_{p^{\prime}}(G \mid \theta)\right|=\left|\operatorname{Irr}_{p^{\prime}}\left(\mathrm{N}_{G}(P) \mid \Omega(\theta)\right)\right|$
$\Longrightarrow\left|\operatorname{Irr}_{p^{\prime}}(G)\right|=\left|\operatorname{lrr}_{p^{\prime}}\left(\mathrm{N}_{G}(P)\right)\right|$.

This finishes our revisit of the reduction theorem of the McKay Conjecture and hence this talk!
Thanks!

This finishes our revisit of the reduction theorem of the McKay Conjecture and hence this talk!
Thanks!

This finishes our revisit of the reduction theorem of the McKay Conjecture and hence this talk!
Thanks!

