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@ Dade’s Conjecture
@ The Reduction Theorem for Dade's Conjecture
© The Reduction Theorem for McKay Conjecture - revisited

@ Other Consequences
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G finite group, p a prime, O > Z,
When decomposing OG into minimal two-sided ideals B;
O0G=B& & B,

By,..., Bs are called the p-blocks of G.

This gives decompositions

Irr(G) = U lrr(B)

BEBI(G)

Reduction Theorems — revisited 3/22



G finite group, p a prime, O > Z,
When decomposing OG into minimal two-sided ideals B;
O0G=B @ - P B;,

By, ..., Bs are called the p-blocks of G.
We write BI(G) = {B, ..., Bs}.

This gives decompositions

Irr(G) = U lrr(B)

BEBI(G)

Reduction Theorems — revisited 3/22



G finite group, p a prime, O > Z,
When decomposing OG into minimal two-sided ideals B;
O0G=B @ - P B;,

By, ..., Bs are called the p-blocks of G.
We write BI(G) = {By, ..., Bs}.

This gives decompositions

Irr(G) = U lrr(B)

BeBI(G)

Reduction Theorems — revisited 3/22



G finite group, p a prime, O > Z,
When decomposing OG into minimal two-sided ideals B;
O0G=B @ - P B;,

By, ..., Bs are called the p-blocks of G.
We write BI(G) = {By, ..., Bs}.

This gives decompositions

Irr(G) = U Irr(B) and IBr(G) = U IBr(B),

BEBI(G) BEBI(G)

where IBr(G) is the set of isomorphism classes of simple F,G-modules.

Reduction Theorems — revisited 3/22



G finite group, p a prime, O > Z,
When decomposing OG into minimal two-sided ideals B;
O0G=B @ - P B;,

By, ..., Bs are called the p-blocks of G.
We write BI(G) = {By, ..., Bs}.

This gives decompositions

Irr(G) = U Irr(B) and IBr(G) = U IBr(B),

BEBI(G) BeBI(G)

where I1Br(G) is the set of isomorphism classes of simple F,G-modules.

Reduction Theorems — revisited 3/22



Brauer Correspondents and Block Induction

One associates to B € BI(G):

For every B € BI(G) with the defect group D:

x(1)p|D] > |G|, for all x € Irr(B).

For a p-subgroup @ < G and C € BI(Ng(Q)), one denotes by C® a certain block
of G. Then C€ is the (Brauer) induced block.
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Alperin’s weight Conjecture - general

B p-block of G, D defect group of B

A weight of B € BI(G) is a pair (Q, %), such that
Q < G is a p-group,
€ Irr(Ng(Q)/ Q) satisfies (1), = | Ng(Q)/Q|, and
) belongs to a block C € BI(Ng(Q)) with C¢ = B.

| IBr(B)]| is the number of G-conjugacy classes of weights of B.

If D is abelian, Alperin's weight conjecture for B states

11Br(B)| = | 1Br(B)],

where B’ is the Brauer correspondent of B.
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Reformulation of Alperin’s weight conjecture

C(G) = strictly ascending chains of p-subgroups of G starting in {1}
D : {}<D5...5D,
D length of D, here r

The following are equivalent:
Alperin’s weight conjecture holds

for every group G and every B € BI(G) with non-trivial defect group

> (-l > |1rr(C)| = 0.

DeC(G)/~G CeBI(Ng(D)) with C6=B

The set C(G) can be replaced by
the set of chains of radical p-groups
the set of chains of elementary abelian p-subgroups
the set of normal p-chains
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Numbers of characters with given p-part

Let

=
=
Q
—
@)
—
I

{x €rr(C) | x(1),p% = |G|,} for C € BI(G)

0,(G) maximal normal p-subgroup of G
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Numbers of characters with given p-part

Let

Irr?(C) = {xelrr(C)|x(1),p? =1|G|,} for C € BI(G)
0,(G) maximal normal p-subgroup of G

Dade’s Conjecture (1990)

Let G be a finite group with O,(G) =1, B € BI(G)
and d > 0. Then:

S (-ym > [ (C)| = 0.

DeC(G)/~G CEBI(Ng(D)) with C6=B

Reduction Theorems — revisited 7/22



Results on Dade's Conjecture

Dade’s Conjecture holds for

o all sporadic groups (for p # 2 ) (An, Conder, Dade, Entz, Hassan, Himstedt,
Huang, Kotlica, Murray, O'Brien, Pahlings, Rouquier, Sawabe, Wilson
1990-2010)

Sym,, (An, Olsson, Uno 1995, 1998)

some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson,
Sukizaki, Uno, Yamada 1996 - 2007)

p-solvable groups (Robinson 2000)
G ! Sym,, if G satisfies Dade's conjecture (Eaton-Hoefling 2002)
blocks with cyclic defect group (Dade 1996)

unipotent blocks of finite reductive groups ( Broué-Malle-Michel
Broué-Fong-Srinivasan 1993-2006)
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If Dade’s conjecture holds (for all groups), Alperin’s weight conjecture and
Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade
condition (iDade), Dade’s conjecture holds.

Simultaneously this gives a new approach for verifying the Alperin-McKay
conjecture and Alperin's weight conjecture.
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Towards the inductive Dade condition — two sets

G a finite group with O,(G) =1
B block of G with non-trivial defect group, d > 0

Dade’s conjecture for B is equivalent to |&(B)| = |&6_(B)|, where
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Towards the inductive Dade condition — two sets

G a finite group with O,(G) =1
B block of G with non-trivial defect group, d >0

Reformulation of Dade's Conjecture

Dade’s conjecture for B is equivalent to |6, (B)| = |&6_(B)|, where

D € C(G) with (—1)IPl = ¢
and 0 € Irr?(C) for C € BI(Ng(D)) with C¢ = B

G.(B) = {(D.H)

for e € {+1} and &.(B) denotes the set of G-orbits in &.(B).
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Towards the inductive Dade condition — character triples

(X, G,0) is a character triple < G < X, 0 € Irr(G) and 6 is X-invariant
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The inductive Dade condition

S a non-abelian simple group

The inductive Dade condition (iDade) for S

Let S be a group with 5/Z(5) 2 S and S =[5, 5], B a block of 5 with
non-normal defect group and let d > 0.Then there exists some

Aut(S)g-equivariant bijection

Q:6.(B)— 6_(B),

such that for X := S x Aut(5)s and every (DD, 6) € &, (B) and
(', 0') € Q((D, ) we have

(Nx(D, 6), Ng(D), 6) ~¢ (Nx(DV, 6), No(ID'), ¢).
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Proving the reduction theorem of Dade's Conjecture

@ Induction on |G : Z(G)|
Description of a minimal counter-example (Eaton-Robinson 2002)

Interpreting a minimal counter-example in terms of groups related to simple
groups (Robinson 2002)

Study of the equivalence relation on character triples

Reduction Theorems — revisited 13 /22



Proving the reduction theorem of Dade's Conjecture

@ Induction on |G : Z(G)|
@ Description of a minimal counter-example (Eaton-Robinson 2002)

Interpreting a minimal counter-example in terms of groups related to simple
groups (Robinson 2002)

Study of the equivalence relation on character triples

Reduction Theorems — revisited 13 /22



Proving the reduction theorem of Dade's Conjecture

@ Induction on |G : Z(G)|
@ Description of a minimal counter-example (Eaton-Robinson 2002)

@ Interpreting a minimal counter-example in terms of groups related to simple
groups (Robinson 2002)

Study of the equivalence relation on character triples

Reduction Theorems — revisited 13 /22



Proving the reduction theorem of Dade's Conjecture

Induction on |G : Z(G)|
Description of a minimal counter-example (Eaton-Robinson 2002)

Interpreting a minimal counter-example in terms of groups related to simple
groups (Robinson 2002)

Study of the equivalence relation on character triples

Reduction Theorems — revisited 13 /22



Proving the reduction theorem of Dade's Conjecture

Induction on |G : Z(G)|
Description of a minimal counter-example (Eaton-Robinson 2002)

Interpreting a minimal counter-example in terms of groups related to simple
groups (Robinson 2002)

Study of the equivalence relation on character triples

Reduction Theorems — revisited 13 /22



Proving the reduction theorem of Dade's Conjecture

@ Induction on |G : Z(G)|
@ Description of a minimal counter-example (Eaton-Robinson 2002)

@ Interpreting a minimal counter-example in terms of groups related to simple
groups (Robinson 2002)

@ Study of the equivalence relation on character triples

@ Results about the equivalence relation on the character triples apply in a
more general context.

@ New insights into the proof of the reduction theorems of the McKay,
Alperin-McKay and Alperin's weight conjectures (lsaacs-Malle-Navarro 2007
and Navarro-Tiep 2010).

HERE: How to prove the reduction theorem of the McKay conjecture
(Isaacs-Malle-Navarro 2007).
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Let Irrp (G) :={x € Irr(G) | pt x(1)}.
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Let Irrp (G) :={x € Irr(G) | pt x(1)}.

McKay Conjecture (1972)

Let P € Syl,(G). Then:

[Irrpr (G)] = [1rrp (NG (P))]-
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McKay Conjecture

Let Irrp (G) :={x € Irr(G) | pt x(1)}.

McKay Conjecture (1972)

Let P € Syl,(G). Then:

[Irrpr (G)] = [1rrp (NG (P))]-

o all p-solvable groups (Okuyama-Wajima 1979)

e all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S.,
Wilson 1976 - 2010)
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Let v € Irr(Z(G)) and Irrpy (G|v) := {x € lrrp(G) |
X is a constituent of v¢}.
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McKay Conjecture - a relative version

Let v € Irr(Z(G)) and Irrpy (G|v) := {x € lrrp(G) |
X is a constituent of v¢}.

Relative McKay Conjecture
Let P € Syl,(G). Then:

[rrpr (Glw)| = [ Irrp (NG (P)[v)].

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all
groups H with |H : Z(H)| < |G : Z(G)].
Then one of the following holds

@ the McKay conjecture holds for G, or

@ G = KNg(P) for some group K < G, where K/ Z(K) =2 S x --- x S for
some non-abelian simple group S.
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(iMcK) — the inductive McKay condition |

Definition (Equivalence relation on character triples)
Let G < X, 0 €lrr(G) and 0" € Irr(Ng(P)). Then we write

(X, G,0) ~c (Nx(P)o,Ng(P),0"),
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(iMcK) — the inductive McKay condition |

Definition (Equivalence relation on character triples)
Let G < X, 0 €lrr(G) and 0" € Irr(Ng(P)). Then we write

(XG; G79) ~G (NX(P)9/7NG(P)70/)7
if
Q@ Xy = G Nx(P)o

@ in general: there exist projective representations P and P’ of Xy and
Nx(P)g: associated with 6 and 6’ having similar properties
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(iMcK) — the inductive McKay condition Il

S a non-abelian simple group

The inductive McKay condition for S
Let S be a group with 5/Z(5) = S and S =[5, 5]. For every P € Sylp(g) there

exists some Aut(S)p-equivariant bijection

Q: Irrp/(é) — Irrp (Ng(P)),

such that for X := 5 x Aut(5)p and every 6 € Irrpr(§) we have

(X0, S, 0) ~z (Nx(P)a), Ne(P), (6)).
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The inductive McKay condition for S

Let S be a group with 5/Z(5) = S and S =[5, 5]. For every P € Sylp(g) there
exists some Aut(§)p—equivariant bijection

Q I (S) = Irry (N(P)),

such that for X := S x Aut(:‘S\)p and every 0 € Irrp/(g) we have

(Xo,S,8) ~¢ (Nx(P)ag): Ne(P), 2(6)).
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Step 1: Specific case K =S and G = S x Aut(S)

We assume:

e K <G, where K = S for some non-abelian simple group S

o G =S5 xAut(S)

Then (iMcK) for S implies:

= | Ity (G)] = |Irry (N (P))].
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We assume:

e K <G, where K = S for some non-abelian simple group S
o G =S5 xAut(S)
Then (iMcK) for S implies:

@ for P € Syl,(K) there exists some Aut(K)p-equivariant bijection
Q:lrrp (K) = Irrp (Nk (P)),

such that for every 6 € Irrp (K) we have

(Xo, K, 0) ~k (No(P)aga), Nk (P), (6)).

Hence |Irry (G|O)] = | Irrp (NG (P)[€2(0))]
= |lrrp (G)| = [Irrp (NG (P)).
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e K <G, where K = S for some non-abelian simple group S
o G =S5 xAut(S)
Then (iMcK) for S implies:
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Q:lrrp (K) = Irrp (Nk (P)),
@ such that for every 6 € Irr, (K) we have
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Step 2: Specific case K =S"and G = S" x Aut(S)"

We assume:
o K <G with K= S" for some simple group S
e G=5"xAut(S)

The equivalence relation ~ is compatible with direct products.

= |lrrp (G)| = [Irrpy (NG (P)).
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Step 3: Specific case K =S5"and G = 5" x Aut(S")

We assume:
o K <G with K= S" for some simple group S
0 G=5"xAut(S") =S5" x (Aut(S) ! Sym,)

The equivalence relation ~ is compatible with wreath products.

= |lrrp (G)| = [Irrpy (NG (P)).
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Recall: G is a minimal counterexample, i.e. 3 K <1 G: K/Z(K) = S x --- x5 for
some simple group S and K Ng(P) = G for P € Syl,(G).

Since K = S" and the automorphisms of G induced on K are contained in
5" x Aut(S"), we compare it with the situation in Step 3:

The equivalence relation ~ only depends on automorphisms induced on K.

= |Irry (G)| = | Irrp (NG (P))|.
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Since K =2 5" and the automorphisms of G induced on K are contained in
5" x Aut(S"), we compare it with the situation in Step 3:

The equivalence relation ~k only depends on automorphisms induced on K. J

@ for P € Syl,(K) there exists some N (P)-equivariant bijection
Q:lrrp (K) = Irrp (Nk(P)),
@ such that for every 6 € Irr, (K) we have
(Go, K, 0) ~k (N6(P)ag), Nk (P),(0)).
Hence | Irrpy (G|0)| = | Irrp (NG (P)|S2(6))]
Irrp (G)| = [lrrpr (NG (P))].

Reduction Theorems — revisited 21 /22



Recall: G is a minimal counterexample, i.e. 3 K <1 G: K/Z(K) = S x --- x5 for
some simple group S and K Ng(P) = G for P € Syl,(G).

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since K =2 5" and the automorphisms of G induced on K are contained in
5" x Aut(S"), we compare it with the situation in Step 3:

The equivalence relation ~k only depends on automorphisms induced on K. J

@ for P € Syl,(K) there exists some N (P)-equivariant bijection
Q:lrrp (K) = Irrp (Nk(P)),
@ such that for every 6 € Irr, (K) we have
(Go, K, 0) ~k (N6(P)ag), Nk (P),(0)).
Hence | Irrpy (G|0)| = | Irrp (NG (P)|S2(6))]
— 11 ()] = |11, (NG (P))].
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