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Blocks

G finite group, p a prime, O ≥ Zp

When decomposing OG into minimal two-sided ideals Bi

OG = B1 ⊕ · · · ⊕ Bs ,

B1, . . . ,Bs are called the p-blocks of G .
We write Bl(G ) = {B1, . . . ,Bs}.

This gives decompositions

Irr(G ) =
.⋃

B∈Bl(G)

Irr(B) and IBr(G ) =
.⋃

B∈Bl(G)

IBr(B),

where IBr(G ) is the set of isomorphism classes of simple FpG -modules.
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Brauer Correspondents and Block Induction

One associates to B ∈ Bl(G ):

defect group D ≤ G , a p-subgroup

Brauer correspondent B ′ ∈ Bl(NG (D))

For every B ∈ Bl(G ) with the defect group D:

χ(1)p|D| ≥ |G |p for all χ ∈ Irr(B).

Block Induction

For a p-subgroup Q ≤ G and C ∈ Bl(NG (Q)), one denotes by CG a certain block
of G . Then CG is the (Brauer) induced block.
If B ′ is the Brauer correspondent of B, then (B ′)G = B.
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Alperin’s weight Conjecture - general

B p-block of G , D defect group of B

A weight of B ∈ Bl(G ) is a pair (Q, ψ), such that

Q ≤ G is a p-group,

ψ ∈ Irr(NG (Q)/Q) satisfies ψ(1)p = |NG (Q)/Q|p and

ψ belongs to a block C ∈ Bl(NG (Q)) with CG = B.

Alperin’s weight Conjecture (1986)

| IBr(B)| is the number of G -conjugacy classes of weights of B.

If D is abelian, Alperin’s weight conjecture for B states

| IBr(B)| = | IBr(B ′)|,

where B ′ is the Brauer correspondent of B.
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Reformulation of Alperin’s weight conjecture

C(G ) := strictly ascending chains of p-subgroups of G starting in {1}
D : {1} � D2 � . . . � Dr

|D| length of D, here r

Theorem (Knörr-Robinson, 1989)

The following are equivalent:

Alperin’s weight conjecture holds

for every group G and every B ∈ Bl(G ) with non-trivial defect group∑
D∈C(G)/∼G

(−1)|D|
∑

C∈Bl(NG (D)) with CG =B

| Irr(C )| = 0.

The set C(G ) can be replaced by

the set of chains of radical p-groups
the set of chains of elementary abelian p-subgroups
the set of normal p-chains
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Numbers of characters with given p-part

Let

Irrd(C ) := {χ ∈ Irr(C ) | χ(1)pp
d = |G |p} for C ∈ Bl(G )

Op(G ) maximal normal p-subgroup of G

Dade’s Conjecture (1990)

Let G be a finite group with Op(G ) = 1, B ∈ Bl(G )
and d > 0. Then:∑
D∈C(G)/∼G

(−1)|D|
∑

C∈Bl(NG (D)) with CG =B

| Irrd(C )| = 0.
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Results on Dade’s Conjecture

Theorem
Dade’s Conjecture holds for

all sporadic groups (for p 6= 2 ) (An, Conder, Dade, Entz, Hassan, Himstedt,
Huang, Kotlica, Murray, O’Brien, Pahlings, Rouquier, Sawabe, Wilson
1990-2010)

Symn (An, Olsson, Uno 1995, 1998)

some groups of Lie type (An, Bird, Dade, Himstedt, Huang, Ku, Olsson,
Sukizaki, Uno, Yamada 1996 - 2007)

p-solvable groups (Robinson 2000)

G o Symn if G satisfies Dade’s conjecture (Eaton-Hoefling 2002)

blocks with cyclic defect group (Dade 1996)

unipotent blocks of finite reductive groups ( Broué-Malle-Michel
Broué-Fong-Srinivasan 1993-2006)
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Results

Theorem (Dade 1994)

If Dade’s conjecture holds (for all groups), Alperin’s weight conjecture and
Alperin-McKay conjecture hold (for all groups).

Now we have a reduction theorem.

Theorem (S. 2014)

If all blocks of non-abelian quasi-simple groups satisfy the inductive Dade
condition (iDade), Dade’s conjecture holds.

Simultaneously this gives a new approach for verifying the Alperin-McKay
conjecture and Alperin’s weight conjecture.
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Towards the inductive Dade condition – two sets

G a finite group with Op(G ) = 1
B block of G with non-trivial defect group, d ≥ 0

Reformulation of Dade’s Conjecture

Dade’s conjecture for B is equivalent to |S+(B)| = |S−(B)|, where

Sε(B) =

{
(D, θ)

∣∣∣∣D ∈ C(G ) with (−1)|D| = ε
and θ ∈ Irrd(C ) for C ∈ Bl(NG (D)) with CG = B

}
for ε ∈ {±1} and Sε(B) denotes the set of G -orbits in Sε(B).
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Towards the inductive Dade condition – character triples

(X ,G , θ) is a character triple ⇐⇒ G C X , θ ∈ Irr(G ) and θ is X -invariant

Definition (Equivalence relation on character triples)

Let G C X and (D, θ), (D′, θ′) ∈ S+(B) ∪S−(B). Then we write

(NX (D, θ),NG (D), θ) ≈G (NX (D′, θ′),NG (D′), θ′),

if

1 G NX (D, θ) = G NX (D′, θ′)
2 in general: there exist projective representations of NX (D, θ) and NX (D′, θ′)

associated with θ and θ′ having analogous properties,

in particular: if there exists an extension θ̃ ∈ Irr(NX (D, θ)) of θ, then there

exists an extension θ̃′ ∈ Irr(NX (D′, θ′)) of θ′ such that

θ̃CX (G) and θ̃′CX (G) are multiples of the same irreducible character,

bl(θ̃NJ (D,θ))
J = bl(θ̃′NJ (D′,θ′))

J for every G ≤ J ≤ G NX (D, θ).

Reduction Theorems – revisited 11 / 22



Towards the inductive Dade condition – character triples

(X ,G , θ) is a character triple ⇐⇒ G C X , θ ∈ Irr(G ) and θ is X -invariant

Definition (Equivalence relation on character triples)

Let G C X and (D, θ), (D′, θ′) ∈ S+(B) ∪S−(B). Then we write

(NX (D, θ),NG (D), θ) ≈G (NX (D′, θ′),NG (D′), θ′),

if

1 G NX (D, θ) = G NX (D′, θ′)
2 in general: there exist projective representations of NX (D, θ) and NX (D′, θ′)

associated with θ and θ′ having analogous properties,

in particular: if there exists an extension θ̃ ∈ Irr(NX (D, θ)) of θ, then there

exists an extension θ̃′ ∈ Irr(NX (D′, θ′)) of θ′ such that

θ̃CX (G) and θ̃′CX (G) are multiples of the same irreducible character,

bl(θ̃NJ (D,θ))
J = bl(θ̃′NJ (D′,θ′))

J for every G ≤ J ≤ G NX (D, θ).

Reduction Theorems – revisited 11 / 22



Towards the inductive Dade condition – character triples

(X ,G , θ) is a character triple ⇐⇒ G C X , θ ∈ Irr(G ) and θ is X -invariant

Definition (Equivalence relation on character triples)

Let G C X and (D, θ), (D′, θ′) ∈ S+(B) ∪S−(B). Then we write

(NX (D, θ),NG (D), θ) ≈G (NX (D′, θ′),NG (D′), θ′),

if

1 G NX (D, θ) = G NX (D′, θ′)
2 in general: there exist projective representations of NX (D, θ) and NX (D′, θ′)

associated with θ and θ′ having analogous properties,

in particular: if there exists an extension θ̃ ∈ Irr(NX (D, θ)) of θ, then there

exists an extension θ̃′ ∈ Irr(NX (D′, θ′)) of θ′ such that

θ̃CX (G) and θ̃′CX (G) are multiples of the same irreducible character,

bl(θ̃NJ (D,θ))
J = bl(θ̃′NJ (D′,θ′))

J for every G ≤ J ≤ G NX (D, θ).

Reduction Theorems – revisited 11 / 22



Towards the inductive Dade condition – character triples

(X ,G , θ) is a character triple ⇐⇒ G C X , θ ∈ Irr(G ) and θ is X -invariant

Definition (Equivalence relation on character triples)

Let G C X and (D, θ), (D′, θ′) ∈ S+(B) ∪S−(B). Then we write

(NX (D, θ),NG (D), θ) ≈G (NX (D′, θ′),NG (D′), θ′),

if

1 G NX (D, θ) = G NX (D′, θ′)
2 in general: there exist projective representations of NX (D, θ) and NX (D′, θ′)

associated with θ and θ′ having analogous properties,

in particular: if there exists an extension θ̃ ∈ Irr(NX (D, θ)) of θ, then there

exists an extension θ̃′ ∈ Irr(NX (D′, θ′)) of θ′ such that

θ̃CX (G) and θ̃′CX (G) are multiples of the same irreducible character,

bl(θ̃NJ (D,θ))
J = bl(θ̃′NJ (D′,θ′))

J for every G ≤ J ≤ G NX (D, θ).

Reduction Theorems – revisited 11 / 22



Towards the inductive Dade condition – character triples

(X ,G , θ) is a character triple ⇐⇒ G C X , θ ∈ Irr(G ) and θ is X -invariant

Definition (Equivalence relation on character triples)

Let G C X and (D, θ), (D′, θ′) ∈ S+(B) ∪S−(B). Then we write

(NX (D, θ),NG (D), θ) ≈G (NX (D′, θ′),NG (D′), θ′),

if

1 G NX (D, θ) = G NX (D′, θ′)
2 in general: there exist projective representations of NX (D, θ) and NX (D′, θ′)

associated with θ and θ′ having analogous properties,

in particular: if there exists an extension θ̃ ∈ Irr(NX (D, θ)) of θ, then there

exists an extension θ̃′ ∈ Irr(NX (D′, θ′)) of θ′ such that

θ̃CX (G) and θ̃′CX (G) are multiples of the same irreducible character,

bl(θ̃NJ (D,θ))
J = bl(θ̃′NJ (D′,θ′))

J for every G ≤ J ≤ G NX (D, θ).

Reduction Theorems – revisited 11 / 22



Towards the inductive Dade condition – character triples

(X ,G , θ) is a character triple ⇐⇒ G C X , θ ∈ Irr(G ) and θ is X -invariant

Definition (Equivalence relation on character triples)

Let G C X and (D, θ), (D′, θ′) ∈ S+(B) ∪S−(B). Then we write

(NX (D, θ),NG (D), θ) ≈G (NX (D′, θ′),NG (D′), θ′),

if

1 G NX (D, θ) = G NX (D′, θ′)
2 in general: there exist projective representations of NX (D, θ) and NX (D′, θ′)

associated with θ and θ′ having analogous properties,

in particular: if there exists an extension θ̃ ∈ Irr(NX (D, θ)) of θ, then there

exists an extension θ̃′ ∈ Irr(NX (D′, θ′)) of θ′ such that

θ̃CX (G) and θ̃′CX (G) are multiples of the same irreducible character,

bl(θ̃NJ (D,θ))
J = bl(θ̃′NJ (D′,θ′))

J for every G ≤ J ≤ G NX (D, θ).

Reduction Theorems – revisited 11 / 22



The inductive Dade condition

S a non-abelian simple group

The inductive Dade condition (iDade) for S

Let Ŝ be a group with Ŝ/Z(Ŝ) ∼= S and Ŝ = [Ŝ , Ŝ ], B a block of Ŝ with
non-normal defect group and let d ≥ 0.Then there exists some
Aut(Ŝ)B -equivariant bijection

Ω : S+(B)→ S−(B),

such that for X := Ŝ o Aut(Ŝ)B and every (D, θ) ∈ S+(B) and
(D′, θ′) ∈ Ω((D, θ)) we have

(NX (D, θ),NŜ(D), θ) ≈Ŝ (NX (D′, θ′),NŜ(D′), θ′).
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Aut(Ŝ)B -equivariant bijection

Ω : S+(B)→ S−(B),
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Proving the reduction theorem of Dade’s Conjecture

Induction on |G : Z(G )|
Description of a minimal counter-example (Eaton-Robinson 2002)

Interpreting a minimal counter-example in terms of groups related to simple
groups (Robinson 2002)

Study of the equivalence relation on character triples

1 Results about the equivalence relation on the character triples apply in a
more general context.

2 New insights into the proof of the reduction theorems of the McKay,
Alperin-McKay and Alperin’s weight conjectures (Isaacs-Malle-Navarro 2007
and Navarro-Tiep 2010).

HERE: How to prove the reduction theorem of the McKay conjecture
(Isaacs-Malle-Navarro 2007).
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McKay Conjecture

Let Irrp′(G ) := {χ ∈ Irr(G ) | p - χ(1)}.

McKay Conjecture (1972)

Let P ∈ Sylp(G ). Then:

| Irrp′(G )| = | Irrp′(NG (P))|.

Known for:

all p-solvable groups (Okuyama-Wajima 1979)

all quasi-simple groups (Michler-Olsson, Green-Lehrer-Lusztig, Malle-S.,
Wilson 1976 - 2010)
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McKay Conjecture - a relative version

Let ν ∈ Irr(Z(G )) and Irrp′(G |ν) := {χ ∈ Irrp′(G ) |
χ is a constituent of νG}.

Relative McKay Conjecture

Let P ∈ Sylp(G ). Then:

| Irrp′(G |ν)| = | Irrp′(NG (P)|ν)|.

Proposition

Let G be a finite group. Assume that the relative McKay conjecture holds for all
groups H with |H : Z(H)| < |G : Z(G )|.
Then one of the following holds

1 the McKay conjecture holds for G, or

2 G = K NG (P) for some group K C G, where K/Z(K ) ∼= S × · · · × S for
some non-abelian simple group S.
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(iMcK) – the inductive McKay condition I

Definition (Equivalence relation on character triples)

Let G C X , θ ∈ Irr(G ) and θ′ ∈ Irr(NG (P)). Then we write

(Xθ,G , θ) ∼G (NX (P)θ′ ,NG (P), θ′),

if

1 Xθ = G NX (P)θ′

2 in general: there exist projective representations P and P ′ of Xθ and
NX (P)θ′ associated with θ and θ′ having similar properties
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(iMcK) – the inductive McKay condition II

S a non-abelian simple group

The inductive McKay condition for S

Let Ŝ be a group with Ŝ/Z(Ŝ) ∼= S and Ŝ = [Ŝ , Ŝ ]. For every P ∈ Sylp(Ŝ) there

exists some Aut(Ŝ)P -equivariant bijection

Ω : Irrp′(Ŝ)→ Irrp′(NŜ(P)),

such that for X := Ŝ o Aut(Ŝ)P and every θ ∈ Irrp′(Ŝ) we have

(Xθ, Ŝ , θ) ∼Ŝ (NX (P)Ω(θ),NŜ(P),Ω(θ)).
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Reduction Theorems – revisited 17 / 22



Step 1: Specific case K = S and G = S o Aut(S)

We assume:

K C G , where K ∼= S for some non-abelian simple group S

G = S o Aut(S)

Then (iMcK) for S implies:

1 for P ∈ Sylp(K ) there exists some Aut(K )P -equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Xθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Hence | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 18 / 22



Step 1: Specific case K = S and G = S o Aut(S)

We assume:

K C G , where K ∼= S for some non-abelian simple group S

G = S o Aut(S)

Then (iMcK) for S implies:

1 for P ∈ Sylp(K ) there exists some Aut(K )P -equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Xθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Hence | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 18 / 22



Step 1: Specific case K = S and G = S o Aut(S)

We assume:

K C G , where K ∼= S for some non-abelian simple group S

G = S o Aut(S)

Then (iMcK) for S implies:

1 for P ∈ Sylp(K ) there exists some Aut(K )P -equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Xθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Hence | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 18 / 22



Step 1: Specific case K = S and G = S o Aut(S)

We assume:

K C G , where K ∼= S for some non-abelian simple group S

G = S o Aut(S)

Then (iMcK) for S implies:

1 for P ∈ Sylp(K ) there exists some Aut(K )P -equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Xθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Hence | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 18 / 22



Step 1: Specific case K = S and G = S o Aut(S)

We assume:

K C G , where K ∼= S for some non-abelian simple group S

G = S o Aut(S)

Then (iMcK) for S implies:

1 for P ∈ Sylp(K ) there exists some Aut(K )P -equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Xθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Hence | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 18 / 22



Step 2: Specific case K = S r and G = S r o Aut(S)r

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S)r

The equivalence relation ∼K is compatible with direct products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 19 / 22



Step 2: Specific case K = S r and G = S r o Aut(S)r

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S)r

The equivalence relation ∼K is compatible with direct products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 19 / 22



Step 2: Specific case K = S r and G = S r o Aut(S)r

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S)r

The equivalence relation ∼K is compatible with direct products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 19 / 22



Step 2: Specific case K = S r and G = S r o Aut(S)r

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S)r

The equivalence relation ∼K is compatible with direct products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 19 / 22



Step 2: Specific case K = S r and G = S r o Aut(S)r

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S)r

The equivalence relation ∼K is compatible with direct products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 19 / 22



Step 2: Specific case K = S r and G = S r o Aut(S)r

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S)r

The equivalence relation ∼K is compatible with direct products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 19 / 22



Step 3: Specific case K = S r and G = S r o Aut(S r)

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S r ) = S r o (Aut(S) o Symr )

The equivalence relation ∼K is compatible with wreath products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 20 / 22



Step 3: Specific case K = S r and G = S r o Aut(S r)

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S r ) = S r o (Aut(S) o Symr )

The equivalence relation ∼K is compatible with wreath products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 20 / 22



Step 3: Specific case K = S r and G = S r o Aut(S r)

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S r ) = S r o (Aut(S) o Symr )

The equivalence relation ∼K is compatible with wreath products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 20 / 22



Step 3: Specific case K = S r and G = S r o Aut(S r)

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S r ) = S r o (Aut(S) o Symr )

The equivalence relation ∼K is compatible with wreath products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 20 / 22



Step 3: Specific case K = S r and G = S r o Aut(S r)

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S r ) = S r o (Aut(S) o Symr )

The equivalence relation ∼K is compatible with wreath products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 20 / 22



Step 3: Specific case K = S r and G = S r o Aut(S r)

We assume:

K C G with K ∼= S r for some simple group S

G = S r o Aut(S r ) = S r o (Aut(S) o Symr )

The equivalence relation ∼K is compatible with wreath products.

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Again | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.

Reduction Theorems – revisited 20 / 22



Final Step

Recall: G is a minimal counterexample, i.e. ∃ K C G : K/Z(K ) ∼= S × · · · × S for

some simple group S and K NG (P̃) = G for P̃ ∈ Sylp(G ).

Assume that S is a non-abelian simple group with trivial Schur multiplier.

Since K ∼= S r and the automorphisms of G induced on K are contained in
S r o Aut(S r ), we compare it with the situation in Step 3:

The equivalence relation ∼K only depends on automorphisms induced on K .

1 for P ∈ Sylp(K ) there exists some NG (P)-equivariant bijection
Ω : Irrp′(K )→ Irrp′(NK (P)),

2 such that for every θ ∈ Irrp′(K ) we have

(Gθ,K , θ) ∼K (NG (P)Ω(θ),NK (P),Ω(θ)).

Hence | Irrp′(G |θ)| = | Irrp′(NG (P)|Ω(θ))|
=⇒ | Irrp′(G )| = | Irrp′(NG (P))|.
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This finishes our revisit of the reduction theorem of the McKay Conjecture and
hence this talk!
Thanks!
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