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Endomorphism algebras

Theorem [ATS]

If T is a tilting module for Uy = Uq(g) then Endy,(T) is a
cellular algebra.

As a byproduct:
e Method to construct (many) cellular bases

Method to classify simple modules

Method to prove semisimplicity conditions

Some tools to decompose tensor products

Works in principal over any field
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Toy Example: Schur-Weyl duality

Example
G = GL(V) over any field K. Then

Ende(V®9) = K[S,]

if d <dimV.

Then the group algebra of the symmetric group is cellular.
(take the special case of the theorem g =1, g = gl,, and the
tilting module T = V®9).

If g # 1 then we get Endy, (gl,)(V®?) = H,(Sq), the (finite)
Iwahori-Hecke algebra and its cellularity.
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Quantised tilting modules

Let g be a complex simple Lie algebra
v indeterminate

U,(g) quantum group over Q(v) with generators
E}7F37f(#

A=1Z[v,v7Y, Us = (K, E' F(n)> As Ei(n) = ﬁ
.l ==

v—v—1

Let K be a field, g € K, g # 0. Then
Ug = Ua®aK

—n

where A - K, v — g.

~»  Hopf algebra U, over K
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Tilting modules
C4 = {finite dimensional U,-modules (of type 1)}

e X = 7" weight lattice (for the root system of g)

e A=>" (N &)wj, T = {a1,...,a,} simple roots,

e X C X dominant weights, i.e. (\,&;) >0 for all /.
AEXT ~

Ag(A) = Lg(A) C V4(A) € €4

Definition
T € Cq4is tilting if T has a Ag- and a Vg-flag
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Some facts (Donkin, Ringel)
e

1. Extg, (Aq(A), Vg(A)) = 6i00r K

2. For all A € X* there exists a unique tilting module T,(\)
such that T4()) is indecomposable, T,(\), = 0, unless
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M has a A, filtr. = (M 1 Ag(\)) = dim Home, (M, V4()))
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Corollary

Assume we have homomorphisms f* and g as indicated.
Then

M—==>T4(A) Aq(N)

l/ N e

V(A T, - f-~N



Corollary

Assume we have homomorphisms f* and g as indicated.
Then

M- 2T T, AN
vq()‘) Tq(>‘) -=-=N

. A
Hence get the composition map ¢* =g* o f :

M To(N) Aq(N)

vql@?\\@éi




Bases of Homs

Assume still that M has a Ag-filtration and N has a
V gfiltration.
Let

o {f*} be a basis of Home, (M, V4(})) and
e {g.'} be a basis of Home (Ag()), N)

Proposition

Then {c?, =g} o f;} is a basis of Home (M, N).
j k k J q
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Cellular algebras (Graham and Lehrer 1996)

A a finite dimensional K-algebra

Definition

A cell datum for A consists of
e A a finite poset
(1) € A finite set
o C:U, /" x1* = Alinclusion (j, k) — ¢,
e 1 : A — A K-linear antiinvolution
such that
1. {c\} is a basis of A,
2. u(ch) = iy

3. ac) =Y. rij(a) ¢ mod A* for any a € A.
~——

indep. of k
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Many cellular bases of Ende,(T)

Now take M = N = T tilting and set A = Ende,(T)
e A=Ar={Xe Xt |(T : A,N)) #0},
o *={1,2,...,my}, where my = dimHome,(A4(\), T),
{g2} any basis of Home, (Aq()), T),
choose lifts g3 : T,(\) = T of g2,
set £ = D(g?) and ??‘ = D(g}), where D is duality

A A
set ¢f; =g;of;.

This is a cell datum for A = Ende (7).
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Representation theory of A

o C4(A) = Hom(A4(A), T) cell module

o Cy(A) = Ly(X) simple head of C())
A complete, not redundant, set of simple modules is given by
exactly those L(\) where

ANeN ={NeN|T,())is asummand of T}

The algebra A = Ende (T) is semisimple
if and only T is semisimple.

= (New) method to deduce (old and new)
semisimplicity criteria



Easy weight combinatorics and Jantzen sum formula gives:

Example
Let p > 2. Then the Hecke algebra 3(,(S4) is semisimple if
and only if

e g not a root of unity and p > d or

e g is a root of unity of order ¢ > d if £ is odd and of order
¢ > 2d if £ is even.
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Examples where our main theorem applies

e All quotients of K[S4] and H,(S4) appearing in
Schur-Weyl duality

e In particular the Temperley-Lieb algebra
|

Let 6 = g+ g!. Then the Temperley-Lieb algebra TL4(4) is
semi-simple iff [[] A0 forall i =1,...,d
iff g is not a root of unity with d < ¢ = ord(q?).

e More general endomorphism rings for tensor products of
Uqy(slp) studied by Andersen and Lehrer.

e Spider algebras in the sense of Kuperberg
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e Wreath productsiLet K=C and n=ky + ... + k,.
Consider g := gl, @ gl,, ©---®gl,, Cgl, =gl(V). Then

End,(V®9) = C[Z/rZ S4]

for n > 0 and certain quotients in general.
(overview Mazorchuk-S. G(/, k, d)-modules via groupoids)

Quantised: Ariki-Koike algebras (Ariki, Sakamoto-Shoji)

e Includes Hecke algebras of type B, and blob algebras, and
Quantised Rook monoids, and Solomon algebras, and
Mirabolic Hecke algebras, ...
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Methods apply to tilting modules in category O

If T is a tilting module in O and E a finite dimensional
module then Endo(T ® E) is a cellular algebra.

This includes

e cyclotomic degenerate affine Hecke algebras
(Brundan-Kleshchev, Brundan-S.),

e cyclotomic affine BMW-algebras, (Benkart-Ram-Leduc)
e cyclotomic affine VW-algebras (Ehrig-S.)

e cyclotomic affine Hecke algebras at roots of unity
(Vasserot-Varagnolo-Shan)
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Graded cellular algebras

All the algebras from the last theorem are graded
(KLR-algebras, Koszul grading on category O).

Conjecture

1. If T is a tilting module for Uy = Uq(g) then Endy,(T)
can be equipped with a graded cellular algebra structure.

2. In case K = C the graded decomposition numbers are
given by affine Kazhdan-Lusztig polynomials (refining
Kazdhan-Lusztig, Soergel, LTT).

e true in type A
e very explicit for Temperley-Lieb algebra
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but: where are the stars in positive characteristics
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