Quantised tilting modules and cellular algebras

(jt. H. H. Andersen and D. Tubbenhauer)

Catharina Stroppel

Hausdorff Center University of Bonn

Interesting tensor categories

- Interesting tensor categories
- Applications in topology: link invariants, 3-manifold invariants (Reshethikin-Turaev)

- Interesting tensor categories
- Applications in topology: link invariants, 3-manifold invariants (Reshethikin-Turaev)
- Nice combinatorics (Kazhdan-Lusztig polynomials)

- Interesting tensor categories
- Applications in topology: link invariants, 3-manifold invariants (Reshethikin-Turaev)
- Nice combinatorics (Kazhdan-Lusztig polynomials)
- Connections with the representation theory of the symmetric group and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon)

- Interesting tensor categories
- Applications in topology: link invariants, 3-manifold invariants (Reshethikin-Turaev)
- Nice combinatorics (Kazhdan-Lusztig polynomials)
- Connections with the representation theory of the symmetric group and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon)
- Connections with affine Kac-Moody algebras

- Interesting tensor categories
- Applications in topology: link invariants, 3-manifold invariants (Reshethikin-Turaev)
- Nice combinatorics (Kazhdan-Lusztig polynomials)
- Connections with the representation theory of the symmetric group and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon)
- Connections with affine Kac-Moody algebras
- Fusion (Andersen, Kazhdan-Lusztig)

- Interesting tensor categories
- Applications in topology: link invariants, 3-manifold invariants (Reshethikin-Turaev)
- Nice combinatorics (Kazhdan-Lusztig polynomials)
- Connections with the representation theory of the symmetric group and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon)
- Connections with affine Kac-Moody algebras
- Fusion (Andersen, Kazhdan-Lusztig)
- Quantum cohomology (Witten, Korff-S.)

- Interesting tensor categories
- Applications in topology: link invariants, 3-manifold invariants (Reshethikin-Turaev)
- Nice combinatorics (Kazhdan-Lusztig polynomials)
- Connections with the representation theory of the symmetric group and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon)
- Connections with affine Kac-Moody algebras
- Fusion (Andersen, Kazhdan-Lusztig)
- Quantum cohomology (Witten, Korff-S.)
- •

- Interesting tensor categories
- Applications in topology: link invariants, 3-manifold invariants (Reshethikin-Turaev)
- Nice combinatorics (Kazhdan-Lusztig polynomials)
- Connections with the representation theory of the symmetric group and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon)
- Connections with affine Kac-Moody algebras
- Fusion (Andersen, Kazhdan-Lusztig)
- Quantum cohomology (Witten, Korff-S.)
- •

Some hidden stars that should be studied...

Theorem [ATS]

If T is a tilting module for $U_q = U_q(\mathfrak{g})$ then $\operatorname{End}_{U_q}(T)$ is a cellular algebra.

Theorem [ATS]

If T is a tilting module for $U_q = U_q(\mathfrak{g})$ then $\operatorname{End}_{U_q}(T)$ is a cellular algebra.

As a byproduct:

Method to construct (many) cellular bases

Theorem [ATS]

If T is a tilting module for $U_q = U_q(\mathfrak{g})$ then $\operatorname{End}_{U_q}(T)$ is a cellular algebra.

- Method to construct (many) cellular bases
- Method to classify simple modules

Theorem [ATS]

If T is a tilting module for $U_q = U_q(\mathfrak{g})$ then $\operatorname{End}_{U_q}(T)$ is a cellular algebra.

- Method to construct (many) cellular bases
- Method to classify simple modules
- Method to prove semisimplicity conditions

Theorem [ATS]

If T is a tilting module for $U_q = U_q(\mathfrak{g})$ then $\operatorname{End}_{U_q}(T)$ is a cellular algebra.

- Method to construct (many) cellular bases
- Method to classify simple modules
- Method to prove semisimplicity conditions
- Some tools to decompose tensor products

Theorem [ATS]

If T is a tilting module for $U_q = U_q(\mathfrak{g})$ then $\operatorname{End}_{U_q}(T)$ is a cellular algebra.

- Method to construct (many) cellular bases
- Method to classify simple modules
- Method to prove semisimplicity conditions
- Some tools to decompose tensor products
- Works in principal over any field

Example

$$G = GL(V)$$
 over any field \mathbb{K} . Then

$$\operatorname{\mathsf{End}}_{G}(V^{\otimes d}) \cong \mathbb{K}[S_d]$$

if $d \leq \dim V$.

Example

G = GL(V) over any field \mathbb{K} . Then

$$\operatorname{\mathsf{End}}_{G}(V^{\otimes d}) \cong \mathbb{K}[S_d]$$

if $d < \dim V$.

Then the group algebra of the symmetric group is cellular. (take the special case of the theorem q=1, $\mathfrak{g}=\mathfrak{gl}_n$ and the tilting module $T=V^{\otimes d}$).

Example

G = GL(V) over any field \mathbb{K} . Then

$$\operatorname{\mathsf{End}}_{G}(V^{\otimes d}) \cong \mathbb{K}[S_d]$$

if $d < \dim V$.

Then the group algebra of the symmetric group is cellular. (take the special case of the theorem q=1, $\mathfrak{g}=\mathfrak{gl}_n$ and the tilting module $T=V^{\otimes d}$).

If $q \neq 1$ then we get $\operatorname{End}_{U_q}(\mathfrak{gl}_n)(V^{\otimes d}) \cong \mathcal{H}_q(S_d)$, the (finite) Iwahori-Hecke algebra and its cellularity.

• Let g be a complex simple Lie algebra

- Let g be a complex simple Lie algebra
- v indeterminate

- Let g be a complex simple Lie algebra
- v indeterminate
- $U_{\nu}(\mathfrak{g})$ quantum group over $\mathbb{Q}(\nu)$ with generators

$$E_i, F_i, K_i^{\pm}$$

- Let g be a complex simple Lie algebra
- v indeterminate
- $U_{\nu}(\mathfrak{g})$ quantum group over $\mathbb{Q}(\nu)$ with generators

$$E_i, F_i, K_i^{\pm}$$

• $A = \mathbb{Z}[v, v^{-1}], \ U_A = \langle K_i^{\pm}, E_i^{(n)}, F_i^{(n)} \rangle_A, \ E_i^{(n)} = \frac{E^n}{[n]!},$

- Let g be a complex simple Lie algebra
- v indeterminate
- $U_{\nu}(\mathfrak{g})$ quantum group over $\mathbb{Q}(\nu)$ with generators

$$E_i, F_i, K_i^{\pm}$$

- $A = \mathbb{Z}[v, v^{-1}], \ U_A = \langle K_i^{\pm}, E_i^{(n)}, F_i^{(n)} \rangle_A, \ E_i^{(n)} = \frac{E^n}{[n]!},$
- $[n] = \frac{v^n v^{-n}}{v v^{-1}}$

- Let g be a complex simple Lie algebra
- v indeterminate
- $U_{\nu}(\mathfrak{g})$ quantum group over $\mathbb{Q}(\nu)$ with generators

$$E_i, F_i, K_i^{\pm}$$

•
$$A = \mathbb{Z}[v, v^{-1}], \ U_A = \langle K_i^{\pm}, E_i^{(n)}, F_i^{(n)} \rangle_A, \ E_i^{(n)} = \frac{E^n}{[n]!},$$

$$\bullet [n] = \frac{v^n - v^{-n}}{v - v^{-1}}$$

Let \mathbb{K} be a field, $q \in \mathbb{K}$, $q \neq 0$. Then

$$U_q := U_A \otimes_A \mathbb{K}$$

where $A \to \mathbb{K}$, $v \mapsto q$.

- Let g be a complex simple Lie algebra
- v indeterminate
- $U_{\nu}(\mathfrak{g})$ quantum group over $\mathbb{Q}(\nu)$ with generators

$$E_i, F_i, K_i^{\pm}$$

•
$$A = \mathbb{Z}[v, v^{-1}], \ U_A = \langle K_i^{\pm}, E_i^{(n)}, F_i^{(n)} \rangle_A, \ E_i^{(n)} = \frac{E^n}{[n]!},$$

•
$$[n] = \frac{v^n - v^{-n}}{v - v^{-1}}$$

Let \mathbb{K} be a field, $q \in \mathbb{K}$, $q \neq 0$. Then

$$U_q := U_A \otimes_A \mathbb{K}$$

where $A \to \mathbb{K}$, $v \mapsto q$.

 \rightsquigarrow Hopf algebra U_a over \mathbb{K}

 $\mathcal{C}_q = \{ ext{finite dimensional } U_q ext{-modules (of type 1)} \}$

 $\mathcal{C}_q = \{ \text{finite dimensional } U_q \text{-modules (of type 1)} \}$

• $X = \mathbb{Z}^n$ weight lattice (for the root system of \mathfrak{g})

 $\mathcal{C}_q = \{ ext{finite dimensional } \mathcal{U}_q ext{-modules (of type 1)} \}$

- $X = \mathbb{Z}^n$ weight lattice (for the root system of \mathfrak{g})
- $\lambda = \sum_{i=1}^{n} \langle \lambda, \check{\alpha}_i \rangle \omega_i$, $\pi = \{\alpha_1, \dots, \alpha_n\}$ simple roots,

$$\mathcal{C}_q = \{ \text{finite dimensional } U_q \text{-modules (of type 1)} \}$$

- $X = \mathbb{Z}^n$ weight lattice (for the root system of \mathfrak{g})
- $\lambda = \sum_{i=1}^{n} \langle \lambda, \check{\alpha}_i \rangle \omega_i$, $\pi = \{\alpha_1, \dots, \alpha_n\}$ simple roots,
- $X^+ \subset X$ dominant weights, i.e. $\langle \lambda, \check{\alpha}_i \rangle \geq 0$ for all i.

 $\mathcal{C}_q = \{ ext{finite dimensional } \mathcal{U}_q ext{-modules (of type 1)} \}$

- $X = \mathbb{Z}^n$ weight lattice (for the root system of \mathfrak{g})
- $\lambda = \sum_{i=1}^{n} \langle \lambda, \check{\alpha}_i \rangle \omega_i$, $\pi = \{\alpha_1, \dots, \alpha_n\}$ simple roots,
- $X^+ \subset X$ dominant weights, i.e. $\langle \lambda, \check{\alpha}_i \rangle \geq 0$ for all i.

$$\lambda \in X^+$$

$$\mathcal{C}_q = \{ \text{finite dimensional } \textit{U}_q \text{-modules (of type 1)} \}$$

- $X = \mathbb{Z}^n$ weight lattice (for the root system of \mathfrak{g})
- $\lambda = \sum_{i=1}^{n} \langle \lambda, \check{\alpha}_i \rangle \omega_i$, $\pi = \{\alpha_1, \dots, \alpha_n\}$ simple roots,
- $X^+ \subset X$ dominant weights, i.e. $\langle \lambda, \check{\alpha}_i \rangle \geq 0$ for all i.

$$\lambda \in X^+ \leadsto$$

$$\Delta_q(\lambda) \twoheadrightarrow L_q(\lambda) \subset \nabla_q(\lambda) \in \mathcal{C}_q.$$

$$\mathcal{C}_q = \{ \text{finite dimensional } \textit{U}_q \text{-modules (of type 1)} \}$$

- $X = \mathbb{Z}^n$ weight lattice (for the root system of \mathfrak{g})
- $\lambda = \sum_{i=1}^{n} \langle \lambda, \check{\alpha}_i \rangle \omega_i$, $\pi = \{\alpha_1, \dots, \alpha_n\}$ simple roots,
- $X^+ \subset X$ dominant weights, i.e. $\langle \lambda, \check{\alpha}_i \rangle \geq 0$ for all i.

$$\lambda \in X^+ \leadsto$$

$$\Delta_q(\lambda) \twoheadrightarrow L_q(\lambda) \subset \nabla_q(\lambda) \in \mathcal{C}_q$$
.

Definition

 $T \in \mathcal{C}_q$ is tilting if T has a Δ_q - and a ∇_q -flag

Some facts (Donkin, Ringel)

1.
$$\operatorname{Ext}^i_{\operatorname{\mathcal{C}}_q}(\Delta_q(\lambda), \nabla_q(\lambda)) = \delta_{i,0}\delta_{\lambda,\mu}\mathbb{K}$$

- 1. $\operatorname{Ext}_{\mathcal{C}_q}^i(\Delta_q(\lambda), \nabla_q(\lambda)) = \delta_{i,0}\delta_{\lambda,\mu}\mathbb{K}$
- 2. For all $\lambda \in X^+$ there exists a unique tilting module $T_q(\lambda)$ such that $T_q(\lambda)$ is indecomposable, $T_q(\lambda)_\mu = 0$, unless $\mu \leq \lambda$ and $T_q(\lambda)_\lambda = \mathbb{K}$.

- 1. $\operatorname{Ext}_{\mathcal{C}_q}^i(\Delta_q(\lambda), \nabla_q(\lambda)) = \delta_{i,0}\delta_{\lambda,\mu}\mathbb{K}$
- 2. For all $\lambda \in X^+$ there exists a unique tilting module $T_q(\lambda)$ such that $T_q(\lambda)$ is indecomposable, $T_q(\lambda)_\mu = 0$, unless $\mu \leq \lambda$ and $T_q(\lambda)_\lambda = \mathbb{K}$.
- 3. $T \text{ tilting} \Rightarrow T = \bigoplus_{\lambda \in X^+} T_q(\lambda)^{a_\lambda}$

- 1. $\operatorname{Ext}_{\mathcal{C}_q}^i(\Delta_q(\lambda), \nabla_q(\lambda)) = \delta_{i,0}\delta_{\lambda,\mu}\mathbb{K}$
- 2. For all $\lambda \in X^+$ there exists a unique tilting module $T_q(\lambda)$ such that $T_q(\lambda)$ is indecomposable, $T_q(\lambda)_\mu = 0$, unless $\mu \leq \lambda$ and $T_q(\lambda)_\lambda = \mathbb{K}$.
- 3. $T \text{ tilting} \Rightarrow T = \bigoplus_{\lambda \in X^+} T_q(\lambda)^{a_\lambda}$

- 1. $\operatorname{Ext}_{\mathcal{C}_q}^i(\Delta_q(\lambda), \nabla_q(\lambda)) = \delta_{i,0}\delta_{\lambda,\mu}\mathbb{K}$
- 2. For all $\lambda \in X^+$ there exists a unique tilting module $T_q(\lambda)$ such that $T_q(\lambda)$ is indecomposable, $T_q(\lambda)_\mu = 0$, unless $\mu \leq \lambda$ and $T_q(\lambda)_\lambda = \mathbb{K}$.
- 3. $T \text{ tilting} \Rightarrow T = \bigoplus_{\lambda \in X^+} T_q(\lambda)^{a_\lambda}$

$$M$$
 has a Δ_q filtr. \Rightarrow $(M:\Delta_q(\lambda))=\dim \operatorname{Hom}_{\mathcal{C}_q}(M,\nabla_q(\lambda))$

- 1. $\operatorname{Ext}_{\mathcal{C}_q}^i(\Delta_q(\lambda), \nabla_q(\lambda)) = \delta_{i,0}\delta_{\lambda,\mu}\mathbb{K}$
- 2. For all $\lambda \in X^+$ there exists a unique tilting module $T_q(\lambda)$ such that $T_q(\lambda)$ is indecomposable, $T_q(\lambda)_\mu = 0$, unless $\mu \leq \lambda$ and $T_q(\lambda)_\lambda = \mathbb{K}$.
- 3. $T \text{ tilting} \Rightarrow T = \bigoplus_{\lambda \in X^+} T_q(\lambda)^{a_\lambda}$

$$M$$
 has a Δ_q filtr. \Rightarrow $(M:\Delta_q(\lambda)) = \dim \mathsf{Hom}_{\mathbb{C}_q}(M,\nabla_q(\lambda))$
 N has a ∇_q filtr. \Rightarrow $(M:\nabla_q(\lambda)) = \dim \mathsf{Hom}_{\mathbb{C}_q}(\Delta_q(\lambda),N)$

- 1. $\operatorname{Ext}_{\mathcal{C}_q}^i(\Delta_q(\lambda), \nabla_q(\lambda)) = \delta_{i,0}\delta_{\lambda,\mu}\mathbb{K}$
- 2. For all $\lambda \in X^+$ there exists a unique tilting module $T_q(\lambda)$ such that $T_q(\lambda)$ is indecomposable, $T_q(\lambda)_\mu = 0$, unless $\mu \leq \lambda$ and $T_q(\lambda)_\lambda = \mathbb{K}$.
- 3. $T \text{ tilting} \Rightarrow T = \bigoplus_{\lambda \in X^+} T_q(\lambda)^{a_\lambda}$

$$M$$
 has a Δ_q filtr. \Rightarrow $(M:\Delta_q(\lambda)) = \dim \operatorname{Hom}_{\mathbb{C}_q}(M, \nabla_q(\lambda))$
 N has a ∇_q filtr. \Rightarrow $(M:\nabla_q(\lambda)) = \dim \operatorname{Hom}_{\mathbb{C}_q}(\Delta_q(\lambda), N)$

Assume M has a Δ_q -filtration and N has a ∇_q -filtration then

Corollary

$$\dim \mathsf{Hom}_{\mathfrak{C}_q}(M,N) = \sum_{\lambda} (M : \Delta_q(\lambda))(N : \nabla_q(\lambda))$$

Some facts

- 1. $\operatorname{Ext}_{\mathcal{C}_q}^i(\Delta_q(\lambda), \nabla_q(\lambda)) = \delta_{i,0}\delta_{\lambda,\mu}\mathbb{K}$
- 2. For all $\lambda \in X^+$ there exists a unique tilting module $T_q(\lambda)$ such that $T_q(\lambda)$ is indecomposable $T_q(\lambda)_\mu = 0$, unless $\mu \leq \lambda$ and $T_q(\lambda)_\lambda = \mathbb{K}$.
- 3. $T \text{ tilting} \Rightarrow T = \bigoplus_{\lambda \in X^+} T_q(\lambda)^{a_\lambda}$.

Some facts

- 1. $\operatorname{Ext}_{\mathcal{C}_q}^i(\Delta_q(\lambda), \nabla_q(\lambda)) = \delta_{i,0}\delta_{\lambda,\mu}\mathbb{K}$
- 2. For all $\lambda \in X^+$ there exists a unique tilting module $T_q(\lambda)$ such that $T_q(\lambda)$ is indecomposable $T_q(\lambda)_\mu = 0$, unless $\mu \leq \lambda$ and $T_q(\lambda)_\lambda = \mathbb{K}$.
- 3. T tilting $\Rightarrow T = \bigoplus_{\lambda \in X^+} T_q(\lambda)^{a_\lambda}$.

Corollary

$$\begin{array}{c|c} \Delta_{q}(\lambda) & \xrightarrow{\iota^{\lambda}} & T_{q}(\lambda) \\ & \downarrow^{\alpha} & \downarrow^{\pi^{\lambda}} \\ L_{q}(\lambda) & \xrightarrow{\operatorname{can}} & \nabla_{q}(\lambda) \end{array}$$

Corollary

Assume we have homomorphisms f^{λ} and g^{λ} as indicated. Then

Corollary

Assume we have homomorphisms f^{λ} and g^{λ} as indicated. Then

Hence get the composition map $c^{\lambda} = \overline{g}^{\lambda} \circ \overline{f}^{\lambda}$:

Bases of Homs

Assume still that M has a Δ_q -filtration and N has a ∇_q -filtration.

Let

- $\{f_j^{\lambda}\}$ be a basis of $\mathsf{Hom}_{\mathbb{C}_q}(M, \nabla_q(\lambda))$ and
- $\{g_k^{\lambda}\}$ be a basis of $\mathsf{Hom}_{\mathbb{C}_q}(\Delta_q(\lambda), N)$

Proposition

Then $\{c_{j,k}^{\lambda} = \overline{g}_{k}^{\lambda} \circ \overline{f}_{j}\}$ is a basis of $\operatorname{Hom}_{\mathcal{C}_{q}}(M, N)$.

A a finite dimensional \mathbb{K} -algebra

A a finite dimensional \mathbb{K} -algebra

Definition

A a finite dimensional \mathbb{K} -algebra

Definition

A cell datum for A consists of

• A a finite poset

A a finite dimensional \mathbb{K} -algebra

Definition

- A a finite poset
- $(I^{\lambda})_{\lambda} \in \Lambda$ finite set

A a finite dimensional \mathbb{K} -algebra

Definition

- A a finite poset
- $(I^{\lambda})_{\lambda} \in \Lambda$ finite set
- $C: \bigcup_{\lambda} I^{\lambda} \times I^{\lambda} \to A \text{ inclusion } (j,k) \mapsto c_{j,k}^{\lambda}$

A a finite dimensional \mathbb{K} -algebra

Definition

- A a finite poset
- $(I^{\lambda})_{\lambda} \in \Lambda$ finite set
- $C: \bigcup_{\lambda} I^{\lambda} \times I^{\lambda} \to A \text{ inclusion } (j,k) \mapsto c_{j,k}^{\lambda}$
- $\iota: A \to A$ \mathbb{K} -linear antiinvolution

A a finite dimensional \mathbb{K} -algebra

Definition

A cell datum for A consists of

- A a finite poset
- $(I^{\lambda})_{\lambda} \in \Lambda$ finite set
- $C: \bigcup_{\lambda} I^{\lambda} \times I^{\lambda} \to A \text{ inclusion } (j,k) \mapsto c_{j,k}^{\lambda}$
- $\iota: A \to A$ \mathbb{K} -linear antiinvolution

such that

1. $\{c_{i,k}^{\lambda}\}$ is a basis of A,

A a finite dimensional \mathbb{K} -algebra

Definition

A cell datum for A consists of

- A a finite poset
- $(I^{\lambda})_{\lambda} \in \Lambda$ finite set
- $C: \bigcup_{\lambda} I^{\lambda} \times I^{\lambda} \to A \text{ inclusion } (j,k) \mapsto c_{j,k}^{\lambda}$
- $\iota: A \to A$ K-linear antiinvolution

such that

- 1. $\{c_{i,k}^{\lambda}\}$ is a basis of A,
- 2. $\iota(c_{j,k}^{\lambda}) = c_{k,j}^{\lambda}$,

A a finite dimensional \mathbb{K} -algebra

Definition

A cell datum for A consists of

- Λ a finite poset
- $(I^{\lambda})_{\lambda} \in \Lambda$ finite set
- $C: \bigcup_{\lambda} I^{\lambda} \times I^{\lambda} \to A$ inclusion $(j, k) \mapsto c_{j,k}^{\lambda}$
- $\iota: A \to A$ \mathbb{K} -linear antiinvolution

such that

- 1. $\{c_{i,k}^{\lambda}\}$ is a basis of A,
- $2. \ \iota(c_{j,k}^{\lambda}) = c_{k,j}^{\lambda},$
- 3. $ac_{j,k}^{\lambda} = \sum_{i \text{ indep. of } k} r_{i,j}(a) c_{i,k}^{\lambda} \mod A^{\lambda} \text{ for any } a \in A.$

Many cellular bases of $End_{\mathcal{C}_q}(T)$

•
$$\Lambda = \Lambda_T = \{\lambda \in X^+ \mid (T : \Delta_q(\lambda)) \neq 0\},\$$

- $\Lambda = \Lambda_T = \{\lambda \in X^+ \mid (T : \Delta_q(\lambda)) \neq 0\},\$
- $I^{\lambda} = \{1, 2, \dots, m_{\lambda}\}$, where $m_{\lambda} = \dim \operatorname{Hom}_{\mathfrak{C}_{q}}(\Delta_{q}(\lambda), T)$,

- $\Lambda = \Lambda_T = \{\lambda \in X^+ \mid (T : \Delta_q(\lambda)) \neq 0\},\$
- $I^{\lambda}=\{1,2,\ldots,m_{\lambda}\}$, where $m_{\lambda}=\dim \operatorname{\mathsf{Hom}}_{\operatorname{\mathbb{C}}_q}(\Delta_q(\lambda),\, T)$,
- $\{g_k^{\lambda}\}$ any basis of $\operatorname{Hom}_{\mathcal{C}_q}(\Delta_q(\lambda), T)$,

- $\Lambda = \Lambda_T = \{\lambda \in X^+ \mid (T : \Delta_q(\lambda)) \neq 0\},\$
- $I^{\lambda}=\{1,2,\ldots,m_{\lambda}\}$, where $m_{\lambda}=\dim \operatorname{\mathsf{Hom}}_{\operatorname{\mathbb{C}}_q}(\Delta_q(\lambda),\, T)$,
- $\{g_k^{\lambda}\}$ any basis of $\operatorname{Hom}_{\mathbb{C}_q}(\Delta_q(\lambda), T)$,
- choose lifts $\overline{g}_k^{\lambda}: T_q(\lambda) \to T$ of g_k^{λ} ,

- $\Lambda = \Lambda_T = \{\lambda \in X^+ \mid (T : \Delta_q(\lambda)) \neq 0\},\$
- $I^{\lambda}=\{1,2,\ldots,m_{\lambda}\}$, where $m_{\lambda}=\dim \operatorname{\mathsf{Hom}}_{\operatorname{\mathbb{C}}_q}(\Delta_q(\lambda),\, T)$,
- $\{g_k^{\lambda}\}$ any basis of $\mathsf{Hom}_{\mathbb{C}_q}(\Delta_q(\lambda), T)$,
- choose lifts $\overline{g}_k^\lambda:T_q(\lambda) o T$ of g_k^λ ,
- set $f_i^{\lambda} = D(g_i^{\lambda})$ and $\overline{f}_i^{\lambda} = D(\overline{g}_i^{\lambda})$, where D is duality

- $\Lambda = \Lambda_T = \{\lambda \in X^+ \mid (T : \Delta_q(\lambda)) \neq 0\},\$
- $I^{\lambda}=\{1,2,\ldots,m_{\lambda}\}$, where $m_{\lambda}=\dim \operatorname{\mathsf{Hom}}_{\operatorname{\mathfrak{C}}_q}(\Delta_q(\lambda),\, T)$,
- $\{g_k^{\lambda}\}$ any basis of $\mathsf{Hom}_{\mathbb{C}_q}(\Delta_q(\lambda), T)$,
- choose lifts $\overline{g}_k^\lambda: T_q(\lambda) o T$ of g_k^λ ,
- set $f_i^{\lambda} = D(g_i^{\lambda})$ and $\overline{f}_i^{\lambda} = D(\overline{g}_i^{\lambda})$, where D is duality
- set $c_{i,j}^{\lambda} = \overline{g}_i^{\lambda} \circ \overline{f}_j^{\lambda}$.

Now take M = N = T tilting and set $A = \operatorname{End}_{\mathcal{C}_q}(T)$

- $\Lambda = \Lambda_T = \{\lambda \in X^+ \mid (T : \Delta_q(\lambda)) \neq 0\},$
- $I^{\lambda}=\{1,2,\ldots,m_{\lambda}\}$, where $m_{\lambda}=\dim \operatorname{\mathsf{Hom}}_{\operatorname{\mathbb{C}}_q}(\Delta_q(\lambda),T)$,
- $\{g_k^{\lambda}\}$ any basis of $\mathsf{Hom}_{\mathbb{C}_q}(\Delta_q(\lambda), T)$,
- choose lifts $\overline{g}_k^{\lambda}: T_q(\lambda) \to T$ of g_k^{λ} ,
- set $f_i^{\lambda} = D(g_i^{\lambda})$ and $\overline{f}_i^{\lambda} = D(\overline{g}_i^{\lambda})$, where D is duality
- set $c_{i,j}^{\lambda} = \overline{g}_i^{\lambda} \circ \overline{f}_j^{\lambda}$.

This is a cell datum for $A = \operatorname{End}_{\mathcal{C}_a}(T)$.

• $C_q(\lambda) = \text{Hom}(\Delta_q(\lambda), T)$ cell module

- $C_a(\lambda) = \text{Hom}(\Delta_a(\lambda), T)$ cell module
- $C_q(\lambda) \twoheadrightarrow L_q(\lambda)$ simple head of $C(\lambda)$

A complete, not redundant, set of simple modules is given by exactly those $L(\lambda)$ where

$$\lambda \in \Lambda^0 = \{\lambda \in \Lambda \mid T_q(\lambda) \text{ is a summand of } T\}$$

- $C_q(\lambda) = \text{Hom}(\Delta_q(\lambda), T)$ cell module
- $C_q(\lambda) \rightarrow L_q(\lambda)$ simple head of $C(\lambda)$

A complete, not redundant, set of simple modules is given by exactly those $L(\lambda)$ where

$$\lambda \in \Lambda^0 = \{\lambda \in \Lambda \mid T_q(\lambda) \text{ is a summand of } T\}$$

The algebra $A = \operatorname{End}_{\mathcal{C}_q}(T)$ is semisimple if and only T is semisimple.

- $C_q(\lambda) = \text{Hom}(\Delta_q(\lambda), T)$ cell module
- $C_q(\lambda) \rightarrow L_q(\lambda)$ simple head of $C(\lambda)$

A complete, not redundant, set of simple modules is given by exactly those $L(\lambda)$ where

$$\lambda \in \Lambda^0 = \{\lambda \in \Lambda \mid T_q(\lambda) \text{ is a summand of } T\}$$

The algebra $A = \operatorname{End}_{\mathcal{C}_q}(T)$ is semisimple if and only T is semisimple.

⇒ (New) method to deduce (old and new) semisimplicity criteria

Easy weight combinatorics and Jantzen sum formula gives:

Example

Let p > 2. Then the Hecke algebra $\mathcal{H}_q(S_d)$ is semisimple if and only if

- q not a root of unity and p > d or
- q is a root of unity of order $\ell > d$ if ℓ is odd and of order $\ell > 2d$ if ℓ is even.

• All quotients of $\mathbb{K}[S_d]$ and $\mathcal{H}_q(S_d)$ appearing in Schur-Weyl duality

- All quotients of $\mathbb{K}[S_d]$ and $\mathcal{H}_q(S_d)$ appearing in Schur-Weyl duality
- In particular the Temperley-Lieb algebra

- All quotients of $\mathbb{K}[S_d]$ and $\mathcal{H}_q(S_d)$ appearing in Schur-Weyl duality
- In particular the Temperley-Lieb algebra

Let $\delta = q + q^{-1}$. Then the Temperley-Lieb algebra $\mathfrak{TL}_d(\delta)$ is semi-simple iff $[i] \neq 0$ for all i = 1, ..., d iff q is not a root of unity with $d < \ell = \operatorname{ord}(q^2)$.

- All quotients of $\mathbb{K}[S_d]$ and $\mathcal{H}_q(S_d)$ appearing in Schur-Weyl duality
- In particular the Temperley-Lieb algebra

Let
$$\delta = q + q^{-1}$$
. Then the Temperley-Lieb algebra $\mathfrak{TL}_d(\delta)$ is semi-simple iff $[i] \neq 0$ for all $i = 1, ..., d$ iff q is not a root of unity with $d < \ell = \operatorname{ord}(q^2)$.

• More general endomorphism rings for tensor products of $U_q(\mathfrak{sl}_2)$ studied by Andersen and Lehrer.

- All quotients of $\mathbb{K}[S_d]$ and $\mathcal{H}_q(S_d)$ appearing in Schur-Weyl duality
- In particular the Temperley-Lieb algebra

```
Let \delta = q + q^{-1}. Then the Temperley-Lieb algebra \mathfrak{TL}_d(\delta) is semi-simple iff [i] \neq 0 for all i = 1, ..., d iff q is not a root of unity with d < \ell = \operatorname{ord}(q^2).
```

- More general endomorphism rings for tensor products of $U_q(\mathfrak{sl}_2)$ studied by Andersen and Lehrer.
- Spider algebras in the sense of Kuperberg

• Wreath products:

• Wreath products:Let $\mathbb{K} = \mathbb{C}$ and $n = k_1 + \ldots + k_r$. Consider $\mathfrak{g} := \mathfrak{gl}_{k_1} \oplus \mathfrak{gl}_{k_2} \oplus \cdots \oplus \mathfrak{gl}_{k_r} \subseteq \mathfrak{gl}_n = \mathfrak{gl}(V)$. Then

$$\operatorname{End}_{\mathfrak{g}}(V^{\otimes d}) \cong \mathbb{C}[\mathbb{Z}/r\mathbb{Z} \wr S_d]$$

for $n \gg 0$ and certain quotients in general.

• Wreath products:Let $\mathbb{K} = \mathbb{C}$ and $n = k_1 + \ldots + k_r$. Consider $\mathfrak{g} := \mathfrak{gl}_{k_1} \oplus \mathfrak{gl}_{k_2} \oplus \cdots \oplus \mathfrak{gl}_{k_r} \subseteq \mathfrak{gl}_n = \mathfrak{gl}(V)$. Then

$$\mathsf{End}_{\mathfrak{g}}(V^{\otimes d}) \cong \mathbb{C}[\mathbb{Z}/r\mathbb{Z} \wr S_d]$$

for $n \gg 0$ and certain quotients in general. (overview Mazorchuk-S. G(I, k, d)-modules via groupoids)

• Wreath products: Let $\mathbb{K} = \mathbb{C}$ and $n = k_1 + \ldots + k_r$. Consider $\mathfrak{g} := \mathfrak{gl}_{k_1} \oplus \mathfrak{gl}_{k_2} \oplus \cdots \oplus \mathfrak{gl}_{k_r} \subseteq \mathfrak{gl}_n = \mathfrak{gl}(V)$. Then

$$\mathsf{End}_{\mathfrak{g}}(V^{\otimes d}) \cong \mathbb{C}[\mathbb{Z}/r\mathbb{Z} \wr S_d]$$

for $n \gg 0$ and certain quotients in general. (overview Mazorchuk-S. G(I, k, d)-modules via groupoids)

Quantised: Ariki-Koike algebras (Ariki, Sakamoto-Shoji)

• Wreath products: Let $\mathbb{K} = \mathbb{C}$ and $n = k_1 + \ldots + k_r$. Consider $\mathfrak{g} := \mathfrak{gl}_{k_1} \oplus \mathfrak{gl}_{k_2} \oplus \cdots \oplus \mathfrak{gl}_{k_r} \subseteq \mathfrak{gl}_n = \mathfrak{gl}(V)$. Then

$$\mathsf{End}_{\mathfrak{g}}(V^{\otimes d}) \cong \mathbb{C}[\mathbb{Z}/r\mathbb{Z} \wr S_d]$$

for $n \gg 0$ and certain quotients in general. (overview Mazorchuk-S. G(I, k, d)-modules via groupoids)

Quantised: Ariki-Koike algebras (Ariki, Sakamoto-Shoji)

 Includes Hecke algebras of type B, and blob algebras, and Quantised Rook monoids, and Solomon algebras, and Mirabolic Hecke algebras, . . .

Brauer algebras

- $\operatorname{End}_{\mathfrak{g}}(V^{\otimes d})$ for $\mathfrak{so}(V)$ or $\mathfrak{sp}(V)$ gives Brauer algebras.
- End_{gl(V)}($V^{\otimes r} \otimes V^{*\otimes s}$) gives walled Brauer algebras $B_{r,s}(n)$.

If $p \geq 2n-1$ then the endomorphism algebra is semisimple. $B_{r,s}(n)$ is not semisimple if $\frac{3n}{2} \leq p < 2n-1$

Brauer algebras

- $\operatorname{End}_{\mathfrak{g}}(V^{\otimes d})$ for $\mathfrak{so}(V)$ or $\mathfrak{sp}(V)$ gives Brauer algebras.
- End_{gl(V)}($V^{\otimes r} \otimes V^{*\otimes s}$) gives walled Brauer algebras $B_{r,s}(n)$.

If $p \geq 2n-1$ then the endomorphism algebra is semisimple. $B_{r,s}(n)$ is not semisimple if $\frac{3n}{2} \leq p < 2n-1$

Methods apply to tilting modules in category O

Theorem

If T is a tilting module in $\mathbb O$ and E a finite dimensional module then $\operatorname{End}_{\mathbb O}(T\otimes E)$ is a cellular algebra.

Methods apply to tilting modules in category O

Theorem

If T is a tilting module in $\mathbb O$ and E a finite dimensional module then $\operatorname{End}_{\mathbb O}(T\otimes E)$ is a cellular algebra.

This includes

- cyclotomic degenerate affine Hecke algebras (Brundan-Kleshchev, Brundan-S.),
- cyclotomic affine BMW-algebras, (Benkart-Ram-Leduc)
- cyclotomic affine VW-algebras (Ehrig-S.)
- cyclotomic affine Hecke algebras at roots of unity (Vasserot-Varagnolo-Shan)

Graded cellular algebras

All the algebras from the last theorem are graded (KLR-algebras, Koszul grading on category \mathfrak{O}).

Graded cellular algebras

All the algebras from the last theorem are graded (KLR-algebras, Koszul grading on category \mathfrak{O}).

Conjecture

- 1. If T is a tilting module for $U_q = U_q(\mathfrak{g})$ then $\operatorname{End}_{U_q}(T)$ can be equipped with a graded cellular algebra structure.
- 2. In case $\mathbb{K} = \mathbb{C}$ the graded decomposition numbers are given by affine Kazhdan-Lusztig polynomials (refining Kazdhan-Lusztig, Soergel, LTT).

Graded cellular algebras

All the algebras from the last theorem are graded (KLR-algebras, Koszul grading on category \mathfrak{O}).

Conjecture

- 1. If T is a tilting module for $U_q = U_q(\mathfrak{g})$ then $\operatorname{End}_{U_q}(T)$ can be equipped with a graded cellular algebra structure.
- 2. In case $\mathbb{K} = \mathbb{C}$ the graded decomposition numbers are given by affine Kazhdan-Lusztig polynomials (refining Kazdhan-Lusztig, Soergel, LTT).
 - true in type A
 - very explicit for Temperley-Lieb algebra

Follow the stars . . .

but: where are the stars in positive characteristics ???

