RESTRICTED RATIONAL CHEREDNIK ALGEBRAS

Ulrich Thiel
March 11, 2015
University of Stuttgart
http://www.mathematik.uni-stuttgart.de/~thiel

SINGULARITIES

CERTAIN SYMPLECTIC SINGULARITIES

$\left.\begin{array}{ll}V & \text { a finite-dimensional complex vector space } \\ G & \text { a finite subgroup of } G L(V) \text { generated by reflections }\end{array}\right\} \Gamma$

Classical fact

The quotient $V / G=\operatorname{Spec}\left(\mathbb{C}[V]^{G}\right)$ is smooth. \leftarrow boring
Consider instead G with the natural action on $V \oplus V^{*}$. Call this $\mathbb{D} \Gamma$.
This is a symplectic reflection group and

$$
\left(V \oplus V^{*}\right) / G=\operatorname{Spec}\left(\mathbb{C}\left[V \oplus V^{*}\right]^{G}\right)
$$

is a symplectic singularity (Beauville).

RESOLUTIONS AND DEFORMATIONS

Example (Type A_{1} Kleinian singularity)

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\} \subseteq S L_{2}(\mathbb{C})
$$

DEFORMING SINGULARITIES

Aim
Find deformations of $\left(V \oplus V^{*}\right) / G=\operatorname{Spec}\left(\mathbb{C}\left[V \oplus V^{*}\right]^{G}\right)$.
Idea
Instead of deforming $\mathbb{C}\left[V \oplus V^{*}\right]^{G}$ directly, we first deform

$$
\mathbb{C}[\mathbb{D} \Gamma]:=\mathbb{C}\left[V \oplus V^{*}\right] \rtimes G .
$$

Reasons

- $Z(\mathbb{C}[\mathbb{D} \Gamma])=\mathbb{C}\left[V \oplus V^{*}\right]^{G}$
- $\mathbb{C}[\mathbb{D} \Gamma]$ has an easy presentation: it is the quotient of

$$
\mathbb{C}\langle\mathbb{D} \Gamma\rangle:=\mathbb{C}\left\langle V \oplus V^{*}\right\rangle \rtimes G
$$

by $\left[y, y^{\prime}\right]=\left[x, x^{\prime}\right]=[y, x]=0$ for all $y, y^{\prime} \in V$ and $x, x^{\prime} \in V^{*}$.

RATIONAL CHEREDNIK ALGEBRAS

Etingof and Ginzburg defined in 2002 the rational Cherednik algebras.
Let $t \in \mathbb{C}$ and let $c: \operatorname{Ref}(\Gamma) / G \rightarrow \mathbb{C}$ be a map. Then $H_{t, c}$ is the quotient of $\mathbb{C}\langle\mathbb{D} \Gamma\rangle=\mathbb{C}\left\langle V \oplus V^{*}\right\rangle \rtimes G$ by the relations

$$
\begin{gathered}
{\left[x, x^{\prime}\right]=0=\left[y, y^{\prime}\right] \quad \forall x, x^{\prime} \in V^{*}, y, y^{\prime} \in V} \\
{[y, x]=t\langle y, x\rangle+\sum_{s \in \operatorname{Ref}(\Gamma)} c(s) \frac{\left\langle\alpha_{s}^{\vee}, x\right\rangle\left\langle y, \alpha_{s}\right\rangle}{\left\langle\alpha_{s}^{v}, \alpha_{s}\right\rangle} s}
\end{gathered}
$$

where $\alpha_{s} \in V^{*}$ with $\operatorname{Ker}\left(\alpha_{s}\right)=\operatorname{Ker}\left(\mathrm{id}_{V}-s\right)$ and $\left\langle\alpha_{s}^{\vee}\right\rangle \subseteq V$ is s-stable.
The $H_{t, c}$ are a flat family of filtered deformations of $\mathbb{C}\left[V \oplus V^{*}\right] \rtimes G$, i.e., $\operatorname{gr} H_{t, c} \cong \mathbb{C}\left[V \oplus V^{*}\right] \rtimes G$. In particular, $H_{t, c}=\mathbb{C} \mathbb{C}\left[V \oplus V^{*}\right] \otimes_{\mathbb{C}} \mathbb{C} G$.

t-DICHOTOMY

We have $H_{0,0}=\mathbb{C}\left[V \oplus V^{*}\right] \rtimes G$ and $H_{1,0}=\mathcal{D}(V) \rtimes G$.
This indicates already that $t=0$ and $t \neq 0$ will behave differently.
Theorem (Etingof-Ginzburg)

- The center $Z_{t, c}$ of $H_{t, c}$ is non-trivial if and only if $t=0$.
- $X_{c}:=\operatorname{Spec}\left(Z_{0, c}\right)$ is an irreducible variety. This is the Calogero-Moser space in c.
- $\left(X_{c}\right)_{c}$ is a flat family of filtered deformations of $\left(V \oplus V^{*}\right) / G$.

A lot of structure and theory for $t \neq 0$:

- Highest weight category $\mathcal{O}_{c} \subseteq H_{1, c}$-mod with $\operatorname{Irr}\left(\mathcal{O}_{c}\right) \cong \operatorname{Irr}(G)$. This is a highest weight cover of a cyclotomic Hecke algebra $\mathcal{H}_{q_{c}}$, i.e., there is a fully faithful functor

$$
\mathrm{KZ}: \mathcal{O}_{c}-\mathrm{proj} \rightarrow \mathcal{H}_{q_{c}}-\bmod
$$

(Ginzburg-Guay-Opdam-Rouquier).

- Parabolic restriction and induction functors for category \mathcal{O}_{c} (Bezrukavnikov-Etingof).
- Categorification of an $U_{q}\left(\widehat{\mathfrak{s}}_{e}\right)$ Fock space representation (Shan).

We do not have anything like this for $t=0$ (so far?)

RATIONAL CHEREDNIK ALGEBRAS

AT T=0

$$
\begin{aligned}
\mathrm{H}_{\mathrm{C}} & :=\mathrm{H}_{0, \mathrm{c}} \\
& \text { and } \\
\mathrm{Z}_{\mathrm{c}} & :=\mathrm{Z}_{0, \mathrm{c}}
\end{aligned}
$$

ALMOST COMMUTATIVITY

Theorem (Etingof-Ginzburg)

$$
\mathcal{Z}:=\mathbb{C}[V]^{G} \otimes_{\mathbb{C}} \mathbb{C}\left[V^{*}\right]^{G}=\mathbb{C}\left[V \oplus V^{*}\right]^{G \times G}
$$

is a central subalgebra of H_{c} and H_{c} is a finite \mathcal{Z}-module.
So, " H_{c} is almost commutative". This implies:

- $\operatorname{dim} L \leq$ PI-deg H_{c}. In fact, PI-deg $H_{c}=|G|$.
- Irr $\mathrm{H}_{c} \xrightarrow{\sim}$ Max H_{c} via $L \mapsto$ Ann $_{H_{c}} L$.
- The contractions

$$
\begin{aligned}
& \operatorname{Max}_{c} \rightarrow \operatorname{Max}_{c} \\
& \Upsilon_{c}:{\operatorname{Max} Z_{c}} \rightarrow \operatorname{Max} \mathcal{Z} \\
& \operatorname{Max} H_{c} \rightarrow \operatorname{Max} \mathcal{Z}
\end{aligned}
$$

are surjective.

REPRESENTATION THEORY AND GEOMETRY OF THE CENTER

Theorem (Etingof-Ginzburg, Brown)
The following are equivalent for $L \in \operatorname{Irr}\left(H_{c}\right)$ with $\mathfrak{m}:=A n n_{z_{c}} L$:

- \mathfrak{m} is a smooth point of X_{c}.
- $\operatorname{dim} L=|G|$.
- L is the only simple H_{c}-module lying over \mathfrak{m}.

Theorem (Etingof-Ginzburg, Gordon, Gordon-Martino, Martino, Bellamy; 2002-2009)

Classification of those G for which X_{c} is smooth for some c.
This gives a classification of those G for which $\left(V \oplus V^{*}\right) / G$ admits a symplectic resolution.

RESTRICTIONS AND BLOCKS

For $\mathfrak{m} \in \operatorname{Max} \mathcal{Z}$ or $\mathfrak{m} \in \operatorname{Max} Z_{c}$ let

$$
H_{c}^{\mathfrak{m}}:=H_{c} / \mathfrak{m} H_{c} .
$$

This is a finite-dimensional \mathbb{C}-algebra. Call this a restriction of H_{c}.
Its simple modules are those simple H_{c}-modules annihilated by \mathfrak{m}.
Theorem (Müller)
If $\mathfrak{m} \in \operatorname{Max} \mathcal{Z}$, then

$$
H_{c}^{\mathfrak{m}}=\bigoplus_{\mathfrak{b} \in \Upsilon_{c}^{-1}(\mathfrak{m})} H_{c}^{\mathfrak{b}}
$$

is the block decomposition of $\mathrm{H}_{c}^{\mathrm{m}}$.

PICTURE

GRADED RESTRICTIONS

H_{c} is naturally \mathbb{Z}-graded by putting
$\left.\begin{array}{llr}V & \text { in degree } & -1 \\ G & \text { in degree } & 0 \\ V^{*} & \text { in degree } & +1\end{array}\right\} H_{0, c} \underset{\mathbb{C}}{\mathbb{C}}\left[V^{*}\right] \otimes_{\mathbb{C}} \mathbb{C}[G] \otimes_{\mathbb{C}} \mathbb{C}[V]$

Both Z_{c} and \mathcal{Z} are graded subalgebras. The grading induces a \mathbb{C}^{*}-action on X_{c} and $\operatorname{Max} \mathcal{Z}$.

The only \mathbb{C}^{*}-fixed point of $\operatorname{Max} \mathcal{Z}=V / G \times V^{*} / G$ is the origin $\mathfrak{o}=(0,0)$. The restriction

$$
\bar{H}_{c}:=H_{c}^{o}=H_{c} / \mathfrak{o} H_{c} \underset{\mathbb{C}}{ } \mathbb{C}\left[V^{*}\right]_{G} \otimes_{\mathbb{C}} \mathbb{C} G \otimes_{\mathbb{C}} \mathbb{C}[V]_{G}
$$

is thus \mathbb{Z}-graded. This is the restricted rational Cherednik algebra.
Note: Blocks of $\bar{H}_{c}=\Upsilon_{c}^{-1}(\mathfrak{o})=X_{c}^{\mathbb{C}^{*}}$.
Theorem (Bellamy-Martino)
X_{c} is smooth if and only if $\Upsilon_{c}^{-1}(\mathfrak{o})$ consists of smooth points.

RESTRICTED RATIONAL CHEREDNIK ALGEBRAS

RIGID SIMPLE MODULES

Let $\rho: G \rightarrow G L_{n}(\mathbb{C})$ be a representation of G.
This lifts to a representation $\hat{\rho}: \mathbb{C}\left\langle V \oplus V^{*}\right\rangle \rtimes G \rightarrow \operatorname{Mat}_{n}(\mathbb{C})$ with

$$
\hat{\rho}(y)=0=\hat{\rho}(x) \text { for } y \in V, x \in V^{*} \text { and } \hat{\rho}(g)=\rho(g) \text { for } g \in G .
$$

When does $\hat{\rho}$ descend to a representation of H_{c} ? Precisely when

$$
0=\hat{\rho}([y, x])=\sum_{s \in \operatorname{Ref}(\Gamma)} c(s) \frac{\left\langle y, \alpha_{s}\right\rangle\left\langle\alpha_{s}^{\vee}, x\right\rangle}{\left\langle\alpha_{s}^{\vee}, \alpha_{s}\right\rangle} \rho(s)
$$

for all $y \in V$ and $x \in V^{*}$. In this case $\hat{\rho}$ is annihilated by \mathfrak{o}, so it is a representation of \bar{H}_{c}. If ρ is simple, so is $\hat{\rho}$.

Call $\hat{\rho}$ (or ρ) a c-rigid representation of H_{c}.

RIGID SIMPLE MODULES

Lemma (T.)
Let G be an odd dihedral group. Then for any $c \neq 0$ all but one of the two-dimensional simple representations of G are c-rigid.

The exception is the chosen reflection representation.
Similar result for even dihedral groups.

SIMPLE MODULES IN GENERAL

We have a triangular decomposition

$$
\bar{H}_{c} \underset{\mathbb{C}}{=} \underbrace{\mathbb{C}\left[V^{*}\right]_{G} \otimes_{\mathbb{C}}}_{\mathbb{C}\left[V^{*}\right]_{G} \times G} \overbrace{\mathbb{C} G}^{\mathbb{C}\left[V_{G} \times G\right.} \otimes_{\mathbb{C}}^{\mathbb{C}}[V]_{G}
$$

And thus a functor $\Delta_{c}: \mathbb{C} G-\bmod \rightarrow \bar{H}_{c}-\bmod$ defined by

$$
\Delta_{c}(\lambda)=\operatorname{lnd}_{\mathbb{C}\left[V^{*}\right]_{G} \rtimes G}^{\bar{H}_{C}} \circ \operatorname{Inf}_{\mathbb{C} G}^{\mathbb{C}\left[V^{*}\right]_{G} \rtimes G} \lambda .
$$

Theorem (Holmes-Nakano, Gordon)
If $\lambda \in \operatorname{Irr}(G)$, then $\Delta_{c}(\lambda)$ has simple head $L_{c}(\lambda)$ and $\operatorname{Irr}(G) \xrightarrow{\sim} \operatorname{Irr}\left(\bar{H}_{c}\right)$.

CALOGERO-MOSER FAMILIES

Since $\operatorname{Irr}(G) \xrightarrow{\sim} \operatorname{Irr}\left(\bar{H}_{c}\right)$, the block partition of $\overline{\mathrm{H}}_{c}$ partitions $\operatorname{Irr}(G)$.
Call the families Calogero-Moser c-families.
Conjecture (Gordon-Martino, Bonnafé-Rouquier)
Suppose that G is a Coxeter group and that $c: \operatorname{Ref}(\Gamma) / G \rightarrow \mathbb{R}_{>0}$. Then the Calogero-Moser c-families are equal to Lusztig's c-families.

Theorem (Lusztig, Gordon-Martino, Bellamy)
The conjecture holds for classical Weyl groups and dihedral groups.
Theorem (т.)
The conjecture holds for H_{3}.
There is an extension of this conjecture to complex reflection groups and Rouquier families (Martino's conjecture).

GLOBAL DIMENSION

As for \mathcal{O}_{c} the simples of \bar{H}_{c}-mod are naturally parametrized by $\operatorname{lrr}(G)$.
Is \bar{H}_{c}-mod the correct analogue of \mathcal{O}_{c} in $t=0$? Probably not...
Lemma (т.)
\bar{H}_{c} is semisimple if and only if G is cyclic and X_{c} is smooth.
Theorem (Brown-Gordon-Stroppel)
H_{c} is a symmetric \mathcal{Z}-algebra. Hence, \bar{H}_{c} is a symmetric \mathbb{C}-algebra.
Corollary
\bar{H}_{c}-mod is not a highest weight category unless G is cyclic and X_{C} is smooth.

GRADED MODULES

The module $\Delta_{c}(\lambda)$ is naturally \mathbb{Z}-graded, and so is its head $\mathrm{L}_{c}(\lambda)$. Hence, $\operatorname{Irr}\left(\bar{H}_{c}-\right.$ grmod $)=\operatorname{Irr}(G) \times \mathbb{Z}$. Define a partial order \preceq on this set by $(\lambda, m) \preceq(\mu, n)$ if and only if $m \geq n$.

Theorem (Bellamy-T.)
With respect to \preceq the category $\overline{\mathrm{H}}_{c}$-grmod is a highest weight category with standard and costandard objects.
(General result for \mathbb{Z}-graded algebras with triangular decomposition and semisimple middle part)

Is $\overline{\mathrm{H}}_{c}$-grmod the correct analogue of category \mathcal{O}_{c} in $t=0$? Work in progress...

POISSON GEOMETRY

POISSON STRUCTURE

The commutator on $\mathrm{H}_{t, c}$ for $t \neq 0$ induces a Poisson structure on Z_{c}. Let \mathbf{t} be an indeterminate. Note that $\mathrm{H}_{\mathbf{t}, \mathrm{c}} / \mathbf{t} \mathrm{H}_{\mathbf{t}, \mathrm{c}}=\mathrm{H}_{c}$.

Lift $z_{1}, z_{2} \in Z_{c}$ to $\hat{z}_{1}, \hat{z}_{2} \in H_{\mathbf{t}, c}$ and define

$$
\left\{z, z^{\prime}\right\}:=\left(\frac{1}{\mathbf{t}}\left[\hat{z}_{1}, \hat{z}_{2}\right]\right) \bmod \mathbf{t} H_{\mathbf{t}, c} .
$$

Hence, X_{c} is a Poisson deformation of $\left(V \oplus V^{*}\right) / G$.

SYMPLECTIC LEAVES AND CUSPIDALITY

Theorem (Brown-Gordon)
There is a certain (finite) stratification of X_{c} into locally closed subsets called symplectic leaves.

A zero-dimensional leaf is called cuspidal.
Theorem (Bellamy)
The cuspidal leaves of X_{c} are contained in $\Upsilon_{c}^{-1}(\mathfrak{o})$.
Hence, cuspidal leaves are blocks of \bar{H}_{c}.

TYPE B

BASICS

Consider the Weyl group of type B_{n}.

We have two parameters: $a:=c\left(s_{i}\right)$ and $b:=c(t)$.
The simples of B_{n} are labeled by bipartitions $\left(\lambda^{1}, \lambda^{2}\right)$ of n.
If $a=0$, then $H_{c}=H_{b}\left(\mathbb{Z}_{2}\right)^{\otimes n} \rtimes S_{n} . \leftarrow$ can be understood
Assume $a \neq 0$ from now on.
Theorem (Martino)
X_{c} is singular if and only if $b= \pm m a$ with $0 \leq m \leq n-1$.

SYMPLECTIC LEAVES

Assume $b= \pm m a$ with $0 \leq m \leq n-1$ from now on.
Theorem (Martino)
The symplectic leaves of X_{c} are parametrized by

$$
\left\{\mathcal{L}_{k} \mid k \in \mathbb{N} \text { with } k m+k^{2} \leq n\right\}
$$

and $\operatorname{dim} \mathcal{L}_{k}=2\left(n-k m-k^{2}\right)$.
Corollary
There is a cuspidal leaf if and only if $n=k(k+m)$.

A RIGID SIMPLE MODULE

Let $\lambda=\left(e^{f}\right)$ be a box partition of n with $f \geq e$, e.g.,

Lemma (Bellamy-T.)
(e^{f}, \emptyset) is c-rigid if and only if $b=a(f-e)$.
Hence, in this case $L_{c}\left(e^{f}, \emptyset\right)=\left(e^{f}, \emptyset\right)$.
Theorem (Bellamy-T.)
Suppose that we are in the cuspidal case $n=k(k+m)$.
Then the c-rigid simple \bar{H}_{c}-module $L_{c}\left(k^{(k+m)}, \emptyset\right)$ is cuspidal.

A NEW POINT OF VIEW

Assume $b=a$, so $m=1$ (equal parameter case).
There is a (unique) cuspidal leaf if and only if $n=k(k+m)=k^{2}+k$.
There is a (unique) cuspidal Lusztig family if and only if $n=k^{2}+k$.
Theorem (Bellamy-T.)
The (unique) cuspidal Calogero-Moser family is equal to the (unique) cuspidal Lusztig family.

This is a Poisson geometric interpretation of Lusztig's cuspidality!
(We expect the same for unequal parameters-work in progress)

CHAMP

CHAMP

CHAMP (CHerednik Algebra Magma Package)
Version v1.5-71-g8d818cf
Copyright (C) 2013-2015 Ulrich Thiel
http://thielul.github.io/CHAMP/
> G := ShephardTodd $(2,1,2)$;
> H := RationalCherednikAlgebra(G,0);
> eu := EulerElement(H); eu;

CHAMP

```
> \(\mathrm{eu}^{\wedge} 2\);
\(\left.\begin{array}{ccc}{\left[\begin{array}{cc}0 & -1\end{array}\right]} \\ {\left[\begin{array}{ll}1 & 0\end{array}\right]^{*}\left(c 1^{*} c 2\right)+\left[\begin{array}{cc}1 & 0\end{array}\right]}\end{array} \begin{array}{cc}0 & 1\end{array}\right]\)
\(\left[\begin{array}{ll}1 & 0\end{array}\right]\)
\(\left[\begin{array}{ll}0 & 1\end{array}\right]^{*}\left(y 1^{\wedge} 2^{*} x 1^{\wedge} 2+2^{*} y 1^{*} y 2^{*} x 1^{*} x 2+y 2^{\wedge} 2^{*} x 2^{\wedge} 2+1 / 2^{*} c 1^{\wedge} 2+1 / 2^{*} c 2^{\wedge} 2\right)\)
\(\left[\begin{array}{cc}0 & -1\end{array}\right]\)
\(\left[\begin{array}{ll}-1 & 0\end{array}\right]^{*}\left(1 / 2^{*} c 1^{*} y 1^{*} x 1-1 / 2^{*} c 1^{*} y 1^{*} x 2-1 / 2^{*} c 1^{*} y 2^{*} x 1+1 / 2^{*} c 1^{*} y 2^{*} x 2\right)\)
\(\left[\begin{array}{cc}-1 & 0\end{array}\right] \quad\left[\begin{array}{ll}-1 & 0\end{array}\right]\)
\(\left[\begin{array}{cc}0 & -1\end{array}\right]^{*}\left(1 / 2^{*} c 1^{\wedge} 2+1 / 2^{*} c 2^{\wedge} 2\right)+\left[\begin{array}{ll}0 & 1\end{array}\right]^{*}\left(c 2^{*} y 2^{*} x 2\right)\)
\(\left[\begin{array}{ll}0 & 1\end{array}\right]\)
\(\left[\begin{array}{ll}1 & 0\end{array}\right]^{*}\left(1 / 2^{*} c 1^{*} y 1^{*} x 1+1 / 2^{*} c 1^{*} y 1^{*} x 2+1 / 2^{*} c 1^{*} y 2^{*} x 1+1 / 2^{*} c 1^{*} y 2 * x 2\right)\)
> PoissonBracket(x1,eu);
\(\left[\begin{array}{ll}1 & 0\end{array}\right]\)
[0 1 1 \({ }^{*}\) * x 1 )
```


CHAMP

What CHAMP can already do

- Compute in (restricted) rational Cherednik algebras - for any t and c (also generic), in any characteristic.
- Representation theory of RRCAs (simple modules and their graded W-character, decomposition matrices of Verma modules, Calogero-Moser families).

Future work (joint with C. Bonnafé)

- Calogero-Moser families for many more cases as above.
- Symplectic leaves and cuspidal families.
- Explicit presentations of Calogero-Moser spaces.
- Calogero-Moser cellular characters.
- Calogero-Moser cells.

