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singularities



certain symplectic singularities

V a finite-dimensional complex vector space
G a finite subgroup of GL(V) generated by reflections

}
Γ

Classical fact

The quotient V/G = Spec(C[V]G) is smooth. ← boring

Consider instead G with the natural action on V⊕ V∗. Call this DΓ.

This is a symplectic reflection group and

(V⊕ V∗)/G = Spec(C[V⊕ V∗]G)

is a symplectic singularity (Beauville).
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resolutions and deformations

Example (Type A1 Kleinian singularity){(
1 0
0 1

)
,

(
−1 0
0 −1

)}
⊆ SL2(C)
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deforming singularities

Aim

Find deformations of (V⊕ V∗)/G = Spec(C[V⊕ V∗]G).

Idea

Instead of deforming C[V⊕ V∗]G directly, we first deform

C[DΓ] := C[V⊕ V∗]⋊ G .

Reasons

∙ Z(C[DΓ]) = C[V⊕ V∗]G

∙ C[DΓ] has an easy presentation: it is the quotient of

C⟨DΓ⟩ := C⟨V⊕ V∗⟩⋊ G

by [y, y′] = [x, x′] = [y, x] = 0 for all y, y′ ∈ V and x, x′ ∈ V∗.
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rational cherednik algebras

Etingof and Ginzburg defined in 2002 the rational Cherednik algebras.

Let t ∈ C and let c : Ref(Γ)/G→ C be a map. Then Ht,c is the
quotient of C⟨DΓ⟩ = C⟨V⊕ V∗⟩⋊ G by the relations

[x, x′] = 0 = [y, y′] ∀x, x′ ∈ V∗, y, y′ ∈ V

[y, x] = t⟨y, x⟩+
∑

s∈Ref(Γ)

c(s) ⟨α
∨
s , x⟩⟨y, αs⟩
⟨α∨

s , αs⟩
s

where αs ∈ V∗ with Ker(αs) = Ker(idV−s) and ⟨α∨
s ⟩ ⊆ V is s-stable.

The Ht,c are a flat family of filtered deformations of C[V⊕ V∗]⋊ G, i.e.,
gr Ht,c ∼= C[V⊕ V∗]⋊ G. In particular, Ht,c =

C
C[V⊕ V∗]⊗C CG.
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t-dichotomy

We have H0,0 = C[V⊕ V∗]⋊ G and H1,0 = D(V)⋊ G.

This indicates already that t = 0 and t ̸= 0 will behave differently.

Theorem (Etingof–Ginzburg)
∙ The center Zt,c of Ht,c is non-trivial if and only if t = 0.
∙ Xc := Spec(Z0,c) is an irreducible variety.
This is the Calogero–Moser space in c.

∙ (Xc)c is a flat family of filtered deformations of (V⊕ V∗)/G.
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t ̸= 0

A lot of structure and theory for t ̸= 0:

∙ Highest weight category Oc ⊆ H1,c -mod with Irr(Oc) ∼= Irr(G). This
is a highest weight cover of a cyclotomic Hecke algebra Hqc , i.e.,
there is a fully faithful functor

KZ : Oc-proj→ Hqc-mod .

(Ginzburg–Guay–Opdam–Rouquier).
∙ Parabolic restriction and induction functors for category Oc

(Bezrukavnikov–Etingof).
∙ Categorification of an Uq(ŝle) Fock space representation (Shan).
∙ …

We do not have anything like this for t = 0 (so far?)
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rational cherednik algebras
at t=0



notation

Hc := H0,c

and

Zc := Z0,c
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almost commutativity

Theorem (Etingof–Ginzburg)

Z := C[V]G ⊗C C[V∗]G = C[V⊕ V∗]G×G

is a central subalgebra of Hc and Hc is a finite Z-module.

So, “Hc is almost commutative”. This implies:

∙ dim L ≤ PI-degHc. In fact, PI-degHc = |G|.
∙ Irr Hc

∼−→ MaxHc via L 7→ AnnHc L.
∙ The contractions

MaxHc → Max Zc
Υc : Max Zc → MaxZ

MaxHc → MaxZ

are surjective.
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representation theory and geometry of the center

Theorem (Etingof–Ginzburg, Brown)

The following are equivalent for L ∈ Irr(Hc) with m := AnnZc L:

∙ m is a smooth point of Xc.
∙ dim L = |G|.
∙ L is the only simple Hc-module lying over m.

Theorem (Etingof–Ginzburg, Gordon, Gordon–Martino, Martino,
Bellamy; 2002–2009)

Classification of those G for which Xc is smooth for some c.

This gives a classification of those G for which (V⊕ V∗)/G admits a
symplectic resolution.
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restrictions and blocks

For m ∈ MaxZ or m ∈ Max Zc let

Hm
c := Hc /mHc .

This is a finite-dimensional C-algebra. Call this a restriction of Hc.

Its simple modules are those simple Hc-modules annihilated by m.

Theorem (Müller)

If m ∈ MaxZ , then
Hm
c =

⊕
b∈Υ−1

c (m)

Hb
c

is the block decomposition of Hm
c .
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picture

MaxHc

Max Zc

MaxZ = V/G× V∗/G

M 7→M ∩ Zc

Υc b 7→ b ∩ Z
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graded restrictions

Hc is naturally Z-graded by putting

V in degree −1
G in degree 0
V∗ in degree +1

H0,c =
C
C[V∗]⊗C C[G]⊗C C[V]

Both Zc and Z are graded subalgebras. The grading induces a
C∗-action on Xc and MaxZ .

The only C∗-fixed point of MaxZ = V/G× V∗/G is the origin
o = (0, 0). The restriction

Hc := Ho
c = Hc /oHc =

C
C[V∗]G ⊗C CG⊗C C[V]G

is thus Z-graded. This is the restricted rational Cherednik algebra.

Note: Blocks of Hc = Υ−1
c (o) = XC∗

c .

Theorem (Bellamy–Martino)
Xc is smooth if and only if Υ−1

c (o) consists of smooth points. 14



restricted rational cherednik
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rigid simple modules

Let ρ : G→ GLn(C) be a representation of G.

This lifts to a representation ρ̂ : C⟨V⊕ V∗⟩⋊ G→ Matn(C) with

ρ̂(y) = 0 = ρ̂(x) for y ∈ V, x ∈ V∗ and ρ̂(g) = ρ(g) for g ∈ G .

When does ρ̂ descend to a representation of Hc? Precisely when

0 = ρ̂([y, x]) =
∑

s∈Ref(Γ)

c(s) ⟨y, αs⟩⟨α∨
s , x⟩

⟨α∨
s , αs⟩

ρ(s)

for all y ∈ V and x ∈ V∗. In this case ρ̂ is annihilated by o, so it is a
representation of Hc. If ρ is simple, so is ρ̂.

Call ρ̂ (or ρ) a c-rigid representation of Hc.
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rigid simple modules

Lemma (T.)

Let G be an odd dihedral group. Then for any c ̸= 0 all but one of the
two-dimensional simple representations of G are c-rigid.

The exception is the chosen reflection representation.

Similar result for even dihedral groups.
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simple modules in general

We have a triangular decomposition

Hc =
C ︸ ︷︷ ︸

C[V∗]G⋊G

C[V∗]G ⊗C

C[V]G⋊G︷ ︸︸ ︷
CG⊗C C[V]G

And thus a functor ∆c : CG-mod→ Hc-mod defined by

∆c(λ) = IndHc
C[V∗]G⋊G ◦ Inf

C[V∗]G⋊G
CG λ .

Theorem (Holmes–Nakano, Gordon)

If λ ∈ Irr(G), then ∆c(λ) has simple head Lc(λ) and Irr(G) ∼−→ Irr(Hc).
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calogero–moser families

Since Irr(G) ∼−→ Irr(Hc), the block partition of Hc partitions Irr(G).

Call the families Calogero–Moser c-families.

Conjecture (Gordon–Martino, Bonnafé–Rouquier)

Suppose that G is a Coxeter group and that c : Ref(Γ)/G→ R>0. Then
the Calogero–Moser c-families are equal to Lusztig’s c-families.

Theorem (Lusztig, Gordon–Martino, Bellamy)

The conjecture holds for classical Weyl groups and dihedral groups.

Theorem (T.)

The conjecture holds for H3.

There is an extension of this conjecture to complex reflection groups
and Rouquier families (Martino’s conjecture).

19



global dimension

As for Oc the simples of Hc-mod are naturally parametrized by Irr(G).

Is Hc-mod the correct analogue of Oc in t = 0? Probably not…

Lemma (T.)

Hc is semisimple if and only if G is cyclic and Xc is smooth.

Theorem (Brown–Gordon–Stroppel)

Hc is a symmetric Z-algebra. Hence, Hc is a symmetric C-algebra.

Corollary

Hc-mod is not a highest weight category unless G is cyclic and Xc is
smooth.
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graded modules

The module ∆c(λ) is naturally Z-graded, and so is its head Lc(λ).

Hence, Irr(Hc-grmod) = Irr(G)× Z. Define a partial order ⪯ on this
set by (λ,m) ⪯ (µ,n) if and only if m ≥ n.

Theorem (Bellamy–T.)

With respect to ⪯ the category Hc-grmod is a highest weight category
with standard and costandard objects.

(General result for Z-graded algebras with triangular decomposition
and semisimple middle part)

Is Hc-grmod the correct analogue of category Oc in t = 0? Work in
progress…
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poisson geometry



poisson structure

The commutator on Ht,c for t ̸= 0 induces a Poisson structure on Zc.

Let t be an indeterminate. Note that Ht,c /tHt,c = Hc.

Lift z1, z2 ∈ Zc to ẑ1, ẑ2 ∈ Ht,c and define

{z, z′} :=
(
1
t [ẑ1, ẑ2]

)
mod tHt,c .

Hence, Xc is a Poisson deformation of (V⊕ V∗)/G.
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symplectic leaves and cuspidality

Theorem (Brown–Gordon)

There is a certain (finite) stratification of Xc into locally closed
subsets called symplectic leaves.

A zero-dimensional leaf is called cuspidal.

Theorem (Bellamy)

The cuspidal leaves of Xc are contained in Υ−1
c (o).

Hence, cuspidal leaves are blocks of Hc.
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type b



basics

Consider the Weyl group of type Bn.

We have two parameters: a := c(si) and b := c(t).

The simples of Bn are labeled by bipartitions (λ1, λ2) of n.

If a = 0, then Hc = Hb(Z2)
⊗n ⋊ Sn. ← can be understood

Assume a ̸= 0 from now on.

Theorem (Martino)

Xc is singular if and only if b = ±ma with 0 ≤ m ≤ n− 1.
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symplectic leaves

Assume b = ±ma with 0 ≤ m ≤ n− 1 from now on.

Theorem (Martino)

The symplectic leaves of Xc are parametrized by

{Lk | k ∈ N with km+ k2 ≤ n}

and dimLk = 2(n− km− k2).

Corollary
There is a cuspidal leaf if and only if n = k(k+m).
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a rigid simple module

Let λ = (ef) be a box partition of n with f ≥ e, e.g., f

︸ ︷︷ ︸
e

Lemma (Bellamy–T.)

(ef, ∅) is c-rigid if and only if b = a(f− e).

Hence, in this case Lc(ef, ∅) = (ef, ∅).

Theorem (Bellamy–T.)

Suppose that we are in the cuspidal case n = k(k+m).

Then the c-rigid simple Hc-module Lc(k(k+m), ∅) is cuspidal.
28



a new point of view

Assume b = a, so m = 1 (equal parameter case).

There is a (unique) cuspidal leaf if and only if n = k(k+m) = k2 + k.

There is a (unique) cuspidal Lusztig family if and only if n = k2 + k.

Theorem (Bellamy–T.)

The (unique) cuspidal Calogero–Moser family is equal to the
(unique) cuspidal Lusztig family.

This is a Poisson geometric interpretation of Lusztig’s cuspidality!

(We expect the same for unequal parameters—work in progress)
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champ



champ

CHAMP ( CHerednik Algebra Magma Package )
Version v1 .5−71−g8d818cf
Copyr ight ( C ) 2013−2015 U l r i ch Th ie l
http : // t h i e l u l . g i thub . io /CHAMP/

> G : = ShephardTodd ( 2 , 1 , 2 ) ;
> H : = Rat ionalCherednikAlgebra (G , 0 ) ;
> eu : = EulerElement (H ) ; eu ;

[ 1 0] [0 1 ] [ 1 0]
[0 1 ] * ( y1 * x1 + y2 * x2 ) + [ 1 0 ] * ( 1 / 2 * c1 ) + [0 −1 ]* (1/2* c2 )
+
[−1 0] [0 −1]
[ 0 1 ] * ( 1 / 2 ) * ( c2 ) + [−1 0 ] * ( 1 / 2 * c1 )

> I s Cen t r a l ( eu ) ;
t rue
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champ

> eu ^2 ;
[ 0 −1] [ 1 0] [ 0 1 ]
[ 1 0 ] * ( c1 * c2 ) + [ 0 −1]*( c2 * y1 * x1 ) + [−1 0 ] * ( c1 * c2 )
+
[ 1 0]
[0 1 ] * ( y1 ^2* x1 ^2 + 2* y1 * y2 * x1 * x2 + y2 ^2* x2^2 + 1/2* c1 ^2 + 1/2* c2 ^2)
+
[ 0 −1]
[−1 0 ] * ( 1 / 2 * c1 * y1 * x1 − 1/2* c1 * y1 * x2 − 1/2* c1 * y2 * x1 + 1/2* c1 * y2 * x2 )
+
[−1 0] [−1 0]
[ 0 −1 ]* (1/2* c1 ^2 + 1/2* c2 ^2) + [0 1 ] * ( c2 * y2 * x2 )
+
[0 1 ]
[ 1 0 ] * ( 1 / 2 * c1 * y1 * x1 + 1/2* c1 * y1 * x2 + 1/2* c1 * y2 * x1 + 1/2* c1 * y2 * x2 )

> PoissonBracket ( x1 , eu ) ;
[ 1 0]
[0 1 ] * ( x1 )
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champ

What CHAMP can already do

∙ Compute in (restricted) rational Cherednik algebras — for any t
and c (also generic), in any characteristic.

∙ Representation theory of RRCAs (simple modules and their graded
W-character, decomposition matrices of Verma modules,
Calogero–Moser families).

Future work (joint with C. Bonnafé)

∙ Calogero–Moser families for many more cases as above.
∙ Symplectic leaves and cuspidal families.
∙ Explicit presentations of Calogero–Moser spaces.
∙ Calogero–Moser cellular characters.
∙ Calogero–Moser cells. 33
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