RESTRICTED RATIONAL CHEREDNIK ALGEBRAS

Ulrich Thiel March 11, 2015

University of Stuttgart http://www.mathematik.uni-stuttgart.de/~thiel

SINGULARITIES

- a finite-dimensional complex vector space V
- a finite subgroup of GL(V) generated by reflections G

Classical fact

The quotient $V/G = \operatorname{Spec}(\mathbb{C}[V]^G)$ is smooth. \leftarrow boring

Consider instead G with the natural action on $V \oplus V^*$. Call this $\mathbb{D}\Gamma$.

This is a symplectic reflection group and

 $(V \oplus V^*)/G = \operatorname{Spec}(\mathbb{C}[V \oplus V^*]^G)$

is a symplectic singularity (Beauville).

Example (Type A1 Kleinian singularity)

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \subseteq SL_2(\mathbb{C})$$

Aim

Find deformations of $(V \oplus V^*)/G = \operatorname{Spec}(\mathbb{C}[V \oplus V^*]^G)$.

Idea

Instead of deforming $\mathbb{C}[V \oplus V^*]^G$ directly, we first deform

$$\mathbb{C}[\mathbb{D}\mathsf{\Gamma}] := \mathbb{C}[\mathsf{V} \oplus \mathsf{V}^*] \rtimes \mathsf{G} \; .$$

Reasons

- $\cdot \ Z(\mathbb{C}[\mathbb{D}\Gamma]) = \mathbb{C}[V \oplus V^*]^G$
- $\cdot \ \mathbb{C}[\mathbb{D}\Gamma]$ has an easy presentation: it is the quotient of

$$\mathbb{C} \langle \mathbb{D} \mathsf{\Gamma} \rangle \mathrel{\mathop:}= \mathbb{C} \langle \mathsf{V} \oplus \mathsf{V}^* \rangle \rtimes \mathsf{G}$$

by [y, y'] = [x, x'] = [y, x] = 0 for all $y, y' \in V$ and $x, x' \in V^*$.

Etingof and Ginzburg defined in 2002 the rational Cherednik algebras.

Let $t \in \mathbb{C}$ and let $c : \operatorname{Ref}(\Gamma)/G \to \mathbb{C}$ be a map. Then $H_{t,c}$ is the quotient of $\mathbb{C}\langle \mathbb{D}\Gamma \rangle = \mathbb{C}\langle V \oplus V^* \rangle \rtimes G$ by the relations

$$[x, x'] = 0 = [y, y'] \quad \forall x, x' \in V^*, y, y' \in V$$
$$[y, x] = t \langle y, x \rangle + \sum_{s \in \text{Ref}(\Gamma)} c(s) \frac{\langle \alpha_s^{\lor}, x \rangle \langle y, \alpha_s \rangle}{\langle \alpha_s^{\lor}, \alpha_s \rangle} s$$

where $\alpha_s \in V^*$ with $\text{Ker}(\alpha_s) = \text{Ker}(\text{id}_V - s)$ and $\langle \alpha_s^{\vee} \rangle \subseteq V$ is s-stable.

The $H_{t,c}$ are a flat family of filtered deformations of $\mathbb{C}[V \oplus V^*] \rtimes G$, i.e., gr $H_{t,c} \cong \mathbb{C}[V \oplus V^*] \rtimes G$. In particular, $H_{t,c} \equiv \mathbb{C}[V \oplus V^*] \otimes_{\mathbb{C}} \mathbb{C}G$.

We have $H_{0,0} = \mathbb{C}[V \oplus V^*] \rtimes G$ and $H_{1,0} = \mathcal{D}(V) \rtimes G$.

This indicates already that t = 0 and $t \neq 0$ will behave differently.

Theorem (Etingof-Ginzburg)

- · The center $Z_{t,c}$ of $H_{t,c}$ is non-trivial if and only if t = 0.
- $X_c := \text{Spec}(Z_{0,c})$ is an irreducible variety. This is the Calogero-Moser space in *c*.
- · $(X_c)_c$ is a flat family of filtered deformations of $(V \oplus V^*)/G$.

· ...

A lot of structure and theory for $t \neq 0$:

• Highest weight category $\mathcal{O}_c \subseteq H_{1,c}$ -mod with $Irr(\mathcal{O}_c) \cong Irr(G)$. This is a highest weight cover of a cyclotomic Hecke algebra \mathcal{H}_{q_c} , i.e., there is a fully faithful functor

 $KZ: \mathcal{O}_c\text{-}proj \rightarrow \mathcal{H}_{q_c}\text{-}mod$.

(Ginzburg-Guay-Opdam-Rouquier).

- · Parabolic restriction and induction functors for category \mathcal{O}_c (Bezrukavnikov–Etingof).
- · Categorification of an $U_q(\widehat{\mathfrak{sl}}_e)$ Fock space representation (Shan).

We do not have anything like this for t = 0 (so far?)

RATIONAL CHEREDNIK ALGEBRAS AT T=0

$H_c := H_{0,c}$ and

$$Z_c := Z_{0,c}$$

Theorem (Etingof-Ginzburg)

$$\mathcal{Z} := \mathbb{C}[V]^G \otimes_{\mathbb{C}} \mathbb{C}[V^*]^G = \mathbb{C}[V \oplus V^*]^{G \times G}$$

is a central subalgebra of H_c and H_c is a finite \mathcal{Z} -module.

So, "H_c is almost commutative". This implies:

- · dim $L \leq PI$ -deg H_c. In fact, PI-deg H_c = |G|.
- \cdot Irr H_c $\xrightarrow{\sim}$ Max H_c via $L \mapsto Ann_{H_c} L$.
- \cdot The contractions

 $\begin{array}{c} \mathsf{Max}\,\mathsf{H}_c\to\mathsf{Max}\,\mathsf{Z}_c\\ \Upsilon_c:\mathsf{Max}\,\mathsf{Z}_c\,\to\mathsf{Max}\,\mathcal{Z}\\ \mathsf{Max}\,\mathsf{H}_c\to\mathsf{Max}\,\mathcal{Z} \end{array}$

are surjective.

Theorem (Etingof-Ginzburg, Brown)

The following are equivalent for $L \in Irr(H_c)$ with $\mathfrak{m} := Ann_{Z_c} L$:

- \mathfrak{m} is a smooth point of X_c .
- $\cdot \dim L = |G|.$
- · *L* is the only simple H_c -module lying over \mathfrak{m} .

Theorem (Etingof–Ginzburg, Gordon, Gordon–Martino, Martino, Bellamy; 2002–2009)

Classification of those G for which X_c is smooth for some c.

This gives a classification of those G for which $(V \oplus V^*)/G$ admits a symplectic resolution.

For $\mathfrak{m} \in \operatorname{Max} \mathcal{Z}$ or $\mathfrak{m} \in \operatorname{Max} Z_c$ let

 $\mathsf{H}^\mathfrak{m}_c := \mathsf{H}_c \, / \mathfrak{m} \, \mathsf{H}_c \ .$

This is a finite-dimensional \mathbb{C} -algebra. Call this a restriction of H_c. Its simple modules are those simple H_c-modules annihilated by \mathfrak{m} . Theorem (Müller)

If $\mathfrak{m} \in Max \mathcal{Z}$, then

$$H^{\mathfrak{m}}_{c} = \bigoplus_{\mathfrak{b} \in \Upsilon^{-1}_{c}(\mathfrak{m})} H^{\mathfrak{b}}_{c}$$

is the block decomposition of $H_c^{\mathfrak{m}}$.

 H_c is naturally \mathbb{Z} -graded by putting

$$\begin{array}{ll} V & \text{in degree} & -1 \\ G & \text{in degree} & 0 \\ V^* & \text{in degree} & +1 \end{array} \right\} H_{0,c} \underset{\mathbb{C}}{=} \mathbb{C}[V^*] \otimes_{\mathbb{C}} \mathbb{C}[G] \otimes_{\mathbb{C}} \mathbb{C}[V]$$

Both Z_c and Z are graded subalgebras. The grading induces a \mathbb{C}^* -action on X_c and Max Z.

The only \mathbb{C}^* -fixed point of Max $\mathcal{Z} = V/G \times V^*/G$ is the origin $\mathfrak{o} = (0, 0)$. The restriction

$$\overline{H}_{c} := H_{c}^{\mathfrak{o}} = H_{c} / \mathfrak{o} H_{c} \underset{\mathbb{C}}{=} \mathbb{C}[V^{*}]_{G} \otimes_{\mathbb{C}} \mathbb{C}G \otimes_{\mathbb{C}} \mathbb{C}[V]_{G}$$

is thus \mathbb{Z} -graded. This is the restricted rational Cherednik algebra. Note: Blocks of $\overline{H}_c = \Upsilon_c^{-1}(\mathfrak{o}) = X_c^{\mathbb{C}^*}$.

Theorem (Bellamy-Martino)

 X_c is smooth if and only if $\Upsilon_c^{-1}(\mathfrak{o})$ consists of smooth points.

RESTRICTED RATIONAL CHEREDNIK ALGEBRAS

Let $\rho : G \to GL_n(\mathbb{C})$ be a representation of G.

This lifts to a representation $\hat{\rho} : \mathbb{C} \langle V \oplus V^* \rangle \rtimes G \to \operatorname{Mat}_n(\mathbb{C})$ with

 $\hat{
ho}(y) = 0 = \hat{
ho}(x)$ for $y \in V, x \in V^*$ and $\hat{
ho}(g) =
ho(g)$ for $g \in G$.

When does $\hat{\rho}$ descend to a representation of H_c? Precisely when

$$0 = \hat{\rho}([y, x]) = \sum_{s \in \mathsf{Ref}(\Gamma)} c(s) \frac{\langle y, \alpha_s \rangle \langle \alpha_s^{\vee}, x \rangle}{\langle \alpha_s^{\vee}, \alpha_s \rangle} \rho(s)$$

for all $y \in V$ and $x \in V^*$. In this case $\hat{\rho}$ is annihilated by \mathfrak{o} , so it is a representation of \overline{H}_c . If ρ is simple, so is $\hat{\rho}$.

Call $\hat{\rho}$ (or ρ) a *c*-rigid representation of H_c.

Lemma (T.)

Let G be an odd dihedral group. Then for any $c \neq 0$ all but one of the two-dimensional simple representations of G are c-rigid.

The exception is the chosen reflection representation.

Similar result for even dihedral groups.

We have a triangular decomposition

$$\overline{\mathsf{H}}_{\mathsf{C}} \underset{\mathbb{C}}{=} \underbrace{\mathbb{C}[V^*]_G \otimes_{\mathbb{C}} \underbrace{\mathbb{C}G}_{\mathbb{C}[V]_G \rtimes G} \otimes_{\mathbb{C}} \mathbb{C}[V]_G}_{\mathbb{C}[V^*]_G \rtimes G}$$

And thus a functor $\Delta_c : \mathbb{C}G\operatorname{-mod} \to \overline{H}_c\operatorname{-mod}$ defined by

$$\Delta_{c}(\lambda) = \operatorname{Ind}_{\mathbb{C}[V^{*}]_{G} \rtimes G}^{\overline{H}_{c}} \circ \operatorname{Inf}_{\mathbb{C}G}^{\mathbb{C}[V^{*}]_{G} \rtimes G} \lambda .$$

Theorem (Holmes-Nakano, Gordon)

If $\lambda \in Irr(G)$, then $\Delta_c(\lambda)$ has simple head $L_c(\lambda)$ and $Irr(G) \xrightarrow{\sim} Irr(\overline{H}_c)$.

Since $Irr(G) \xrightarrow{\sim} Irr(\overline{H}_c)$, the block partition of \overline{H}_c partitions Irr(G).

Call the families Calogero-Moser c-families.

Conjecture (Gordon-Martino, Bonnafé-Rouquier)

Suppose that G is a Coxeter group and that $c : \operatorname{Ref}(\Gamma)/G \to \mathbb{R}_{>0}$. Then the Calogero–Moser c-families are equal to Lusztig's c-families.

Theorem (Lusztig, Gordon-Martino, Bellamy)

The conjecture holds for classical Weyl groups and dihedral groups.

Theorem (T.)

The conjecture holds for H₃.

There is an extension of this conjecture to complex reflection groups and Rouquier families (Martino's conjecture).

As for \mathcal{O}_c the simples of \overline{H}_c -mod are naturally parametrized by Irr(*G*). Is \overline{H}_c -mod the correct analogue of \mathcal{O}_c in t = 0? Probably not... Lemma (T.)

 \overline{H}_c is semisimple if and only if G is cyclic and X_c is smooth.

Theorem (Brown-Gordon-Stroppel)

 H_c is a symmetric Z-algebra. Hence, \overline{H}_c is a symmetric \mathbb{C} -algebra.

Corollary

 \overline{H}_c -mod is not a highest weight category unless G is cyclic and X_c is smooth.

The module $\Delta_c(\lambda)$ is naturally \mathbb{Z} -graded, and so is its head $L_c(\lambda)$.

Hence, $Irr(\overline{H}_c\text{-}grmod) = Irr(G) \times \mathbb{Z}$. Define a partial order \preceq on this set by $(\lambda, m) \preceq (\mu, n)$ if and only if $m \ge n$.

Theorem (Bellamy-T.)

With respect to \leq the category \overline{H}_c -grmod is a highest weight category with standard and costandard objects.

(General result for $\mathbb{Z}\mbox{-}graded$ algebras with triangular decomposition and semisimple middle part)

Is \overline{H}_c -grmod the correct analogue of category \mathcal{O}_c in t = 0? Work in progress...

POISSON GEOMETRY

The commutator on $H_{t,c}$ for $t \neq 0$ induces a Poisson structure on Z_c . Let **t** be an indeterminate. Note that $H_{t,c} / \mathbf{t} H_{t,c} = H_c$. Lift $z_1, z_2 \in Z_c$ to $\hat{z}_1, \hat{z}_2 \in H_{t,c}$ and define

$$\{z, z'\} := \left(rac{1}{\mathbf{t}}[\hat{z}_1, \hat{z}_2]
ight) \mod \mathbf{t} \, \mathsf{H}_{\mathbf{t}, c}$$
 .

Hence, X_c is a Poisson deformation of $(V \oplus V^*)/G$.

Theorem (Brown–Gordon)

There is a certain (finite) stratification of X_c into locally closed subsets called symplectic leaves.

A zero-dimensional leaf is called cuspidal.

Theorem (Bellamy)

The cuspidal leaves of X_c are contained in $\Upsilon_c^{-1}(\mathfrak{o})$.

Hence, cuspidal leaves are blocks of \overline{H}_c .

TYPE B

Consider the Weyl group of type B_n .

We have two parameters: $a := c(s_i)$ and b := c(t). The simples of B_n are labeled by bipartitions (λ^1, λ^2) of n. If a = 0, then $H_c = H_b(\mathbb{Z}_2)^{\otimes n} \rtimes S_n$. \leftarrow can be understood Assume $a \neq 0$ from now on.

Theorem (Martino)

 X_c is singular if and only if $b = \pm ma$ with $0 \le m \le n - 1$.

Assume $b = \pm ma$ with $0 \le m \le n - 1$ from now on.

Theorem (Martino)

The symplectic leaves of X_c are parametrized by

$$\{\mathcal{L}_k \mid k \in \mathbb{N} \text{ with } km + k^2 \leq n\}$$

and dim $\mathcal{L}_k = 2(n - km - k^2)$.

Corollary

There is a cuspidal leaf if and only if n = k(k + m).

Let $\lambda = (e^{f})$ be a box partition of n with $f \ge e$, e.g.,

Lemma (Bellamy–T.)

 (e^{f}, \emptyset) is c-rigid if and only if b = a(f - e). Hence, in this case $L_{c}(e^{f}, \emptyset) = (e^{f}, \emptyset)$.

Theorem (Bellamy–T.)

Suppose that we are in the cuspidal case n = k(k + m).

Then the *c*-rigid simple \overline{H}_c -module $L_c(k^{(k+m)}, \emptyset)$ is cuspidal.

Assume b = a, so m = 1 (equal parameter case).

There is a (unique) cuspidal leaf if and only if $n = k(k + m) = k^2 + k$. There is a (unique) cuspidal Lusztig family if and only if $n = k^2 + k$.

Theorem (Bellamy–T.)

The (unique) cuspidal Calogero–Moser family is equal to the (unique) cuspidal Lusztig family.

This is a Poisson geometric interpretation of Lusztig's cuspidality!

(We expect the same for unequal parameters—work in progress)

CHAMP

CHAMP

```
CHAMP (CHerednik Algebra Magma Package)
Version v1.5–71–g8d818cf
Copyright (C) 2013–2015 Ulrich Thiel
http://thielul.github.io/CHAMP/
```

```
> G := ShephardTodd(2,1,2);
> H := RationalCherednikAlgebra(G,0);
> eu := EulerElement(H); eu;
```

```
[1 0] [0 1] [1 0]
[0 1]*(y1*x1 + y2*x2) + [1 0]*(1/2*c1) + [0 -1]*(1/2*c2)
+
[-1 0] [0 -1]
[ 0 1]*(1/2)*(c2) + [-1 0]*(1/2*c1)
> lsCentral(eu);
```

true

CHAMP

```
> eu^2:
[0-1] [10] [01]
\begin{bmatrix} 1 & 0 \end{bmatrix}^* (c1^*c2) + \begin{bmatrix} 0 & -1 \end{bmatrix}^* (c2^*y1^*x1) + \begin{bmatrix} -1 & 0 \end{bmatrix}^* (c1^*c2)
[1 0]
[0 \ 1]^{(y1^2x1^2 + 2^y1^y2^x1^x2 + y2^2x2^2 + 1/2^c1^2 + 1/2^c2^2)}
+
[ 0 -1]
\begin{bmatrix} -1 & 0 \end{bmatrix}^{*} (1/2^{*} c1^{*} y1^{*} x1 - 1/2^{*} c1^{*} y1^{*} x2 - 1/2^{*} c1^{*} y2^{*} x1 + 1/2^{*} c1^{*} y2^{*} x2)
[-1 \ 0]
                                                  [-1 \ 0]
\begin{bmatrix} 0 & -1 \end{bmatrix}^{*} (1/2^{*}c1^{2} + 1/2^{*}c2^{2}) + \begin{bmatrix} 0 & 1 \end{bmatrix}^{*} (c2^{*}y2^{*}x2)
+
[0 1]
[1 0]*(1/2*c1*y1*x1 + 1/2*c1*y1*x2 + 1/2*c1*y2*x1 + 1/2*c1*y2*x2)
> PoissonBracket(x1.eu);
[1 0]
[0 \ 1]^*(x1)
```

What CHAMP can already do

- Compute in (restricted) rational Cherednik algebras for any t and c (also generic), in any characteristic.
- Representation theory of RRCAs (simple modules and their graded *W*-character, decomposition matrices of Verma modules, Calogero–Moser families).

Future work (joint with C. Bonnafé)

- · Calogero-Moser families for many more cases as above.
- · Symplectic leaves and cuspidal families.
- · Explicit presentations of Calogero–Moser spaces.
- · Calogero-Moser cellular characters.
- · Calogero–Moser cells.