Specifying smooth vectors for semibounded representations by single elements and applications

Christoph Zellner

Arbeitsgruppe Algebra und Geometrie Department of Mathematics FAU Erlangen-Nürnberg

13. März 2015

Preliminaries

- 2 Nelson's Commutator Theorem
- Specifying H[∞] for π semibounded by a single element
 Smoothness of action on H[∞]
- Smoothing operators for representations
 C*-algebras associated to smoothing operators

5 Applications

- Direct integral decomposition
- Application to oscillator groups
- Application to double extensions of loop groups

Preliminaries

Let G be a (loc. convex) Lie group with exp-map exp : $\mathfrak{g} \to G$. Let $\pi : G \to U(\mathcal{H})$ be a unitary representation.

- π is called ray-continuous if t → π(exp(tx)) = e^{tB_x} is strongly continuous ∀x ∈ g.
- support function: $s_{\pi}(x) := \sup \operatorname{Spec}(iB_x), x \in \mathfrak{g}.$
- $W_{\pi} := \{x_0 \in \mathfrak{g} : s_{\pi}(x) \text{ is bounded on a neighborhood of } x_0\}.$
- π is called smooth if H[∞] := {v ∈ H : g ↦ π(g)v smooth} is dense in H.
- If π smooth, **derived representation**:

$$d\pi:\mathfrak{g}
ightarrow \mathrm{End}(\mathcal{H}^{\infty}), \quad d\pi(x)v=rac{d}{dt}\Big|_{t=0}\pi(exp(tx))v$$

Then: $\overline{\mathrm{d}\pi(x)} = B_x$.

• π is called **semibounded** if π is smooth and $W_{\pi} \neq \emptyset$.

Let $N \ge 1$ self-adjoint operator on Hilbert space \mathcal{H} .

- $\mathcal{H}_k := \text{ completion of } \mathcal{D}(N^{k/2}) \text{ w.r.t. } \|v\|_k := \langle N^k v, v \rangle^{1/2} = \|N^{k/2}v\|, k \in \mathbb{Z}.$ Then: $\mathcal{H}_k = \mathcal{D}(N^{k/2}) \text{ for } k \ge 0 \text{ and } \mathcal{H}_{-k} \cong \mathcal{H}_k^*.$
- Scale of subspaces:

$$\cdots \subset \mathcal{H}_2 \subset \mathcal{H}_1 \subset \mathcal{H} \subset \mathcal{H}_{-1} \subset \mathcal{H}_{-2} \subset \ldots$$

• For $A \in B(\mathcal{H}_k, \mathcal{H}_{-k})$ define

 $[N,A] \in B(\mathcal{H}_{k+2},\mathcal{H}_{-k-2}), \quad [N,A]v := NAv - ANv.$

• We write $[N, A] \in B(\mathcal{H}_k, \mathcal{H}_{-k})$ if $[N, A](\mathcal{H}_{k+2}) \subset \mathcal{H}_{-k}$ and $\exists c > 0 \text{ s.t. } \|[N, A]v\|_{-k} \leq c \|v\|_k, v \in \mathcal{H}_{k+2}.$

Nelson's Commutator Theorem

 $N \ge 1$ self-adjoint operator on Hilbert space \mathcal{H} .

- A dense subspace $D \subset \mathcal{D}(N)$ is called a **core** for N if $\overline{N|_D} = N$.
- For $A \in B(\mathcal{H}_m, \mathcal{H}_n)$ let $||A||_{m,n}$ operator norm w.r.t $\mathcal{H}_m, \mathcal{H}_n$.

Theorem (Nelson)

Let $A \in B(\mathcal{H}_1, \mathcal{H}_{-1})$ and $[N, A] \in B(\mathcal{H}_1, \mathcal{H}_{-1})$. Then:

• $A \in B(\mathcal{H}_2, \mathcal{H})$ and

$$\|A\|_{2,0} \le \|A\|_{1,-1}^{1/2} (\|A\|_{1,-1} + \|[N,A]\|_{1,-1})^{1/2} =: c,$$

i.e., $\|Av\| \leq c \|Nv\|$ for all $v \in \mathcal{D}(N) = \mathcal{H}_2$.

If := A|_{D(N)} is a symmetric operator on H then is essentially self-adjoint on any core for N.

Example

•
$$p := \frac{1}{i} \frac{d}{dx}, \ q := x$$
 self-adj. on $\mathcal{H} = L^2(\mathbb{R}, \mathbb{C})$.

- Harmonic oscillator: $N_S := p^2 + q^2 = -\Delta + x^2$ on $S(\mathbb{R})$, $N := \overline{N_S} \ge 1$
- Fact: N is ess. self-adjoint on $C_0^{\infty}(\mathbb{R})$.

•
$$A := p^2 - q^2$$
 on $S(\mathbb{R})$. Then $\forall v, w \in S(\mathbb{R})$:

$$\begin{aligned} |\langle Av, w \rangle| &\leq \|pv\| \|pw\| + \|qv\| \|qw\| \leq 2\|N^{1/2}v\| \|N^{1/2}w\|. \\ \Rightarrow \|N^{-1/2}Av\| &= \sup_{\|w\|=1} |\langle Av, N^{-1/2}w \rangle| \leq 2\|N^{1/2}v\|. \end{aligned}$$

$$[A, N] = 2[p^2, q^2] = 4(pq + qp) \le 4(p^2 + q^2) = 4N \text{ on } S(\mathbb{R}).$$

- $\Rightarrow A$ extends to $\hat{A} \in B(\mathcal{H}_1, \mathcal{H}_{-1})$ with $[N, \hat{A}] \in B(\mathcal{H}_1, \mathcal{H}_{-1})$.
- $\Rightarrow p^2 q^2 = -\Delta x^2$ is ess. self-adjoint on $C_0^{\infty}(\mathbb{R})$ by Nelson's Commutator Theorem.

Specifying \mathcal{H}^{∞} for π semibounded by a single element

Theorem

Let G be a loc. conv. Lie group with exp-map exp : $\mathfrak{g} \to G$. Let $\pi : G \to U(\mathcal{H})$ be a semibounded representation and $x_0 \in W_{\pi}$. Then

$$\mathcal{H}^{\infty}=\mathcal{H}^{\infty}(\overline{\mathrm{d}\pi}(x_0)),$$

where $\mathcal{H}^{\infty}(\overline{d\pi}(x_0)) = \{ v \in \mathcal{H} : \mathbb{R} \ni t \mapsto \pi(\exp(tx_0)) v \text{ is smooth} \}.$

Proof (sketch).

Choose cont. seminorm p on \mathfrak{g} such that $\forall x \in \mathfrak{g}, p(x) \leq 1$:

$$\sup_{v\in\mathcal{H}^{\infty},\|v\|=1}\langle id\pi(x_0+x)v,v\rangle=s_{\pi}(x_0+x)\leq s_{\pi}(x_0)+1.$$

Set $N := \frac{1}{i} d\pi(x_0) + (s_{\pi}(x_0) + 1)\mathbf{1} \geq \mathbf{1}$. Then

 $|\langle \mathrm{d} \pi(x) v, v
angle| \leq \langle \mathit{N} v, v
angle, \quad \mathit{p}(x) \leq 1, v \in \mathcal{H}^{\infty}.$

Proof (continuation).

Set
$$A_x := \frac{1}{i} d\pi(x)$$
. Then:

$$|\langle NN^{-1}A_xv,v\rangle| = |\langle A_xv,v\rangle| \le p(x)\langle Nv,v\rangle, \quad x \in \mathfrak{g}, v \in \mathcal{H}^{\infty}.$$

 $\Rightarrow A_x \text{ extends to } \tilde{A}_x \in B(\mathcal{H}_1, \mathcal{H}_{-1}). \ (\mathcal{H}_1 \text{ HS with SKP } \langle Nx, y \rangle.)$ Moreover: $[N, \tilde{A}_x] \in B(\mathcal{H}_1, \mathcal{H}_{-1}) \text{ (implied by } [N, A_x] = iA_{[x, x_0]}).$ Moreover: $\|\tilde{A}_x\|_{1, -1} \leq p(x) \text{ and } \|[N, \tilde{A}_x]\|_{1, -1} \leq p([x, x_0]).$ Commutator Theorem $\Rightarrow \tilde{A}_x \in B(\mathcal{H}_2, \mathcal{H}) \text{ and }$

$$\| \mathtt{d} \pi(x) v \| \leq (p(x) + rac{1}{2} p([x, x_0])) \| \mathsf{N} v \|, \quad x \in \mathfrak{g}, v \in \mathcal{H}^{\infty}.$$

Thus $\beta : \mathfrak{g} \times \mathcal{H}^{\infty}(\overline{d\pi}(x_0)) \to \mathcal{H}, \beta(x, v) = \overline{d\pi}(x)v$ continuous. Moreover it can be shown that

$$\beta:\mathfrak{g}\times\mathcal{H}^{\infty}(\overline{\mathrm{d}\pi}(x_0))\to\mathcal{H}^{\infty}(\overline{\mathrm{d}\pi}(x_0))$$

is continuous. This implies $\mathcal{H}^{\infty}(\overline{d\pi}(x_0)) \subset \mathcal{H}^{\infty}$.

Remark

Let $\pi : G \to U(\mathcal{H})$ be semibounded and $x_0 \in W_{\pi}$. (a) For $c > s_{\pi}(x_0)$ consider the Minkowski functional $p(x) = \inf\{t > 0 : s_{\pi}(x_0 \pm \frac{x}{t}) < c, x_0 \pm \frac{x}{t} \in W_{\pi}\}.$ (1) Then for all $x \in \mathfrak{g}, v \in \mathcal{H}^{\infty}$: $\|d\pi(x)v\| \le (p(x) + \frac{1}{2}p([x, x_0]))(\|d\pi(x_0)v\| + (c+1)\|v\|).$ (b) Let τ be the locally convex topology on \mathfrak{g} generated by the

the seminorm (1). Then for all $v \in \mathcal{H}^{\infty}, k \in \mathbb{N}$ the map

$$\mathfrak{g}^k o \mathcal{H}, (x_1, \ldots, x_k) \mapsto \mathrm{d}\pi(x_1) \cdots \mathrm{d}\pi(x_k) v$$

is continuous when \mathfrak{g} is equipped with the locally convex topology generated by $f_k : \mathfrak{g} \to (\mathfrak{g}, \tau), x \mapsto \operatorname{ad}(x_0)^k x, k \in \mathbb{N}_0$. Example for $\mathcal{H}^{\infty} = \mathcal{H}^{\infty}(d\pi(x_0))$

Example

- $p := \frac{1}{i} \frac{d}{dx}, q := x$ self-adj. on $\mathcal{H} = L^2(\mathbb{R}, \mathbb{C})$.
- Hamiltonian: $N := \frac{p^2+q^2-1}{2}$.
- Heisenberg algebra: $\mathfrak{heis}_3 = \mathbb{R}$ -span $\{i\mathbf{1}, ip, iq\}, [q, p] = i\mathbf{1}$.

- Oscillator algebra: $\mathfrak{g} := \mathfrak{heis}_3 \oplus \mathbb{R}iN$.
- Oscillator group G with Lie algebra g.
- π : G → U(L²(ℝ, ℂ)) Schrödinger representation with generators 1, p, q, N.
- Then: $x_0 := (\mathbf{0}, 1) \in W_\pi$ and $d\pi(x_0) = iN$.
- Thus: $\mathcal{H}^{\infty}(\pi) = \mathcal{H}^{\infty}(N) = \bigcap_{k \in \mathbb{N}} \mathcal{D}(N^k) = \mathcal{S}(\mathbb{R}).$

Smoothness of action on \mathcal{H}^∞

Proposition

Let $\pi : G \to U(\mathcal{H})$ be a semibounded representation and $x_0 \in W_{\pi}$. Then the action $G \times \mathcal{H}^{\infty} \to \mathcal{H}^{\infty}, (g, v) \mapsto \pi(g)v$ is smooth when $\mathcal{H}^{\infty} = \mathcal{H}^{\infty}(\overline{d\pi}(x_0))$ is equipped with the C^{∞} -topology, generated by the seminorms $v \mapsto \|d\pi(x_0)^k v\|, k \in \mathbb{N}_0$.

Remark (Neeb)

- (a) If G is a Banach Lie group and (π, \mathcal{H}) a smooth representation of G then \mathcal{H}^{∞} carries a natural Fréchet topology such that $\pi : G \times \mathcal{H}^{\infty} \to \mathcal{H}^{\infty}$ is smooth.
- (b) Consider $\pi : (\mathbb{R}^{\mathbb{N}}, +) \to U(\ell^2(\mathbb{N}, \mathbb{C})), (\pi(g)x)_n = e^{ig_n}x_n$. Then $\mathcal{H}^{\infty} = \mathbb{C}^{(\mathbb{N})}$ and there is no locally convex topology on \mathcal{H}^{∞} such that

$$\mathfrak{g} imes \mathcal{H}^\infty o \mathcal{H}, \quad (x, v) \mapsto \mathrm{d}\pi(x) v$$

is continuous.

Let G be a Lie group such that \mathfrak{g} is metrizable (e.g. G Fréchet). Let $\pi : G \to U(\mathcal{H})$ be a smooth representation.

Definition

 $A \in B(\mathcal{H})$ is called a **smoothing operator** for π if $A(\mathcal{H}) \subset \mathcal{H}^{\infty}$.

Theorem (Neeb/Salmasian)

A is smoothing operator $\Leftrightarrow G \to B(\mathcal{H}), g \mapsto \pi(g)A$ is smooth.

Remark

• If $\mathcal{H}^{\infty} = \mathcal{H}^{\infty}(\overline{d\pi}(x))$ then $\pi_{x}(f) := \int_{\mathbb{R}} f(t)\pi(\exp(tx))dt$ is a smoothing operator $\forall f \in S(\mathbb{R})$.

• If π semibounded then $e^{id\pi(x)}$ is smoothing operator $\forall x \in W_{\pi}$.

- For a C*-algebra A ⊂ B(H) consider the multiplier algebra M(A) := {x ∈ B(H) : xA + Ax ⊂ A}.
- Fact: Every non-deg. representation ρ of A extends canonically to a representation ρ̃ of M(A).

Proposition

Let $\mathcal{B} \subset \mathcal{B}(\mathcal{H})$ be a *-invariant subset of smoothing operators for π . Consider the C*-algebra

$$\mathcal{A} := C^*(\pi(G)\mathcal{B}\pi(G)) = \overline{\operatorname{span}} \left(\cup_{n \ge 1} \pi(G)(\mathcal{B}\pi(G))^n \right).$$

Then: $\forall \rho$ non-deg. repr. of \mathcal{A} , $\rho_{\mathsf{G}} := \tilde{\rho} \circ \pi$ is a smooth repr.

Proposition

Assume π is semibounded, $\mathcal{A} := C^*(\pi(G)e^{id\pi(W_{\pi})}\pi(G))$. Then

•
$$\mathcal{A} = C^*(\pi(G)e^{i\mathrm{d}\pi(x_0)}\pi(G)) \; \forall x_0 \in W_{\pi}$$

• $\forall \rho$ non-deg. repr. of \mathcal{A} , $\rho_G = \tilde{\rho} \circ \pi$ is semibounded, $W_{\rho_G} \supset W_{\pi}$ and $\rho_G(G)' = \rho(\mathcal{A})'$. Let G be a Lie group with \mathfrak{g} metrizable.

Theorem

Assume G separable (e.g. G connected and g separable). Let $\pi : G \to U(\mathcal{H})$ be semibounded and \mathcal{H} separable. Then π is equivalent to a direct integral of irreducible semibounded representations of G.

Proof (idea).

For $x_0 \in W_{\pi}$ consider $\mathcal{A} = C^*(\pi(G)e^{id\pi(x_0)}\pi(G))$. Then \mathcal{A} is separable. Let $\rho : \mathcal{A} \subset B(\mathcal{H})$ identical representation. Then ρ is non-degenerate and $\rho_G = \pi$. Disintegration of ρ into irreducible representations and preceding proposition yield the assertion.

Oscillator groups

Let (V, ω) be a locally convex symplectic vector space and $\gamma : \mathbb{R} \to \operatorname{Sp}(V)$ defining a smooth action $\mathbb{R} \times V \to V$.

Definition

Oscillator group:
$$G = G(V, \omega, \gamma) := \text{Heis}(V, \omega) \rtimes_{\gamma} \mathbb{R}.$$

Let *H* be a complex Hilbert space, $\gamma : \mathbb{R} \to U(H)$ a strongly continuous unitary one-parameter group, $\gamma(t) = e^{iAt}$ such that $A \ge 0$ and ker A = 0. We define:

- $\mathcal{D}^{\infty}(A) :=$ space of γ -smooth vectors in H, equipped with C^{∞} -topology (given by norms $x \mapsto ||A^k x||, k \in \mathbb{N}_0$).
- $\omega_A(x,y) := \operatorname{Im}\langle Ax, y \rangle.$

Definition

 $G_A := \text{Heis}(\mathcal{D}^{\infty}(A), \omega_A) \rtimes_{\gamma} \mathbb{R}$ is called a standard oscillator group.

Applications to oscillator groups

Let $G = G(V, \omega, \gamma)$ be an oscillator group. Further assume \exists dense embedding $\iota : V \hookrightarrow C^{\infty}(A)$ such that

$$\iota: G(V, \omega, \gamma) \hookrightarrow G_A, (t, v, s) \mapsto (t, \iota(v), s)$$

is a morphism of Lie groups.

Proposition

Assume $DV \subset V$ is dense where $D = \gamma'(0)$. Then every semibounded repr. π of G extends to a (unique) semibounded repr. $\hat{\pi}$ of G_A .

Proposition

Assume A is diagonalizable. Let $\pi : G_A \to U(\mathcal{H})$ be a continuous positive energy representation, i.e., $-id\pi(0,0,1) \ge 0$. Then π is semibounded.

Application to double extensions of loop groups

Let K be a simply-connected compact simple Lie group with Lie algebra \mathfrak{k} and κ (normalized) invariant inner product on \mathfrak{k} .

- Loop group: L(K) := C[∞](S¹, K), Loop algebra: L(𝔅) = C[∞](S¹, 𝔅).
- γ rotation action of \mathbb{R} on $\mathcal{L}(\mathfrak{k}), (\gamma(t)f)(x) := f(x+t)$. Df := f' generator of γ .
- $\omega(f,g) := \frac{1}{2\pi} \int_{S^1} \kappa(Df(x),g(x)) dx, \quad f,g \in \mathcal{L}(\mathfrak{k}).$
- double extension: $\hat{\mathcal{L}}(\mathfrak{k}) = \mathbb{R} \oplus_{\omega} \mathcal{L}(\mathfrak{k}) \rtimes_D \mathbb{R}$.
- integrates to: 2-connected Fréchet-Lie group Â(K) with Lie algebra Â(t).

Proposition

Let $\pi : \hat{\mathcal{L}}(K) \to U(\mathcal{H})$ be a continuous positive energy representation, i.e., $-id\pi(0,0,1) \ge 0$. Then π is semibounded.

Open problems and perspectives

Let G be a Lie group.

- **Problem:** Let $\pi : G \to U(\mathcal{H})$ continuous representation with $W_{\pi} \neq \emptyset$. Does it follow that π is semibounded?
- Let $\pi: G \to U(\mathcal{H})$ semibounded, $x_0 \in W_{\pi}$. Consider:

$$\begin{aligned} \mathcal{H}^{\omega} &:= \Big\{ v \in \mathcal{H}^{\infty} : \sum_{n=0}^{\infty} \frac{\| \mathrm{d}\pi(x)^n v \|}{n!} < \infty \text{ for } x \text{ in a neighbh. of } 0 \Big\}, \\ \mathcal{H}^{\omega}(\overline{\mathrm{d}\pi}(x_0)) &= \Big\{ v \in \mathcal{H}^{\infty} : \exists t > 0 \text{ s.t. } \sum_{n=0}^{\infty} \frac{t^n \| \mathrm{d}\pi(x_0)^n v \|}{n!} < \infty \Big\}. \end{aligned}$$

Is true that $\mathcal{H}^{\omega} = \mathcal{H}^{\omega}(\overline{d\pi}(x_0))$?

Consider situations where H[∞] = H[∞](π|_T) for T ⊂ G a finite-dim. subgroup and π not necessarily semibounded. In this case we also obtain smoothing operators and C*-algebras. Recall: G finite-dim., π cont. repr. of G, (e_k)_k basis of g ⇒ H[∞] = H[∞](Δ), Δ = Σ_i dπ(e_k)². (Nelson)