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Preliminaries

Let G be a (loc. convex) Lie group with exp-map exp : g→ G .
Let π : G → U(H) be a unitary representation.

π is called ray-continuous if t 7→ π(exp(tx)) = etBx is
strongly continuous ∀x ∈ g.

support function: sπ(x) := sup Spec(iBx), x ∈ g.

Wπ := {x0 ∈ g : sπ(x) is bounded on a neighborhood of x0}.

π is called smooth if H∞ := {v ∈ H : g 7→ π(g)v smooth} is
dense in H.

If π smooth, derived representation:

dπ : g→ End(H∞), dπ(x)v =
d

dt t=0
π(exp(tx))v

Then: dπ(x) = Bx .

π is called semibounded if π is smooth and Wπ 6= ∅.



Nelson’s Commutator Theorem

Let N ≥ 1 self-adjoint operator on Hilbert space H.

Hk := completion of D(Nk/2) w.r.t. ‖v‖k := 〈Nkv , v〉1/2 =
‖Nk/2v‖, k ∈ Z.
Then: Hk = D(Nk/2) for k ≥ 0 and H−k ∼= H∗k .

Scale of subspaces:

· · · ⊂ H2 ⊂ H1 ⊂ H ⊂ H−1 ⊂ H−2 ⊂ . . .

For A ∈ B(Hk ,H−k) define

[N,A] ∈ B(Hk+2,H−k−2), [N,A]v := NAv − ANv .

We write [N,A] ∈ B(Hk ,H−k) if [N,A](Hk+2) ⊂ H−k and
∃c > 0 s.t. ‖[N,A]v‖−k ≤ c‖v‖k , v ∈ Hk+2.



Nelson’s Commutator Theorem

N ≥ 1 self-adjoint operator on Hilbert space H.

A dense subspace D ⊂ D(N) is called a core for N if
N|D = N.

For A ∈ B(Hm,Hn) let ‖A‖m,n operator norm w.r.t Hm,Hn.

Theorem (Nelson)

Let A ∈ B(H1,H−1) and [N,A] ∈ B(H1,H−1). Then:

A ∈ B(H2,H) and

‖A‖2,0 ≤ ‖A‖1/21,−1(‖A‖1,−1 + ‖[N,A]‖1,−1)1/2 =: c ,

i.e., ‖Av‖ ≤ c‖Nv‖ for all v ∈ D(N) = H2.

If Â := A|D(N) is a symmetric operator on H then Â is
essentially self-adjoint on any core for N.



Example

p := 1
i
d
dx , q := x self-adj. on H = L2(R,C).

Harmonic oscillator:
NS := p2 + q2 = −∆ + x2 on S(R), N := NS ≥ 1

Fact: N is ess. self-adjoint on C∞0 (R).

A := p2 − q2 on S(R). Then ∀v ,w ∈ S(R):

|〈Av ,w〉| ≤ ‖pv‖‖pw‖+ ‖qv‖‖qw‖ ≤ 2‖N1/2v‖‖N1/2w‖.
⇒‖N−1/2Av‖ = sup

‖w‖=1
|〈Av ,N−1/2w〉| ≤ 2‖N1/2v‖.

[A,N] = 2[p2, q2] = 4(pq + qp) ≤ 4(p2 + q2) = 4N on S(R).

⇒ A extends to Â ∈ B(H1,H−1) with [N, Â] ∈ B(H1,H−1).

⇒ p2 − q2 = −∆− x2 is ess. self-adjoint on C∞0 (R) by
Nelson’s Commutator Theorem.



Specifying H∞ for π semibounded by a single element

Theorem

Let G be a loc. conv. Lie group with exp-map exp : g→ G . Let
π : G → U(H) be a semibounded representation and x0 ∈Wπ.
Then

H∞ = H∞(dπ(x0)),

where H∞(dπ(x0)) = {v ∈ H : R 3 t 7→ π(exp(tx0))v is smooth}.

Proof (sketch).

Choose cont. seminorm p on g such that ∀x ∈ g, p(x) ≤ 1:

sup
v∈H∞,‖v‖=1

〈idπ(x0 + x)v , v〉 = sπ(x0 + x) ≤ sπ(x0) + 1.

Set N := 1
i dπ(x0) + (sπ(x0) + 1)1 ≥ 1. Then

|〈dπ(x)v , v〉| ≤ 〈Nv , v〉, p(x) ≤ 1, v ∈ H∞.



Proof (continuation).

Set Ax := 1
i dπ(x). Then:

|〈NN−1Axv , v〉| = |〈Axv , v〉| ≤ p(x)〈Nv , v〉, x ∈ g, v ∈ H∞.

⇒ Ax extends to Ãx ∈ B(H1,H−1). (H1 HS with SKP 〈Nx , y〉.)
Moreover: [N, Ãx ] ∈ B(H1,H−1) (implied by [N,Ax ] = iA[x ,x0]).

Moreover: ‖Ãx‖1,−1 ≤ p(x) and ‖[N, Ãx ]‖1,−1 ≤ p([x , x0]).

Commutator Theorem ⇒ Ãx ∈ B(H2,H) and

‖dπ(x)v‖ ≤ (p(x) + 1
2p([x , x0]))‖Nv‖, x ∈ g, v ∈ H∞.

Thus β : g×H∞(dπ(x0))→ H, β(x , v) = dπ(x)v continuous.
Moreover it can be shown that

β : g×H∞(dπ(x0))→ H∞(dπ(x0))

is continuous. This implies H∞(dπ(x0)) ⊂ H∞.



Remark

Let π : G → U(H) be semibounded and x0 ∈Wπ.

(a) For c > sπ(x0) consider the Minkowski functional

p(x) = inf{t > 0 : sπ(x0 ± x
t ) < c, x0 ± x

t ∈Wπ}. (1)

Then for all x ∈ g, v ∈ H∞ :

‖dπ(x)v‖ ≤ (p(x) + 1
2p([x , x0]))(‖dπ(x0)v‖+ (c + 1)‖v‖).

(b) Let τ be the locally convex topology on g generated by the
the seminorm (1). Then for all v ∈ H∞, k ∈ N the map

gk → H, (x1, . . . , xk) 7→ dπ(x1) · · · dπ(xk)v

is continuous when g is equipped with the locally convex
topology generated by fk : g→ (g, τ), x 7→ ad(x0)kx , k ∈ N0.



Example for H∞ = H∞(dπ(x0))

Example

p := 1
i
d
dx , q := x self-adj. on H = L2(R,C).

Hamiltonian: N := p2+q2−1
2 .

Heisenberg algebra: heis3 = R-span{i1, ip, iq}, [q, p] = i1.

Oscillator algebra: g := heis3 ⊕ RiN.

Oscillator group G with Lie algebra g.

π : G → U(L2(R,C)) Schrödinger representation with
generators 1, p, q,N.

Then: x0 := (0, 1) ∈Wπ and dπ(x0) = iN.

Thus: H∞(π) = H∞(N) =
⋂

k∈ND(Nk) = S(R).



Smoothness of action on H∞

Proposition

Let π : G → U(H) be a semibounded representation and x0 ∈Wπ.
Then the action G ×H∞ → H∞, (g , v) 7→ π(g)v is smooth when
H∞ = H∞(dπ(x0)) is equipped with the C∞-topology, generated
by the seminorms v 7→ ‖dπ(x0)kv‖, k ∈ N0.

Remark (Neeb)

(a) If G is a Banach Lie group and (π,H) a smooth
representation of G then H∞ carries a natural Fréchet
topology such that π : G ×H∞ → H∞ is smooth.

(b) Consider π : (RN,+)→ U(`2(N,C)), (π(g)x)n = e ignxn.
Then H∞ = C(N) and there is no locally convex topology on
H∞ such that

g×H∞ → H, (x , v) 7→ dπ(x)v

is continuous.



Smoothing operators

Let G be a Lie group such that g is metrizable (e.g. G Fréchet).
Let π : G → U(H) be a smooth representation.

Definition

A ∈ B(H) is called a smoothing operator for π if A(H) ⊂ H∞.

Theorem (Neeb/Salmasian)

A is smoothing operator ⇔ G → B(H), g 7→ π(g)A is smooth.

Remark

If H∞ = H∞(dπ(x)) then πx(f ) :=
∫
R f (t)π(exp(tx))dt is a

smoothing operator ∀f ∈ S(R).

If π semibounded then e idπ(x) is smoothing operator ∀x ∈Wπ.



For a C ∗-algebra A ⊂ B(H) consider the multiplier algebra
M(A) := {x ∈ B(H) : xA+Ax ⊂ A}.
Fact: Every non-deg. representation ρ of A extends
canonically to a representation ρ̃ of M(A).

Proposition

Let B ⊂ B(H) be a ∗-invariant subset of smoothing operators for
π. Consider the C ∗-algebra

A := C ∗(π(G )Bπ(G )) = span (∪n≥1π(G )(Bπ(G ))n) .

Then: ∀ρ non-deg. repr. of A, ρG := ρ̃ ◦ π is a smooth repr.

Proposition

Assume π is semibounded, A := C ∗(π(G )e idπ(Wπ)π(G )). Then

A = C ∗(π(G )e idπ(x0)π(G )) ∀x0 ∈Wπ.

∀ρ non-deg. repr. of A, ρG = ρ̃ ◦ π is semibounded,
WρG ⊃Wπ and ρG (G )′ = ρ(A)′.



Direct integral decomposition

Let G be a Lie group with g metrizable.

Theorem

Assume G separable (e.g. G connected and g separable). Let
π : G → U(H) be semibounded and H separable. Then π is
equivalent to a direct integral of irreducible semibounded
representations of G .

Proof (idea).

For x0 ∈Wπ consider A = C ∗(π(G )e idπ(x0)π(G )). Then A is
separable. Let ρ : A ⊂ B(H) identical representation. Then ρ is
non-degenerate and ρG = π. Disintegration of ρ into irreducible
representations and preceding proposition yield the assertion.



Oscillator groups

Let (V , ω) be a locally convex symplectic vector space and
γ : R→ Sp(V ) defining a smooth action R× V → V .

Definition

Oscillator group: G = G (V , ω, γ) := Heis(V , ω) oγ R.

Let H be a complex Hilbert space, γ : R→ U(H) a strongly
continuous unitary one-parameter group, γ(t) = e iAt such that
A ≥ 0 and ker A = 0. We define:

D∞(A) := space of γ-smooth vectors in H, equipped with
C∞-topology (given by norms x 7→ ‖Akx‖, k ∈ N0).

ωA(x , y) := Im〈Ax , y〉.

Definition

GA := Heis(D∞(A), ωA) oγ R is called a standard oscillator
group.



Applications to oscillator groups

Let G = G (V , ω, γ) be an oscillator group. Further assume ∃
dense embedding ι : V ↪→ C∞(A) such that

ι : G (V , ω, γ) ↪→ GA, (t, v , s) 7→ (t, ι(v), s)

is a morphism of Lie groups.

Proposition

Assume DV ⊂ V is dense where D = γ′(0). Then every
semibounded repr. π of G extends to a (unique) semibounded
repr. π̂ of GA.

Proposition

Assume A is diagonalizable. Let π : GA → U(H) be a continuous
positive energy representation, i.e., −idπ(0, 0, 1) ≥ 0. Then π is
semibounded.



Application to double extensions of loop groups

Let K be a simply-connected compact simple Lie group with Lie
algebra k and κ (normalized) invariant inner product on k.

Loop group: L(K ) := C∞(S1,K ),

Loop algebra: L(k) = C∞(S1, k).

γ rotation action of R on L(k), (γ(t)f )(x) := f (x + t).
Df := f ′ generator of γ.

ω(f , g) := 1
2π

∫
S1 κ(Df (x), g(x))dx , f , g ∈ L(k).

double extension: L̂(k) = R⊕ω L(k) oD R.

integrates to: 2-connected Fréchet-Lie group L̂(K ) with Lie
algebra L̂(k).

Proposition

Let π : L̂(K )→ U(H) be a continuous positive energy
representation, i.e., −idπ(0, 0, 1) ≥ 0. Then π is semibounded.



Open problems and perspectives

Let G be a Lie group.

Problem: Let π : G → U(H) continuous representation with
Wπ 6= ∅. Does it follow that π is semibounded?

Let π : G → U(H) semibounded, x0 ∈Wπ. Consider:

Hω :=
{

v ∈ H∞ :
∑∞

n=0
‖dπ(x)nv‖

n! <∞ for x in a neighbh. of 0
}
,

Hω(dπ(x0)) =
{

v ∈ H∞ : ∃t > 0 s.t.
∑∞

n=0
tn‖dπ(x0)nv‖

n! <∞
}
.

Is true that Hω = Hω(dπ(x0))?

Consider situations where H∞ = H∞(π|T ) for T ⊂ G a
finite-dim. subgroup and π not necessarily semibounded. In
this case we also obtain smoothing operators and C ∗-algebras.

Recall: G finite-dim., π cont. repr. of G , (ek)k basis of g

⇒ H∞ = H∞(∆), ∆ =
∑

k dπ(ek)2. (Nelson)


