Losev-Manin moduli spaces and toric varieties associated to root systems

Mark Blume

Universität Münster, SPP 1388 currently: Universität Hamburg, GRK 1670

Darstellungstheorie Schwerpunkttagung 2012

Losev-Manin moduli spaces

Theorem (Losev, Manin)

There is a fine moduli space

 \overline{L}_n = fine moduli space of stable n-pointed chains of projective lines

Stable *n*-pointed chain of projective lines $(C, s_0, s_\infty, s_1, \ldots, s_n)$:

- *C* projective curve, irreducible components isomorphic to \mathbb{P}^1 , transversal intersection at poles, shape: chain, s_0, s_∞ poles of outer components

 $-s_1, \ldots, s_n$ marked points, different from poles of components, not necessarily distinct

- stability: at least one marked point on each component (therefore no nontrivial isomorphisms)

Properties of \overline{L}_n

 $-\overline{L}_n$ is (n-1)-dimensional smooth projective toric variety (over \mathbb{C}), contains dense open torus $L_n = \{(\mathbb{P}^1, 0, \infty, s_1, \dots, s_n)\} \subset \overline{L}_n$:

$$\begin{array}{rcl} \mathcal{L}_n &=& (n \text{ points in } \mathbb{P}^1 \setminus \{0,\infty\}) / \text{automorphisms of } (\mathbb{P}^1,0,\infty) \\ &=& (\mathbb{C}^*)^n / \mathbb{C}^* \cong (\mathbb{C}^*)^{n-1} \end{array}$$

 $-S_n$ -operation by permutation of marked points.

– There are natural toric morphisms $\overline{L}_{n+1} \to \overline{L}_n$ defined by forgetting one of the marked points and stabilisation, $\overline{L}_{n+1} \to \overline{L}_n$ (with sections) forms the universal *n*-pointed chain.

 $-\overline{L}_n$ related to similar moduli space

 $\overline{M}_{0,n+2} = moduli \text{ space of stable } (n+2)\text{-pointed trees of projective lines}$ Birational morphism $\overline{M}_{0,n+2} \to \overline{L}_n$ after choice of two of the n+2 marked points which become s_0, s_∞ .

▲■▶ ▲ヨ▶ ▲ヨ▶ - ヨー のへで

Examples

- $-\overline{L}_1 = pt.$
- $-\overline{L}_2 = \mathbb{P}^1$
- \overline{L}_3 del Pezzo surface, \mathbb{P}^2 blown up in the 3 torus fixed points

Toric varieties associated with root systems

R root system

 $M(R) = \langle R \rangle_{\mathbb{Z}}$ root lattice $N(R) = M(R)^*$ dual lattice

For a set of simple roots $S \subset R$: Weyl chamber

$$\sigma_{S} = S^{\vee} = \{ v \in N(R)_{\mathbb{Q}} : \forall \alpha \in S : \langle \alpha, v \rangle \ge 0 \} \subset N(R)_{\mathbb{Q}}$$

Definition

 $\Sigma(R)$ fan of Weyl chambers X(R) toric variety for $\Sigma(R)$

5 N A 5 N

Properties and examples

-X(R) smooth projective toric variety (over \mathbb{C}) of dimension dim $X(R) = \operatorname{rk} R$

- Operation of Weyl group W(R)

Examples: fans for $R = A_1, A_2$

Proposition

(Functorial property) Let R, R' be root systems. Linear maps $\mu : M(R')_{\mathbb{Q}} \to M(R)_{\mathbb{Q}}$ such that $\mu(R') \subseteq \{a\alpha : \alpha \in R, a \in \mathbb{Z}\}$ induce toric morphisms $X(\mu) : X(R) \to X(R')$.

< 口 > < 同 >

A B + A B +

X(R) as moduli space

Theorem

There is an isomorphism

$$\overline{L}_n \cong X(A_{n-1})$$

Steps of proof:

- compare the moduli functor

$$\begin{array}{ccc} \overline{L}_{n}: & (\mathrm{schemes})^{\circ} & \to & (\mathrm{sets}) \\ & & & \\ Y & \mapsto & \left\{ \begin{array}{ccc} (\pi: \ C \to Y, s_{0}, s_{\infty}, s_{1}, \ldots, s_{n}) \\ \pi \ \text{proper flat, } s_{0}, s_{\infty}, s_{i} \ \text{sections,} \\ geom. \ \text{fibres stable n-pointed chains} \end{array} \right\} \ / \ \sim \end{array}$$

to the functor of the toric variety $Mor(\cdot, X(A_{n-1}))$.

- find appropriate description of functor of $X(A_{n-1})$

- construct universal curve over $X(A_{n-1})$ in terms of maps of root systems: $A_{n-1} \rightarrow A_n$ gives rise to proper surjective toric morphism $X(A_n) \rightarrow X(A_{n-1})$ projections $A_n \rightarrow A_{n-1}(\subset A_n)$ along pairs of opposite roots $\{\pm \alpha_i\} \subseteq A_n \setminus A_{n-1}$ give rise to sections $s_i \colon X(A_{n-1}) \rightarrow X(A_n)$

Example:

Theorem

 $X(A_{n-1})$ with universal curve $X(A_n) \rightarrow X(A_{n-1})$ is a fine moduli space of *n*-pointed chains of projective lines.

Functor of X(R)

R root system

Use closed embedding

$$X(R) o \prod_{A_1\cong R'\subseteq R} X(R') weee = \prod_{\{\pm lpha\}\subseteq R} \mathbb{P}^1$$

determined by surjection of root systems $\prod_{A_1 \cong R' \subseteq R} R' \to R$, and functor of \mathbb{P}^1 to obtain

$$X(R)(Y) = \left\{ \begin{array}{l} (\mathscr{L}_{\{\pm\beta\}}, \{t_{\beta}, t_{-\beta}\})_{\{\pm\beta\}\subseteq R} \text{ such that} \\ t_{\alpha}t_{\beta}t_{-\gamma} = t_{-\alpha}t_{-\beta}t_{\gamma} \text{ for all root subsystems} \\ A_{2} \cong \{\pm\alpha, \pm\beta, \pm(\gamma = \alpha + \beta)\} \subseteq R \end{array} \right\} / \sim$$

Comparison with moduli functor

$$X(A_{n-1})(Y) \longleftrightarrow (\mathscr{L}_{\{\pmeta\}}, \{t_eta, t_{-eta}\})_{\{\pmeta\}\subseteq A_{n-1}} \mapsto$$

{stable n-pointed chains over Y}

$$C \subseteq \prod_{\{\pm \alpha\} \subseteq A_n \setminus A_{n-1}} \mathbb{P}^1_Y$$

def. by homogeneous equations
 $t_{\beta_{ij}} z_{\alpha_j} z_{-\alpha_i} = t_{-\beta_{ij}} z_{-\alpha_j} z_{\alpha_i}$
for $\beta_{ij} = \alpha_i - \alpha_j$
 $(\beta_{ij} \in A_{n-1}, \alpha_i, \alpha_j \in A_n \setminus A_{n-1})$
and extra equations for the sections

$$(t_{\beta_{12}}:t_{-\beta_{12}}) = (1:0)$$
 $(t_{\beta_{12}}:t_{-\beta_{12}}) = (a:b)$ $(t_{\beta_{12}}:t_{-\beta_{12}}) = (0:1)$

Generalisations to other root systems

Root systems of type *B*: consider stable (2n + 1)-pointed chains with involution $(C, I, s_-, s_+, s_0, s_1^{\pm}, \ldots, s_n^{\pm})$, where *C* chain of projective lines, s_-, s_+ poles of outer components, $I: C \to C$ involution such that $I(s_-) = s_+, 2n + 1$ sections s_0, s_i^{\pm} that satisfy $I(s_0) = s_0, I(s_i^-) = s_i^+$.

Theorem

 $X(B_n)$ with universal curve $X(B_{n+1}) \to X(B_n)$ is the fine moduli space $\overline{L}_n^{0,\pm}$ of (2n+1)-pointed chains with involution.

Root systems of type C: consider 2*n*-pointed chains with involution. $X(C_{n+1}) \rightarrow X(C_n)$ also has nonreduced fibres, but we have

Theorem

 $X(C_n)$ is the fine moduli space \overline{L}_n^{\pm} of 2*n*-pointed chains with involution.

Root systems of type D: fibres of $X(D_{n+1}) \rightarrow X(D_n)$ may have higher dimensional components.

The stacks $\overline{\mathcal{L}}_n$

Consider chains of projective lines (C, s_0, s_∞) with subschemes $S \subset C$ finite of degree n, not meeting the poles and intersection points of components, but meeting every component. Call (C, s_0, s_∞, S) a degree-n-pointed chain.

An *n*-pointed chain $(C, s_0, s_\infty, s_1, \ldots, s_n)$ gives rise to a degree-*n*-pointed chain (C, s_0, s_∞, S) by forgetting the labels of the marked points.

 (C, s_0, s_∞, S) may have nontrivial automorphisms: - automorphism group of (C, s_0, s_∞) : $(\mathbb{C}^*)^l$, l length of chain - automorphism group of (C, s_0, s_∞, S) : finite subggroup of $(\mathbb{C}^*)^l$ - for example $(\mathbb{P}^1, 0, \infty, S)$, S given by $z_0^k - z_1^k = 0$, has automorphism

group μ_k .

 $\overline{\mathcal{L}}_n = \textit{moduli stack of degree-n-pointed chains} (C, s_0, s_\infty, S)$

< ロト < 同ト < ヨト < ヨト

Category $\overline{\mathcal{L}}_n$ of degree-*n*-pointed chains:

- objects: ($\mathcal{C}
 ightarrow Y, s_0, s_\infty, S$), Y scheme
- morphisms: cartesian diagrams

compatible with the additional structure.

Proposition

The category $\overline{\mathcal{L}}_n$ is a category fibred in groupoids over the category of schemes. It forms a stack over the fpqc site of schemes (\Rightarrow stack also in fppf, étale topology) with representable, finite diagonal. Over fields of characteristic 0 the diagonal is unramified.

Operation of the symmetric group and relation to \overline{L}_n

Proposition

There is a morphism $\overline{L}_n \to \overline{\mathcal{L}}_n$, $(C, s_0, s_\infty, s_1, \dots, s_n) \mapsto (C, s_0, s_\infty, \sum_i s_i)$. It is faithfully flat and finite of degree n!.

Operation of $S_n = W(A_{n-1})$ on \overline{L}_n by permuting the sections of *n*-pointed chains.

Quotient morphism factors as $\overline{L}_n \to \overline{L}_n \to \overline{L}_n / S_n$.

 $\overline{\mathcal{L}}_n \to \overline{\mathcal{L}}_n / S_n$ is coarse moduli space.

Substack of irreducible pointed chains

Substack $[\mathbb{A}^{n-1}/\mu_n] = \{(\mathbb{P}^1, s_0, s_\infty, S)\} \subset \overline{\mathcal{L}}_n$ of irreducible curves:

$$\begin{array}{rcl} (\mathbb{P}^1, s_0, s_\infty, S) & \longleftrightarrow & \textit{polynomials} \prod_{i=1}^n (y - s_i), \, s_i \in \mathbb{C}^*, \, \textit{up to} \\ & & \textit{multiplication by a factor } \lambda \in \mathbb{C}^* \\ & \longleftrightarrow & \textit{polynomials } x^n + a_{n-1} x^{n-1} + \ldots + a_1 x_1 + 1, \\ & & a_i \in \mathbb{C}, \, \textit{up to multiplication of } x \, \textit{by} \\ & & an n-th \ \textit{root of unity} \end{array}$$

 $[\mathbb{A}^{n-1}/\mu_n]$ contains dense open torus $(\mathbb{C}^*)^{n-1}$ (nonzero coefficients a_i). Points of $(\mathbb{C}^*)^{n-1}$ given by $(a_1, \ldots, a_{n-1}, b_1, \ldots, b_{n-1}) \in (\mathbb{C}^*)^{2(n-1)}$ up to equivalence $(a_1, \ldots, a_{n-1}, b_1, \ldots, b_{n-1}) \sim (\kappa_1 a_1, \ldots, \kappa_{n-1} a_{n-1}, \lambda_1 b_1, \ldots, \lambda_{n-1} b_{n-1})$ for $\kappa_i \in K^*$ and $\lambda_i = \kappa_i^2/(\kappa_{i-1}\kappa_{i+1})$ (putting $\kappa_0 = \kappa_n = 1$).

Compactification:

$$(\mathbb{C}^*)^{n-1} \subset [\mathbb{A}^{n-1}/\mu_n] \subset \overline{\mathcal{L}}_n$$

$$a_i, b_j \neq 0 \qquad allow \ a_i = 0 \qquad allow \ a_i, b_j = 0 \ (certain \ subsets)$$

$$(1)^{(n-1)} = 0 \qquad (certain \ subsets)$$
Mark Blume (Universität Münster) = Losey-Manin moduli spaces of systems Schwerpunkttaring 2012 = 16

 $\overline{\mathcal{L}}_n$ as toric stack

Theorem

There is an isomorphism of stacks

$$\overline{\mathcal{L}}_n \cong \mathcal{Y}(A_{n-1})$$

where $\mathcal{Y}(A_{n-1})$ is a toric orbifold associated to the Cartan matrix A_{n-1} .

Toric orbifolds

Stacky fan (N, Σ, β) , where N lattice, Σ fan in N, $\beta : \mathbb{Z}^{\Sigma(1)} \to N$ map of lattices such that images of the standard base vectors generate the one-dimensional cones $\Sigma(1)$, gives rise to a toric orbifold: Exact sequence of abelian groups

$$0 \longrightarrow M = N^* \stackrel{\beta^*}{\longrightarrow} \mathbb{Z}^{\Sigma(1)} \stackrel{\beta^{\vee}}{\longrightarrow} DG(\beta) \longrightarrow 0$$

Exact sequence of diagonalisable group schemes

$$1 \longrightarrow G \longrightarrow T_{\Sigma(1)} \longrightarrow T_M \longrightarrow 1$$

Open subset $U \subset \mathbb{A}^{\Sigma(1)}$ defined in terms of Σ . Operation of $\mathcal{T}_{\Sigma(1)}$ on $\mathbb{A}^{\Sigma(1)}$ induces operation on U.

Toric orbifold

$$\mathcal{X}(\Sigma) = [U/G]$$

ヨト イヨト ニヨ

Toric orbifolds associated to Cartan matrices

Toric orbifold $\mathcal{Y}(A_n)$ defined via stacky fan $\Upsilon(A_n) = (N, \Upsilon(A_n), \beta)$: $N = \mathbb{Z}^n$

 $\beta \colon \mathbb{Z}^{2n} \to \mathbb{Z}^n$ given by $n \times 2n$ matrix $(-C(A_n) I_n)$ where $C(A_n)$ is Cartan matrix of root system A_n

1-dimensional cones $\varrho_1, \ldots, \varrho_n, \tau_1, \ldots, \tau_n$ of $\Upsilon(A_n)$ generated by columns of matrix

maximal cones generated by $\{\varrho_i : i \notin I\} \cup \{\tau_i : i \in I\}$ for subsets $I \subseteq \{1, \ldots, n\}$

Examples

- $\overline{\mathcal{L}}_2 \cong \mathcal{Y}(A_1) \cong \mathbb{P}(1,2)$, stacky fan $\Upsilon(A_1)$ arising from matrix (-2 1): $\Upsilon(A_1)$ $\stackrel{\varrho_1}{\longrightarrow}$ $0 \quad \tau_1$
- $\overline{\mathcal{L}}_3 \cong \mathcal{Y}(A_2)$, stacky fan $\Upsilon(A_2)$ arising from matrix $\begin{pmatrix} -2 & 1 & 1 & 0 \\ 1 & -2 & 0 & 1 \end{pmatrix}$:

Generalisations to other root systems

Theorem

Let $\overline{\mathscr{L}}_{n,+}^{\pm}$ be the main component of the moduli stack of stable degree-2*n*-pointed chains of projective lines with involution. There is an isomorphism of stacks $\overline{\mathscr{L}}_{n,+}^{\pm} \cong \mathcal{Y}(C_n)$.

Theorem

Let $\overline{\mathscr{L}}_n^{0,\pm}$ be the moduli stack of stable degree-(2n + 1)-pointed chains of projective lines with involution. There is an isomorphism of stacks $\overline{\mathscr{L}}_n^{0,\pm} \cong \mathcal{Y}(B_n)^{\operatorname{can}}$.

References

- V. BATYREV, M. BLUME, The functor of toric varieties associated with Weyl chambers and Losev-Manin moduli spaces, Tohoku Math. J. 63 (2011), arXiv:0911.3607.
- V. BATYREV, M. BLUME, *On generalisations of Losev-Manin moduli spaces for classical root systems*, Pure and Applied Mathematics Quarterly 7 (2011), 1053–1084, arXiv:0912.2898.
- M. BLUME, Toric orbifolds associated to Cartan matrices. arXiv:1110.2761.
- A. LOSEV, YU. MANIN, *New Moduli Spaces of Pointed Curves and Pencils of Flat Connections*, Michigan Math. J. 48 (2000), 443–472, arXiv:math/0001003.

12 N A 12 N