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CHOPPED AND SLICED CONES AND

REPRESENTATIONS OF KAC-MOODY ALGEBRAS

THOMAS BLIEM

Abstract. We introduce the notion of a chopped and sliced cone in
combinatorial geometry and prove two structure theorems for the num-
ber of integral points in the individual slices of such a cone. We observe
that this notion applies to weight multiplicities of Kac-Moody algebras
and Littlewood-Richardson coefficients of semisimple Lie algebras, where
we obtain the corresponding results.

1. Introduction

The first occurrence of a polyhedral model of a representation is the notion
of a Gelfand-Tsetlin pattern as considered by I. Gelfand and M. Tsetlin in
1950 [7]: Given the irreducible rational representation of GLn(C) of highest
weight λ = (λ1 ≥ · · · ≥ λn) ∈ Zn, there is a basis of the representation

space and a polytope Cλ ⊂ Rn(n−1)/2 such that the basis vectors correspond
bijectively to points in Cλ with integral coordinates (or “integral points” for
short). Moreover the family (Cλ) depends linearly on λ in the sense that it

is given by linear inequalities on Rn(n−1)/2 ×Rn. Moreover the constructed
bases consist of weight vectors and the weight is given by a linear function
on Rn(n−1)/2. Hence all questions about dimensions of irreducible rational
representations V (λ) and of their weight spaces V (λ)µ are reduced to the
problem of determining the number of integral points in certain families of
polytopes.

There are several generalizations of this; I would like to report on two of
them. The first one is formed by the patterns introduced by P. Littelmann
[11]: For these, GLn(C) is replaced by a symmetrizable Kac-Moody algebra
g. To every highest weight representation there is an associated crystal
graph as defined by M. Kashiwara and realized by P. Littelmann’s path
model. This colored graph is used to define, given any element w ∈ W of
the Weyl group with a fixed reduced decomposition, a family of polytopes
(Cλ) in Rlength(w) such that integral points in Cλ correspond bijectively to
elements of the crystal basis of the Demazure module Vw(λ). Statements
similar to the ones given for GLn(C) hold about the dependence of Cλ on
λ and about the weight as a function on Cλ. In particular, if g is finite
dimensional one can choose w to be the longest element of the Weyl group
and integral points of Cλ will correspond to elements of the crystal basis of
the irreducible module V (λ).

Note that Littelmann’s patterns allow for dealing with problems concern-
ing weight multiplicities in irreducible representations (as do the classical
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Gelfand-Tsetlin patterns). A. Berenstein and A. Zelevinsky [3] introduce a
similar polyhedral model allowing for the expression of tensor product mul-
tiplicities c

µ
λν = [V (λ)⊗V (ν) : V (µ)] in terms of integral points in polytopes.

As dim V (λ)µ = limν→∞ c
µ+ν
λν this should be seen as a generalization of the

polyhedral models for weight multiplicities.
The exploitation of the structure imposed on representations by the pres-

ence of these models has not been fully accomplished, even for the case of
classical Gelfand-Tsetlin patterns. Interesting results in the case of classi-
cal Gelfand-Tsetlin patterns have been obtained by S. Billey, V. Guillemin
and E. Rassart [2] as follows: They consider the equations and inequalities
defining the polytopes Cλ and the preimage Cλ

µ of a given weight µ under

the (linear) weight map on Cλ. By a clever change of variables they obtain
an expression of the weight multiplicity function for slk(C) in the form

dimV (λ)µ = ΦEk

(

Bk

(

λ
µ

))

,

where Ek and Bk are integral matrices, ΦEk
is the vector partition function

associated with Ek, and
(

λ
µ

)

∈ Z2k is the vector obtained by concatenating
λ and µ [2, Th. 2.1]. This has some useful corollaries, for example using the
structure theorem on vector partition functions [4, 6, 12] it follows that the
weight multiplicity function is piecewise quasi-polynomial as a function of
(λ, µ). This opens a number of questions, many of them answered in the
paper, namely to count the number of regions of quasi-polynomiality (as
a function of k), to compare them to the regions of polynomiality of the
Duistermaat-Heckman measure, to determine the actual quasi-polynomials
which constitute the weight multiplicity function, and to study their prop-
erties.

The purpose of this note is to set up a general framework, the chopped
and sliced cone, in which the three above-mentioned cases [7, 11, 3] are
subsumed.

2. Chopped and sliced cones

We define a new structure in combinatorial geometry, the chopped and
sliced cone. To each chopped and sliced cone we associate a family of se-
quences of discrete measures. We show that each such sequence converges
weakly to an absolutely continuous measure. Finally, to each chopped and
sliced cone we associate a vector partition function such that important
numerical quantities can be calculated by evaluating that vector partition
function.

2.1. Introduction. Let K, Λ and Q be free Abelian groups of finite rank.
Let Λ̃+ and R+ be free Abelian monoids of finite rank. The free Abelian
groups generated by a basis of Λ̃+ respectively R+ are denoted by Λ̃ and
R. On Λ̃, consider the partial order defined by x ≤ y if y − x ∈ Λ̃+ and
similarly for R. Let p : K → Λ̃, q : K → Q, r : K → R and s : Λ → Λ̃
be homomorphisms of Abelian groups. Let KR = K ⊗Z R and similarly for
the other groups. The extensions of p, q, r and s to these real vector spaces
are still denoted by the same symbol. Figure 1 contains an overview over
these maps.
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
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Figure 1. Maps defining a chopped and sliced cone.

Definition 1. A 9-tuple (K, Λ, Q, Λ̃+, R+, p, q, r, s) as above is called a
chopped and sliced cone if the set

Cλ = {x ∈ KR : r(x) ≥ 0, p(x) ≤ s(λ)}

is bounded for all λ ∈ Λ.

If the extra structure is clear from the context, we may simply speak of
the cone

C = {x ∈ KR : r(x) ≥ 0}

as being chopped and sliced. For λ ∈ Λ and β ∈ Q, define

Cλ
β = {x ∈ Cλ : q(x) = β}.

In order to simplify notation, for the rest of the chapter we assume without
loss of generality that Λ = Λ̃ and s = id.

2.2. Measures associated with chopped and sliced cones. For a fixed
chopped and sliced cone C we define some measures on QR. All appearing
real vector spaces are topological spaces with the natural topology and as
such equipped with the σ-algebra of Borel sets. For any set A let δA de-
note the counting measure associated with A. If A = {β} contains only one
element, we abbreviate δβ = δ{β} for the corresponding Dirac measure con-
centrated in β. For any measurable map φ let φ∗ denote the push-forward
of measures under φ. For λ ∈ Λ and n ∈ Z+ let

µλ =
∑

β∈Q

|Cλ
β ∩K| · δβ = q∗δCλ∩K

and

µ
(n)
λ =

1

nrk(K)

(

1
n idQR

)

∗
µnλ.

Let λKR
be the Lebesgue measure on KR, normalized such that K has

covolume 1. For a measurable subset M ⊂ KR let λM be the λKR
-absolutely

continuous measure with density 1M , the characteristic function of M . For
λ ∈ Λ we define

µ̃λ = q∗λCλ .

These measures are finite for any chopped and sliced cone C.

Theorem 1. Let C be a chopped and sliced cone such that q has full rank.

Let λ ∈ Λ. Then µ
(n)
λ converges weakly towards µ̃λ for n → ∞. More-

over, the limit measure µ̃λ is absolutely continuous with respect to Lebesgue

measure on QR.

For the proof, we provide the following fancy version of the definition of
the Riemann integral:
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Lemma 1. Let M ⊂ KR be a bounded set such that the characteristic

function 1M of M is Riemann integrable. Then 1
nrk(K) δM∩ 1

n
K converges

weakly towards λM for n→∞.

Proof. We denote the canonical pairing between functions and measures
by ( , ), i.e. (f, µ) =

∫

fµ =
∫

f(x)µ(dx). Let f ∈ Cb(KR,R) be
an arbitrary continuous bounded function on KR. We have to show that
(f, 1

nrk(K) δM∩ 1
n

K)→ (f, λM ) for n→∞. For any n ∈ Z>0 we have

(

f,
1

nrk(K)
δM∩ 1

n
K

)

=
∑

a∈M∩ 1
n

K

f(a)

nrk(K)
=

∑

a∈ 1
n

K

1M (a)f(a)

nrk(K)
.

As 1M is Riemann integrable and f is continuous, the product 1Mf is Rie-
mann integrable and the above expression is a Riemann sum which converges
for n → ∞ towards

∫

KR
1M (x)f(x) dx. As the Riemann integral and the

Lebesgue integral coincide for Riemann integrable functions, we get
(

f,
1

nrk(K)
δM∩ 1

n
K

)

→

∫

KR

1M (x)f(x) dx

=

∫

KR

1M (x)f(x)λKR
(dx)

=

∫

KR

f(x)λM (dx) = (f, λM )

for n→∞ as required. �

We also use the obvious fact that weak convergence and push-forward of
measures commute:

Lemma 2. Let φ : X → Y be a continuous map between metric spaces

and (µn)n∈Z>0 a sequence of finite measures on X which converges weakly

towards µ. Then the sequence (φ∗µn)n∈Z>0 converges weakly towards φ∗µ.

Given these lemmas, we can directly verify Theorem 1:

Proof of Theorem 1. By definition

µ
(n)
λ =

1

nrk(K)

(

1
n idQR

)

∗
µnλ =

1

nrk(K)

(

1
n idQR

)

∗
q∗δCnλ∩K .

As q is linear
(

1
n idQR

)

∗
q∗ = q∗

(

1
n idKR

)

∗

and furthermore
(

1
n idKR

)

∗
δCnλ∩K = δ 1

n
(Cnλ∩K) = δCλ∩ 1

n
K ,

so altogether

µ
(n)
λ = q∗

( 1

nrk(K)
δCλ∩ 1

n
K

)

.

By Lemma 1, 1
nrk(K) δCλ∩ 1

n
K converges weakly towards λCλ and by Lemma

2 we obtain the first statement.
By definition, λCλ is λKR

-absolutely continuous on KR with density 1Cλ ,
the characteristic function of Cλ. We choose a section of the linear map
q : KR → QR. This yields an isomorphism KR

∼= QR ⊕ ker(q) and all the
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fibers q−1({β}) of q are identified canonically with ker(q). Let the Lebesgue
measure on QR be normalized such that Q has covolume 1. Let the Lebesgue
measure on ker(q) be normalized such that λKR

is the product measure of
both. By Fubini’s theorem it follows that for any measurable set A ⊂ QR

we have
∫

A
µ̃λ =

∫

q−1(A)
1CλλKR

=

∫

A

(
∫

q−1({β})
1Cλ

β
λq−1({β})

)

λQR
(dβ)

=

∫

A

(∫

Cλ
β

λq−1({β})

)

λQR
(dβ),

i.e. fλ(β) =
∫

Cλ
β

λq−1({β}) is the density of µ̃λ with respect to λQR
. �

2.3. Cones and vector partition functions. We start by recalling some
definitions: Let Y be a free Abelian group of finite rank and X+ a free
Abelian monoid of finite rank. Let X be the free Abelian group generated by
a basis of X+. Let E : X → Y be a homomorphism such that ker E ∩X+ =
{0}. One defines the vector partition function ΦE : Y → Z+ associated with
E by ΦE(y) = |{x ∈ X+ : Ex = y}|. A function f : Y → Z+ is called a
quasi-polynomial if there is a subgroup Z ⊂ Y of finite index and a family
(fȳ)y∈Y/Z of polynomial functions on Y such that f(y) = fȳ(y) for all y ∈ Y .
A fan in Y is a set F of rational convex polyhedral cones in YR such that
any face of a cone in F is itself contained in F and such that the intersection
of any two cones in F is a face of both.

Theorem 2. Let C ⊂ K be a pointed chopped and sliced cone.

(1) There are free Abelian groups X and Y and morphisms E : X → Y

and B : Λ×Q→ Y such that |Cλ
β ∩K| = ΦE

(

B
(

λ
β

))

.

(2) There is a fan F in Λ × Q such that the function Λ × Q → Z+,

(λ, β) 7→ |Cλ
β ∩K| is quasi-polynomial on any of the maximal cones

of F and vanishes outside F . The fan F and the quasi-polynomials

associated with its maximal cones are effectively computable.

For the proof, let C be a pointed chopped and sliced cone. We use the
symbols R, Λ, Λ̃, Q, p, q, r, s as in §2.1. As of the free Abelian group K,
fix a free Abelian monoid K+ of finite rank and let K be the free Abelian
group generated by a basis of K+. Because of the following lemma we can
suppose that C ⊂ K+.

Lemma 3. Let C ⊂ Rn be a rational pointed convex polyhedral cone. Then

there is a matrix A ∈ GLn(Z) such that AC ⊂ Rn
+.

Proof. Every pointed convex polyhedral cone is contained in a simplicial one,
so there is an integral matrix B ∈ Zn×n such that C ⊂ BRn

+. By the elemen-
tary divisors algorithm, there is a matrix X ∈ GLn(Z) and a permutation
matrix P such that Y = XBP is upper triangular with positive components
on the diagonal. Write Y = Y ′D, where D is a positive diagonal matrix
and Y ′ is unipotent. Choose a unipotent integral upper triangular matrix
Y ′′ such that Y ′′ ≤ Y ′ (component wise). Then Y ′Rn

+ ⊂ Y ′′Rn
+. Hence
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C ⊂ BRn
+ = X−1Y P−1Rn

+ = X−1Y Rn
+ = X−1Y ′DRn

+ = X−1Y ′Rn
+ ⊂

X−1Y ′′Rn
+. So A = Y ′′−1X has the desired property. �

Proof of Theorem 2. By Lemma 3, suppose that C ⊂ K+. Hence, the map
r : K → R defining C can be replaced by a map r̃ : K → R̃ to a free Abelian
group of potentially lower rank by omitting the inequalities defining K+.

For λ ∈ Λ, β ∈ Q we have

|Cλ
β ∩K| = |{x ∈ K+ : r̃(x) ≥ 0, p(x) ≤ s(λ), q(x) = β}|

= |{x ∈ K+ : ∃y ∈ R̃+, z ∈ Λ̃+ : r̃(x)− y = 0,

p(x) + z = s(λ), q(x) = β}|

= ΦE





0R̃
s(λ)
β





for

E =





r̃ −idR̃ 0
p 0 idΛ̃
q 0 0



 : K × R̃× Λ̃→ R̃× Λ̃×Q.

If we define




0R̃
s(λ)
β



 = B

(

λ

β

)

for

B =





0 0
s 0
0 idQ



 : Λ×Q→ R̃× Λ̃×Q

and X = K × R̃× Λ̃, Y = R̃× Λ̃×Q, we get part (1).

To show part (2), note that by Sturmfels’ theorem [12] there is a fan F̃

in Y and a family (gc̃) of quasi-polynomials, indexed by the maximal cones

of F̃ , such that ΦE = gc̃ on c̃. The fan F̃ and the quasi-polynomials gc̃ are
effectively computable, e.g. using an algorithm based on a residue formula
[13, Th. 3.1] as in [1] or [5]. Let F be the fan consisting of all B−1(̃c) for

c̃ ∈ F̃ . For all c ∈ F fix a c̃ ∈ F̃ such that c = B−1(̃c) and let fc = gc̃ ◦ B.
Then F and (fc) yield the theorem. �

3. Application to weight multiplicities of Demazure modules

For Kac-Moody algebras we use the notation as in V. Kac’ book [9],
namely: Let A = (aij) be an (n × n)-generalized Cartan matrix with a
realization (h,Π,Π∨), i.e. Π = {α1, . . . , αn} ⊂ h∗, Π∨ = {α∨

1 , . . . , α∨
n} ⊂ h

such that 〈α∨
i , αj〉 = aij. Let Q ⊂ h∗ be the root lattice and P ⊂ h∗ the

weight “lattice” with dominant weights P+. Let h′ ⊂ h be the vector space
generated by Π∨. Let Λ be the quotient of P obtained by restricting linear
forms to h′, and Λ+ the image of P+. Then Q and Λ are free Abelian groups
of rank n. The restriction P → Λ is denoted by λ 7→ λ̄.

Theorem 3. Let g be a symmetrizable Kac-Moody algebra and w ∈ W an

element of length l of its Weyl group. Let K = Zl.
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(1) There is a chopped and sliced cone C ⊂ KR with Λ and Q as above,

such that for all λ ∈ P+ and β ∈ Q we have

dim Vw(λ)λ−β = |C λ̄
β ∩K|.

(2) There is an Abelian group Y of finite rank, a homomorphism B :
Λ×Q→ Y and a vector partition function ΦE : Y → Z+ such that

dimVw(λ)λ−β = ΦE

(

B
(

λ̄
β

))

for all λ ∈ P+, β ∈ Q.

(3) The weight multiplicity function is piecewise quasi-polynomial. Cones

of quasi-polynomiality and the corresponding quasi-polynomials can

be effectively computed.

Proof. Because of Theorem 2, parts (2) and (3) follow from (1). To show

(1), in addition to K, Λ and Q as given above, we have to find R, Λ̃, p, q, r,
and s as in §2.1, such that the stated equality holds. We deduce this from
the existence of P. Littelmann’s patterns [11].

Let (Bw(π), (ei)
n
i=1, (fi)

n
i=1) be a path model for the crystal graph of Vw(λ)

as defined in [10]. Fix a reduced decomposition w = si1 · · · sil of w. Then,
for λ ∈ P+, there is a subset Sλ ⊂ K such that a 7→ fa1

i1
· · · fal

il
π defines a

bijection Sλ → Bw(π). Let S =
⋃

λ∈P+
Sλ. By [11, Pr. 1.5a and Co. 1], S is

the set of integral points in a rational convex polyhedral cone C ⊂ KR. Let
R be a free Abelian group, the rank being the number of facets of C. Then
the inequalities defining C can be stated in the form r(a) ≥ 0 for a linear
map KR → RR. As C is rational, one can in fact choose r : K → R.

By [11, Pr. 1.5b], Sλ is the set of integral points in a convex polytope
Cλ ⊂ C, given as a subset of C by the additional inequalities

aj +

l
∑

k=j+1

〈α∨
ij , αik〉ak ≤ 〈α

∨
ij , λ〉

for j = 1, . . . , l. These are l inequalities, the left hand side of which depends
linearly on a and the right hand side of which depends linearly on λ̄. Hence
we can choose Λ̃ = Zl and p, q such that the inequalities can be written in
the form p(a) ≤ s(λ̄).

Given a ∈ Sλ, the corresponding element fa1
i1
· · · fal

il
π has weight λ −

∑l
j=1 ajαij . So, for fixed β ∈ Q, the elements a ∈ Sλ of weight λ − β are

those satisfying
∑l

j=0 ajαij = β. The left hand side of this equation depends
linearly on a, so if we denote this linear map by q, we have constructed a
chopped and sliced cone having the property stated in the theorem. �

Consider the case where w is the longest element of the Weyl group.
Then, for g = slk(C), this can be proved using classical Gelfand-Tsetlin
patterns [2, Th. 2.1]. For g = so5(C), I have explicitly computed the weight
multiplicity function, as possible by part (3) of Theorem 3, in [5].

4. Application to Littlewood-Richardson coefficients

In this chapter, we assume that g is of finite type, i.e. a complex sem-
isimple Lie algebra of rank n. Let Q ⊂ P ⊂ h∗ denote the root lattice
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respectively the weight lattice. For λ, ν ∈ P , β ∈ Q let cλν
β = [V (λ)⊗V (ν) :

V (λ + ν − β)] be the multiplicity of V (λ + ν − β) in V (λ)⊗ V (ν).

Theorem 4. Let g be a complex semisimple Lie algebra and l = length(w0)
the length of the longest element of the Weyl group.

(1) For Λ = P × P and K = Zl there is a chopped and sliced cone

C ⊂ KR such that for all (λ, ν) ∈ Λ and β ∈ Q we have

cλν
β = |C

(λ,ν)
β ∩K|.

(2) There is an Abelian group Y of finite rank, a homomorphism B :
P × P ×Q→ Y and a vector partition function ΦE : Y → Z+ such

that

cλν
β = ΦE

(

B
(

λ
ν
β

)

)

for all λ, ν ∈ P+, β ∈ Q.

(3) The tensor product multiplicity function is piecewise quasi-polynomial.

Cones of quasi-polynomiality and the corresponding quasi-polynomials

can be effectively computed.

Proof. As before, (2) and (3) follow directly from (1), so we have to show
(1). This follows from [3, Th. 2.4] as follows: Fix a reduced decomposition
w = si1 · · · sil of w and let i = (i1, . . . , il) ∈ {1, . . . , n}

l. Let Lg be the
Langlands dual Lie algebra to g. For a finite-dimensional Lg-module V and
γ, δ ∈ P∨ weights of V , a tuple c = (c1, . . . , cl) ∈ Zl

+ is called an i-trail from
γ to δ in V if

∑

k ckαik = γ−δ and ec1
i1
· · · ecl

il
: Vδ → Vγ is non-zero. Then, by

the above-cited theorem, cλν
β is equal to the number of tuples (t1, . . . tl) ∈ Zl

such that:

(1)
∑l

k=1 cktk ≥ 0 for all i ∈ {1, . . . , n} and all i-trails c from ω∨
i to

w0siω
∨
i in V (ω∨

i ).

(2)
∑l

k=1 tkαik = β.

(3)
∑l

k=1 cktk ≥ −〈α
∨
i , λ〉 for all i ∈ {1, . . . , n} and all i-trails c from ω∨

i
to w0siω

∨
i in V (ω∨

i ).

(4) tk +
∑l

j=k+1 aikij tj ≤ 〈α
∨
ik

, ν〉 for all k ∈ {1, . . . , l}.

(1) is a system of linear inequalities, giving rise to a cone C ⊂ KR. (3)
and (4) are systems of linear inequalities depending linearly on λ respectively

on ν, so they define a chopping C(λ,ν). (2) is a system of linear equations
depending linearly on β, this defines the slices. �
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