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WEIGHT MULTIPLICITIES FOR so05(C)

THOMAS BLIEM

ABSTRACT. We explicitly determine quasi-polynomials describing the weight
multiplicities of the Lie algebra sos5(C). This information entails immediate
complete knowledge of the character of any simple representation as well as
the asymptotic behavior of characters.

1. INTRODUCTION

There have been investigations into the characters of simple Lie algebras initiated
in the beginning of the discipline and going on to present days. From the early
days it was possible to write down formulas explicitly describing the characters, as
notably done by H. Weyl [14] and B. Kostant [8]. P. Littelmann’s path model [9] [10]
does not formally furnish a formula but rather an algorithm allowing to calculate
the character performing finitely many combinatorial operations, so fits into the
very same context.

Still, all these approaches, while allowing to calculate characters or individual
weight multiplicities, at least in principle and for small instances, do not fully exhibit
the rich structure underlying the characters. For example, from G. Heckman’s
thesis [5] it is known that considering a sequence of simple representations for a
given simple Lie algebra such that the highest weights of the elements are the
integral multiples of a given weight, the corresponding characters show a particular
behavior of convergence.

As pointed out by S. Billey, V. Guillemin and E. Rassart [2], for the case of s[;,(C)
Gelfand-Tsetin patterns [4] can be used as a key ingredient to develop descriptions of
characters better reflecting their structure. In the following I will demonstrate that
it is possible, substituting Gelfand-Tsetlin patterns by P. Littelmann’s patterns [IT],
using B. Sturmfels’ structure theorem [12] on vector partition functions and Laplace
transformation methods developed by L. Jeffrey, F. Kirwan [6], A. Szenes and
M. Vergne [I3] as well as work by C. De Concini and C. Procesi on the combinatorics
of residues [3], to obtain indeed complete knowledge, structural and computational,
of the characters of s05(C). In fact, I do not use any special properties of the Lie
algebra s05(C). This is just a random example picked to demonstrate the power of
the combination of the above-mentioned ideas, which, in principle, are applicable
to any semisimple complex Lie algebra.

2. PRELIMINARIES

Consider the Lie algebra s05(C) of complex (5 x 5)-matrices A such that A'M =
—MA for a fixed nondegenerate complex (5 x 5)-matrix M. Choose a Cartan
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subalgebra h and simple roots aj,as € bh* such that as is the long root. The
Dynkin diagram associated to this enumeration of the simple roots is

1 <2.

Let wi,ws € b* be the corresponding fundamental weights, A C @ C bh* the
weight lattice respectively the root lattice. The irreducible so5(C)-module of high-
est weight A is denoted by V(X). For a weight p denote by V(A), the space of
vectors of weight p in V(). If A — p is not an element of the root lattice, then
V(M) =0. For A a dominant weight and 3 an element of the root lattice, define

K} = dim V(A)r_gs.

If the weight A is not dominant we define all K é‘ to be 0. The character of V(\) is
by definition the element
> Ki-h-4

BeER
of the group ring Z[A]. Hence knowledge of all the characters of so05(C) is equivalent
to knowledge of the function K : A x Q — Z>y.

For any dominant weight A, let B(A) be the crystal associated to V() by
M. Kashiwara [7] and B(co) := lim  B(A\)®T- the direct limit of the crystals B()),
shifted to have highest weight 0. Consider the reduced decomposition wg = $15281 82
of the longest element of the Weyl group. To this decomposition, P. Littelmann
[T1] associates a convex polyhedral cone € C R*, a family of polytopes C* C €
for dominant weights A and a Z-linear map ¢ : Z* — @Q such that: (i) There is
a canonical bijection o : B(oco) — 8§ := €N Z*. (ii) For each dominant weight A,
the bijection o restricts to a bijection between B()\) and 8* := C* N Z*. (iii) The
weight of any element b € B(A) is wt(b) = A — ¢ (o (b)).

Specifically, denote the standard coordinates by ass, ai1, ai2, a;3. Then the
cone C is given by the inequalities

2a11 2 a12 2 2a13 =2 0, az > 0. (1)
For a dominant weight A\ = Ajw; + Asws, the polytope G is given inside C by the
additional inequalities
a13 < Az,
a1z < A1+ 2a13,
a1 < A2 + a1z — 2a13,
aze < A1+ 2a11 — 2a12 + 2a13.

(2)

The Z-linear map is ¥ = (a2 +a12)a; + (@11 +a13)as. For a given dominant weight
A and any element 8 = B1aq + G2 of the root lattice, define

(‘Zg i={a € C:an+an=0, a1 +aiz =} (3)

and 8% := €3 NZ*. Then by [II] we have K} = |83/, that is: Determination of the
weight multiplicities is reduced to counting the number of points in polytopes.

3. REFORMULATION USING VECTOR PARTITION FUNCTIONS

For any positive integers n and N and any (n x N)-matrix A with integral coeffi-
cients such that ker ANRY; = 0 define the vector partition function ® 4 : Z" — Z>g
by ®4(v) := [{a € ZY, : Aa = v}|. We will now reformulate Littelmann’s result
and explicitly determine matrices A and B such that K3 = ®4(B- (A1, A2, B1, 32)1).
Indeed, the inequalities () and (@) can be turned into equations using slack vari-
ables s1, so respectively t1,to, t3,t4. Hence, the number of integral solutions |8g| of



WEIGHT MULTIPLICITIES FOR so05(C) 3

the system (I 2] B)) is equal to the number of nonnegative integral solutions to the
system
2011 — a2 — 51 =0,
aiz — 2a13 — S2 =0,
a3 +t1= Ao,
a2 — 2ai3 +lo= A1,

air — a2 + 2a13 +t3= Ao,
aze — 2a11 + 2a12 — 2a13 +t4= Aq,
a2 + a2 = [,
ail + a3 = [a.

In other words, [$3| = @ (B - (A1, A2, B1, B2)") for matrices

0 2 -1 0|-1 01]0 000
0 0 1 -2/0 —=1/00 0 0
0 0 0 1|0 0]1 00O
0 0 1 -2/0 01]0 100
A=109 1 -1 200 o0loo1o0 (4)
1 -2 2 —-2/0 01|00 0 1
1 0 I 0]0 010000
0O 1 0 1/0 01]0000
and
0 0]0 0
0 0[0 0
0 1]0 0
1 0[0 0
B=19 1]0 o (5)
1 0[0 0
0 0|1 0
0 0/0 1

4. STRUCTURE AND CALCULATION OF VECTOR PARTITION FUNCTIONS

The presentation of K é‘ in terms of a vector partition function gains its strength
from the following structure theorem of B. Sturmfels [12]:

Theorem 1. Let A € Z(™N) sych that the vector partition function ®4 : Z" — Z>o
is defined. Then there is a homogeneous fan F = fan(A) in R™ and a family of
quasi-polynomials (fc) on Z™, indexed by the maximal cones in F, such that ® 4
coincides with fo on CNZ"™ and vanishes outside the support of F.

Here, a fan is a finite set of convex polyhedral cones, closed under taking faces,
and such that the intersection of any two cones is a face of both. The fan being
homogeneous means that all maximal cones have the same dimension, which is in
this case the rank of A. A function f : Z" — C is called a quasi-polynomial if
there is a lattice L C Z" and a family (f;)zezn /1, of polynomials on Z" such that
f(h) = f;(h) for all h € Z™.

While the naive algorithm for computing individual values ®4(v) of a given
vector partition functions has exponential execution time with respect to the com-
ponents of v, this theorem allows the following strategy: Determine the maximal
cones of F' and for each maximal cone C' determine the quasi-polynomial fo. This
task being accomplished, individual values ® 4(v) of the vector partition function
can be calculated by evaluating the corresponding quasi-polynomial at v, the exe-
cution time of which is of order of the logarithm of the components of v. In this
sense, determination of the maximal cones and quasi-polynomials yields instant
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complete knowledge of the values of the given vector partition function. We will
indeed perform these steps for the vector partition function given by (). In this
way we will determine all the characters of so5(C) at once.

Generally, the maximal cones and quasi-polynomials of a vector partition func-
tion can be determined as outlined in the sequel. For a more extensive treatment,
refer to the study of the Kostant partition function for classical root systems [I] by
W. Baldoni, M. Beck, Ch. Cochet and M. Vergne, which also served as a model for
the following calculations.

Suppose that A has rank n. For a lattice L C R™ denote by L+ C (R")* the
corresponding dual lattice. If L C Z™ then L+ D (Z")*. Let T := (R")*/(Z™)*,
an n-dimensional torus. Denote the column vectors of A by a1,...,ay. A subset
o C{l,...,N} is called a basic subset for A if (a;);c, is a basis of R™. For any
basic subset o = {i1,...,i,} let T(0) := (Za;, +- -+ Za;,)* mod (Z")* CT. The
set T'(o) contains vol(c) := |det(a; : i € o)| elements. Let I' C T be the union of
all T'(o) for basic subsets o for A.

The fan F' = fan(A) associated to A can be described as follows: For any basic
subset o denote by cone(c) the convex polyhedral cone generated by {a; : i € o}.
Cones of the form cone(c) are called basic cones. Then the maximal cones of F' are
the minimal n-dimensional cones which can be written as an intersection of basic
cones.

For h € Z" and g € T define the Kostant function as the meromorphic function
on (R")* ®@r C = (C™)* given by

e(u+27rig,h)

"I (e )

Note that (g, h) and (g, ay) are determined modulo Z, so the values of the expo-
nential functions are unambiguous.

Fg7h(u) :

A basic subset {iy,...,i,} with i3 < -+ < iy, is called without broken cir-
cuits if there are no j € {1,...,n} and k € {i; +1,..., N} such that the fam-
ily (ai,,...,aq;,ax) is linearily dependentEl For a maximal cone C' of the fan F,
let Buy(C) denote the set of basic subsets o without broken circuits such that
cone(o) D C.

For a meromorphic function f(u) on (R")* @gr C = (C"™)* with poles along
ait (i=1,...,N) and a basic subset o, define the iterated residue of f with respect
to o to be

ires, f(u) :=resq, =0 184, =0 f(u),
where a;; are interpreted as coordinates on (C™)*.
The following theorem is a combination of A. Szenes and M. Vergne’s expression
[13| th. 3.1] of a vector partition function as a Jeflrey-Kirwan residue and C. De
Concini and C. Procesi’s work [3] on the Jeflrey-Kirwan residue:

Theorem 2. On any maximal cone C of fan(A), the vector partition function
associated to A is given by

oah)= 3 ﬁ((j)zrirengg’h(u).

0€B,,(C)

5. COMPUTING THE WEIGHT MULTIPLICITY FUNCTION FOR 505(C)

Recall that Kg‘ =® (B (A1, A2, B1,52)") for X = Awy + Aaws, B = Braq + B
and A, B matrices as given in equations (] respectively (@). We are now ready to

INote that De Concini and Procesi [3] use the inverse ordering.
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perform explicit computations. All computations were performed using Maple 11
by Maplesoftﬁ and the package Convex 1.1.2 by M. Frandl.

First we have to determine F' = fan(A). This is done as follows: Any maximal
cone in F' is the intersection of all the basic cones containing it. We can hence find
the neighbors of a given maximal cone C' as follows: For each facet f of C, the
neighboring maximal cone of C' in direction f is the intersection of all basic cones
cone(o) such that f C cone(o) and (C' C cone(c) = [ ¢ O(cone(o))). So we
start with an arbitrary maximal cone and find the others by a standard algorithm
for graph traversal using this description of the neighbor relation. There are 320
maximal cones alltogether.

In order to determine I" we proceed as follows: For any basic subset o, let A,
be the submatrix of A consisting of the columns with indices in 0. The subgroup
T (o) of T is generated by the classes of the row vectors of A l. So we start with
the set of these classes and determine its closure under the operation of adding the
class of any row vector of A ! by a standard algorithm of graph traversal.

The set of basic subsets without broken circuits is determined straightforwardly
using the definition. In order to speed up the calculation, basic subsets are built
up recursively, checking the additional prerequisites at every step of the recursion.

In fact we are only interested in maximal cones whose intersection with the image
of B has dimension 4. There are 43 such intersections. For the calculation of the
quasi-polynomials we now pick for each such intersection ¢ a maximal cone C' of
fan(A) such that ¢ = C Nim(B). Then we compute the quasi-polynomials for each
of these maximal cones as described in section @l The quasi-polynomials coincide
for some of the neighboring ¢, so we glue together the corresponding cones. The
preimage under B of the resulting fan is given by the following maximal cones in

R*=(A®zR) x (Q®zR):

aa={X—0F2>0, A1 =31 >0, i —F2>0, =1 +202 > 0},

={f1 26220, \a =2 >0, =\ + 1 >0, \y — 81 + 32 > 0},

3={A—022>20, -\ +5 >0, =61 +28: >0, B1 — 2 >0, —
B+ B2 > 0},

a={0 >0, Aa—02>0, =01+ B2 >0, \y — 1 >0},

5 ={022>0, f1 =262>0, Ay =1 >0, Ao — 2 > 0},

66 ={01—0P2>0, 200+ 31 =202 >0, =1 +202 >0, —Xo + [ >
0, A1 — 1 > 0},

a7 ={M—=01+262>0, =\ +51—F2>0, f1—202 >0, A\a— 2 > 0},
w={-AM+0612>0, Ay >0, \g — 2 >0, =31 + (B2 > 0},

o={-M+06120, M1 =1 +02>0, \i+2 o =31 >0, —Aa+ 2 >
07 61_26220}7

co={AM+X—=02>0, M1 +2X\2— 51 >0, 2o+ 51 — 2062 >0, A\ —
B1+P2>0, =\ + 61 >0},

a1 ={2M+ 61 —202>0, =Xa+32>0, =1+ 52>0, \y — 31 >0},

2 ={-A+022>0, A2 >0, f1 —202>0, A\ — 1 >0},

3 ={-F1+262>20, =X\ + 01 —2>0, \; >0, Ay — 32 > 0},

e ={-M+01—02>0, Mi+2 =1 >0, =Xa+52 >0, 51 =202 > 0},

s ={-F1+2>0, =X2+0822>0, 2X2+ 1 =262 >0, A+ X — 2 >
0, —A\1 + 01 >0},

2http://www.maplesoft.com/
http://www-fourier.ujf-grenoble.fr/~franz/
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e ={-AM—A+02>0, M1 +2 2 =31 >0, 2Xa+ 01 —202 >0, A\ —
ﬂl"’ﬂlzoa 61_6220}7

a7 ={de+01—F22>0, —2X0— 314202 >0, —=f1+02 >0, A\ —31 > 0},

s ={f1—B2>0, \a >0, —2Xa — 1 +2082 >0, A\; — 31 >0},

o ={-M+01—02>0, =Xa+02>0, =31 +2082 >0, \{+2 s — 1 >
07 )\1"_)\2_6220}7

o ={M+X—F1+0>0, =X\ =2 2+ 01 >0, =\ + 01 — B2 >
07 61_2ﬂ2 Zo}a

€21 = {1\14—)\2—52 >0, =M+51 >0, 22 —=51+2082 >0, =01 +P2 >
0},

2 ={- A =X+ [F2>0, A\; >0, 2X2 + 81 — 202 >0, =31 + 32 > 0},

3 ={A2>0, =A1 =2 o+ (1 >0, Ay — 1+ 2 >0, B1 — 2032 >0},

Coa ={—2X =1 +202>0, 1 —F2>0, \i + X2 —[2>0, =\ + 1 >
07 )\1+2A2_ﬂ1 20}5

C25:{—)\1—2)\2+61 207 _)‘1+61_62 207 _51+252 207 )\1"‘
Ao — B2 > 0},

€6 ={ M >0, =M1 —Xo+02 >0, =\ +01—0F2 >0, Ay +2X2— 31 > 0},

cor ={ A +2X+B1 =202 >0, =\ — Ao+ 2 >0, —2X3 — 1 + 202 >
07 _ﬁ1+62 20}7

s ={—-M =2\ + 01 >0, =31 +2062>0, 2Xa+ 31 — 2062 >0, A\ —
B1+ P2 >0, A\ + A2 — P2 > 0},

c29 = {A2 >0, =A\1—2Xa+01 > 0, —2X3—1+202 > 0, A1+A2—F2 > 0},

30 ={-AM—A+02>0, 1 —F2>0, Mi+2 2 —01 >0, —2Xs — 1 +
2062 > 0},

i1 ={- A =2+ 01 20, =X\ + 51— F2 >0, 2X\1 +2X2 — 1 >
07 _)\1 - )\2 +62 Z 0}7

e ={2M+ 01 — 202 >0, =A1 — X+ 52 >0, =X\ =2+ 3 >
0, Ay — 81+ B2 > 0},

3={-AM A+ B2 >0, A\ +2\a — B2 >0, —A\; —2X\ + 31 >
0, —2X2 — 81 + 2062 > 0}.

In order to get a feeling for this decomposition of (A ®zR) x (Q ®zR), consider
the intersection of the fan with the affine plane given by A = (1,2) as indicated in
figure[Il In figurel] you find a visualization of the induced decomposition of Q®zR
in Cartesian coordinates with respect to the Killing form. The highest weight
w1 + 2ws corresponds to the upper right corner. Note that this figure describes the
structure of the weight multiplicity function of any module of highest weight kA for
k€ Zwy.

The quasi-polynomials describing the weight multiplicity function on the above
cones are

fi=3B1+ 362+ 3201 — 163 + 108 + (=P,

fo=3M =381+ 30— AN+ 183 + L - 17 + (1)t + LA,

fo= 51 g M+ 58— A+ 5 - 50 — 38T M B g (-1) M+
B2,

fi= g7+ B+ 38 + 5,

fs=1+30:+ 303,

fo=3Xa+ 381+ B — B3 — 18E + Nafe — 3% + (-1 + L,

LI
8
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FIGURE 1. Intersecting F'.
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FIGURE 2. Induced decomposition of the Weyl polytope for the
highest weight A = w1 + 2ws.

fr=M—=P14+2Be+ A+ 5 (1) TR 4 B2+ T — 2N B4 1 87+ A1 82— B34,

fs=3M+ 30— AT+ 34+ 300+ (1) 4 L(—D)P,

fo= éAﬁ%Al—%ﬁﬁﬂg—iA%—iﬁ%HQﬂﬁ%Alﬁl—%Ag+§(—1)51+*1+
g

Jio =3+ M — A+ 3-8 —18F + X+ (= 1) + S A B — N+
s(=1D)7HN 4 By,

fir=3Xe+ B — 502 — 505 + 307 + 5 4+ Xafo + g(=1)7 — §3,

Ji2 = 143X+ P2 + Xaf2 — 53,

fis =M =301+ B+ IM + 5+ MBe+ (1) + (=) — A6,

fa=gXa+ A = Bu+ 30 + 1M+ 305 + M + 16 + dafhr — 3A —
Bafi — s Mf1 + § + (=1

fis =34+ i+ 30— 30+ 2 (1) = IA + 3 — 165+ Ao — A3+
Lnfen { g,

fie= Do+ A — 3B+ (-1 + 1IN+ 3 182 —\iBy — 167+ dadi +
A6+ £ (1) 4 3,

fir =143+ 361 — 302+ 505 + 307 — Xafo + 575 + Aol — B,

fis =1+ 2o+ 1 — B — Aaflo + $23 + Aaf3u,
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fo=3Xa+ M — 301+ 302+ AT+ 5 — 585 4+ Mifa + Ny — 503 —
SWRSTR A Y

foo = 14505+ AT 4+ 505 + Xadi + Xafa + Mifa+ 302+ Sha + SA1 —
381+ 167 — Aoy — B2 — M1,

for =S + 5A + B — 502 — pAT + 305 + 107 — Moo + g + 3A5 +
(1) A 4 X By + 3 M8 — B2fh,

fr=X+M+30— B+ 1A+ 3 - Mfa+ XA+ 5 (1) + b+
l(_l)ﬁl-i-)q
3 )

Jaz =1+ Bo+ A — Br+ 3203+ Aadi + Ao + 3X0 — Aaof3i,

for = 3ho+5M + 501 — Ba— AT — 157 — Mol + 3A3 + 5 A1 01 + Xefi +
T L(—1)ftn
s T8 ;

Jos = Eho+ 3N — Bi+ 582+ 5AF — 385 + MfBa+ 107 + Aadi 4+ Ao +
A3 = AiBr+ £+ (1) = Aoy,

fas = 3430+ XA+ ho+ 30 — S B+ (1) — 501+ 3 (=1) T,

for =2  + A+ 51 — 262 4+ IXF + B3 — MifB2 + 167 4+ Aodt — 20082 +
A+ 3 MBr+ (=17 = By61 4+ Nofi + £,

Jas = 3Xa 4+ M1 — 361 — 85 — 16T + AaA1 + Xofa + 523 + G281 — Aofr +
T L—1)A,
s T8 ;

Jao =1+ 3Xa + A1 — B2 4 Aadi — Xafa + 523,

f30 =2 2+ A1+ 501 — 302+ AT+ 365 — Mfa — 367 + ded1 —2Xof2 +
A4 IABr+ L+ (1) Ao p,

f31 = TN AN 20001 +2X00 4201 — B1+ 167 — Ao — M B+ 2 (—1)7,

foo =20+ 3M — 301 — 502+ $AT — 505 — Aifa — 167 + 20 h + A3 +
(=D 4 B 4+ L = Xafh,

fazs =14 3Xa+ 5A1 — 302 + 3AT + 565 — M fa + 2X0A1 — 2000 + 2A3.

An example on how to use these tables: In order to determine the character of
V(A) for X = 4wy + 8ws) we can observe that the tuples (), 5) belong to ¢; for
[CRS {0, a1 + ag, 2aq + g, 200 + 2aie, 3y + 2ai, 4o + 2as, 3aq + 3a, dag +
3o, 4aq + 4as}. So by evaluating the quasi-polynomial f1, we immediately get
the following weight multiplicities:

(4,8) _ (4,8) _ (4,8) _
K(o,o) =1, K(l,l) =2, K(Z,l) =3,
(4,8) _ (4,8) _ (4,8) _
Ko =4, K3 =5, Ky =6,
(4,8) _ (4,8) _ (4,8) _
Kyl =6, Kyl =38, Kyl =9

Note that if you want to compare the values e.g. using the LiE online calcula-
tor by A. Cohen et alll you have to take into account that LiE uses the inverse
parametrization of the simple roots, and that LiE denotes weights absolutely, not
with respect to the highest weight of the module under consideration. The necessary
reparametrization is

AL = Ao, fi1 = Ao+ 1 — 209,
Ao = A1, fio = A1 — 2031 +2[s.

4http://www-math.univ-poitiers.fr/~maavl /LiE /form.html
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A — 2041 — Q9 ¢ ¢4

F1GURE 3. Around the highest weight.

6. SOME CONCLUSIONS

Corollary 3. The weight 0 does not occur in V(A) unless A = iay + jag for
nonnegative integers i, j such that 5 < j <i. In this case

] 3+ (=1)!

dimV(\)o = % — 24305 — 252 + %.
Proof. The weight 0 does not occur in V() unless A € @, so suppose A = i +
jag = (20 — 2j)w1 + (—i+ 2j)we. The inequalities imposed on i, j are equivalent to

A being dominant. We calculate K ((12;;% i) using the above results: The vector

(2i — 24, —1 + 2§,1i,7) is contained in ¢1g, so we get dim V' (\)g by evaluating f1¢ at
this vector. This yields the asserted formula. 0

It is well known that dim V(A)y = 1 for all dominant weights A. But what is
dim V' (A)a—. for some fixed € € Q7 See figure 3 for the picture of the Weyl polytope
around the highest weight.

Corollary 4. Let A\ = Ajw1 + Aaws be a dominant weight. Then the weight multi-
plicities in V(\) of weights close to X are given by

AmV(Naca, =1 if Ay > 1,
dimV()\))\,QOQ,OQ =3 Zf )\1 2 2, )\2 Z 1,
dim V()\))\,OQ,OQ =2 Zf )\1, )\2 Z 1,

dimV (AN)a—a, =1 if Ao > 1.
Proof. The first equation can be seen as follows: dimV(A)yx_o, = K ((1)‘ 10’))‘2). For
A1 > 1, the vector (A1, A2, 1,0) is in ¢5. The value of f5 at this vector is 1.
The remaining equations can be shown similarly. Note that in order to show
the second and third equation, one can use either fs; or fi respectively either f; or

fa. |
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