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ON GENERALISATIONS OF LOSEV-MANIN MODULI SPACES
FOR CLASSICAL ROOT SYSTEMS

VICTOR BATYREV AND MARK BLUME

In memory of Eckart Viehweg

Abstract. Losev and Manin introduced fine moduli spaces Ln of stable n-
pointed chains of projective lines. The moduli space Ln+1 is isomorphic to the
toric variety X(An) associated with the root system An, which is part of a general
construction to associate with a root system R of rank n an n-dimensional smooth
projective toric variety X(R). In this paper we investigate generalisations of the
Losev-Manin moduli spaces for the other families of classical root systems.

Introduction

In [LM00] Losev and Manin introduced fine moduli spaces Ln of stable n-pointed
chains of projective lines. These Losev-Manin moduli spaces are similar to the
moduli spaces M0,n+2, but whereas M0,n+2 parametrises trees of projective lines
with n + 2 marked points that are not allowed to coincide, the moduli space Ln

parametrises chains of projective lines with two poles and n marked points that
may coincide.

The Losev-Manin moduli space Ln+1 has the structure of an n-dimensional smooth
projective toric variety such that the boundary divisors parametrising reducible
curves correspond to the torus invariant divisors; it coincides with the toric variety
X(An) associated with the root system An. This is part of a general construction
to associate with a root system R of rank n an n-dimensional smooth projective
toric variety X(R) ([Kl85], [Pr90]). In the introduction to [LM00] the authors asked
about generalisations of the moduli spaces Ln for the other families of classical root
systems. In the present paper we address this problem.

Concerning the family of root systems of type B we present a variant of the
Losev-Manin moduli problem by considering chains of projective lines of odd length
with an involution permuting the two poles having one marked point s0 invariant
under the involution and n pairs of marked points s±i that are interchanged by

the involution. We show that these pointed curves admit a fine moduli space L
0,±

n

which is isomorphic to the toric variety X(Bn) such that the boundary divisors of
the moduli space get identified with the torus invariant divisors.

It is well known that for the Losev-Manin moduli spaces, as for the moduli spaces
M 0,n, the universal curve over Ln+1 is the next moduli space Ln+2 together with
a natural forgetful morphism Ln+2 → Ln+1. In [BB11] we developed functorial
properties of the toric varieties X(R) with respect to maps of root systems and
observed that this morphism Ln+2=X(An+1) → Ln+1 =X(An) is induced by the
inclusion of root systems An → An+1. Furthermore, the n+1 sections X(An) →
X(An+1) come from projections of root systems An+1 → An along the n+1 additional
pairs of opposite roots in An+1 not contained in An.

The second author was supported by DFG-Schwerpunkt 1388 Darstellungstheorie.
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All this generalises to the family of root systems of type B: the morphism
X(Bn+1) → X(Bn) coming from the inclusion of root systems Bn → Bn+1 is flat and
its fibres have the structure of chains of projective lines of odd length. The 2n + 1
additional pairs of opposite roots in Bn+1 give 2n+1 sections. There is a symmetry
of Bn+1 fixing Bn which induces an involution I of X(Bn+1) over X(Bn) such that
the sections are grouped into n pairs of sections s±i interchanged by the involution
and one section s0 invariant under the involution. We show that X(Bn+1) → X(Bn)
together with these sections and the involution I forms the universal family over

the fine moduli space L
0,±

n = X(Bn). On the other hand, we will see that the toric
varieties X(Rn) for R = C,D do not form fine moduli spaces of pointed reduced
curves having X(Rn+1) → X(Rn) as universal family.

In the case of root systems of type C the morphism X(Cn+1) → X(Cn) is flat
with one-dimensional fibres having the structure of 2n-pointed chains of projective
lines of odd length with involution except that over a certain torus invariant divisor
nonreduced components occur. On the one hand we can consider families of pointed
curves as in the Bn-case but without the section s0 and thereby allowing an addi-
tional involution as isomorphism. This gives rise to a toric Deligne-Mumford stack
X (Cn) which is an orbifold having the toric variety X(Cn) as coarse moduli space
with stacky points over the divisor determined by the nonreduced fibres. On the

other hand we can describe X(Cn) as a fine moduli space L
±

n of 2n-pointed chains
of projective lines of odd and even length with involution with each of the marked
points corresponding to a pair of opposite roots in Cn+1\Cn that defines a projection
Cn+1 → Cn. The universal family arises from X(Cn+1) → X(Cn) by contracting the
nonreduced components in the fibres.

In the case of the remaining family of root systems of type D the morphism
X(Dn+1) → X(Dn) is not flat. There are 2-dimensional fibres that occur over
closures of certain torus orbits of codimension 2, over the other points as fibres we
have 2n-pointed chains of projective lines with involution.

We observe that in the cases of all families of root systems R = A,B,C,D the
torus fixed points of X(Rn) correspond to pointed curves having the form of the
Dynkin diagram for the root system Rn+1.

Outline of the paper. In the first sections 1–5 we deal with the case of root
systems of type B. In section 1 we formulate a moduli problem of (2n+ 1)-pointed
chains of projective lines called Bn-curves, which is a variant of the Losev-Manin
moduli problem. In section 2 we collect some facts about the toric varieties X(Bn)
associated with root systems of type B. Section 3 is about the morphismX(Bn+1) →
X(Bn), which, together with its sections and the involution, forms a flat family

of Bn-curves, and in section 4 we prove that the toric variety L
0,±

n = X(Bn) is
a fine moduli space of Bn-curves with universal family X(Bn+1) → X(Bn). To
show that the moduli functor of Bn-curves is isomorphic to the functor of the toric
variety X(Bn) we use the description of the functor of toric varieties associated with
root systems given in [BB11, 1.3]; our proof is a variation of our new proof of the
respective statement for root systems of type A given in [BB11, 3.3]. In section 5

we present some results on the (co)homology of the spaces L
0,±

n = X(Bn), giving
descriptions similar to the case of the Losev-Manin moduli spaces Ln+1=X(An).

In the remaining sections 6 and 7 the cases of the root systems of type C and D
are investigated.
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1. Pointed chains of projective lines with involution

Definition 1.1. A chain of projective lines of length m over an algebraically closed
field K is a projective curve C = C1 ∪ . . . ∪ Cm over K such that every irreducible
component Cj of C is a projective line with poles p−j , p

+
j and these components

intersect as follows: different components Ci and Cj intersect only if |i − j| = 1
and in this case Cj, Cj+1 intersect transversally in the single point p+j = p−j+1. For

p−1 ∈ C1 and p+m ∈ Cm we write s− and s+. Two chains of projective lines (C, s−, s+)
and (C ′, s′−, s

′
+) are called isomorphic if there is an isomorphism ϕ : C → C ′ such

that ϕ(s−) = s′−, ϕ(s+) = s′+.

Definition 1.2. A chain of projective lines with involution (C, I, s−, s+) is a chain
of projective lines together with an isomorphism I : C → C such that I2 = idC and
I(s−) = s+. In this case we use the following notation: if the chain has odd length
denote by (C0, p

−
0 , p

+
0 ) the central component; denote by (Cj, p

−
j , p

+
j ), (C−j, p

−
−j, p

+
−j)

the pairs of I-conjugate components (i.e. I(Cj) = C−j, I(p
−
j ) = p+−j, I(p

+
j ) = p−−j)

such that p+j = p−j+1, p
−
−j = p+−(j+1) and in case of odd lenght p+0 = p−1 , p

−
0 = p+−1

whereas in case of even length p+−1 = p−1 . In particular, we have s− = p−−m, s+ = p+m
if the chain has length 2m or 2m+1. Two chains of projective lines with involution
(C, I, s−, s+) and (C ′, I ′, s′−, s

′
+) are called isomorphic if there is an isomorphism of

chains of projective lines ϕ : (C, s−, s+) → (C ′, s′−, s
′
+) such that ϕ ◦ I = I ′ ◦ ϕ.

In the following we are concerned with certain compactifications of the alge-
braic torus (2Gm)

n parametrising n pairs of points of the form (z, 1
z
) in (Gm, 1) ⊂

(P1, 0,∞, 1), i.e. pairs of points which are interchanged by the involution of P1 that
fixes the point 1 and interchanges the two poles 0 and ∞. These compactifications,
which will be associated with root systems, parametrise isomorphism classes of cer-
tain pointed chains of projective lines with an involution. We now define the type
of pointed curve which will be relevant in the case of root systems of type B.

Definition 1.3. A (2n+1)-pointed chain of projective lines with involution (C, I, s−,
s+, s0, s

±
1 , . . . , s

±
n ) is a chain of projective lines with involution (C, I, s−, s+) of odd

length together with (possibly coinciding) marked points s0, s
±
i ∈ C different from

the poles such that I(s0) = s0, I(s
−
i ) = s+i . Two (2n+1) - pointed chains of projective

lines with involution (C, I, s−, s+, s0, s
±
1 , . . . , s

±
n ) and (C ′, I ′, s′−, s

′
+, s

′
0, s

′
1
±, . . . , s′n

±)
are called isomorphic if there is an isomorphism ϕ : (C, I, s−, s+) → (C ′, I ′, s′−, s

′
+)

of the underlying chains of projective lines with involution such that ϕ(s0) = s′0,
ϕ(s±j ) = s′j

±. A (2n+1)-pointed chain of projective lines with involution (C, I, s−, s+,

s0, s
±
1 , . . . , s

±
n ) is called stable if each component of C contains at least one of the

points s0, s
±
j . A Bn-curve over an algebraically closed field K is a stable (2n + 1)-

pointed chain of projective lines over K.

s
−
= p−

−3

p+
−3=p−

−2

p+
−2=p−

−1

p+
−1=p−0

p+3 =s+

p+2 =p−3

p+1=p−2

p+0 =p−1
s0

s+5 s−5s−4 s+4s+2 s−2s+3 s−3

s−1 s+1

I
✙ ❥

✙ ❥
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Definition 1.4. Let Y be a scheme. A Bn-curve over Y is a collection (π : C → Y, I,
s−, s+, s0, s

±
1 , . . . , s

±
n ), where C is a scheme, π is a flat proper morphism of schemes,

I : C → C an involution over Y and s−, s+, s0, s
±
1 , . . . , s

±
n : Y → C are sections such

that for any geometric point y of Y the collection (Cy, Iy, (s−)y, (s+)y, (s0)y, (s
±
1 )y,

. . . , (s±n )y) is a Bn-curve over y. An isomorphism of Bn-curves over Y is an isomor-
phism of Y -schemes that is compatible with the involution and the sections. We
define the moduli functor of Bn-curves as the functor

L
0,±

n : (schemes)◦ → (sets)

Y 7→ {Bn-curves over Y } / ∼

that associates to a scheme Y the set of isomorphism classes of Bn-curves over Y
and to a morphism of schemes the map obtained by pulling back Bn-curves.

We will show in section 4 that a fine moduli space of Bn-curves L
0,±

n exists and
that it is isomorphic to the toric variety associated with the root system Bn.

2. Toric varieties X(Bn)

For a root system R of rank n we have the n-dimensional smooth projective toric
variety X(R) associated with the fan that consists of the Weyl chambers of the root
system and their faces ([Kl85], [Pr90], see also [BB11, 1.1]). Here we consider the
particular case of root systems of type B.

Let E be an n-dimensional Euclidean space with basis u1, . . . , un. The root system
Bn in E consists of the following 2n2 roots:

±ui for i ∈ {1, . . . , n}; ±(ui + uj),±(ui − uj) for i, j ∈ {1, . . . , n}, i < j.

The root lattice M(Bn) ∼= Zn of the root system Bn is the lattice in E generated by
u1, . . . , un. The following is a set of simple roots:

u1 − u2, u2 − u3, . . . , un−1 − un, un.

The Weyl group (Z/2Z)n ⋊ Sn acts by ui 7→ ±ui and by permuting the ui. So
there are 2nn! sets of simple roots, these are of the form ε1ui1 − ε2ui2, ε2ui2 −
ε3ui3, . . . , εn−1uin−1 − εnuin, εnuin for orderings i1, . . . , in of the set {1, . . . , n} and
signs ε1, . . . , εn. For later use we list linear relations between positive roots of Bn.

Lemma 2.1. Let B+
n be the set of positive roots of Bn corresponding to the set of

simple roots u1 − u2, u2 − u3, . . . , un−1 − un, un and put βij = ui − uj, γij = ui + uj

for i, j ∈ {1, . . . , n}, i 6= j. Then B+
n = {u1, . . . , un} ∪ {βij | i < j} ∪ {γij | i 6= j}

and the tripels of positive roots α, β, γ ∈ B+
n satisfying α + β = γ are the following:

βij + uj = ui (i, j ∈ {1, . . . , n}, i < j)
ui + uj = γij (i, j ∈ {1, . . . , n}, i 6= j)
βij + βjk = βik (i, j, k ∈ {1, . . . , n}, i < j < k)
βij + γjk = γik (i, j, k ∈ {1, . . . , n}, i < j, k 6= i, j)
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Let N(Bn) be the lattice dual to the root lattice M(Bn) and v1, . . . , vn the basis of
N(Bn) dual to u1, . . . , un. The fan Σ(Bn) is defined as the fan of Weyl chambers in
N(Bn), i.e. its maximal cones are the Weyl chambers σS = S∨ = {v ∈ N(Bn)Q |∀α ∈
S : 〈α, v〉 ≥ 0} for sets of simple roots S of the root system Bn and all cones arise as
faces of these. For the set of simple roots S = {u1 − u2, u2 − u3, . . . , un−1 − un, un}
has the dual basis v1, v1 + v2, . . . , v1 + . . . + vn of N(Bn), the Weyl chamber σS

is equal to 〈v1, v1 + v2, . . . , v1 + . . . + vn〉Q≥0
. All Weyl chambers, i.e. all maximal

cones of the fan Σ(Bn), arise as translates of σS under the action of the Weyl group
on N(Bn)Q, thus they are generated by sets of elements of the form ε1vi1 , ε1vi1 +
ε2vi2 , . . . , ε1vi1 + . . . + εnvin for orderings i1, . . . , in of the set {1, . . . , n} and signs
εi ∈ {±1}. The fan Σ(Bn) has 3n − 1 one-dimensional cones generated by the
elements of the form ε1vi1 + . . . + εkvik for k ∈ {1, . . . , n}. These are via vB :=
∑

εii∈B
εivi ↔ B in bijection with the set B of all subsets ∅ 6= B ⊂ {±1, . . . ,±n}

such that B ∩ {i,−i} 6= {i,−i} for i = 1, . . . , n. The one-dimensional cones for a
family of such sets B(1), . . . , B(k) form a higher dimensional cone whenever they can
be ordered such that B(i1) ( . . . ( B(ik).

We have the n-dimensional smooth projective toric variety X(Bn) associated with
the fan Σ(Bn) with respect to the lattice N(Bn). As usual, any element u ∈ M(Bn)
defines a character of the open dense torus T (Bn) (resp. a rational function on
X(Bn)) denoted by xu. The toric variety X(Bn) has the following covering by
affine spaces. For any set S of simple roots we have the maximal cone σS = S∨

and the chart US = SpecZ[σ∨
S ∩ M(Bn)] ∼= An, for example if S = {u1 − u2, u2 −

u3, . . . , un−1 − un, un} then Z[σ∨
S ∩M(Bn)] = Z[x1

x2
, . . . , xn−1

xn
, xn]. The Weyl group

W (Bn) = (Z/2Z)n ⋊ Sn acts on X(Bn), it permutes these affine charts.

By [BB11, 1.2] the closures of torus orbits in X(Bn) are isomorphic to products
X(Bn1)×X(An2)×. . .×X(Ank

). The torus invariant divisor for the one-dimensional
cone generated by ε1vi1+. . .+εkvik is isomorphic toX(Bn−k)×X(Ak−1), in particular
for ε1vi1 + . . .+ εnvin we have a divisor isomorphic to X(An−1).

3. The universal curve

We construct a Bn-curve over X(Bn), which later turns out to be the universal
curve over the moduli space of Bn-curves, by using functorial properties of the toric
varieties associated with root systems developed in [BB11, 1.2]. We fix the following
notations for roots of Bn and Bn+1: βij = ui − uj, γij = ui + uj for i, j ∈ {1, . . . , n},
i 6= j and α+

i = un+1 + ui, α
−
i = un+1 − ui for i ∈ {1, . . . , n}.

Construction 3.1. (The universal Bn-curve.)
Consider the root subsystem Bn ⊂ Bn+1 consisting of the roots in the subspace
spanned by u1, . . . , un. The inclusion of root systems Bn ⊂ Bn+1 determines a
proper surjective morphism X(Bn+1) → X(Bn).

There are 2n + 1 additional pairs of opposite roots, the pairs ±α+
i and ±α−

i for
i ∈ {1, . . . , n} and the pair ±un+1. Each of these defines a projection onto the root
subsystem Bn ⊂ Bn+1 in the sense of [BB11, 1.2], thus the pairs ±α+

i and ±α−
i
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define sections s+i , s
−
i : X(Bn) → X(Bn+1) and an additional section s0 : X(Bn) →

X(Bn+1) is given by the projection with kernel generated by un+1.
Further, we have two sections s± : X(Bn) → X(Bn+1) which are inclusions of

X(Bn) into X(Bn+1) as torus invariant divisors (cf. [BB11, Prop. 1.9, Rem. 1.11])
corresponding to the one-dimensional cones of the fan Σ(Bn+1) generated by ±vn+1.

Locally, the image of s− (resp. s+) is given by the equations x−α±
i = 0, x−un+1 = 0

(resp. xα±
i = 0, xun+1 = 0) on the affine charts of X(Bn+1) corresponding to the sets

of positive roots containing −α±
i ,−un+1 (resp. α±

i , un+1).
There is an involution I ofX(Bn+1) over X(Bn) corresponding to the involution of

Bn+1 which fixes Bn ⊂ Bn+1 determined by the linear map ui 7→ ui for i ∈ {1, . . . , n}
and un+1 7→ −un+1. This element of the Weyl group W (Bn+1) is the reflection
determined by the root ±un+1. The section s0 is invariant under I, whereas for each
i ∈ {1, . . . , n} the sections s+i and s−i and also s− and s+ are interchanged.

Proposition 3.2. The collection (X(Bn+1) → X(Bn), I, s−, s+, s0, s
±
1 , . . . , s

±
n ) of

construction 3.1 is a Bn-curve over X(Bn).

Proof. The morphism X(Bn+1) → X(Bn) is proper. We can show that it is flat by
considering the covering of X(Bn+1) and X(Bn) by affine toric charts similar as in
the case of root systems of type A (see [BB11, Prop. 3.7]).

That any fibre is a Bn-curve follows from the results below. Remark 3.5 describes
the universal curve in terms of equations, proposition 3.7 shows that such equations
define a Bn-curve. It only remains to show that any Bn-data arises as in proposition
3.7 from a Bn-curve. This is done in lemma 3.8. �

Definition 3.3. We call the object (X(Bn+1) → X(Bn), I, s−, s+, s0, s
±
1 , . . . , s

±
n ) of

construction 3.1 the universal Bn-curve over X(Bn).

Example 3.4. We picture the universal curve X(B2) over X(B1) ∼= P1 with the
sections s−, s+, s0, s

±
1 . The generic fibre is a P

1, whereas the fibres over the two torus
fixed points x−u = 0 and xu = 0 of X(B1) are chains consisting of three projective
lines.

X(B2)

X(B1)
x−u = 0 xu = 0

s+

s
−

s0

s+1

s−1

This universal curve is constructed using the root system B2 with its root subsystem
B1 = {±u1} and the corresponding map of fans Σ(B2) → Σ(B1).
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B2

B1

✻

❄

✲✛

✒■

❘✠

u1−u1

α+
1 =u1+u2

u2
α−
1

−α−
1 =u1−u2

−u2
−α+

1

✻ ✻

✲✛ u−u

Σ(B2)

Σ(B1)

✻

❄

✲✛

✒■

❘✠

v1−v1

v1+v2
v2

−v1+v2

v1−v2
−v2

−v1−v2

❄ ❄
✲✛ v−v

By [BB11, 1.2] pairs of opposite roots {±α} in a root system R give rise to
morphisms X(R) → P1. We write P1

{±α} for the corresponding copy of P1 with

homogeneous coordinates zα, z−α such that the rational function xα on X(R) is the
pull-back of zα

z−α
. Further, the collection of these morphisms for all pairs of opposite

roots {±α} in R, i.e. root subsystems isomorphic to A1, defines a closed embedding
X(R) →

∏

{±α}⊆R P1
{±α} =: P (R). By [BB11, 1.3] the equations defining the image

of X(R) in P (R) come from root subsystems of type A2 in R or equivalently linear
relations between positive roots of R.

Remark 3.5. Consider X(Bn+1) and X(Bn) as embedded X(Bn+1) ⊆ P (Bn+1),
X(Bn) ⊆ P (Bn). Then the morphism X(Bn+1) → X(Bn) is induced by the pro-
jection onto the subproduct P (Bn+1) → P (Bn). The subvarieties X(Bn+1) (resp.
X(Bn)) are determined by the homogeneous equations zαzβz−γ = z−αz−βzγ for roots
α, β, γ such that α + β = γ, i.e. root subsystems of type A2 in Bn+1 (resp. Bn).
If we first consider the product P (Bn+1) and the equations coming from root sub-
systems of type A2 in Bn, we have

P (Bn+1/Bn)X(Bn) =
(
∏

A1
∼=R⊆Bn+1\Bn

P1
R

)

X(Bn)

=
(
∏n

i=1P
1
{±α+

i }
×
∏n

i=1P
1
{±α−

i }
× P1

{±un+1}

)

X(Bn)

Therein, X(Bn+1) is the closed subvariety given by the equations corresponding to
root subsystems of type A2 in Bn+1 which are not contained in Bn. We choose the
set of positive roots B+

n+1 corresponding to the set of simple roots {un+1 − u1, u1 −
u2, u2 − u3, . . . , un−1 − un, un}. Then B+

n+1 \ B
+
n = {un+1, α

±
1 , . . . , α

±
n } and we can

write these equations as follows

(1) tβzα2z−α1 = t−βz−α2zα1

for α1, α2 ∈ {un+1, α
±
1 , . . . , α

±
n }

such that β = α1 − α2 is a root of Bn

where t±β are the homogeneous coordinates of P1
{±β} (consider X(Bn) as embedded

in P (Bn)) or equivalently the two generating sections of the line bundle L{±β} being
part of the universal data on X(Bn) as defined in [BB11, 1.3].
The sections s±i : X(Bn) → X(Bn+1) for i ∈ {1, . . . , n} are given by the additional
equations zα±

i
= z−α±

i
, the section s0 by zun+1 = z−un+1 . The sections s− (resp. s+)
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are given by z−un+1 = 0, z−α±
i
= 0 for i = 1, . . . , n (resp. zun+1 = 0, zα±

i
= 0 for

i = 1, . . . , n).

Example 3.6. The universal B1-curve X(B2)⊂(P1
{±α+

1 }
×P1

{±α−
1 }
×P1

{±u2}
)X(B1) over

X(B1) is given by the homogeneous equations

tu1zu2z−α+
1
= t−u1z−u2zα+

1
, tu1zα−

1
z−u2 = t−u1z−α−

1
zu2

where (L{±u1}, {tu1 , t−u1}) is the universal B1-data on X(B1) ∼= P1. We picture
the B1-curves defined by these equations for (tu1 : t−u1) = (0 : 1), (a : b), (1 : 0). If
(tu1 : t−u1) = (a : b) 6= (0 : 1), (1 : 0) we have a projective line, we draw its projection
onto P1

{±u2}
and write the sections in terms of the homogeneous coordinates zu2 , z−u2.

Over the two torus fixed points of X(B1) the curve is a chain of three projective
lines in P1

{±α+
1 }

× P1
{±α−

1 }
× P1

{±u2}
.

(tu1 : t−u1) = (1 : 0)

s+

s−

s+1

s−1

s0

(tu1 : t−u1) = (a : b)

s+ = (0 : 1)

s− = (1 : 0)

s0 = (1 : 1)

s+1 = (b : a)

s−1 = (a : b)

(tu1 : t−u1) = (0 : 1)

s+

s−

s−1

s+1

s0

By remark 3.5 the universal Bn-curve over X(Bn) can be embedded into a product
P (Bn+1/Bn)X(Bn)

∼= (P1)2n+1
X(Bn)

and the embedded curve is given by equations (1)

determined by the universal Bn-data. We show that any Bn-curve C over a field can
be embedded into a product (P1)2n+1 and extract Bn-data such that C is described
by the same equations as the universal curve.

We fix the following notation: given a Bn-curve (C → Y, I, s−, s+, s0, s
±
1 , . . . , s

±
n )

we associate with the sections s0, s
−
i , s

+
i the roots un+1, α

−
i , α

+
i of B+

n+1 \ B+
n =

{un+1, α
±
1 , . . . , α

±
n } (cf. remark 3.5 and construction 3.1); we will write αs for the

positive root associated with the section s and conversely sα for the section associ-
ated with the root.

Proposition 3.7. Let (C, I, s−, s+, s0, s
±
1 , . . . , s

±
n ) be a Bn-curve over a field. For

any s ∈ {s0, s
±
1 , . . . , s

±
n } let zαs

, z−αs
∈ H0(C,OC(s)) be a basis of H0(C,OC(s))

such that z−αs
(s−) = 0, zαs

(s+) = 0, z−αs
(s) = zαs

(s) 6= 0 (cf. remark 3.5 for this
choice). We will write P1

{±αs}
for P(H0(C,OC(s))). Then by

(tβ : t−β) = (z−α2(s1) : zα2(s1))

if β = α1 − α2 is a root of Bn and α1, α2 are roots corresponding to distinct marked
points s1, s2 ∈ {s0, s

±
1 , . . . , s

±
n }, we can define Bn-data (tβ : t−β){±β}⊆Bn

and the
morphism

C →
∏n

i=1P
1
{±α+

i }
×

∏n
i=1P

1
{±α−

i }
× P1

{±un+1}
= P (Bn+1/Bn)
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is an isomorphism onto the closed subvariety C ′ ⊆ P (Bn+1/Bn) determined by the
homogeneous equations

(2) tβzα2z−α1 = t−βz−α2zα1

for α1, α2 ∈ {un+1, α
±
1 , . . . , α

±
n }

such that β = α1 − α2 is a root of Bn

Furthermore, C ′ together with the marked points s′0 resp. s
′
i
± defined by the additional

equations zun+1 = z−un+1 resp. zα±
i
= z−α±

i
, the poles s′− resp. s′+ defined by z−un+1 =

0, z−α±
i
= 0 (i = 1, . . . , n) resp. zun+1 = 0, zα±

i
= 0 (i = 1, . . . , n) and the involution

I ′ given by P1
{±α+

i }
↔ P1

{±α−
i }
, zα+

i
↔z−α−

i
and P1

{±un+1}
↔ P1

{±un+1}
, zun+1 ↔z−un+1

is a Bn-curve and (C, I, s−, s+, s0, s
±
1 , . . . , s

±
n ) → (C ′, I ′, s′−, s

′
+, s

′
0, s

′
1
±, . . . , s′n

±) an
isomorphism of Bn-curves.

Proof. The data (tβ : t−β) is defined as position of a marked point s1 relative to
another marked point s2 of C if β = αs1 − αs2. We also write s1/s2 for this data.
We have the following cases:

βij = α+
i − α+

j = α−
j − α−

i

γij = α+
i − α−

j = α+
j − α−

i

ui = α+
i − un+1 = un+1 − α−

i

Note that because of the symmetry of the Bn-curve with respect to the involution I
we have for the corresponding data s+i /s

+
j = s−j /s

−
i , s

+
i /s

−
j = s+j /s

−
i , s

+
i /s0 = s0/s

−
i ,

so the data (tβ : t−β){±β}⊆Bn
is well defined.

The rest of the proof is similar to the proof of [BB11, Prop. 3.12]. To check that
(tβ : t−β){±β}⊆Bn

is Bn-data, we have to check the equations tβtγt−δ = t−βt−γtδ for
the linear relations β + γ = δ given in lemma 2.1; these equations can be written in
the form s1/s2 · s2/s3 = s1/s3 for some sections s1, s2, s3. �

We will continue to use the notations s′/s = (tβ : t−β) for β = αs′ − αs, we have
s−/s = (0 : 1) and s+/s = (1 : 0) (points s′, s−, s+ with respect to the coordinates
(z−αs

: zαs
)).

Lemma 3.8. Any Bn-data over a field arises as Bn-data extracted from a Bn-curve
by the method of proposition 3.7.

Proof. Let (tβ : t−β){±β}⊆Bn
be Bn-data over a field.

We can define an ordering ≺ on the set of positive roots {un+1, α
±
1 , . . . , α

±
n } =

B+
n+1 \ B+

n : for distinct α, α′ define α′ ≺ α (resp. α′ � α) if (tβ : t−β) = (0 :
1) (resp. (tβ : t−β) 6= (1 : 0)) for β = α′ − α. This defines a decomposition
{un+1, α

±
1 , . . . , α

±
n } = P−m ⊔ . . . ⊔ Pm into nonempty equivalence classes such that

α′ ≺ α ⇐⇒ α′ ∈ Pk′, α ∈ Pk for k′ < k. We have the symmetries un+1 ≺ α±
i ⇐⇒

α∓
i ≺ un+1 and αεi

i ≺ α
εj
j ⇐⇒ α

−εj
j ≺ α−εi

i and these symmetries imply un+1 ∈ P0

and α+
i ∈ Pk ⇐⇒ α−

i ∈ P−k.
Now it is easy to construct a Bn-curve such that the Bn-data extracted from it by

the method of proposition 3.7 is the given Bn-data by taking a chain of projective
lines of length 2m+1 with involution (C, I, s−, s+) (see definition 1.2) and choosing
suitable marked points satisfying s0 ∈ C0 and s±i ∈ Ck ⇐⇒ α±

i ∈ Pk. �
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Let C be a Bn-curve over a field. It decomposes into irreducible components
C = C−m ∪ . . . ∪ Cm with s− ∈ C−m, s+ ∈ Cm. The decomposition

{0,±1, . . . ,±n} = P−m ⊔ . . . ⊔ Pm

such that 0 ∈ P0 and εi ∈ Pk ⇐⇒ sεi ∈ Ck, we will call the combinatorial type
of the Bn-curve (or of the corresponding Bn-data) over a field. We will also write
this in the form s−ε1

i1
. . . s−εl

il
| . . . |sε1i1 . . . s

εl
il
with the sections for the different sets Pk

separated by the symbol ”| ” starting on the left with P−m. Considering the fibres
of the universal Bn-curve resp. the universal Bn-data, these combinatorial types
determine a stratification of X(Bn) which coincides with the stratification of this
toric variety into torus orbits.

Proposition 3.9. Over the torus orbit in X(Bn) corresponding to the one-dimen-
sional cone generated by εi1vi1 + . . .+ εikvik we have the combinatorial type

s
εi1
i1

· · · s
εik
ik

|s0s
±
ik+1

· · · s±in |s
−εi1
i1

· · · s
−εik
ik

Proof. The universal Bn-data over each point of the closure of the orbit corre-
sponding to a generator of a one-dimensional cone generated by v has the property
(tβ : t−β) = (0 : 1) if 〈β, v〉 > 0 (see [BB11, Rem. 1.21]). For v = εi1vi1 + . . .+ εikvik
this in particular implies s

εil
il
/s0 = s0/s

−εil
il

= (tεiluil
: t−εiluil

) = (0 : 1) = s−/s0. �

4. Moduli space of Bn-curves

In this section we show that there is a fine moduli space of Bn-curves L
0,±

n which
is isomorphic to the toric variety X(Bn) by constructing an isomorphism between
the moduli functor of Bn-curves and the functor of X(Bn). For the second functor
we use the description in [BB11, 1.3] in terms of Bn-data.

To relate Bn-curves to Bn-data we consider an embedding of arbitrary Bn-curves
over a scheme Y into a product (P1)2n+1

Y that generalises the embedding in propo-
sition 3.7 to the relative situation. The main tool are the following contraction
morphisms (cf. [BB11, 3.3]): for a subset {s1, . . . , sl} of the sections of a pointed
chain of projective lines C there is a line bundle OC(s1 + . . . + sl) on C and a
morphism C → C{s1,...,sl} ⊆ PY (π∗OC(s1 + . . . + sl)) such that the morphisms
Cy → (C{s1,...,sl})y on the fibres are isomorphisms on the components containing one
of the sections si(y) and contract all other components (see [BB11, Constr. 3.15]).

We will make use of the particular cases of contraction with respect to one section
onto a P1-bundle, with respect to two sections onto an A1-curve and with respect
to three sections onto an A2-curve; we will apply [BB11, Constr. 3.16; Lemma 3.17
and 3.18].

We associate with the sections s0, s
±
i the roots un+1, α

±
i as we did before propo-

sition 3.7. For a Bn-curve (C → Y, I, s−, s+, s
±
1 , . . . , s

±
n ) we denote the contraction

morphisms with respect to one section s0, s
−
i resp. s+i by p0 : C → (P1

{±un+1}
)Y ,

p−i : C → (P1
{±α−

i }
)Y resp. p+i : C → (P1

{±α+
i }
)Y , where (P1

{±un+1}
)Y , (P1

{±α−
i }
)Y

resp. (P1
{±α+

i }
)Y is a copy of P1

Y with homogeneous coordinates zun+1 , z−un+1 resp.
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zα−
i
, z−α−

i
resp. zα+

i
, z−α+

i
such that in these coordinates s−, s+, s0 resp. s−, s+, s

−
i

resp. s−, s+, s
+
i become the (1 : 0), (0 : 1), (1 : 1)-section of P1

Y .

Theorem 4.1. There exists a fine moduli space L
0,±

n of Bn-curves isomorphic to
the toric variety X(Bn) with universal family X(Bn+1) → X(Bn).

Proof. We show that the moduli functor of Bn-curves L
0,±

n as defined in section 1 is

isomorphic to the functor FBn
of the toric variety X(Bn) as described in [BB11, 1.3].

Let Y be a scheme. For Bn-data on Y we construct a Bn-curve C over Y via
equations in P (Bn+1/Bn)Y as in remark 3.5 with the given Bn-data on Y replacing
the universal Bn-data on X(Bn). This is a Bn-curve: any Bn-data is pull-back of the
universal Bn-data on X(Bn), so the constructed curve is pull-back of the universal
Bn-curve over X(Bn).

In the other direction, given a Bn-curve over Y we extract Bn-data. For each
pair of distinct sections s1, s2 ∈ {s0, s

±
1 , . . . , s

±
n } we have a contraction morphism

C → C{s1,s2} onto an A1-curve over Y . From (C{s1,s2}, s1, s2) we extract A1-data
(L{1,2}, {t1,2, t2,1}) as in [BB11, Constr. 3.16]: we put L{±β} := L{1,2}, tβ := t1,2,
t−β := t2,1 for β = αs1 − αs2 (then (tβ : t−β) measures the position of s1 relative to
s2, we write this as s1/s2). We have the following cases:

βij = α+
i − α+

j = α−
j − α−

i

γij = α+
i − α−

j = α+
j − α−

i

ui = α+
i − un+1 = un+1 − α−

i

Because of the symmetry of the Bn-curve with respect to the involution we have for
the corresponding data s+i /s

+
j = s−j /s

−
i , s

+
i /s

−
j = s+j /s

−
i , s

+
i /s0 = s0/s

−
i , so the data

(L{±β}, {tβ, t−β}){±β}⊆Bn
is well defined.

We show that the data obtained this way is Bn-data. Let β, γ, δ be positive roots
of Bn such that β+ γ = δ. We have to verify that the collection {(L{±β}, {tβ, t−β}),
(L{±γ}, {tγ, t−γ}), (L{±δ}, {tδ, t−δ})} satisfies tβtγt−δ = t−βt−γtδ, which means that
it is A2-data. By lemma 2.1 we have the following cases:

βij + uj = ui (i, j ∈ {1, . . . , n}, i < j)
ui + uj = γij (i, j ∈ {1, . . . , n}, i 6= j)
βij + βjk = βik (i, j, k ∈ {1, . . . , n}, i < j < k)
βij + γjk = γik (i, j, k ∈ {1, . . . , n}, i < j, k 6= i, j)

In each of these cases we can write β = αs1 − αs2, γ = αs2 − αs3 for three distinct
sections s1, s2, s3 ∈ {s0, s

±
1 , . . . , s

±
n }. Then these equations can be interpreted as

relations between the relative positions of pairs of sections in a set of three sections,
we write this as s1/s2 · s2/s3 = s1/s3:

βij + uj = ui, βij = α+
i − α+

j , uj = α+
j − un+1, s+i /s

+
j · s+j /s0 = s+i /s0

ui + uj = γij, ui = α+
i − un+1, uj = un+1 − α−

j , s+i /s0 · s0/s
−
j = s+i /s

−
j

βij + βjk = βik, βij = α+
i − α+

j , βjk = α+
j − α+

k , s+i /s
+
j · s+j /s

+
k = s+i /s

+
k

βij + γjk = γik, βij = α+
i − α+

j , γjk = α+
j − α−

k , s+i /s
+
j · s+j /s

−
k = s+i /s

−
k

We have a contraction morphism C → C{s1,s2,s3} over Y onto an A2-curve C{s1,s2,s3}

over Y . The data {(L{±β}, {tβ, t−β}), (L{±γ}, {tγ, t−γ}),
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(L{±δ}, {tδ, t−δ})} coincides with the data extracted from this A2-curve and is A2-
data by [BB11, Lemma 3.18].

Both constructions commute with base-change and thus define morphisms of func-

tors FBn
→ L

0,±

n and L
0,±

n → FBn
. As in the proof of [BB11, Thm. 3.19] one shows

that they are inverse to each other. �

Remark 4.2. The moduli space L
0,±

n embeds naturally into L2n+1. A morphism

L
0,±

n → L2n+1 is given by considering a Bn-curve with sections s−1 , . . . , s
−
n , s0,

s+n , . . . , s
+
1 as an A2n-curve with sections s1, . . . , sn+1, . . . , s2n+1. This corresponds

to the toric morphism X(Bn) → X(A2n) given by the projection of root systems
A2n → Bn mapping ui−un+1 7→ ui, u2n+2−i−un+1 7→ −ui (i = 1, . . . , n) with kernel
generated by ui + u2n+2−i − 2un+1 (i = 1, . . . , n).

5. (Co)homology of L
0,±

n = X(Bn)

We show that the (co)homology of the moduli space L
0,±

n = X(Bn) over the
complex numbers has a description similar to that of the (co)homology of the Losev-
Manin moduli spaces Ln = X(An) (cf. [BB11, 2.2]).

The torus invariant divisors of L
0,±

n = X(Bn) correspond to elements of the set B
(see section 2 and prop. 3.9). Here, as in the case of the toric varieties X(An), all
primitive collections consist of two elements corresponding to non comparable sets
B,B′ ∈ B. As usual the integral cohomology is torsion free and confined to the even
degrees and standard methods from toric geometry (see e.g. [Dan, (10.8)]) give:

Proposition 5.1. For the cohomology ring of the toric variety X(Bn) over the
complex numbers we have

H∗(X(Bn),Z) ∼= Z[ lB : B ∈ B ]/(R1 +R2)

where R1 is the ideal generated by the elements ri =
∑

i∈B lB −
∑

−i∈B lB for i =
1, . . . , n and R2 the ideal generated by the elements rB,B′ = lBlB′ for B,B′ ∈ B such
that B 6⊆ B′, B′ 6⊆ B.

We proceed by determining the Betti numbers and the Poincaré polynomial and
obtain the following closed formula which is an analogue to [LM00, (2.3)].

Proposition 5.2. Let pX(Bn)(t) =
∑n

i=0 β2i(X(Bn))t
i be the Poincaré polynomial of

X(Bn) with β2i(X(Bn)) = rkH2i(X(Bn),Z) the Betti numbers. Then we have

∞
∑

n=0

pX(Bn)(t)

n!
yn = ey(t−1) t− 1

t− e2y(t−1)
∈ Z[t][[y]]

Proof. We have pX(Bn)(t) =
∑n

m=0 dm(Bn)(t−1)n−m (see [Ful, p. 92] or [Dan, (10.8)];
this can be shown in different ways, one possibility is by counting points over finite
fields as in [LM00]) with dm(Bn) = number of (n−m)-dim. torus orbits of X(Bn) =
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number of m-dim. cones of Σ(Bn). Inserting this into
∑∞

n=0

pX(Bn)(t)

n!
yn and inter-

changing summation by n and m, we get
∞
∑

n=0

pX(Bn)(t)

n!
yn =

∞
∑

m=0

1
(t−1)m

∞
∑

n=m

dm(Bn)
n!

(t− 1)nyn

The number dm(Bn) can be calculated as

1
n!
dm(Bn) =

∑

(a0,a1,...,am)

1
a0!

2a1
a1!

· · · 2
am

am!

where the sum runs over sequences a0 ∈ Z≥0, a1 ∈ Z>0, . . ., am ∈ Z>0 such that
∑

i ai = n (note that any family B(m) ( . . . ( B(1) of elements of B corresponding
to an m-dimensional cone of Σ(Bn) determines such a partition by am = |B(m)|,
am−1 = |B(m−1)| − |B(m)|, . . . , a0 = n − |B(1)|, in addition we have orderings and
signs). Making use of the fact that 1

n!
dm(Bn) coincides with the coefficient of xn in

the power series ex(e2x − 1)m, we obtain
∞
∑

n=0

pX(Bn)(t)

n!
yn = ey(t−1)

∞
∑

m=0

1
(t−1)m

(e2y(t−1) − 1)m

which yields the result. �

In particular we have χ(X(Bn)) = 2nn! (this reflects the fact that we have 2nn!
maximal cones), β2(X(Bn)) = 3n − n − 1 (corresponding to the fact that we have
3n − 1 one-dimensional cones) and for the first Poincaré polynomials

pX(B1)(t) = t + 1, pX(B2)(t) = t2 + 6t+ 1, pX(B3)(t) = t3 + 23t2 + 23t+ 1
pX(B4)(t) = t4 + 76t3 + 230t2 + 76t+ 1

pX(B5)(t) = t5 + 237t4 + 1682t3 + 1682t2 + 237t+ 1
pX(B6)(t) = t6 + 722t5 + 10543t4 + 23548t3 + 10543t2 + 722t+ 1

The ring Z[ lB : B ∈ B ]/R2 is the Stanley-Reisner ring for the triangulation of the
(n − 1)-dimensional sphere determined by the fan Σ(Bn). It is a Cohen-Macaulay
ring and the elements r1, . . . , rn that generate R1 form a regular sequence. The
calculation of the Poincaré polynomial of a toric variety in [Dan, (10.8)] in terms
of the numbers of cones of dimension d = 1, . . . , n only depends on the Hilbert-
Poincaré series of the Stanley-Reisner ring of the fan and the fact that the quotient
by an ideal generated by a regular sequence is taken. In [Re01] a ring has been
defined by taking the same Stanley-Reisner ring (over a field) but instead of R1 an
ideal generated by a different regular sequence, so by construction this ring has the
same Poincaré polynomial as the cohomology ring of X(Bn).

The Z-module Z[ lB : B ∈ B ]/(R1+R2) is generated by the classes of square-free
monomials (see [Dan, (10.7.1)]). We can restrict to monomials each of which has
only factors corresponding to one-dimensional faces of one maximal cone. Such a
monomial

∏m
i=1 lB(i) corresponds to anm-dimensional face of the respective maximal

cone and on the other hand to a collection B(m) ( . . . ( B(1) of elements of B. We
denote the Z-submodule of Z[ lB : B ∈ B ] generated by these monomials by G.
There is the canonical isomorphism of Z-modules G/U ∼= Z[ lB : B ∈ B ]/(R1 +R2)
where U = (R1 + R2) ∩ G. As usual, the module G/U can be identified with the
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homology module H∗(X(Bn),Z). The monomial
∏m

i=1 lB(i) then corresponds to the
class of the orbit closure for the cone determined by the collection B(m) ( . . . ( B(1),
in particular the monomials of G of degree m generate H2(n−m)(X(Bn),Z).

The maximal cones of the fan Σ(Bn) correspond to collections B(n) ( . . . ( B(1) of
elements of B and these correspond to so called signed permutations, that is elements
of the Weyl group W (Bn) = (Z/2Z)n ⋊ Sn =: S±

n . A signed permutation w ∈ S±
n

corresponds via (w(1), . . . , w(n)) to a sequence of distinct elements in {±1, . . . ,±n}
for any i not containing both −i and i. For a collection B(n) ( . . . ( B(1) of elements
of B the corresponding signed permutation σ ∈ S±

n is given by {w(k)} = B(k)\B(k+1)

for k = 1, . . . , n (put B(n+1) = ∅). The descent set of a signed permutation w ∈ S±
n

is the set (put w(0) = 0)

Desc(w) = {k ∈ {1, . . . , n} | w(k − 1) > w(k)}

For any w ∈ S±
n we define a monomial in G by

lw =
∏

k 6∈Desc(w) l{w(k),...,w(n)}

this way we have defined 2nn! distinct monomials.

Proposition 5.3. The classes of the monomials lw for w ∈ S±
n form a basis of the

homology module G/U = H∗(X(Bn),Z). The module of relations U is generated by
the elements

ri,j((B
(h))h, k) =

(

∑

i∈B
j 6∈B

lB −
∑

j∈B
i 6∈B

lB

)

∏m
h=1 lB(h)

(sums over sets B(k+1) ( B ( B(k)) for collections B(m) ( . . . ( B(1), m ≥ 1 of
elements of B and k ∈ {1, . . . , m}, i, j ∈ B(k) \B(k+1) (put B(m+1) = ∅), i 6= j, and
by the elements

ri((B
(h))h) =

(

∑

i∈B lB −
∑

−i∈B lB

)

∏m
h=1 lB(h)

(sums over sets B ∈ B such that B(1) ( B if m ≥ 1) for collections B(m) ( . . . (
B(1), m ≥ 0 of elements of B and i ∈ {1, . . . , n} such that −i, i 6∈ B(1) if m ≥ 1.

Proof. We observe that the given relations are contained in U . We have 2nn! mono-
mials lw, this number coincides with the rank of G/U . Thus it remains to show that
every monomial in G via the given relations is equivalent to a linear combination of
the monomials lw.

For a monomial
∏m

k=1 lB(k) corresponding to a collection B(m) ( . . . ( B(1), m ≥ 1
we define the number d(

∏m
k=1 lB(k)) := |{k ∈ {1, . . . , m} | minPk−1 > maxPk}| ∈

Z≥0 in terms of the associated partition Pm = B(m), Pm−1 = B(m−1) \ B(m), . . . ,
P1 = B(1) \B(2), P0 = {0,±1, . . . ,±n}\{±i | i∈ B(1) or − i∈B(1)}. The monomials
y ∈ G satisfying d(y) = 0 are exactly the monomials of the form lw. We define
the following ordering ≺ of the monomials of G: take the partition (Pk)k=0,...,m

associated with a monomial and consider the sequence that arises by taking the sets
Pm, . . . , P1 in this order and by ordering the elements of each Pk according to their
size, on these sequences we take the lexicographic order.
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We show that every monomial in Gmodulo U is equivalent to a linear combination
of the monomials lw, w ∈ S±

n by showing that every monomial y ∈ G with d(y) >
0 modulo a relation is equivalent to a linear combination of monomials y′ with
y ≺ y′. In fact, let B(m) ( . . . ( B(1), m ≥ 1 be a collection of elements of B
(put B(m+1) := ∅) with associated partition (Pk)k=0,...,m such that the corresponding
monomial y =

∏m
k=1 lB(k) satisfies d(y) > 0. Take k ∈ {1, . . . , m} such that i :=

minPk−1 > maxPk =: j. If k ∈ {2, . . . , m} then

ri,j((B
(h))h 6=k, k − 1) =

(

∑

i∈B
j 6∈B

lB −
∑

j∈B
i 6∈B

lB

)

∏

h 6=k lB(h)

(sums over sets B such that B(k+1) ( B ( B(k−1)) is a relation that contains y as
the unique monomial minimal with respect to ≺. If k = 1 then

r−j((B
(h))h 6=1) =

(

∑

−j∈B lB −
∑

j∈B lB

)

∏m
h=2 lB(h)

(sums over sets B ∈ B such that B(2) ( B) is such a relation. �

The proposition implies that the Betti numbers of X(Bn) coincide with the num-
ber of signed permutations with prescribed number of descents, for this see also
[DL94, Section 4], [St94]. Our basis of H∗(X(Bn),Z) coincides with the basis given
in [Kl85], [Kl95] in the general case of toric varieties associated with root systems
(see the following remark).

Remark 5.4. In [Kl85] a basis of the homology H∗(X(R),Z) is constructed as
follows. For a fixed set of simple roots S ⊂ R and the corresponding Weyl chamber
σS = S∨ consider for each w ∈ W (R) the face σw ⊆ wσS given as the intersection of
those walls of wσS that separate σS and wσS, i.e. we have the intersection of wσS

with those subspaces (wα)⊥, α ∈ S, for which wα is a negative root. The cycles
corresponding to the family of cones (σw)w∈W (R) form a basis of H∗(X(R),Z).

In our case we may choose the set of simple roots S = {un−un−1, . . . , u2−u1, u1} ⊂
Bn; the corresponding Weyl chamber is generated by vn, vn−1+ vn, . . . , v1+ . . .+ vn.
Then for w ∈ W (Bn) = S±

n we have w(uk−uk−1) is negative⇐⇒ w(k−1) > w(k) for
k ∈ {2, . . . , n} and w(u1) is negative ⇐⇒ 0 > w(1). So, each root α ∈ S such that
wα is negative corresponds to an element of Desc(w). Since (w(uk−uk−1))

⊥∩wσS is
generated by {w(vn), . . . , w(v1+ . . .+vn)}\{w(vk+ . . .+vn)} and (w(u1))

⊥∩wσS by
{w(vn), . . . , w(v2 + . . .+ vn)}, it follows that σw is generated by {v{w(k),...,w(n)} | k 6∈
Desc(w)} and the class of the respective torus invariant cycle corresponds to the
monomial lw.

6. Root systems of type C

Consider an n-dimensional Euclidean space E with basis u1, . . . , un. The root
system Cn in E consists of the 2n2 roots:

±2ui for i ∈ {1, . . . , n}; ±(ui + uj),±(ui − uj) for i, j ∈ {1, . . . , n}, i < j.

The following is a set of simple roots:

u1 − u2, u2 − u3, . . . , un−1 − un, 2un.
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Let M(Cn) be the root lattice. The Weyl group (Z/2Z)n ⋊ Sn acts by ui 7→ ±ui

and by permuting the ui. So there are 2nn! sets of simple roots, these are of the
form ε1ui1 − ε2ui2, ε2ui2 − ε3ui3, . . . , εn−1uin−1 − εnuin, 2εnuin for orderings i1, . . . , in
of the set {1, . . . , n} and signs ε1, . . . , εn.

The vector space E∗ dual to E with basis v1, . . . , vn dual to u1, . . . , un contains
the lattice N(Cn) dual to M(Cn). To describe the fan Σ(Cn) in the lattice N(Cn) we
describe a Weyl chamber. For the set of simple roots S = {u1−u2, u2−u3, . . . , un−1−
un, 2un} has the dual basis v1, v1 + v2, . . . , v1 + . . .+ vn−1,

1
2
(v1 + . . .+ vn) of N(Cn),

the Weyl chamber σS is equal to 〈v1, v1+ v2, . . . , v1+ . . .+ vn−1,
1
2
(v1+ . . .+ vn)〉Q≥0

.
All Weyl chambers are generated by collections of elements of the form ε1vi1, ε1vi1 +
ε2vi2 , . . . ,

1
2
(ε1vi1 + . . .+ εnvin) for orderings i1, . . . , in of the set {1, . . . , n} and signs

εi. There are 3n − 1 one-dimensional cones generated by elements of the form
ε1vi1 + . . .+ εkvik for k ∈ {1, . . . , n− 1} or of the form 1

2
(ε1v1 + . . .+ εnvn).

The torus invariant divisor for the one-dimensional cone generated by ε1vi1+ . . .+
εkvik is isomorphic to X(Cn−k)×X(Ak−1), that for

1
2
(ε1v1+ . . .+εnvn) is isomorphic

to X(An−1).

X(Cn+1) over X(Cn). Consider the proper surjective morphism X(Cn+1) →
X(Cn) induced by the root subsystem Cn ⊂ Cn+1 consisting of the roots in the
subspace generated by u1, . . . , un. As in the B-case one shows that X(Cn+1) is flat
over X(Cn).

The automorphism of Cn+1 given as the reflection for the root ±un+1 fixes Cn ⊂
Cn+1 and induces an involution I of X(Cn+1) over X(Cn). We have two sections
s−, s+ defined as in the B-case. There are 2n+ 1 additional pairs of opposite roots,
the pairs ±α+

i = ±(un+1 + ui), ±α−
i = ±(un+1 − ui) for i ∈ {1, . . . , n} and the

pair ±2un+1. Any pair ±α+
i , ±α−

i defines a projection onto the root subsystem
Cn ⊂ Cn+1 in the sense of [BB11, 1.2], thus we have sections s+i and s−i . The pair
±2un+1 does not define a projection of root systems Cn+1 → Cn, so it does not
induce a section. However, we can consider the morphism X(Cn+1) → P1

{±2un+1}

and the preimage of the point (1 : 1). We denote this subscheme of X(Cn+1) by S0;
it is finite flat of degree 2 over X(Cn) (see below), such a subscheme we will call a
double-section.

If we consider X(Cn+1) and X(Cn) as embedded X(Cn+1) ⊆ P (Cn+1), X(Cn) ⊆
P (Cn), then the morphism X(Cn+1) → X(Cn) is induced by the projection onto
the subproduct P (Cn+1) → P (Cn) and X(Cn+1) is given in P (Cn+1/Cn)X(Cn) =
(
∏n

i=1P
1
{±α+

i }
×

∏n
i=1P

1
{±α−

i }
× P1

{±2un+1}

)

X(Cn)
by the homogeneous equations in-

volving the universal Cn-data on X(Cn)

(3) zα−
i
zα+

i
z−2un+1 = z−α−

i
z−α+

i
z2un+1 , i ∈ {1, . . . , n}

(4) tβzα2z−α1 = t−βz−α2zα1 , α1, α2 ∈ {α±
1 , . . . , α

±
n }, α1 6= α2, β = α1 − α2
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Example 6.1. We picture the inclusion of root systems C1 ⊂ C2 and the map of
fans Σ(C2) → Σ(C1).

C2

C1

✻

❄

✲✛

✒■

❘✠

2u1−2u1

α+
1 =u1+u2

2u2
α−
1

−α−
1 =u1−u2

−2u2
−α+

1

✻ ✻

✲✛ 2u−2u

Σ(C2)

Σ(C1)

✻

❄

✲✛

✒■

❘✠

v1−v1

1
2(v1+v2)

v2
1
2(−v1+v2)

1
2(v1−v2)

−v2

1
2(−v1−v2)

❄ ❄
✲✛

1
2v−1

2v

The fibres of X(Cn+1) → X(Cn) can be studied for example using the above de-
scription in terms of equations or by employing the description of X(Cn) as quotient
of X(Bn) (see below). We obtain the following result, in particular the fibres over a
union of torus invariant divisors are not reduced.

Proposition 6.2. We define D ⊂ X(Cn) to be the union of the torus invariant
divisors corresponding to the one-dimensional cones of Σ(Cn) generated by elements
of the form 1

2
(ε1v1 + . . . + εnvn). For the structure of the fibres of the morphism

X(Cn+1) → X(Cn) together with the involution I, the sections s±i and the double-
section S0, there are the following two situations.

Over X(Cn) \D the fibres are Bn-curves except that instead of the section s0 we
have a double-section S0 which consists of the two fixed points under I. In this case
the central component contains some of the sections s±i .

Over D the fibres are Bn-curves except that the central component is nonreduced
of the form P1

K[ε]/〈ε2〉 with the double-section S0
∼= SpecK[ε]/〈ε2〉 concentrated in

one point. The intersection of the central component with the other components
locally is isomorphic to the subscheme in A2

K = SpecK[x, y] defined by the equation
x2y = 0. All sections s±i are on the other components.

In both cases the combinatorial types over the torus invariant divisors, after the
appropriate modifications, are given by the description in the B-case (prop. 3.9).

X(Cn) as quotient of X(Bn). We investigate the description of X(Cn) as a
quotient X(Bn)/µ2. On the moduli side this leads to a characterisation of X(Cn)
as the coarse moduli space of a toric Deligne-Mumford stack. For simplicity, in this
part we will work over the field of complex numbers.

On the moduli space L
0,±

n of Bn-curves we have an involution J that transforms
a Bn-curve over a scheme Y to the Bn-curve with the other fixed point section with
respect to the involution I as section s0, i.e. we apply the automorphism of the cen-
tral component that commutes with I (see the following remark) to the section s0.
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Remark 6.3. Let (C, I, s−, s+) be a chain of projective lines with involution of odd
length over C. Consider the central component (C0, p

−
0 , p

+
0 ) which we identify with

(P1
C, 0,∞) such that I|C0 : x 7→ 1

x
. Then there are two automorphisms of (C0, p

−
0 , p

+
0 )

that commute with I, namely the identity and x 7→ −x, determined by the action
on the fixed points {1,−1} of I|C0.

Identifying L
0,±

n with X(Bn), the involution J is given on the functor of Bn-data
(see [BB11, 1.3]) by (L{±ui}, {tui

, t−ui
}) 7→ (L{±ui}, {tui

,−t−ui
}) or equivalently

f±ui
7→ −f±ui

on the part corresponding to the roots ±u1, . . . ,±un, whereas the
part corresponding to the other roots remains unchanged.

In both the Cn-case and the Bn-case we start with the same vector space E
with basis u1, . . . , un. The root lattice M(Cn) is a sublattice of the root lattice
M(Bn) of index 2 and dually N(Bn) ⊂ N(Cn) of index 2, whereas the fan Σ(Cn)
as a set of cones in N(Cn)Q = N(Bn)Q is the same as the fan Σ(Bn). Thus, the
toric variety X(Cn) is the quotient of X(Bn) by the involution that maps xui 7→
−xui . This involution on X(Bn) coincides with the involution J . Locally, we have
quotients An/µ2 by the action of µ2 that changes the sign of one coordinate of An.
In particular, X(Bn) is flat over X(Cn) of degree 2. X(Cn) can be considered as
the µ2-Hilbert scheme of X(Bn), then X(Bn) → X(Cn) forms the universal family
of µ2-clusters, the fibres over X(Cn) \D consist of two points, the fibres over D are
nonreduced µ2-clusters.

Concerning the double-section S0 ⊂ X(Cn+1) we obtain:

Lemma 6.4. The scheme S0 is isomorphic to X(Bn) over X(Cn).

Proof. Let S̃0 ⊂ X(Bn+1) be the fixed point subscheme of the involution I on
X(Bn+1). The scheme S̃0 over X(Bn) consists of two components s0(X(Bn)) and
another copy of X(Bn) such that J : X(Bn+1) → X(Bn+1) restricts to an isomor-
phism between these components over J : X(Bn) → X(Bn). The scheme S0 arises
as quotient of S̃0 by J , the section s0 : X(Bn) → S̃0 determines an isomorphism
X(Bn) → S0 over X(Cn) = X(Bn)/µ2. �

We are led to the following type of curves to be parametrised by X(Cn).

Definition 6.5. (First definition of Cn-curves). A Cn-curve over a scheme Y is a
collection (π : C → Y, I, s−, s+, s

±
1 , . . . , s

±
n ) which arises from a Bn-curve over Y by

omitting the section s0.

Equivalently, we can replace the section s0 of a Bn-curve C → Y by the subscheme
s0(Y )∪J(s0(Y )), which coincides with the fixed point subscheme of the involution I
on C. The section s0 selects one of the two components of this fixed point subscheme.
Forgetting this information, the Bn-curves for points y, Jy in the moduli space

L
0,±

n = X(Bn) define Cn-curves related by an isomorphism of Cn-curves. If the
central component contains sections s±i , then two nonisomorphic Bn-curves over a
field give rise to isomorphic Cn-curves. If the central component does not contain
a section s±i , then one Bn-curve corresponds to one Cn-curve, but Cn-curves of this
type have an extra automorphism that interchanges the two fixed points of I (cf.
remark 6.3).
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This functor of Cn-curves cannot be representable by a scheme. However, we can
consider the stack of Cn-curves.

Theorem 6.6. The category of Cn-curves forms a Deligne-Mumford stack X (Cn)
isomorphic to the quotient stack [X(Bn)/µ2] with the group operation given by
J : X(Bn) → X(Bn).

Proof. Let X (Cn) be the category of Cn-curves, i.e. an object of X (Cn) over a scheme
Y is a Cn-curve C over Y , a morphism (C → Y ) → (C ′ → Y ′) over Y → Y ′ is
a cartesian diagram compatible with the involution I and the sections. This is a
category fibred in groupoids, we show that it is equivalent as a fibred category to
the Deligne-Mumford stack [X(Bn)/µ2].

An object of [X(Bn)/µ2] over a scheme Y is a µ2-torsor T → Y together with a
µ2-equivariant map T → X(Bn). A morphism (T → Y, α : T → X(Bn)) → (T ′ →
Y ′, α′ : T ′ → X(Bn)) over Y → Y ′ is a cartesian diagram of µ2-torsors given by a
morphism θ : T → T ′ such that α′ ◦ θ = α. We will use that the functor of X(Bn)
is isomorphic to the functor of Bn-curves and fix an isomorphism resp. a universal
family over X(Bn).

We define a morphism of fibred categories Φ: [X(Bn)/µ2] → X (Cn). For an
object (T → Y, α : T → X(Bn)) we have a Bn-curve B → T corresponding to the
equivariant morphism α such that the action of µ2 on T is given by interchanging
the two possible choices of s0. After forgetting the section s0, the quotient of B → T
by µ2 gives a Cn-curve C → Y using the canonical isomorphism T/µ2

∼= Y . For
a morphism (T → Y, α : T → X(Bn)) → (T ′ → Y, α′ : T ′ → X(Bn)) we obtain a
cartesian diagram of Cn-curves (C → Y ) → (C ′ → Y ′).

We define a morphism of fibred categories Ψ: X (Cn) → [X(Bn)/µ2]. Let C → Y
be a Cn-curve over Y . Consider the fixed point subscheme T ⊂ C under I, this is
a µ2-torsor over Y . Let B be the pull-back of the Cn-curve C → Y to T , with the
section s0 defined as the diagonal of T ×Y T ⊂ B this is a Bn-curve and defines
a µ2-equivariant morphism α : T → X(Bn). A morphism (C → Y ) → (C ′ → Y ′)
given by γ : C → C ′ determines a cartesian diagram of Bn-curves by γ × γ : B =
C×Y T → B′ = C ′×Y ′T ′ over a cartesian diagram of µ2-torsors given by γ : T → T ′.
So the diagram formed by γ : T → T ′ and T, T ′ → X(Bn) is commutative.

The compositions Φ ◦Ψ and Ψ ◦Φ are isomorphic to the respective identities. In
the case of Φ ◦ Ψ the quotient of the pull-back of a Cn-curve C → Y to T ⊂ C
is canonically isomorphic to C → Y . In the case of Ψ ◦ Φ the quotient of a Bn-
curve B → T over a µ2-torsor T gives a Cn-curve C → Y , together these form a
cartesian square. The section s0 : T → B determines an inclusion T ⊂ C as fixed
point subscheme with respect to I. Applying the functor Ψ we recover a Bn-curve
canonically isomorphic to the original Bn-curve. �

Corollary 6.7. The toric variety X(Cn) is a coarse moduli space of Cn-curves.

The stack X (Cn) is a toric Deligne-Mumford stack as introduced in [BCS04] (see
also [FMN10]): we define the stacky fan Σ(Cn) as the fan Σ(Cn) in the lattice N(Cn)
with the difference that we choose on the rays generated by 1

2
(ε1v1 + . . . + εnvn)

the second lattice points ε1v1 + . . . + εnvn. In comparision to the fan Σ(Bn) the
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underlying lattice is finer and the toric DM stack associated with Σ(Cn) coincides
with the quotient stack [X(Bn)/µ2].

Corollary 6.8. The stack X (Cn) is isomorphic to the toric Deligne-Mumford stack
associated with the stacky fan Σ(Cn).

Example 6.9. The stacky fan Σ(C2) in the lattice Z1
2
v ∼= Z consists of the two

cones Q≥0v,Q≥0(−v) with chosen lattice points v,−v. The associated toric DM
stack is X (C2) ∼= [P1/µ2] (cf. also [FMN10, example 7.31]), it is an orbifold with
two stacky points.

X(Cn) as fine moduli space. We give a characterisation of X(Cn) as a fine

moduli space L
±

n of 2n-pointed chains of projective lines. Here the universal curve
is not X(Cn+1) → X(Cn), however, the universal curve and the general notion of a
Cn-curve are defined naturally in terms of the inclusion of root systems Cn → Cn+1.

We have the root subsystem Cn ⊂ Cn+1 in the subspace generated by the roots
u1, . . . , un. Take those pairs of opposite roots in Cn+1 \Cn which define projections
Cn+1 → Cn in the sense of [BB11, 1.2]; these are ±α−

1 ,±α+
1 , . . . ,±α−

n ,±α+
n but not

±2un+1. To each of these pairs ±α−
i and ±α+

i we associate a section s−i and s+i .
The element of the Weyl group given as the reflection for the root ±2un+1 mapping
un+1 7→ −un+1 and ui 7→ ui for i ∈ {1, . . . , n} is an isomorphism of Cn+1 fixing
Cn ⊂ Cn+1. It maps α−

i ↔ −α+
i . This leads us to the following definition.

Definition 6.10. (Second definition of Cn-curves). A Cn-curve over an algebraically
closed field K is a chain of projective lines with involution of odd or even length
with 2n (possibly coinciding) marked points s±1 , . . . , s

±
n different from the poles, the

involution interchanging s−i ↔ s+i , such that every component contains at least one
of the points s±i . We define a Cn-curve over an arbitrary scheme, isomorphisms of
Cn-curves and the moduli functor of Cn-curves in the same way as we did in the
case of Bn-curves.

Construction 6.11. Let the subscheme

C(Cn+1/Cn) ⊂
(
∏n

i=1P
1
{±α−

i }
×
∏n

i=1P
1
{±α+

i }

)

X(Cn)

be defined by the equations (4) using the universal Cn-data on X(Cn). This mor-
phism C(Cn+1/Cn) → X(Cn) has the sections s−, s+, s

±
i , where s− is defined by

z−α±
i

= 0 (i = 1, . . . , n), s+ is defined by zα±
i

= 0 (i = 1, . . . , n) and the sec-

tions s±i by the equations zα±
i

= z−α±
i
. The involution maps P1

{±α−
i }

↔ P1
{±α+

i }
,

(zα−
i
: z−α−

i
) ↔ (z−α+

i
: zα+

i
).

Remark 6.12. The toric variety C(Cn+1/Cn) arises from X(Cn+1) by contracting
certain torus invariant prime divisors. The fibres ofX(Cn+1) → X(Cn) over the divi-
sors corresponding to the rays generated by elements of the form 1

2
(ε1v1+ . . .+εnvn)

(forming D in proposition 6.2) have a central component containing none of the sec-
tions s±i . In X(Cn+1) the support of the central components of the fibers over
the divisor corresponding to 1

2
(ε1v1 + . . . + εnvn) forms a torus invariant divisor

which corresponds to the ray in Σ(Cn+1) generated by ε1v1 + . . . + εnvn and is
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isomorphic to X(C1) × X(An−1) ∼= P1 × X(An−1). We contract these divisors
P1 × X(An−1) to X(An−1) by omitting the rays in Σ(Cn+1) generated by
elements of the form ε1v1 + . . . + εnvn, but retaining the two-dimensional cones
〈

1
2
(ε1v1 + . . .+ εnvn − vn+1),

1
2
(ε1v1 + . . .+ εnvn + vn+1)

〉

Q≥0
. On the fibers over D

the central components are contracted.

Proposition 6.13. The morphism C(Cn+1/Cn) → X(Cn) with the involution I and
the sections s−, s+, s

±
1 , . . . , s

±
n is a Cn-curve. The combinatorial types of the fibres

over the torus orbits corresponding to one-dimensional cones are as follows:

εi1vi1 sε1i1 |s
±
i2
· · · s±in|s

−ε1
i1

εi1vi1 + εi2vi2 sε1i1 s
ε2
i2
|s±i3 · · · s

±
in|s

−ε2
i2

s−ε1
i1

...
...

εi1vi1 + . . . + εin−2vin−2 sε1i1 · · · s
εn−2

in−2
|s±in−1

s±in |s
−εn−2

in−2
· · · s−ε1

i1

εi1vi1 + . . . . . . + εin−1vin−1 sε1i1 · · · s
εn−1

in−1
|s±in|s

−εn−1

in−1
· · · s−ε1

i1
1
2
(εi1vi1 + . . . . . . . . . + εinvin) sε1i1 · · · s

εn
in
|s−εn

in
· · · s−ε1

i1

Definition 6.14. We call C(Cn+1/Cn) → X(Cn) together with the involution I and
the sections s−, s+, s

−
1 , s

+
1 , . . . , s

−
n , s

+
n the universal Cn-curve over X(Cn).

By the same procedure as in the case of root systems of type A and B we can
prove the following.

Theorem 6.15. There exists a fine moduli space L
±

n of Cn-curves isomorphic to the
toric variety X(Cn) with universal family C(Cn+1/Cn) → X(Cn).

Remark 6.16. There is a natural closed embedding of the moduli spaces L
±

n =
X(Cn) → L2n = X(A2n−1) determined by considering a Cn-curve with sections
s−1 , . . . , s

−
n , s

+
n , . . . , s

+
1 as an A2n−1-curve with sections s1, . . . , s2n. The toric mor-

phism X(Cn) → X(A2n−1) is given by the projection of root systems A2n−1 → Cn

induced by
⊕2n

i=1Zui → M(Cn), ui 7→ ui, u2n+1−i 7→ −ui for i = 1, . . . , n. The
kernel in M(A2n−1) is generated by u2n+1−i + ui − u2n+1−j −uj for some fixed j and
i ∈ {1, . . . , n} \ {j}. By employing this embedding we have an alternative approach
to prove the above statements.

7. Root systems of type D

Consider for n ≥ 2 an n-dimensional Euclidean space E with basis u1, . . . , un.
The root system Dn in E consists of the 2n(n− 1) roots

±(ui + uj),±(ui − uj) for i, j ∈ {1, . . . , n}, i < j.

The following is a set of simple roots:

u1 − u2, u2 − u3, . . . , un−1 − un, un−1 + un.

The Weyl group (Z/2Z)n−1⋊Sn acts by ui 7→ εiui, where the εi are signs such that
∏

i εi = 1, and by permuting the ui. So there are 2n−1n! sets of simple roots, these
are of the form ε1ui1 − ε2ui2, ε2ui2 − ε3ui3, . . . , εn−1uin−1 − εnuin , εn−1uin−1 + εnuin
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for orderings i1, . . . , in of the set {1, . . . , n} and signs ε1, . . . , εn (note that εn = 1
and εn = −1 give the same set).

The vector space E∗ dual to E with basis v1, . . . , vn dual to u1, . . . , un contains
the lattice N(Dn) dual to the root lattice M(Dn). To describe the fan Σ(Dn) in
the lattice N(Dn) we determine a Weyl chamber. The set of simple roots u1 −
u2, u2 − u3, . . . , un−1 − un, un−1 + un has the dual basis v1, v1 + v2, . . . , v1 + . . . +
vn−2,

1
2
(v1 + . . . + vn−1 − vn),

1
2
(v1 + . . . + vn−1 + vn) of N(Dn) which generates

the corresponding Weyl chamber. There are 3n − n2n−1 − 1 one-dimensional cones
generated by elements of the form

∑

i∈A εivi for A ⊂ {1, . . . , n}, 1 ≤ |A| ≤ n− 2 or
of the form 1

2
(ε1v1 + . . .+ εn−1vn−1 + εnvn), where the εi are signs.

The torus invariant divisor for the one-dimensional cone generated by ε1vi1+ . . .+
εkvik , 1 ≤ k ≤ n−2 is isomorphic toX(Dn−k)×X(Ak−1), that for ε1v1+. . .+εn−2vn−2

is isomorphic to X(A1) × X(A1) × X(An−3) ∼= X(D2) × X(An−3) and that for
1
2
(ε1v1 + . . .+ εnvn) is isomorphic to X(An−1) (see [BB11, 1.2]).

X(Dn+1) over X(Dn). Consider the proper surjective morphism X(Dn+1) →
X(Dn) induced by the root subsystem Dn ⊂ Dn+1 consisting of the roots in the
subspace generated by u1, . . . , un. We have a projection of fans Σ(Dn+1) → Σ(Dn)
along the subspace generated by vn+1. The generic fibre is P1. Note that the torus
invariant divisor in X(Dn+1) corresponding to v1+ . . .+vn−1 is lying over the closure
of the torus orbit in X(Dn) of codimension 2 corresponding to the 2-dimensional
cone generated by 1

2
(v1 + . . .+ vn−1 + vn),

1
2
(v1 + . . .+ vn−1 − vn); here (and on the

translates under the Weyl group W (Bn)) we have fibres of dimension 2. This implies
that the morphism X(Dn+1) → X(Dn) is not flat.

There are 2n additional pairs of opposite roots, the pairs ±α+
i = ±(un+1 + ui)

and ±α−
i = ±(un+1 − ui) for i ∈ {1, . . . , n}. The projections along the subspaces

generated by these do not define projections of root systems Dn+1 → Dn in the
sense of [BB11, 1.2]: we have α+

i − α−
i = 2ui, so the projection along the subspace

generated by α+
i (resp. α−

i ) maps α−
i (resp. α+

i ) to 2ui which is not a multiple of a
root of Dn. Instead we can consider the preimages of (1 : 1) ∈ P1

{±α−
i }
,P1

{±α+
i }

with

respect to the projections X(Dn+1) → P1
{±α−

i }
,P1

{±α+
i }

determined by the inclusions

of root systems {±α−
i }, {±α+

i } ⊂ Dn+1, we denote these subschemes by s−i , s
+
i . As

in the B and C-case we have sections s−, s+; further we have an involution I coming
from the automorphism of Dn+1 fixing Dn ⊂ Dn+1 which maps un+1 7→ −un+1,
ui 7→ ui for i ∈ {1, . . . , n} and is not an element of the Weyl group W (Dn+1).

As in the other cases we can study X(Dn+1) over X(Dn) via the embedding into
P (Dn+1/Dn)X(Dn) =

(
∏n

i=1P
1
{±α−

i }
×

∏n
i=1P

1
{±α+

i }

)

X(Dn)
. The subscheme X(Dn+1)

⊂ P (Dn+1/Dn)X(Dn) is given by the homogeneous equations parametrised by the
universal Dn-data

tβzα2z−α1 = t−βz−α2zα1

for α1, α2 ∈ {α±
1 , . . . , α

±
n }

such that β = α1 − α2 is a root of Dn
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We will see that over the complement of a closed subset of codimension 2 the
fibres are chains of projective lines with sections s±i . Over these points we have a
combinatorial type for a fibre resp. for the universal Dn-data as in the B-case (see
proposition 3.9), we use the notation introduced there.

Example 7.1. X(D3) over X(D2).
The root system D2 consists of the 4 roots ±u1 ± u2. It is contained in the root
system D3, this has the 8 additional roots ±α−

1 = ±(u3 − u1), ±α+
1 = ±(u3 + u1),

±α−
2 = ±(u3−u2), ±α+

2 = ±(u3+u2). Because of the isomorphism of root systems
D2

∼= A1 × A1 we have X(D2) ∼= P1 × P1. The fan Σ(D2) has 4 one-dimensional
cones generated by 1

2
(±v1 ± v2). The fan Σ(D3) has 14 one-dimensional cones, 6 of

the form ±vi and 8 of the form 1
2
(ε1v1+ε2v2+ε3v3). The projection Σ(D3) → Σ(D2)

maps the generator of the one-dimensional cone 1
2
(ε1v1+ε2v2+ε3v3) to the generator

of the one-dimensional cone 1
2
(ε1v1+ε2v2), the vector ±vi for i = 1, 2 is not mapped

to a one-dimensional cone of D2 but into the interior of the 2-dimensional cone
〈±vi + vj ,±vi − vj〉Q≥0

.

In P (D3/D2)X(D2) =
(

P1
{±α−

1 }
× P1

{±α+
1 }

× P1
{±α−

2 }
× P1

{±α+
2 }

)

X(D2)
the subscheme

X(D3) is given by 4 equations parametrised by the universal D2-data on X(D2). For
each point we haveD2-data of the form (tβ12 : t−β12), (tγ12 : t−γ12) where β12 = u1−u2,
γ12 = u1 + u2. Over the affine chart SpecZ[x1

x2
, x1x2] corresponding to the cone

〈1
2
(v1 − v2),

1
2
(v1 + v2)〉Q≥0

for the set of simple roots β12, γ12 this data has the
property (tβ12 : t−β12) 6= (1 : 0), (tγ12 : t−γ12) 6= (1 : 0) (see [BB11, Rem. 1.21]). We
study the fibres of X(D3) → X(D2) over this affine chart. Over the dense torus we
have a P1, over the torus orbit corresponding to 1

2
(v1−v2) (resp.

1
2
(v1+v2)) we have

chains of two P1 of combinatorial type s+1 s
−
2 |s

−
1 s

+
2 (resp. s+1 s

+
2 |s

−
1 s

−
2 ). Over the torus

fixed point corresponding to the cone 〈1
2
(v1− v2),

1
2
(v1+ v2)〉Q≥0

we have D2-data of
the form (tβ12 : t−β12) = (0 : 1), (tγ12 : t−γ12) = (0 : 1) and the fibre decomposes into
three irreducible components P1,P1 × P1,P1.

P1

(z
α

−

1

: z
−α

−

1

)

P1

(z
α

+

1

: z
−α

+

1

)

P1 × P1

(z
α

−

2

: z
−α

−

2

), (z
α

+

2

: z
−α

+

2

)

s−2

s+2

s−

s+

s+1

s−1

The general case can be studied using the same methods, see also the Bn-case and
in particular proposition 3.9, here details will be left to the reader. We
define Z ⊂ X(Dn) to be the union of the closures of torus orbits correspond-
ing to the 2-dimensional cones of the form 〈1

2
(ε1vi1 + . . . + εn−1vin−1 + εinvin),

1
2
(ε1vi1 + . . .+ εn−1vin−1 − εnvin)〉Q≥0

.
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Proposition 7.2. Over X(Dn) \ Z the fibres of the morphism X(Dn+1) → X(Dn)
are chains of projective lines of odd or even length with sections s±i . The combinato-
rial types of the fibres over the torus orbits corresponding to one-dimensional cones
are as follows:

εi1vi1 sε1i1 |s
±
i2
· · · s±in|s

−ε1
i1

εi1vi1 + εi2vi2 sε1i1 s
ε2
i2
|s±i3 · · · s

±
in|s

−ε2
i2

s−ε1
i1

...
...

εi1vi1 + . . .+ εin−2vin−2 sε1i1 · · · s
εn−2

in−2
|s±in−1

s±in |s
−εn−2

in−2
· · · s−ε1

i1
1
2
(εi1vi1 + . . .+ εin−2vin−2 + εin−1vin−1 + εinvin) sε1i1 · · · s

εn
in
|s−εn

in
· · · s−ε1

i1
1
2
(εi1vi1 + . . .+ εin−2vin−2 + εin−1vin−1 − εinvin) sε1i1 · · · s

−εn
in |sεnin · · · s−ε1

i1

Over Z the fibres are 2-dimensional and decompose into irreducible components iso-
morphic to P1 and P1×P1 intersecting transversally. We have a central component
P1 × P1 with action of I that interchanges two torus fixed points and leaves the
other two fixed. Further, we have chains of P1 emanating from the two torus fixed
points of P1 × P1 interchanged by I with the sections s± on the outer components.
Concerning the subschemes s±i , each of them intersects only with one component,
those intersecting with one of the P1 locally are sections, one pair s−i , s

+
i intersects

with P1 × P1 as (1 : 1)× P1, P1 × (1 : 1).

Remark 7.3. The combinatorial type of fibres of X(Rn+1) over the torus fixed
points of X(Rn) can be pictured in form of the Dynkin diagram of the root system
Rn+1 such that a component P1 with one section corresponds to a vertex.
In the An-case (see [BB11]) we have a string starting with the section si1 on the com-
ponent containing s− and ending with the section sin+1 on the component containing
s+ in the form of the Dynkin diagram for the root system An+1:

si1 si2 si3 . . . sin+1

In the Bn-case, because of the involution I, it suffices to consider the central compo-
nent containing the section s0 and one of the two chains emanating from the central
component. This forms a Dynkin diagram of type Bn+1:

s0 sε1i1 sε2i2 . . . sεnin

In the Cn-case we have the double-section S0 replacing the section s0:

S0 sε1i1 sε2i2 . . . sεnin

Finally, in the Dn-case we can take the torus invariant divisors in the central com-
ponent P1 × P1 and their intersection with the fibres of the schemes s±i . Together
with the other components we have a Dynkin diagram of type Dn+1:

s+i1

s−i1

sε2i2 sε3i3 . . . sεnin
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