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Abstract. Let Q be a tame quiver of type Ãn and Rep (Q) the category of finite

dimensional representations over an algebraically closed field. A representation is

simply called a module. We study the number of the GR submodules. It will

be shown that only finitely many (central) Gabriel-Roiter measures have no direct

predecessors. The quivers Q, whose central part contains no preinjective modules,

will also be characterized.
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1. Introduction

Let Λ be an artin algebra and mod Λ the category of finitely generated right Λ-modules. For each

M ∈ mod Λ, we denote by |M | the length of M . The symbol ⊂ is used to denote proper inclusion.

The Gabriel-Roiter (GR for short) measure µ(M) for a Λ-module M was defined in [12] by induction

as follows:

µ(M) =






0, if M = 0;

maxN⊂M{µ(N)}, if M is decomposable;

maxN⊂M{µ(N)} + 1
2|M| , if M is indecomposable.

(In later discussion, we will use the original definition for our convenience, see [11] or section 2.1

below.) The so-called Gabriel-Roiter submodules of an indecomposable module are defined to be

the indecomposable proper submodules with maximal GR measure.

Using Gabriel-Roiter measure , Ringel obtained a partition of the module category for any artin

algebra of infinite representation type [11, 12]: there are infinitely many GR measures µi and µi

with i natural numbers, such that

µ1 < µ2 < µ3 < . . . . . . < µ3 < µ2 < µ1

and such that any other GR measure µ satisfies µi < µ < µj for all i, j. The GR measures µi (resp.

µi) are called take-off (resp. landing) measures. Any other GR measure is called a central measure.

An indecomposable module is called a take-off (resp. central, landing) module if its GR measure is

a take-off (resp. central, landing) measure.

To calculate the GR measure of a given indecomposable module, it is necessary to know the

GR submodules. Thus it is interesting to know the number of the isomorphism classes of the GR

submodules for a given indecomposable module. It was conjectured that for a representation-finite

algebra (over an algebraically closed field), each indecomposable module has at most three GR

1The author is supported by DFG-Schwerpunktprogramm ’Representation theory’.
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submodules. In [5], we have proved the conjecture for representation-finite hereditary algebras. In

this paper, we will start to study the GR submodules of string modules. In particular, we will

show in section 3 that each string module, which contains no band submodules, has at most (up to

isomorphism) two GR submodules. As an application, we show for a tame quiver Q of type Ãn that

if a regular module has precisely (up to isomorphism) two GR submodules, then one of the two GR

inclusions is an irreducible monomorphism. A description of the numbers of GR submodules will

also be presented there.

Let µ, µ′ be two GR measures for Λ. We call µ′ a direct successor of µ if, first, µ < µ′ and

second, there does not exist a GR measure µ′′ with µ < µ′′ < µ′. The so-called Successor Lemma

in [12] states that any Gabriel-Roiter measure µ different from µ1 has a direct successor. There is no

’Predecessor Lemma’. For example, the minimal central measure (if exists) has no direct predecessor.

It is clear that any GR measure over a representation-finite artin algebra has a direct predecessor.

We may ask the following question: does the number of GR measures having no direct predecessors

relate to the representation type of artin algebras? More precisely, does a representation-infinite

(hereditary) algebra (over an algebraically closed field) is of tame type imply that there are only

finitely many GR measures having no direct predecessors and vice versa? In section 4, we will study

the direct predecessors of the GR measures of tame quivers Q of type Ãn, and show that only finitely

many GR measures have no direct predecessors.

It was shown in [11] that all landing modules are preinjective modules in the sense of Auslander-

Smalø [2]. However, not all preinjective modules are landing modules in general. It is interesting to

study the preinjective module, which are in central part. In section 5, We will show that for a tame

quiver Q of type Ãn, if there is a preinjective central module, then there are actually infinitely many

ones. However, it is possible that the central part does not contain any preinjective module. We are

going to characterize the tame quivers of type Ãn with this property. In particular, we show that

the quiver Q of type Ãn is equipped with a sink-source orientation if and only if any indecomposable

preinjective module is either a landing module or a take-off module.

2. Preliminaries and known results

2.1. Gabriel-Roiter measure. We fist recall the original definition of Gabriel-Roiter measure

[11, 12]. Let N1={1, 2, . . .} be the set of natural numbers and P(N1) be the set of all subsets of N1.

A total order on P(N1) can be defined as follows: if I,J are two different subsets of N1, write I < J

if the smallest element in (I\J) ∪ (J\I) belongs to J. Also we write I ≪ J provided I ⊂ J and for

all elements a ∈ I, b ∈ J\I, we have a < b. We say that J starts with I if I = J or I ≪ J .

Let Λ be an artin algebra and mod Λ be the category of finite generated (right) Λ-modules.

For each M ∈ mod Λ, let µ(M) be the maximum of the sets {|M1|, |M2|, . . . , |Mt|}, where M1 ⊂

M2 ⊂ . . . ⊂ Mt is a chain of indecomposable submodules of M . We call µ(M) the Gabriel-

Roiter measure of M . If M is an indecomposable Λ-module, we call an inclusion T ⊂ M with T

indecomposable a GR inclusion provided µ(M) = µ(T ) ∪ {|M |}, thus if and only if every proper

submodule of M has Gabriel-Roiter measure at most µ(T ). In this case, we call T a GR submodule

of M .

Remark. We have seen in Introduction a different way to define the Gabriel-Roiter measure.

These two definitions (orders) can be identified. In fact, for each I = {ai|i} ∈ P(N1), let µ(I) =∑
i

1
2ai

. Then I < J if and only if µ(I) < µ(J).
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Let’s denote by T , C and I the collection of indecomposable modules, which are in take-off

part, central part and landing part, respectively. We present one result concerning Gabriel-Roiter

measures, which will be used later on. For more basic properties we refer to [11, 12].

Proposition 2.1. Let Λ an artin algebra and X ⊂ M be a GR inclusion. Then

1) If µ(X) < µ(Y ) < µ(M), then |Y | > |Z|.

2) There is an irreducible monomorphism X→Y with Y indecomposable and an epimorphism

Y →M .

The first statement is a direct consequence of the definition. For a proof of the second statement,

we refer to [5](Proposition 3.2).

2.2. Let Q be a tame quiver of type Ãn,n≥1 and Rep (Q) the category of finite dimensional repre-

sentations over an algebraically closed field. We simply call the representations in Rep (Q) modules.

We briefly recall some notations and refer to [1, 10] for details. If X is a quasi-simple module, then

there is a unique sequence X = X1→X2→ . . .→Xr→ . . . of irreducible monomorphisms. Thus any

indecomposable regular module M is of the form M ∼= Xi with X a quasi-simple module (quasi-

socle of M) and i a natural number (quasi-length of M). The rank of an indecomposable regular

module M is the minimal positive integer r such that τrM = M . A regular component (tube) of the

Auslander-Reiten quiver of Q is called exceptional if its rank (the rank of any quasi-simple module

on it) r > 1. If X is quasi-simple of rank r, then the dimension vector dimXr = δ =
∑r

i=1 τrX ,

where δ is the minimal positive imaginary root, i.e. δ is a dimension vector with δν = 1 for each

ν ∈ Q. Let |δ| =
∑

δν = n+1. A quasi-simple module of rank 1 will be called a homogeneous simple

module. We denote by Hi an indecomposable homogeneous module with quasi-length i. We denote

by P , R and I the collection of indecomposable preprojective, regular and preinjective modules,

respectively.

We collect some known facts in the following proposition, which will be quite often used in our

later discussion. The proofs can be found in [7] (or [8] and [9] for tame quivers of type D̃n, Ẽ6, Ẽ7

and Ẽ8).

Proposition 2.2. Let Q be a tame quiver of type Ãn.

1) Let ι : T ⊂ M be a GR inclusion.

a) If M ∈ P, then ι is an irreducible monomorphism.

b) If M ∈ R is a quasi-simple module, then T ∈ P.

c) If M = Xi ∈ R with X quasi-simple and i > 1, then T ∈ P or T ∼= Xi−1.

d) If M ∈ I, then T ∈ R.

2) If X ∈ P, then X ∈ T and µ(X) < µ(H1).

3) µ(H1) is a central measure and µ(M) > µ(H1), if M ∈ I satisfies dimM > δ.

4) Let X be a quasi-simple module of rank r > 1. Then

a) If µ(Xr) < µ(H1), then µ(Xi) < µ(Hj) for all i ≥ 1 and j ≥ 1.

b) If µ(Xr) ≥ µ(H1), then Xi−1 is the unique (up to isomorphism) GR submodule of Xi.

If in addition r > 1, then µ(Xi) > µ(Hj) for all i > r and j ≥ 1.

5) Let T be a regular tube of rank r > 1. Then there is a quasi-simple module X on T such

that µ(Xr) ≥ µ(H1).

6) Let S be a quasi-simple module of rank r which is simple. Then µ(Sr) < µ(H1). Thus

µ(Sj) < µ(H1) for all j ≥ 1.
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7) Let M ∈ I \ T and Xi be a GR submodule of M for some quasi-simple X. Then µ(M) >

µ(Xj) for all j ≥ 1.

Lemma 2.3. Let Q be a tame quiver of type Ãn. Then for every indecomposable preinjective module

M , there is, in each regular tube, precisely one quasi-simple module X such that Hom(X, M) 6= 0.

In particular, up to isomorphism, each indecomposable preinjective module contains in each regular

tube at most one GR submodule.

Proof. Let M = τsIν , where Iν is an indecomposable injective module corresponding to a vertex

ν ∈ Q. It is obvious that there is a quasi-simple module X on a given regular tube such that

Hom (X, Iν) 6= 0. Thus Hom (τsX, M) 6= 0. Assume that X and Y are non-isomorphic quasi-simple

modules on the same tube such that Hom (X, M) 6= 0 6= Hom(Y, M). Then Hom(τ−sX, Iν) 6=

0 6= Hom(τ−sY, Iν). Thus (dim τ−sX)ν 6= 0 6= (dim τ−sY )ν , which is impossible since 1 = δν ≥

(dim τ−sX)ν + (dim τ−sY )ν . �

This lemma and Proposition 2.2 imply that each indecomposable preinjective module has at most

one GR submodule in each regular component.

3. the number of GR submodules

As we have mentioned in Introduction, the number of GR submodules of a given indecomposable

modules is conjectured being bounded by three for representations-finite algebras. In this section,

we will show that this number is always bounded by two for representation-finite string algebras.

We will also describe the numbers of GR submodules for tame quivers Q of type Ãn.

3.1. String modules. We first recall the definition of string modules. For details, we refer to [3].

Let Λ be a string algebra . We denote by s(C) and e(C) the starting and the ending vertices of a

given string C, respectively. Let C = cncn−1 · · · c2c1 be a string, the corresponding string module

M(C) is defined as follows: let ui = s(ci+1) for 1 ≤ i ≤ n − 1 and un = e(cn). For a vertex

ν ∈ Q, let Iν = {i|ui = ν} ⊂ {0, 1, . . . , n}. Then the vector space associated to ν is M(C)v satisfies

dimM(C)ν = |Iν | and has zi, i ∈ Iν as basis. If ci is an arrow β, define β(zi−1) = zi for all 1 ≤ i ≤ n.

If ci is an inverse of an arrow β, define β(zi) = zi−1 for all 1 ≤ i ≤ n. Note that the indecomposable

string modules are uniquely determined strings up to C ∼ C−1.

If C = EβF is a string with β an arrow. Then the string module M(E) is a submodule of M(C):

let E be of length n and F be of length m. then C has length n + m + 1. If M(C) is given by

n+m+2 vectors z0, z1, . . . , zn+m+2, it is obvious that the spaces determined by vectors z0, z1, . . . , zn

is a submodule, which is M(E). The corresponding factor module is M(F ). If C = Eβ−1F is a

string with β an arrow, we may obtain similarly an indecomposable submodule M(F ) with factor

module M(E).

3.2. ’covering’ of a string module. Let C = cncn−1 · · · c2c1 be a string. We associate to C a

Dynkin quiver An+1 as follows: the vertices are ui, and there is an arrow ui−1
αi→ ui if ci is an arrow,

and an arrow ui
αi→ ui−1 in case ci is an inverse of an arrow. Let M(C) be the string module and

MA(C) be the unique sincere indecomposable representation over An+1. For each string submodule

N of M(C), we may similarly construct an indecomposable module NA(C), which is a submodule
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of MA(C). By the description of string modules and the morphisms among them [4], we actually

obtain in this way a functor:

F : subMQ(C)−→subM(C),

where sub M denotes the full subcategory consisting of all submodules of M . The following properties

are direct consequences of the description of string modules:

• F is faithful, but not full in general.

• F(X) ∼= F(Y ) does not imply X ∼= Y .

• The submodules of M(C), which are not of the form F(X), are the band modules.

• F preserves indecomposables, monomorphisms and lengths.

• F preserves the GR submodules and thus the GR measures.

For a Dynkin quiver of type A, we have shown in [5] the following result:

Proposition 3.1. Let An+1 be a Dynkin quiver. Then each indecomposable module has at most two

GR submodules and each factor of a GR inclusion is a uniserial module.

As a consequence of this proposition and the properties of F , we have

Theorem 3.2. Let Λ be a string algebra and M(C) be a string module containing no band submod-

ules. Then M(C) contains, up to isomorphism, at most two GR submodules and the factors of the

GR inclusions are uniserial modules.

Corollary 3.3. If Λ is a representation-finite string algebra, then each indecomposable module has

up to isomorphism at most two GR submodules and the GR factors are uniserial.

3.3. Now we assume that Q is a tame quiver of type Ãn. Then every indecomposable regular

module with rank r > 1 is string module containing no band submodules, thus has at most two GR

submodules, up to isomorphism.

Proposition 3.4. If an exceptional regular module has precisely two GR submodules, then one of

the GR inclusions is an irreducible map.

Proof. Let M(C) be an exceptional regular module with C = cm · · · c2c1, which has precisely (up to

isomorphism) two GR submodules. Then the module MA(C) also has two GR submodules, which

are actually given by the irreducible monomorphism X→MQ(C) and Y →MQ(C). By definition of

MA(C), we may identify the arrows αi or its inverse in Am+1with ci in the string C of Ãn. We

may assume that X is determine by string E and MA(C) is determined by Fα−1E, where F is a

composition of arrows or a trivial path and α is an arrow. Then under the above identification, we

have C = Fα−1E. Let M(C)→M ′ be the unique irreducible monomorphism with M ′ determined

by a string F ′β−1Fα−1E, where F ′ is a compositions of arrows or a trivial path and β is an arrow.

Thus either the ending vertex e(F ) is a sink, or F is a trivial path. Again by the description of

irreducible monomorphism in Ãn, we have that the inclusion F(X)→M(C) is still an irreducible

map. �

Remark. Let Q be a tame quiver of type Ãn and M be a non-simple indecomposable module.

Let gr(M) denote the number of GR submodules (up to isomorphism) of M .

1) If M is preprojective, each GR inclusion X ⊂ M is namely an irreducible map. In particular,

gr(M) ≤ 2 since every irreducible map to M is a monomorphism (Proposition 2.2(1)).
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2) If M is a quasi-simple module of rank r > 1, then gr(M) = 1 since M is uniserial.

3) If M is regular of rank r > 1, then gr(M) ≤ 2, and one of the GR inclusion is irreducible

in case gr(M) = 2.

4) If M is non-quasi-simple regular module, and if µ(Xr) ≥ µ(H1), then gr(M) = 1 and the

unique GR inclusion is an irreducible map.

5) If M is preinjective, then M contains, up to isomorphism, at most one GR submodule in

each regular component. Thus gr(M) ≤ 3 if we identify the parameter λ ∈ k \ {0} of

homogeneous (band) modules where k is the ground field. In this sense, gr(M) = 3 implies

the dimension vector of each GR submodule of M is δ.

6) A homogeneous simple module H1 may contains more GR submodules. For example, if n

is odd and Q = Ãn is with sink-source orientation (see [8] example 3). In this case, the GR

measure of a homogeneous simple modules is µ(H1) = {1, 3, 5, . . . , n, n+1}. There are n+1
2

indecomposable preprojective modules with length n and they are all non-isomorphic GR

submodules of H1. In general, gr(H1) is bounded by the number of the indecomposable

summands of the projective cover of H1.

4. Direct predecessor

Given an artin algebra. Recall that a GR measure J is called a direct successor of I if, first,

I < J and second, there does not exist a GR measure J ′ with I < J ′ < J . It is easily seen that if J

is the direct successor of I, then J is a take-off (resp. central, landing) measure if and only if so is

I. Let I1 be the largest GR measure, i.e. the GR measure of an indecomposable injective module

with maximal length. It was proved in [12] that any Gabriel-Roiter measure I different from I1 has

a direct successor. However, there are GR measures, which does not admit a direct predecessor. By

the construction of the take-off measures and the landing measures in [11], the GR measures having

no direct predecessors are central measures. From now on, we fix a tame quiver Q of type Ãn.

4.1. The following proposition gives a GR measure possessing no direct predecessor. The proof

uses Proposition 2.2.

Proposition 4.1. The GR measure µ(H1) of a homogeneous quasi-simple module H1 has no direct

predecessor.

Proof. For the purpose of a contradiction, we assume that µ(M) is the direct predecessor of µ(H1)

for some indecomposable module M . Since µ(H1) is a central measure, so is µ(M). It follows that

M is not preprojective. Let Y be a GR submodule of H1. Since Y is preprojective, µ(Y ) < µ(M) <

µ(H1) and thus |M | > |H1|. If M is preinjective, then there is a monomorphism H1→M because

|M | > |H1|, and hence µ(H1) < µ(M). This contradiction implies that M is a regular module.

Assume that M = Xi for some quasi-simple module X of rank r > 1. Because |M | > |H1|, we have

i > r. Therefore, µ(Xr) < µ(M) < µ(H1). It follows that µ(M) < µ(Xj) < µ(H1) for all j > i.

This is a contradiction. �

Proposition 4.2. Let M ∈ I\T . If µ(N) is the direct predecessor of µ(M) for some indecomposable

module N , then N ∈ I and |N | > |M |.
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Proof. Since µ(N) is not a take-off measure, N is not preprojective. Assume for a contradiction

that N = Yj is regular for some quasi-simple module Y . Let Xi be a GR submodule of M for some

quasi-simple module X and some i ≥ 1. Then µ(M) > µ(Xt) and thus µ(Xt) 6= µ(Yj) for all t ≥ 1

by 2.2(7). Therefore µ(Xi) < µ(Yj) < µ(M). It follows that |Yj | > |M | and µ(M) < µ(Yj+1) since

µ(N) = µ(Yj) is a direct predecessor of µ(M). Notice that a GR submodule T of Yj+1 is either

Yj or a preprojective module. In particular µ(T ) < µ(M) < µ(Yj+1). Thus |M | > |Yj+1|. This

contradicts |Yj | > |M |. Therefore, N is preinjective. �

4.2. Proposition 2.2(4) tells that the GR measure µ(Xr) for a quasi-simple module X of rank r

is important when comparing the GR measures of regular modules Xi and those of homogeneous

modules Hj . Namely, there is a similar result that can be used to compare the GR measures of two

non-homogeneous regular modules.

Lemma 4.3. Let X, Y be quasi-simple modules with rank r and s, respectively. Assume that µ(Xr) ≥

µ(H1).

1) If µ(Xr) > µ(Ys), then µ(Xi) > µ(Yj) for all i ≥ r, , j ≥ 1.

2) If µ(Xi) = µ(Yj) for some i ≥ 2r. Then r = s and µ(Xt) = µ(Yt) for every t ≥ r.

3) If µ(X2r) > µ(Y2s), then µ(Xi) > µ(Yj) for all i ≥ 2r, j ≥ 1.

Proof. 1) If µ(Ys) < µ(H1), then µ(Yj) < µ(H1) for all j ≥ 1. Thus we may assume that µ(Ys) ≥

µ(H1). Since for each j ≥ s, µ(Yj) starts with µ(Ys) and |Ys| = |Xr| = |δ|, we have µ(Xr) > µ(Yj).

2) It is clear that r = 1 if and only if s = 1. Now we assume r > 1. Since µ(Xr) ≥ µ(H1), we

have µ(Ys) ≥ µ(H1). Thus j ≥ 2s and

µ(Yj) = µ(Ys) ∪ {|Ys+1|, |Ys+2|, . . . , |Y2s|, |Y2s+1|, . . . , |Yj |}

= µ(Xr) ∪ {|Xr+1|, |Xr+2|, . . . , |X2r|, |X2r+1|, . . . , |Xi|} = µ(Xi).

Because |Xr| = |Ys| = |δ| and |X2r| = |Y2s| = 2|δ|, we obtain that r = s, µ(Xr) = µ(Ys) and

µ(X2r) = µ(Y2s). Note that

|Xr+l| − |Xr+l−1| = |Yr+l| − |Yr+l−1|

for all l ≥ 1. It follows µ(Xt) = µ(Yt) for all t ≥ r = s.

3) follows similarly. �

Corollary 4.4. Let X be a quasi-simple module of rank r such that µ(Xr) ≥ µ(H1). If M is an

indecomposable module such that µ(M) = µ(Xi) for some i ≥ 2r, then M is a regular module.

Proof. Assume for a contradiction that M is preinjective. Let Yt be a GR submodule of M for

some quasi-simple module Y of rank s. Then µ(M) > µ(Yj) for all j ≥ 1 by Proposition 2.2(7).

Thus Y ≇ X and t ≥ 2s since |M | = |Xi| > 2|δ|. It follows that µ(Ys) ≥ µ(H1). Notice that

µ(Yt) = µ(Xi−1). Therefore, r = s and µ(Yt+1) = µ(Xi) by above lemma. This contradicts

|Yt+1| > |M | = |Xi| (Proposition 2.1). Thus M is regular. �

4.3. We have seen in Proposition 2.2(4) that the irreducible maps H1→H2→H3→ . . . are GR in-

clusions. This is not only the case. Namely, in [7] ([8] for general cases) we proved that µ(Hi+1) is

the direct successor of µ(Hi) for each i ≥ 1. Let X be a quasi-simple of rank r > 1. It is possible

[for example, if µ(Xr) ≥ µ(H1)] that all irreducible maps Xr→Xr+1→Xr+2→ . . . are GR inclusions.

However, it is not true in general that µ(Xj+1) is the direct successor of µ(Xj) for all j ≥ r (Example
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4 in [7]). The following proposition tells if µ(Xr) ≥ µ(H1) and if µ(Xj+1) is not the direct successor

of µ(Xj), then j < 2r.

Proposition 4.5. Let X be a quasi-simple module of rank r such that µ(Xr) ≥ µ(H1). Then

µ(Xj+1) is a direct successor of µ(Xj) for each j ≥ 2r.

Proof. We may assume r > 1. We first show that there does not exist an indecomposable regular

module M such that µ(M) lies between µ(Xj) and µ(Xj+1) for any j ≥ 2r. For the purpose of a

contradiction, we assume that there exists a j ≥ 2r and an indecomposable regular module M with

µ(Xj) < µ(M) < µ(Xj+1). We may assume that |M | is minimal. Then |M | > |Xj+1| > 2|δ|, since

Xj is a GR submodule of Xj+1. Let M = Yi for some quasi-simple module Y of rank s > 1. It

follows that µ(Ys) ≥ µ(H1) and i > 2s. Therefore, Yi−1 is a GR submodule of Yi and

µ(Yi−1) ≤ µ(Xj) < µ(M) = µ(Yi) < µ(Xj+1)

by minimality of M . This implies µ(Yi−1) = µ(Xj), since otherwise |Xj | > |M | > |Xj+1|, which is

a contradiction. Observe that i − 1 ≥ 2s and j ≥ 2r. Then Lemma 4.3 implies µ(Xt) = µ(Yt) for

all t ≥ r = s. This contradicts the assumption µ(Xj) < µ(M) = µ(Yi) < µ(Xj+1). Therefore, there

are no indecomposable regular modules M satisfying µ(Xj) < µ(M) < µ(Xj+1) for any j ≥ 2r.

Now we assume that M is an indecomposable preinjective module such that µ(Xj) < µ(M) <

µ(Xj+1). Let Yi be a GR submodule of M for some quasi-simple module Y and i ≥ 1. Then Yi ≇ Xt

for any t > 0 by Proposition 2.2(7). Comparing the lengths, we have µ(Yi) ≥ µ(Xj). Thus Propo-

sition 2.2(7) implies µ(Xj) < µ(Yi+1) < µ(M) < µ(Xj+1). Therefore, we get an indecomposable

regular module Yi+1 with GR measure lying between µ(Xj) and µ(Xj+1), which is a contradiction.

The proof is completed. �

4.4. Let X be a quasi-simple module of rank r such that µ(Xr) ≥ µ(H1). For a given i ≥ 2r,

let µi,1 > µi,2 > . . . > µi,ti
be all different GR measures of the form µi,j = µ(Xi) ∪ {ai,j} and

ai,j 6= |Xi+1| for any 1 ≤ j ≤ ti. Notice that there are only finitely many such µi,j for each given i.

Lemma 4.6. 1) ai,j < |Xi+1| for all 1 ≤ j ≤ ti and ai,j < ai,l if j < l.

2) µi,j > µ(Xt) for all 1 ≤ j ≤ ti, t ≥ 1.

3) µi,j > µl,h if i < l.

4) If M is an indecomposable module such that µ(M) = µi,j, then M ∈ I.

Proof. 1) If ai,j > |Xi+1|, then

µi,j = µ(Xi) ∪ {ai,j} < µ(Xi) ∪ {|Xi+1|} = µ(Xi+1).

This contradicts µ(Xi+1) is a direct successor of µ(Xi) (Proposition 4.5). Thus ai,j < |Xi+1|.

2) follows from 1) and the fact that X2r ⊂ X2r+1 ⊂ . . . ⊂ Xt ⊂ Xt+1 ⊂ . . . is a sequence of GR

inclusions.

3) If i < l, then

µl,h = µ(Xl) ∪ {al,h}

= µ(Xi) ∪ {|Xi+1|, . . . , |Xl|, al,h}

< µ(Xi) ∪ {ai,j}

= µi,j
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4) If M is not preinjective, then M is regular, say M = Yt for some quasi-simple module Y of

rank s. Thus t > 2s since |M | > |Xi| > 2|δ|, and µ(Ys) ≥ µ(H1). In particular, Yt−1 is a GR

submodule of Yt and µ(Yt−1) = µ(Xi) < µ(Xi+1) < µ(M) = µ(Yt). This is a contradiction since

µ(Yt) is also a direct successor of µ(Yt−1). �

Proposition 4.7. The sequence of GR measures

. . . < µi+1,2 < µi+1,1 < µi,ti
< . . . < µi,j+1 < µi,j < . . . < µi,2 < µi,1

is a sequences of direct predecessors.

Proof. Let M be an indecomposable module such that

µ(Xi) ∪ {ai,j+1} = µi,j+1 < µ(M) < µi,j = µ(Xi) ∪ {ai,j}.

Then µ(M) = µ(Xi) ∪ {b1, b2, . . . , bm} with ai,j < b1 ≤ ai,j+1 < |Xi+1|. By the choices of µi,j , we

have m ≥ 2 and b1 = ai,j+1. This implies M contains a submodule N with µ(N) = µ(Xi)∪{ai,j+1},

which is thus a preinjective module by above lemma. However, an indecomposable preinjective mod-

ule can not be a submodule of any other indecomposable module. We therefore get a contradiction.

Now let M be an indecomposable module such that

µ(Xi) < µ(Xi) ∪ {|Xi+1|, ai+1,1} = µi+1,1 < µ(M) < µi,ti
= µ(Xi) ∪ {ai,ti

}.

It follows that µ(M) = µ(Xi) ∪ {b1, b2, . . . , bm}. By definition of µi,ti
, we have b1 = |Xi+1| <

ai+1,1 < |Xi+2| and m ≥ 2. From b2 ≤ ai+1,1 and the definition of µi+1,1, we obtain that b2 = ai+1,1

and m ≥ 3. Therefore, M contains an indecomposable preinjective module N with GR measure

µ(Xi) ∪ {|Xi+1|, ai+1,1} as a submodule, which is impossible.

The proof is completed. �

Remark. We should note that some segment of the sequence of the GR measures in this propo-

sition may not exist. In this case, we can still show as in the proof that for example, µj,1 is a direct

predecessor of µi,ti
for some j ≥ i + 2.

Remark. Assume that µi,j , constructed as above, are not landing measures ( For example, X is

a homogeneous simple module H1. See section 5). Since each GR measure different from I1 has a

direct successor, We may construct direct successors starting from µi,1 for a fixed i. Let µ(M) be the

direct successor of µi,1. If M is preinjective, then |M | < |µi,1| = ai,1 by Proposition 4.2. Thus after

taking finitely many direct successors, we obtain a regular measure (meaning that it is a GR measure

of an indecomposable regular module). Proposition 4.2 tells that all direct successors starting with

this regular measure are still regular ones. One the other direction, if there are infinitely many

preinjective modules containing Xi as GR submodules, then the sequence µi,j is infinite (This does

occur in some case, see section 5. Thus we obtain a sequence of GR measures indexed by integers

Z.

4.5. Let’s fix a tame quiver Q of type Ãn. There are always GR measures having no direct succes-

sors, for example, µ(H1) (Proposition 4.1). We are going to show that the number of GR measures

possessing no direct predecessors is always finite.

Lemma 4.8. Let X be a quasi-simple of rank r > 1. Assume that there is an i ≥ 1 such that Xi ∈ C

is a central module. Then there is an i0 ≥ i such that µ(Xj+1) is a direct successor of µ(Xj) for

each j ≥ i0.
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Proof. By Proposition 4.5, we may assume that µ(Xr) < µ(H1). Since Xi is a central module,

Xj is the unique, up to isomorphism, GR submodule of Xj+1 for every j ≥ i. We first show

that there is a j0 such that there does not exist a regular module with GR measure µ satisfying

µ(Xj) < µ < µ(Xj+1) for any j ≥ j0.

Let Y be a quasi-simple module of rank s such that µ(Xj) < µ(Yl) < µ(Xj+1) for some j ≥ i ≥ r

and l ≥ 1. In this case, Yl is a GR inclusion of Yl+1 since Yl is a central module. Comparing the

lengths, we have µ(Yl+1) < µ(Xj+1), and similarly µ(Yh) < µ(Xj+1) for all h ≥ 1. Now replace j

by some j′ > j and repeat the above consideration. Since there are only finitely many quasi-simple

modules Z such that µ(ZrZ
) ≤ µ(H1), where rZ is the rank of Z, we may obtain an index j0 such

that a GR measure µ of an indecomposable regular module satisfies either µ < µ(Xj0 ) or µ > µ(Xj)

for all j ≥ 1.

Fix the above chosen j0. Assume that there is an indecomposable preinjective module M such

that µ(Xj) < µ(M) < µ(Xj+1) for some j ≥ j0. Then µ(M) starts with µ(Xj) and thus there is an

indecomposable submodule N of M in a GR filtration of M such that µ(N) = µ(Xj). Note that N

is a regular module and thus N = Yl for some l ≥ 1. If Xj
∼= N , then µ(M) > µ(Xj) for all j ≥ 0,

a contradiction. Therefore, Xj ≇ N . It follows that µ(Xj) = µ(N) < µ(Yl+1) < µ(M) < µ(Xj+1),

which contradicts the choice of j0. We can finish the proof by taking i0 = j0. �

Corollary 4.9. Only finitely many GR measures of regular modules have no direct predecessors.

Proof. Let X be a quasi-simple module of rank r > 1. If µ(X [r]) ≥ µ(H1), then for every i > 2r,

µ(Xi) has a direct predecessor µ(Xi−1) (Proposition 4.5). Thus we may assume that µ(Xr) < µ(H1).

If every Xi is a take-off module, then µ(Xi) has direct predecessor by definition. If there is an index

i ≥ 1 such that Xj are central modules for all j ≥ i, then there is an index i0 ≥ i such that µ(Xj)

is a direct predecessor of µ(Xj+1) for every j ≥ i0. Therefore, there are only finitely many GR

measures of indecomposable regular modules having no direct predecessor. �

Theorem 4.10. Only finitely many GR measures have no direct predecessors.

Proof. By previous discussions, it is sufficient to show that all but finitely many GR measures of

preinjective modules have no direct predecessors. Let M be an indecomposable preinjective module.

Since there are only finitely many isomorphism classes of indecomposable preinjective modules with

length smaller than 2|δ|, we may assume that |M | > 2|δ|. Thus a GR submodule of M is Xi for

some quasi-simple X of rank r ≥ 1 and some i ≥ 2r, and µ(Xr) ≥ µ(H1). Without loss of generality,

we may also assume that there are GR measures µ starting with µ(Xi) and µ < µ(M). (Namely,

if such a µ does not exist, we may replace M by an indecomposable preinjective module M ′ with

|M ′| > |M |+ |δ|. Then the GR submodule of M ′ is Yi′ with Y ≇ X . By this way, we may finally find

an integer d such that all indecomposable preinjective modules with length greater than d contain

Zl, l ≥ 2rZ as GR submodules for some fixed quasi-simple module Z. Thus there are infinitely

many indecomposable preinjective modules with GR measures starting with µ(Zl), l ≥ 2rZ .) Then

Proposition 4.7 ensures the existence of the direct predecessor of µ(M). �

5. preinjective Central modules

In [11], it was proved that all landing modules are preinjective in the sense of Auslander and

Smalø [2]. There may exist infinitely many preinjective central modules. In this section, we are
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going to study the preinjective modules and the central part. Throughout this section, let Q be a

fixed tame quiver of type Ãn.

5.1. We first describe the landing modules.

Proposition 5.1. Let M be an indecomposable preinjective module. Then either M ∈ L or µ(M) <

µ(X) for some indecomposable regular module X.

Proof. Assume that µ(M) > µ(X) for all regular modules X ∈ R. Let µ1 be the direct successor

of µ(M) and A(µ1) the collection of indecomposable modules with GR measure µ1. It follows that

A(µ1) contains only preinjective modules. Let Y 1 ∈ A(µ1) and X1→Y 1 be a GR inclusion. Since

X1 ∈ R, we have µ(X1) < µ(M) < µ(Y 1) = µ1. Thus |M | > |Y 1|. Let µ2 be the direct successor of

µ1 and Y 2 ∈ A(µ2). As above we obtain |Y 1| > |Y 2|. Repeating this procedure, we get a sequence

of indecomposable preinjective modules M = Y 0, Y 1, Y 2, . . . , Y n, . . . such that µ(Y i) is the direct

successor of µ(Y i−1) and |Y i| < |Y i−1|. Because the lengths decrease, there is some j < ∞ such

that µ(Y j) has no direct successor. It follows that µ(Y j) = I1 and µ(M) is a landing measure. �

Corollary 5.2. Let M be an indecomposable module. Then µ(M) > µ(X) for all regular module X

if and only if M is a landing module.

Proposition 5.3. If M, N are landing modules, then µ(M) < µ(N) if and only if |M | > |N |.

Proof. Assume that µ(M) < µ(N). Let X be a GR submodule of N . Since X is a regular modules,

we have µ(X) < µ(M) < µ(N) and thus |M | > |N |. �

Proposition 5.4. Assume that there is a regular tube of rank r > 1. Then almost all landing

modules contain only exceptional regular modules as GR submodules.

Proof. Let M be a landing module which is thus preinjective. Thus the GR submodules of M are

all regular modules. Assume that M contains homogeneous modules Hi as GR submodules. Let

T be a regular tube of rank r > 1. Then there exists a quasi-simple module X on T such that

µ(Xr) ≥ µ(H1) (2.2(5)). Thus µ(Hi) < µ(Xr+1) < µ(M) and therefore, |Xr+1| > |M |. This implies

i = 1 and |M | < 2|δ|. �

Corollary 5.5. Assume that there is a regular tube of rank r > 1. If M is an indecomposable

containing homogeneous modules Hi as GR submodules for some i ≥ 2, then M is a central module.

5.2. We are going to classify the tame quivers Q of type Ãn.

Case 1 Assume that in the quiver Q there is a clockwise path of arrows α1α2 and a counter

clockwise path β1β2 as follows:

•

�

�

�

α2
// 1

α1
// •

�

�

�

•
β2

// 2
β1

// •

Let C be a string starting with α−1
2 and ending with β2. Thus s(C) = 1, e(C) = 2. It is obvious

that the string modules M(C) contains both simple regular modules S(1) and S(2), which are in

different regular components, as submodules. Thus M(C) is an indecomposable preinjective module.

Fix such a string C such that the length of C is large enough, i.e. M(C) contains homogeneous simple
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H1 as submodules. The GR submodules of M(C) is of one of the following forms S(1)i, S(2)j , Ht

for some i, j, t ≥ 1. However, µ(S(1)i) < µ(H1), µ(S(2)i) < µ(H1) for all i ≥ 0 (2.2(6)). Thus

the GR submodules of M(C) are homogeneous modules. In particular, there are infinitely many

indecomposable preinjective modules containing only homogeneous modules as GR submodules.

Thus there are infinitely many preinjective central modules by Corollary 5.5.

As an example, we consider the following quiver Q = Ãp,q,(p+q=n) with precisely one source and

one sink:

•
α2

// •
α3

// · · · •
αp−1

// •
αp

""EE
EE

E

1

α1
<<yyyyy

β1
""EE

EE
E n

•
β2

// •
β3

// · · · •
βq−1

// •
βq

<<yyyyy

There are two regular tubes TX and TY consisting of string modules. The regular tube TY

contains the string module Y determined by the string βqβq−1 · · ·β2β1, and simple modules S

corresponding to the vertices s(αi), 2 ≤ i ≤ p as quasi-simples. The rank of Y is p. The other

tube TX contains string module X determined by the string αpαp−1 · · ·α2α1 and simple modules

S corresponding to the vertices s(βi), 2 ≤ i ≤ q. The ranks of X is q. All the other regular tubes

contain only band modules, and thus are homogeneous tubes.

We can easily determine the GR measures of these quasi-simple modules. Notice that any non-

simple quasi-simple module (X ,Y and H1) contains S(n) as the unique simple submodule. Therefore,

each homogeneous simple module H1 has GR measure µ(H1) = {1, 2, 3, . . . , n − 1, n} and the GR

measure for X and Y are µ(X) = {1, 2, 3, . . . , p, p + 1} and µ(Y ) = {1, 2, 3, . . . , q, q + 1}. It easily

seen that Xq ⊂ Xq+1 ⊂ . . . ⊂ Xj ⊂ . . . is a chain of GR inclusions and thus µ(Xq) = µ(H1).

Similarly, Yp ⊂ Yp+1 ⊂ . . . ⊂ Yj ⊂ . . . is a chain of GR inclusions and µ(Yp) = µ(H1).

Any non-sincere indecomposable module belongs to take-off part. This is true because the GR

submodule of H1 is a uniserial module and has GR measure {1, 2, 3, . . . , n − 1} and a non-sincere

indecomposable module has length smaller than |δ|. Let M ∈ I be a sincere indecomposable

preinjective module and X ⊂ M a GR submodule. Then X is isomorphic to Hi, Xsq or Ytp for some

i, s, t ≥ 1.

Notice that if p ≥ 2 and q ≥ 2, then there are infinitely many preinjective central modules by

above discussion.

Case 2 Q = Ãp,1. Let’s keep the notations in the above example. By Proposition 5.4, we know

that there are infinitely many landing modules containing only exceptional modules of form Yi as

GR submodules. Given an indecomposable preinjective module M and its GR submodule Yi, i > p.

We claim that the GR submodules of τM are homogeneous ones. Namely, if τM contains an

exceptional regular module N as a GR submodule, then N ∼= Yj for some j ≥ p. In particular, both

M and τM contains Y as a submodule, i.e. Hom(Y, M) 6= 0 6= Hom(Y, τM). Therefore, we have

Hom (τ−Y, M) 6= 0 6= Hom(Y, M), which contradicts Lemma 2.3. Thus, there are infinite many

indecomposable preinjective modules containing only homogeneous modules as GR submodules and

hence infinitely many preinjective central modules.
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Case 3 Q 6= Ãp,q is of the following form: all non-trivial clockwise (or counter clockwise) paths

(compositions of arrows) are of length 1. In this case, all exceptional quasi-simple modules in one of

the exceptional tubes are of length at least 2, and the quasi-simple modules on the other exceptional

tube have length at most 2.

Let p = βt . . . β2β1 be a composition of arrows in Q with maximal length. Thus there is an arrow

α with ending vertex e(α) = e(p) and s(α) is a source. Let X = M(p) be the string module, which is

thus a quasi-simple module, say with rank r. By the maximality of p and the description of irreducible

maps between string modules, we may easily deduce that the sequence of irreducible monomorphism

X = X1→X2→ . . .→Xr→Xr+1→ . . . is namely a sequence of GR inclusions. Therefore

µ(Xr+1) = {1, 2, 3, . . . , t + 1, |X2|, |X3|, . . . , |Xr|, |Xr+1|}

with |Xi| − |Xi−1| ≥ 2 for 2 ≤ i ≤ r and |Xr+1| = |Xr| + (t + 1).

Let Y be the string module determined by arrow α. It is also a regular quasi-simple module, say

with rank s. By the description of irreducible monomorphism, we obtain that |Yj | = j + 1 for j ≤ t

and |Yt+1| = t + 3. Thus

µ(Ys+1) ≥ {1, 2, . . . , t + 1, t + 3, |Yt+2|, . . . , |Ys|, |Ys+1|}

with |Yi| − |Yi−1| ≤ 2 for i ≤ s and |Ys+1| = |Ys| + 2.

This proves the following lemma.

Lemma 5.6. Let keep the notation as above. If t > 1, i.e. Q is not equipped with sink-source

orientation, then µ(Ys) ≥ µ(Xr) and µ(Yj) > µ(Xi) for i ≥ 1 and j > s.

5.3. we are going to to characterize the tame quivers Q of type Ãn such that no indecomposable

preinjective modules are central modules, and show that there are always infinitely many preinjective

central modules if any.

Theorem 5.7. I ∩ C = ∅ if and only if Ãn is equipped with sink-source orientation.

Proof. This is clear for Kronecker quiver (n = 1). Thus we may assume n ≥ 2, i.e. there exists

an exceptional regular tube. Since I ∩ C = ∅, a sincere indecomposable preinjective is always

a landing module. Then the proof of Proposition 5.4 implies that there is no indecomposable

preinjective modules M containing homogeneous modules Hi, i ≥ 2 as GR submodules. Therefore,

by above classification of Q, we need only to consider Case 3 and show that I ∩ C = ∅ implies t = 1

(let’s keep the notations in case 3). Assume for a contradiction that t > 1. Let S be the simple

module corresponding to s(βt). Thus S is a quasi-simple of rank s and τS ∼= Y . Let I be the

(indecomposable) injective cover of S. It is obvious that Hom (X, I) 6= 0. Consider indecomposable

preinjective modules τumI, where u is a positive integer and m = [r, s] is the lowest common multiple

of r and s. Since Hom(S, τumI) 6= 0 6= Hom(X, τumI), a GR submodule of τumI is either Si or Xj .

Notice that µ(H1) > µ(Si) for all i ≥ 0 since S is simple. Therefore, for u large enough, the unique

GR submodule of τumI is Xj for some j ≥ 1 because no indecomposable preinjective modules

containing Hi as GR submodules for i ≥ 2. In particular there are infinitely many preinjective

modules containing GR submodules of the form Xj , j ≥ 1. Thus we may select a GR inclusion

Xj ⊂ M such |Xj | > |Ys+1|. Because µ(Xj) < µ(Ys+1) < µ(M), we have |Ys+1| > |M |. This

contracts |Xj | > |Ys+1|. Thus we have t = 1 and Q is of sink-source orientation.

Conversely, if Ãn is equipped with a sink-source orientation, we may see directly that I ∩ C = ∅

(for details, see [7] Example 3). �
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Theorem 5.8. I ∩ C 6= ∅ ⇒ |I ∩ C| = ∞.

Proof. We have seen that an indecomposable module containing homogeneous modules Hi, i ≥ 2

as GR submodules is a central module. Thus we may assume that there are only finitely many

indecomposable preinjective module containing homogenous modules as GR submodules. Thus, we

need only consider case 3. Let’s keep the notations there. Then I ∩ C 6= ∅ implies that Q is not of

sink-source orientation. In particular, the length t of the longest path of arrows βt · · ·β1 is greater

than 1. In particular, µ(Yj) > µ(Xi) for all i ≥ 1, j > s. Again let m = [r, s]. By assumption, the

GR submodules of τumI are of the form Xi for almost all u ≥ 1. To avoid a contradiction as in the

proof of above theorem, µ(τumI) have to smaller than µ(Ys+1) for u large enough and thus almost

all τumI are central modules. �

6. appendix

In section 4 we showed that for a tame quiver of type Ãn, there are only finitely many GR

measures having no direct predecessors. Namely, this can be generalized for any tame quiver, i.e. a

quiver of type D̃n, Ẽ6, Ẽ7 or Ẽ8.

Theorem 6.1. Let Λ be a tame quiver. Then there are only finitely many GR measures having no

direct predecessors.

The proof of this theorem is almost the same as that for Ãn case. The statements 2)–4) and 7)

in Lemma 2.2 and Lemma 4.3 hold for all tame quivers [8]. Proposition 4.5 remain true. But the

proof should be changed a little bit because in general, a GR submodule of a preinjective module is

not necessary a regular module. The first part of the proof is valid in general cases. For the second

part, we have to change as follows:

Proof. Assume that M is an indecomposable preinjective module such that µ(Xi) < µ(M) <

µ(Xi+1) with |M | minimal. Let N be a GR submodule of M . Comparing the lengths, we have

µ(Xi) ≤ µ(N). If N = Yj is regular for some quasi-simple module Y of rank s, then µ(M) >

µ(Yj+1) > µ(Yj) ≥ µ(Xi). This contradicts the first part of the proof. If N is preinjective, then

µ(N) = µ(Xi) by the minimality of |M |. Thus a GR filtration of N contains a regular module Z2t

for a quasi-simple Z of rank t. It follows that µ(X2r) = µ(Z2t). Thus µ(M) > µ(N) > µ(Zi+1) =

µ(Xi+1) which is a contradiction. �

Lemma 4.6 is true in general. However, Proposition 4.7 should be replaced by the following one:

Proposition 6.2. 1) There are only finitely many GR measures lying between µi,j and µi,j+1.

2) There are only finitely many GR measures lying between µi,ti
and µi+1,1.

3) In particular, µi,j has a direct predecessor.

Proof. Assume that M is an indecomposable module such that µ(Xi)∪{ai,j+1} = µi,j+1 < µ(M) <

µi,j = µ(Xi) ∪ {ai,j}. Then µ(M) = µ(Xi) ∪ {b1, b2, . . . , bm}. By definition of µi,j , we have

b1 = ai,j+1 and m ≥ 2, In particular, M has a GR filtration containing an indecomposable module

N such that µ(N) = µ(Xi)∪ {b1}, which is thus preinjective. However, there are only finitely many

indecomposable modules containing a given indecomposable preinjective module as a submodule.
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It follows that only finitely many GR measures starting with µ(N) = µ(Xi) ∪ {b1}. Therefore, the

number of GR measures, which lies between µi,j+1 and µi,j is finite for each i ≥ 2r.

2) follows similarly and 3) is a direct consequence of 1) and 2). The first remark after Proposition

4.7 still works for this case. �

The remaining proof of Theorem 6.1 is similar.
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mcebbchen@googlemail.com


	1. Introduction
	2. Preliminaries and known results
	2.1. Gabriel-Roiter measure
	2.2. 

	3. the number of GR submodules
	3.1. String modules
	3.2. 'covering' of a string module
	3.3. 

	4. Direct predecessor
	4.1. 
	4.2. 
	4.3. 
	4.4. 
	4.5. 

	5. preinjective Central modules 
	5.1. 
	5.2. 
	5.3. 

	6. appendix
	References

