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WEYL GROUPS FOR NON-CLASSICAL RESTRICTED LIE ALGEBRAS

AND THE CHEVALLEY RESTRICTION THEOREM

JEAN-MARIE BOIS, ROLF FARNSTEINER and BIN SHU

Abstract. Let (g, [p]) be a finite-dimensional restricted Lie algebra, defined over an algebraically
closed field k of characteristic p > 0. The scheme of tori of maximal dimension of g gives rise to a
finite group S(g) that coincides with the Weyl group of g in case g is a Lie algebra of classical type.
In this paper, we compute the group S(g) for Lie algebras of Cartan type and provide applications
concerning weight space decompositions, the existence of generic tori and polynomial invariants.

Introduction

In the structure- and representation theory of complex semi-simple Lie algebras, root systems
and their Weyl groups play a fundamental rôle. For fields of positive characteristic the situation is
similar, provided one studies Lie algebras g = Lie(G) that are associated with a reductive group G.
By contrast, the maximal tori of arbitrary restricted Lie algebras usually are no longer conjugate,
so there are many root systems available, whose structure and utility crucially depend on the
initially chosen maximal tori. Accordingly, it is not clear which maximal tori are appropriate for
defining finite groups that take on the rôle of Weyl groups. In his article [19], Premet studied
this problem for the Jacobson-Witt algebras W (n). He identified a maximal torus t0 ⊆ W (n),
whose automorphism group allowed to establish an analogue of the Chevalley restriction theorem
on polynomial invariants.

One way to address the problem of choosing tori is the systematic study of schemes of tori.
Roughly speaking, this geometric approach seeks to identify generic properties of tori and their
root systems. In the context of Lie algebras of complexity ≤ 2, that naturally arise in the study of
restricted enveloping algebras of tame representation type, this method has produced satisfactory
results, cf. [8, 9]. A detailed investigation of the scheme of tori of maximal dimension µ(g) of a
restricted Lie algebra g in [7] led to the definition of a group S(g) that turned out to coincide with
the Weyl group in case g is of classical type.

Aside from the analogues of the complex simple Lie algebras there are usually four additional
classes of simple restricte Lie algebras, the so-called restricted Lie algebras of Cartan type. These
Lie algebras, which include the abovementioned Jacobson-Witt algebras, already differ significantly
from their classical precursors in that their maximal tori are no longer conjugate. The main object
of the present paper is to identify the corresponding finite groups along with providing applications.

Our paper is organized as follows. After recalling basic results on the scheme Tg of tori of a
restricted Lie algebra g, we show in Section 1 that the toral stabilizer S(g) of g is isomorphic to the
“Weyl group” associated with any generic torus of g. For future reference, we also provide criteria
for a given torus or Cartan subalgebra to be generic. Section 2 is concerned with the behavior
of toral stabilizers under passage to subalgebras and factor algebras. In particular, we show that
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the toral stabilizer of a product of restricted Lie algebras is the product of the toral stabilizers
of the factors. Using basic results on tori and automorphism groups, due to Demuškin [3, 4] and
Wilson [24, 25], respectively, we identify in Section 3 the generic tori of the restricted Lie algebras
of Cartan types types W,S and H. Accordingly, the Weyl groups of these tori coincide with the
toral stabilizers, whose computation relies on embeddings of certain subalgebras, particularly those
of the form W (µ(g)) →֒ g. Section 5 is devoted to the proof of our main result:

Theorem A. Suppose that p ≥ 3 and let g be a restricted Lie algebra of Cartan type. Then there
is an isomorphism

S(g) ∼= GLµ(g)(Fp)

and the scheme Tg of embeddings of tori of maximal dimension is irreducible.

Along the way, a few other toral stabilizers need to be computed, notably those of the Poisson
algebras P(2r) with toral center.

The final section presents applications of our methods and results. With regard to weight space
decompositions defined by tori of maximal dimension, the group S(g) exhibits features analogous
to those of Weyl groups: There is an action of S(g) on the set of weights such that the dimensions
of weight spaces are constant on the orbits. As a result, only three types of weight sets can occur
for Lie algebras g with S(g) ∼= GLµ(g)(Fp). In particular, all root spaces of such Lie algebras have
the same dimension.

In [22, Chap.7] Strade shows that the contact algebras K(2r+1) possess infinitely many conjugacy
classes of tori of dimension µ(K(2r+1)) = r+1. Using explicit information on Weyl groups and
toral stabilizers of the aforementioned Poisson algebras, we prove that K(2r+1) does not possess
any generic tori.

Given a restricted Lie algebra (g, [p]), we denote by Sg the variety of semi-simple elements. By
modifying Premet’s approach concerning W (n), we finally establish the following analogue of the
Chevalley restriction theorem:

Theorem B. Suppose that p ≥ 3 and let (g, [p]) be a restricted Lie algebra of Cartan type W,S or H

with generic torus t ⊆ g. Then the restriction map induces an isomorphism k[S̄g]
G ∼
−→ k[t]GLµ(g)(Fp).

In particular, k[S̄g]
G is a polynomial ring in µ(g) variables.

1. Generic Tori and Weyl Groups

Throughout, we shall be working over an algebraically closed field k of characteristic char(k) =
p > 0. Unless mentioned otherwise, all algebras and modules are assumed to be finite-dimensional.
Given a restricted Lie algebra (g, [p]), we let G := Autp(g)

◦ be the identity component of its
automorphism group. We denote by µ(g) and rk(g) the maximal dimension of all tori t ⊆ g and
the minimal dimension of all Cartan subalgebras h ⊆ g, respectively. According to [7, (7.4)], the
set

Tor(g) := {t ⊆ g ; t torus, dimk t = µ(g)}

of tori of maximal dimension is locally closed within the Grassmanian Grµ(g)(g) of g. Thanks to
[8, (1.6)] and [7, (3.5)], the variety Tor(g) is irreducible of dimension dimTor(g) = dimk g− rk(g).

Let Mk and Ens be the categories of commutative k-algebras (of arbitrary dimension) and sets,
respectively. For a torus t ∈ Tor(g), we consider the scheme Tg :Mk −→ Ens, given by

Tg(R) := {ϕ ∈ Homp(t⊗kR, g⊗kR) ; ϕ is a split injective R-linear map}
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for every R ∈Mk. Here Homp(t⊗kR, g⊗kR) denotes the set of homomorphisms of restricted R-Lie
algebras and g⊗kR carries the natural structure of a restricted R-Lie algebra, with bracket and
p-mapping defined via

[x⊗ r, y ⊗ s] := [x, y]⊗ rs and (x⊗ r)[p] := x[p] ⊗ rp ∀ x, y ∈ g, r, s ∈ R,

respectively. According to [8, (1.4),(1.6)], Tg is a smooth affine scheme of dimension dimk g− rk(g).
In what follows, we shall be mainly concerned with the variety Tg(k) of k-rational points of Tg,

that is, the variety of embeddings ϕ : t −→ g of restricted Lie algebras. The automorphism groups
Autp(g) and Autp(t) naturally act on Tg(k) via

g.ϕ := g ◦ ϕ and h.ϕ := ϕ ◦ h−1 ∀ ϕ ∈ Tg(k), g ∈ Autp(g), h ∈ Autp(t),

respectively. Both actions commute, and Autp(t) ∼= GLµ(g)(Fp) is a finite group. We shall also
consider the canonical action of G on g and write

g.x := g(x) ∀ g ∈ G, x ∈ g.

Let ι : t →֒ g be the standard embedding, defined by the inclusion t ⊆ g. Since Tg(k) is smooth,
its irreducible components coincide with its connected components. Hence there exists exactly one
irreducible component Xt(k) ⊆ Tg(k) containing the inclusion ι. We let

S(g, t) := StabAutp(t)(Xt(k))

be the stabilizer of the component Xt(k) in Autp(t). For future reference, we recall the following
result, cf. [7, (4.1)]:

Theorem 1.1. Let (g, [p]) be a restricted Lie algebra, t ⊆ g be a torus of dimension µ(g). Then
the following statements hold:

(1) Tg(k) =
⋃

h∈Autp(t)
h.Xt(k) and Tg(k) has [Autp(t) :S(g, t)] irreducible components.

(2) If t′ ⊆ g is another torus of dimension µ(g), then there exists an isomorphism h : t −→ t′

such that S(g, t′) = hS(g, t)h−1. �

We let NorG(t) and CentG(t) be the normalizer and the centralizer of t in G, respectively. In view
of the above result, we make the following:

Definition. Let (g, [p]) be a restricted Lie algebra with automorphism group G = Autp(g)
◦, t ⊆ g

be a torus of dimension µ(g). Then
S(g) := S(g, t)

is called the toral stabilizer of g. The group

W (g, t) := NorG(t)/CentG(t)

is referred to as the Weyl group of g relative to t.

The group G naturally acts on the variety Tor(g) of tori of maximal dimension. Since W (g, g.t) ∼=
W (g, t) for every g ∈ G, the Weyl group W (g, t) only depends on the orbit G.t ⊆ Tor(g).

Lemma 1.2. Let (g, [p]) be a restricted Lie algebra with connected automorphism group G :=
Autp(g)

◦, t ⊆ g be a torus of dimension µ(g). Given ϕ ∈ Xt(k), the map

Θϕ : NorG(ϕ(t)) −→ Autp(t) ; g 7→ ϕ−1 ◦ g ◦ ϕ

is a homomorphism of groups that induces an injective homomorphism

Θ̄ϕ : W (g, ϕ(t)) →֒ S(g, t) ; ḡ 7→ ϕ−1 ◦ g ◦ ϕ.
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Proof. Since the connected group G acts morphically on Tg(k), [11, (8.2)] ensures that G stabi-
lizes the connected component Xt(k). Let g ∈ NorG(ϕ(t)). Setting h := Θϕ(g), we consider the
automorphism

ρh : Tg(k) −→ Tg(k) ; ψ 7→ ψ ◦ h

of the variety Tg(k). Then ρh(Xt(k)) is a connected component of Tg(k). Since

ρh(ϕ) = ϕ ◦Θϕ(g) = g ◦ ϕ ∈ Xt(k),

we obtain ρh(Xt(k)) = Xt(k). As a result, Θϕ(g) ∈ S(g, t). Directly from the definition we obtain
the identity ker Θϕ = CentG(ϕ(t)), so that the induced map Θ̄ϕ :W (g, ϕ(t)) −→ S(g, t) is actually
injective. �

By virtue of Theorem 1.1, every torus t′ ⊆ g of dimension µ(g) is of the form t′ = ϕ(t) for some
ϕ ∈ Xt(k). The foregoing Lemma then provides an embedding

Θ̄ϕ :W (g, t′) →֒ S(g, t),

sending the Weyl group W (g, t′) of t′ into the toral stabilizer S(g, t). If g is of classical type, then
this map is an isomorphism, see [7, (4.6)] or Theorem 1.5 below.

Our main goal of this section is to provide a criterion ensuring that W (g, t) ∼= S(g) for some
torus t ∈ Tor(g).

Definition. A torus t ∈ Tor(g) is called generic if the orbit G.t is a dense subset of Tor(g).

Let g := Lie(G) be the Lie algebra of a connected algebraic group. In view of [10, (13.3),(13.5)]
(see also [7, (4.4)]), any two tori of g of maximal dimension are conjugate via the adjoint action.
Accordingly, each of these tori is generic.

Lemma 1.3. Let (g, [p]) be a restricted Lie algebra with connected automorphism group G :=
Autp(G)

◦, t ⊆ g be a torus of dimension µ(g). Then

dimG.ϕ(t) = dimG.ϕ+ µ(g)

for every ϕ ∈ Xt(k).

Proof. We consider the morphism

ω :

{

Xt(k)× t −→ g

(ϕ, t) 7→ ϕ(t)

of irreducible varieties. Given t ∈ t, we let (kt)p denote the p-subalgebra of g generated by kt.
Lemma 3.2 of [7] provides a non-empty open subset U ⊆ t with t = (kt)p for every t ∈ U . Let (ϕ, t)
be an element of Xt(k)×U . If (ψ, s) ∈ ω−1(ω(ϕ, t)), then ψ(s) = ϕ(t), so that

ϕ(t) ∈ imψ.

By choice of t, this implies that imϕ ⊆ imψ, whence imϕ = imψ. Hence there exists an element
h ∈ Autp(t) with

ψ = ϕ ◦ h−1.

In particular, ϕ(h−1(s)) = ψ(s) = ϕ(t), so that s = h(t). As a result, the fiber ω−1(ω(ϕ, t)) ⊆
{(ϕ ◦ h−1, h(t)) ; h ∈ Autp(t)} is finite.

Now let ϕ ∈ Xt(k) be arbitrary. Then ω induces a surjective homomorphism

ω : (G.ϕ)× t −→ G.ϕ(t)
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of irreducible varieties. By the above argument, the fibers of this morphism are finite on the dense
open subset (G.ϕ)×U of (G.ϕ)×t. By virtue of [16, I.§8, Corollary 1], we obtain

dimG.ϕ(t) = dim((G.ϕ)×t) = dimG.ϕ+ dimk t

= dimG.ϕ+ µ(g),

as desired. �

Let Sg denote the set of semi-simple elements of g. The following result relates dense orbits in

Tor(g) and Xt(k) to dense G-saturations of tori in Sg relative to the canonical action of G on g.

Proposition 1.4. Let (g, [p]) be a restricted Lie algebra, G = Autp(g)
◦ be its connected automor-

phism group, and t ⊆ g be a torus of maximal dimension. For a torus t0 ∈ Tor(g), the following
statements are equivalent:

(1) The torus t0 is generic.
(2) There exists ϕ0 ∈ Xt(k) such that ϕ0(t) = t0 and G.ϕ0 = Xt(k).
(3) G.t0 is a dense subset of Sg.

Proof. (1) ⇒ (2). According to [7, p. 4226], the map

ζt : Xt(k) −→ Tor(g) ; ϕ 7→ ϕ(t)

is a surjective morphism with finite fibers between two irreducible varieties of dimension dimk g−
rk(g). Let ϕ ∈ ζ−1

t (t0), so that ϕ0(t) = t0. Since ζt is G-equivariant, our present assumption implies
that the morphism ζt|G.ϕ0

: G.ϕ0 −→ Tor(g) is dominant. Consequently,

dimG.ϕ0 = dimTor(g) = dimXt(k),

so that Xt(k) = G.ϕ0.
(2) ⇒ (3). According to [7, (4.1)] and [7, (3.7)] (see also [17, Theorem 2(iii)]), the variety S̄g is

irreducible, and of dimension

dim S̄g = dimXt(k) + µ(g).

Lemma 1.3 now implies

dimG.t0 = dimG.ϕ0 + µ(g) = dimSg,

so that G.t0 is a dense subset of the irreducible variety Sg.
(3) ⇒ (1). Thanks to Theorem 1.1, there exists an element ϕ0 ∈ Xt(k) with t0 = ϕ0(t). According

to Lemma 1.3, we have

dimG.ϕ0 = dimG.t0 − µ(g) = dim S̄g − µ(g) = dimXt(k),

so that the orbit G.ϕ0 lies dense in Xt(k). Hence

Tor(g) = ζt(Xt(k)) = ζt(G.ϕ0) ⊆ ζt(G.ϕ0) = G.t0,

and t0 is a generic torus. �

Theorem 1.5. Let (g, [p]) be a restricted Lie algebra with connected automorphism group G :=
Autp(g)

◦. If t ∈ Tor(g) is a generic torus, then the map

NorG(t) −→ Autp(t) ; g 7→ g|t

induces an isomorphism W (g, t) ∼= S(g, t) of groups.
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Proof. Thanks to Proposition 1.4, there exists ϕ0 ∈ Xt(k) with ϕ0(t) = t such that the orbit
G.ϕ0 lies dense in Xt(k). It follows that G.ϕ0 is an open subset of the irreducible variety Xt(k).
Consequently, G.ϕ0 is the unique dense orbit of Xt(k).

Given h ∈ S(g, t), we consider the automorphism

wh : Xt(k) −→ Xt(k) ; ϕ 7→ ϕ ◦ h

of the variety Xt(k). Then wh is G-equivariant, so that

wh(G.ϕ0) = G.wh(ϕ0)

is a dense orbit of Xt(k). By our observation above, we have G.wh(ϕ0) = G.ϕ0, and there exists
an element g ∈ G with

(1.1) wh(ϕ0) = g ◦ ϕ0.

In particular, we obtain

g(ϕ0(t)) = ϕ0(h(t)) ∈ ϕ0(t) = t

for every t ∈ t, whence g ∈ NorG(ϕ0(t)) = NorG(t). Consequently, (1.1) implies h = Θϕ0(g), so that
Θϕ0 is surjective. Thanks to Lemma 1.2, the homomorphism Θ̄ϕ0 : W (g, t) −→ S(g, t) is bijective,
so that the groups W (g, t) and S(g, t) have the same order. We may now apply Lemma 1.2 to the
canonical embedding ι : t →֒ g to see that Θ̄ι is the desired isomorphism. �

We provide another density result which compensates for the lack of a generic torus to some extent.
Given a torus t ⊆ g, we let Cg(t) be the centralizer of t in g.

Lemma 1.6. Let (g, [p]) be a restricted Lie algebra. Then T :=
⋃

t∈Tor(g) t is a dense subset of S̄g.

Proof. We put A = k[Xt] and g̃ = g ⊗k A. Let j : t →֒ g̃ be the universal embedding. The torus t
acts on g̃ via j; we denote by g̃0 ⊆ g̃ the corresponding zero weight space. For any homomorphism
x ∈ Speck(A)(k), let ϕx := (idg⊗x) ◦ j ∈ Tg(k) denote the corresponding embedding. Then
g0(x) = (idg⊗x)(g̃0) is the zero weight space relative to the torus ϕx(t). Consider the variety

V = {(x, y) ∈ Xt(k)× g ; ∃ v ∈ g̃0 with (idg⊗x)(v) = y}.

Owing to [7, (3.4)], the projection πg : V −→ g is a dominant morphism with image

imπg =
⋃

x∈Xt(k)

g̃0(x) =
⋃

x∈Xt(k)

Cg(ϕx(t)).

Also, for n = dimk g, the morphism ζ : g −→ S̄g ; y 7→ y[p]
n
is dominant. Thus, ζ ◦ πg is dominant,

and we have

(1.2) im ζ ◦ πg =
⋃

x∈Xt(k)

Cg(ϕx(t))
[p]n =

⋃

x∈Xt(k)

ϕx(t).

Since the right hand set is dense in S̄g and contained in T, our assertion follows. �

Remark. In the proof, we used the fact that the morphism g −→ g ; y 7→ y[p]
n
is dominant for

n = dimk g. In fact, there are lower values of n for which this property holds, see the Remark p. 7
and Corollary 6.3.4.
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We next record analogous properties of Cartan subalgebras. Thanks to [7, (7.2),(7.4)]

Car(g) := {h ⊆ g ; h Cartan subalgebra, dimk h = rk(g)}

is a locally closed subset of the Grassmann variety Grrk(g)(g). In view of [7, (8.2)], the variety
Car(g) is irreducible of dimension dimk g−rk(g). Note that G naturally acts on Car(g).

By general theory, the Cartan subalgebras of g are precisely the centralizers of the maximal tori,
see for instance [23, (II.4.1)]. Moreover, Cg(t) ∈ Car(g) for every t ∈ Tor(g), cf. [7, (3.5(1))].

Remark. Let ℓ := rk(g)−µ(g), and ζℓ : g −→ g ; y 7→ y[p]
ℓ
. Then ζℓ induces a dominant morphism

g → S̄g. Indeed, since πg : V −→ g is dominant, it is enough to show that ζℓ ◦ πg is dominant. We
first check it under for g nilpotent. Then the set N(g) of p-unipotent elements form a p-subalgebra

of g of dimension ℓ. Hence, for all xn ∈ N(g), we have x
[p]ℓ
n = 0. Furthermore, g affords a unique

torus t of dimension µ(g). Then it is then easy to see that x[p]
ℓ
∈ t, whence g[p]

ℓ
= t = Sg as we

needed. Now when g is arbitrary, we have

im ζℓ ◦ πg =
⋃

x∈Xt(k)

Cg(ϕx(t))
[p]ℓ .

Since each h := Cg(ϕx(t)) is a nilpotent subalgebra of dimension rk(g) with µ(h) = µ(g), we have

h[p]
ℓ
= ϕx(t). Comparing with Equation (1.2) yields im ζℓ ◦ πg = im ζ ◦ πg, a dense subset of S̄g.

Definition. A Cartan subalgebra h ∈ Car(g) is called generic if the orbit G.h is dense in Car(g).

As before, the Cartan subalgebras of the Lie algebras that are associated with algebraic groups are
generic.

Proposition 1.7. Let (g, [p]) be a restricted Lie algebra with connected automorphism group G :=
Autp(g)

◦. Suppose that t0 ∈ Tor(g) is a torus, and let h0 := Cg(t0) ∈ Car(g) be the corresponding
Cartan subalgebra. Then the following statements are equivalent:

(1) The Cartan subalgebra h0 is generic.
(2) The torus t0 is generic.
(3) The G-saturation G.h0 ⊆ g is a dense subset of g.

Proof. (1) ⇒ (2). A consecutive application of [7, (9.3)] and [7, (8.2)] shows that

Cg : Tor(g) −→ Car(g) ; t 7→ Cg(t)

is an injective morphism, whose image imCg = {h ∈ Car(g) ; µ(h) = µ(g)} is a dense open subset
of Car(g). Since Cg is G-equivariant, we obtain

Cg(G.t0) = G.h0,

so that the morphism Cg : G.t0 −→ Car(g) is dominant. Consequently,

dimG.t0 = dimCar(g) = dimTor(g).

As Tor(g) is irreducible, we conclude G.t0 = Tor(g), showing that t0 is a generic torus.
(2) ⇒ (3). It follows from [7, (1.6)] that the variety

V := {(x, ϕ) ∈ g× Xt0(k) ; x ∈ Cg(ϕ(t0))}

is irreducible. Moreover, [7, (3.1)] implies that the morphism

πg : V −→ g ; (x, ϕ) 7→ x
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is dominant. Since t0 is generic, Proposition 1.4 provides an element ϕ0 ∈ Xt0(k) with image
ϕ0(t0) = t0 and such that G.ϕ0 = Xt0(k). Hence G.ϕ0 is open in Xt0(k), and

O := (g ×G.ϕ0) ∩ V

is open in V. Thus, O is a dense subset of V, and we obtain

g = πg(V) = πg(O) ⊆ πg(O) = G.Cg(ϕ0(t0)) = G.h0,

as desired.
(3) ⇒ (1). Suppose that g = G.h0. Setting ℓ := dimk g, we recall that

f : g −→ g ; x 7→ x[p]
ℓ

is a G-equivariant morphism, whose image coincides with Sg. Moreover,

f(h0) = h0 ∩ Sg = t0,

so that f(G.h0) = G.t0. Consequently,

Sg = f(g) = f(G.h0) ⊆ f(G.h0) = G.t0,

and Proposition 1.4 implies that t0 is generic. Thus,

Car(g) = Cg(Tor(g)) ⊆ Cg(G.t0) = G.h0,

proving that h0 is a generic Cartan subalgebra of g. �

Lemma 1.8. Let (g, [p]) be a restricted Lie algebra, V ⊆ g be a subspace of g.
(1) Tor(g)V := {t ∈ Tor(g) ; t ∩ V = (0)} is open in Tor(g).
(2) Tor(g)V := {t ∈ Tor(g) ; t ⊆ V } is closed in Tor(g).
(3) Car(g)V := {h ∈ Car(g) ; h ∩ V = (0)} is open in Car(g).
(4) Car(g)V := {h ∈ Car(g) ; h ⊆ V } is closed in Car(g).

Proof. Let d ∈ N. According to [7, (7.3)], the map

fd,V : Grd(g) −→ N0 ; X 7→ dimkX ∩ V

is upper semicontinuous. Consequently, Tor(g)V = Tor(g) \ f−1
µ(g),V ({n ∈ N0 ; n ≥ 1}) is open in

Tor(g). By the same token, Tor(g)V = Tor(g) ∩ f−1
µ(g),V ({n ∈ N0 ; n ≥ µ(g)}) is closed. The proofs

of (3) and (4) follow analogously. �

2. Basic Properties of Toral Stabilizers

Our computations of toral stabilizers necessitate information concerning their behavior with
respect to inclusions and passage to factor algebras. Let (g, [p]) be a restricted Lie algebra with
torus t ⊆ g of maximal dimension. Recall that S(g, t) is a subgroup of Autp(t).

Lemma 2.1. Let h ⊆ g be a p-subalgebra of the restricted Lie algebra (g, [p]).
(1) If µ(h) = µ(g), then S(h, t) ⊆ S(g, t) for every torus t ⊆ h of dimension µ(h).
(2) If h� g is an ideal such that g/h is p-unipotent, then µ(h) = µ(g) and S(h, t) = S(g, t) for

every torus t ⊆ h of dimension µ(h).
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Proof. (1) Let t ⊆ h be a torus of dimension µ(h). The canonical inclusion ι : h →֒ g induces an
injective morphism

ι∗ : Th(k) −→ Tg(k) ; ϕ 7→ ι ◦ ϕ.

Consequently, ι∗(Xt(k)) ⊆ Tg(k) is a connected subspace containing the canonical inclusion ι|t :
t →֒ g, so that

ι∗(Xt(k)) ⊆ X
′
t(k),

where the latter space denotes the connected component of Tg(k) containing ι|t. Let h be an element
of S(h, t). Denoting the inclusion t →֒ h by ι̃, we obtain

h.ι|t = ι∗(h.ι̃) ∈ X
′
t(k).

Since ϕ 7→ h.ϕ is a morphism, we see that h.X′
t(k) ⊆ X′

t(k). This implies h ∈ S(g, t), as desired.
(2) Since g/h is p-unipotent, we have µ(g/h) = 0 and [9, (3.3)] implies µ(h) = µ(g). Let

π : g −→ g/h be the canonical projection. Given ϕ ∈ Tg(k), the p-subalgebra (π ◦ ϕ)(t) ⊆ g/h is a
torus, so that (π ◦ ϕ)(t) = (0) and ϕ(t) ⊆ kerπ = h. Consequently, ϕ factors through h, and the
morphism

ι∗ : Th(k) −→ Tg(k)

is bijective. As a result, ι∗(Xt(k)) = X′
t(k) and S(g, t) = S(h, t). �

Corollary 2.2. Let t ⊆ g be a torus of dimension µ(g), s ⊆ t be a subtorus. Then we have a
natural inclusion

S(Cg(s), t) ⊆ {g ∈ S(g, t) ; g|s = ids}.

Proof. We consider the p-subalgebra h := Cg(s). By definition, µ(h) = µ(g), and Lemma 2.1
provides an inclusion S(h, t) ⊆ S(g, t). In view of [7, (5.11)], each element of S(h, t) belongs to the
centralizer of s in Autp(t). �

For a direct sum t1 ⊕ t2 of vector spaces, we denote by ιti and πti the canonical injection from ti
and the projection onto ti, respectively. Recall the identification

(2.1) Endk(t1 ⊕ t2) ≡







Endk(t1) Homk(t2, t1)

Homk(t1, t2) Endk(t2)






,

where the maps from Endk(t1 ⊕ t2) to any of the blocks arise via composition with ι’s and π’s: For
example, the projection Endk(t1 ⊕ t2) ։ Homk(t2, t1) is given by g 7→ πt1 ◦ g ◦ ιt2 .

The groups GL(t1) and GL(t2) canonically act on Homk(t2, t1) from the left and right, re-
spectively. The semi-direct product GL(t2) ⋉ Homk(t2, t1) can be identified with a subgroup of
GL(t1 ⊕ t2), namely:

GL(t2)⋉Homk(t2, t1) ≡







It1 Homk(t2, t1)

0 GL(t2)






.

(Note that the sizes of boxes are given by the dimensions of the relevant subspaces of t, so that
there is no entry in the first row and column for t1 = (0), say.)

For tori t, t′, let Liep(t, t
′) denote the additive group of restricted homomorphisms t → t′. It affords

a natural right action by Autp(t) and a natural left action by Autp(t
′). We first generalize a basic

result from [7].
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Proposition 2.3. Let (g, [p]) be a restricted Lie algebra, n � g be a p-ideal. Then the following
statements hold:

(1) If t ⊆ g is a torus of maximal dimension, then t ∩ n and (t + n)/n are tori of maximal
dimension of n and g/n, respectively.

(2) The restriction map Homk(t, g) −→ Homk(t ∩ n, g) induces a morphism res : Xt(k) −→
Xt∩n(k).

(3) Let t′ ⊆ t be a torus such that t = (t∩n)⊕ t′. Then the canonical identification (2.1) induces
an injective homomorphism

S(g, t) →֒







S(n, t ∩ n) Liep(t
′, t ∩ n)

0 S(g/n, t′)







of finite groups.

Proof. (1) According to [9, (3.3)], the p-subalgebra (t + n)/n ⊆ g/n is a torus of g/n of maximal
dimension. By the same token, we have

µ(g) = µ(n) + µ(g/n).

Since dimk t = dimk(t∩n)+dimk(t+n)/n, it follows that t∩n is a torus of n of maximal dimension.
(2) Let ι : t →֒ g be the canonical embedding. We first verify

(∗) We have ϕ(t ∩ n) ⊆ n for every ϕ ∈ Xt(k) and g(t ∩ n) = t ∩ n for every g ∈ S(g, t).

According to [7, (5.2)], there exists a subtorus tn ⊆ t such that ϕ−1(n) = tn for every ϕ ∈ Xt(k).
Specializing ϕ = ι, we obtain tn = t ∩ n, whence ϕ(t ∩ n) ⊆ n for every ϕ ∈ Xt(k).

Now let g ∈ S(g, t). Then we have g = g−1
.ι ∈ Xt(k), so that g(t ∩ n) ⊆ t ∩ n. ⋄

Owing to (∗), the canonical restriction map induces a morphism

res : Xt(k) −→ Tn(k) ; ϕ 7→ ϕ|t∩n

of affine varieties. As res is continuous, we have im res ⊆ Xt∩n(k).
(3) Let g be an element of S(g, t). Owing to (∗), we have g(t ∩ n) = t ∩ n. Thus,

ι|t∩n ◦ g|t∩n = (ι ◦ g)|t∩n = res(ι ◦ g) ∈ Xt∩n(k),

proving g|t∩n ∈ S(n, t ∩ n).
According to [7, (5.3)], the natural projection π : g −→ g/n induces a morphism

Π : Xt(k) −→ Xt′(k) ; ϕ 7→ π ◦ ϕ|t′

of affine varieties. Property (∗) implies that each g ∈ S(g, t) induces a unique element ḡ ∈ Autp((t+
n)/n) such that ḡ ◦π|t = π ◦g. Since π restricts to an isomorphism t′ −→ (t+n)/n, there is a unique
automorphism g̃ ∈ Autp(t

′) such that ḡ ◦ π|t′ = π|t′ ◦ g̃. Note that π|t′ : t
′ →֒ g/n is the canonical

inclusion, defining the connected component Xt′(k) ⊆ Tg/n(k). Hence we obtain for g ∈ S(g, t)

g̃.π|t′ = π|t′ ◦ g̃
−1 = π ◦ g−1|t′ = Π(g−1) ∈ Xt′(k),

so that g̃ ∈ S(g/n, t′). Since g 7→ g̃ defines a homomorphism of groups, we obtain the desired
embedding of finite groups. �

Remarks. (1) Let t′ ⊆ t be tori. Let {t1, . . . , tn} be a toral basis of t and denote by V the Fp-
subspace of t generated by {t1, . . . , tn}. Since V is the set of toral elements of t, there exists a
subspace V ′ ⊆ V , whose k-span coincides with t′. Choose a complement W ′ of V ′ in V . Then its
k-span s is a subtorus of t such that t = t′ ⊕ s.
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(2) One can show that the restriction morphism res : Xt(k) −→ Xt∩n(k) is smooth. In particular,
res is open and dominant.

Corollary 2.4. Let g1, g2 be restricted Lie algebras and ti ⊆ gi be tori of maximal dimension for
i ∈ {1, 2}. Then t1 ⊕ t2 ⊆ g1 ⊕ g2 is a torus of maximal dimension, and

S(g1 ⊕ g2, t1 ⊕ t2) ≃ S(g1, t1)×S(g2, t2).

Proof. We put g := g1 ⊕ g2 and t := t1 ⊕ t2, and denote by ι : t →֒ g the canonical embedding. Let
Tg be the scheme of embeddings of g and X ⊆ Tg be the connected component containing ι. For
i ∈ {1, 2}, we denote similarly ιi : ti →֒ gi and the schemes Xi ⊆ Tgi . According to Proposition 2.3,
we have

(∗) ϕ(ti) ⊆ gi ∀ ϕ ∈ X(k) and g(ti) = ti ∀ g ∈ S(g, t)

for each i ∈ {1, 2}. Consequently, Proposition 2.3 shows that

S(g, t) −→ S(g1, t1)× S(g2, t2) ; g 7→ (π1 ◦ g ◦ ι1, π2 ◦ g ◦ ι2)

is an injective homomorphism of groups.
Given i ∈ {1, 2}, the map

ζi :

{

Xi(k) −→ X(k)

ϕi 7→ ϕi ⊕ ι3−i

is a morphism of affine varieties. As a result, given gi ∈ S(gi, ti), the elements g1⊕ idt2 and idt1 ⊕g2
belong to S(g, t), and the above map is also surjective. �

3. Automorphisms and generic tori for Lie algebras of Cartan type

Henceforth, we will assume that k is an algebraically closed field of characteristic p ≥ 3. We
shall apply the results of Section 1 in the situation where g is a restricted Lie algebra of Cartan
type. By definition, these simple restricted Lie algebras possess a restricted Z-grading

g =

s
⊕

i=−r

gi ; [gi, gj] ⊆ gi+j ; g
[p]
i ⊆ gpi (r, s ≥ 1),

where we set gi := (0) for i 6∈ {−r, . . . , s}. Given such an algebra g, we consider the associated
descending filtration (g(i))i≥−r, defined via

g(i) :=
∑

j≥i

gj.

By definition, the restricted Lie algebras of Cartan type are p-subalgebras of the algebra of deriva-
tions of the truncated polynomial rings

An := k[X1, . . . ,Xn]/(X
p
1 , . . . ,X

p
n) (n ≥ 1),

whose canonical generators will be denoted x1, . . . , xn.
The Lie algebra W (n) := Derk(An) is called the n-th Jacobson-Witt algebra. Its p-map is the

standard p-th power of linear operators. We let ∂i ∈W (n) denote the partial derivative with respect
to the variable xi. Then {∂1, . . . , ∂n} is a basis of the An-module W (n), so that dimkW (n) = npn.
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Here and further, we use the standard multi-index notation and write xα := xα1
1 · · · xαn

n and
|α| :=

∑n
i=1 αi for α = (α1, . . . , αn) ∈ Nn

0 . Setting τ := (p−1, . . . , p−1), the Lie algebra W (n)

obtains a restricted grading W (n) =
⊕|τ |−1

j=−1W (n)j via

W (n)j :=

n
∑

i=1

∑

|α|=j+1

kxα∂i.

We briefly describe the other Cartan type Lie algebras in terms of differential forms; the reader is
also referred to [23, Chap. IV] and [13] for further details.

We set Ω0(An) = An as well as Ω1(An) := HomAn
(W (n),An). The latter space carries canonical

structures of an An-module and a W (n)-module (cf. [13] or [23]) via

(u.f)(D) := u.f(D) and (E.f)(D) = E(f(D))− f([E,D]),

for all u ∈ An, D,E ∈ W (n), f ∈ Ω1(An). Let Ωr(An) :=
∧r Ω1(An) be the r-fold exterior power

over An and define

Ω(An) :=
n

⊕

r=0

Ωr(An).

Let r ≥ 2. Direct computation shows that

D.(f1 ∧ f2 ∧ · · · ∧ fr) :=
r

∑

i=1

f1 ∧ f2 ∧ · · · ∧ fi−1 ∧D.fi ∧ fi+1 ∧ · · · ∧ fr,

D ∈W (n), fi ∈ Ω1(An) endows Ω
r(An) with the structure of a W (n)-module.

Consider the k-linear map d : Ω0(An) −→ Ω1(An), given by

du(D) = D(u) ∀ u ∈ An, D ∈W (n).

Associated with the Cartan differential forms ωS = dx1 ∧ · · · ∧ dxn; ωH =
∑r

i=1 dxi ∧ dxi+r for
n = 2r, and ωK = dx2r+1 +

∑r
i=1(xi+rdxi − xidxi+r) for n = 2r+1, there are the simple Cartan

type Lie algebras X(n) = X ′′(n)(2), where X ′′(n) = {D ∈ W (n) ; D.ωX = 0} if X = S,H and
K ′′(n) := {D ∈W (n) ; D.ωK ∈ AnωK}.

Recall that, given a 2r-dimensional k-vector space with a non-degenerate symplectic form 〈 , 〉 :
V × V −→ k, the group

GSp(V ) := {g ∈ GL(V ) ; ∃ c(g) ∈ k× , 〈g(x), g(y)〉 = c(g)〈x, y〉 ∀ x, y ∈ V }

is referred to as the group of similitudes of the symplectic space (V, 〈 , 〉).

Theorem 3.1 ([24, 25]). Let g be a restricted Lie algebra of Cartan type X(n) over a field k of
characteristic p ≥ 3. If g =W (1) or H(2), assume that p ≥ 5. Then the following statements hold:

(1) The group G := Autp(g) is connected.
(2) The group G is a semidirect product G = U⋊G0, where G0 consists of those automorphisms

preserving the Z-grading of g, and U := {g ∈ G ; (g− idg)(g(i)) ⊆ g(i+1)}. Furthermore, U is
unipotent and G0 is reductive with

G0
∼=

{

GL(n), for X =W,S,
GSp(2r), for X = H and K with n = 2r and 2r+1, respectively.

(3) We have g(g(i)) = g(i) for every g ∈ G and i ∈ Z.
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Proof. According to Wilson’s results [24, Thm. 2], the theorem holds for the group of automor-
phisms which preserve the standard filtration. So we need to show that under the assumptions
of the theorem, all automorphisms of g preserve it. Since this is the standard filtration defined
with respect to the maximal subalgebra g(0) ( g [22, Definition 3.5.1], we have to show that any
automorphism preserves this subalgebra. By [22, (4.2.6)], g(0) is the unique maximal subalgebra
of lowest codimension, except when p = 3, and g = W (1), H(2) or K(3). When g = K(3) and
p = 3, [22, (4.2.6)] states that g(0) is the unique maximal subalgebra h of codimension 3 such that
the h-module g/h is not irreducible. It readily follows that g(0) is stable under all automorphisms
of g in all relevant cases, so the proof is complete. �

Owing to (3) of Theorem 3.1, the subsets Tor(g)g(i) and Tor(g)g(i) of Tor(g) are G-invariant. It also
follows that the function

f0 : Tor(g)g(−1)
−→ N0 ; t 7→ dimk t ∩ g(0)

is constant on the G-orbits of Tor(g)g(−1)
.

The following result, which states that f0 forms a complete set of invariants for the G-orbits of
Tor(g)g(−1)

, is based on Demuškin’s work [3, 4], as corrected in [22, §7]. In our statement below,

we represent the contact algebra as in [23, (IV.5)].

Theorem 3.2. Let g be a Lie algebra of Cartan type X(n), where X ∈ {W,S,H,K}. Then the
following statements hold:

(1) Two tori t, t′ ∈ Tor(g)g(−1)
belong to the same G-orbit if and only if f0(t) = f0(t

′).

(2) Each of the following tori represents the unique orbit G.t0 of Tor(g)g(−1)
with f0(G.t0) = {0}:

(W) t0 = 〈(1+x1)∂1, . . . , (1+xn)∂n〉 for g =W (n)
(S) t0 = 〈(1+x1)∂1 − xn∂n, . . . , (1+xn−1)∂n−1 − xn∂n〉 for g = S(n)
(H) t0 = 〈(1+x1)∂1 − xr+1∂r+1, . . . , (1+xr)∂r+1 − x2r∂2r〉 for g = H(2r)
(K) t0 = 〈x1(1+xr+1), . . . , xr(1+x2r),

∑r
i=1 xixr+i−x2r+1〉 for g = K(2r+1). �

The foregoing results yield the following description of the toral stabilizers of the Lie algebras of
Cartan types W,S and H.

Proposition 3.3. Let g be a Lie algebra of Cartan type W,S or H. Then t0 is a generic torus and

W (g, t0) ∼= S(g).

Proof. According to Lemma 1.8 and Theorem 3.1, Tor(g)g(−1)
is a closed, G-invariant subset of

Tor(g). By the same token,
O := Tor(g)g(−1)

∩ Tor(g)g(0)

is an open, G-invariant subset of Tor(g)g(−1)
. In view of Theorem 3.2(1), we thus have O = G.t0.

In particular, the orbit G.t0 is open in Tor(g)g(−1)
. Since g = g(−1) for g = W (n), S(n),H(2r), it

follows from the irreducibility of Tor(g) that t0 actually is a generic torus of g. Our second assertion
is now a direct consequence of Theorem 1.5. �

Remark. If g is of type K, then G.t0 is a subset of g(−1). Since Sg \ g(−1) is not empty, the G-

saturation of t0 is contained in the proper, closed subset S̄g∩g(−1) ( S̄g, and Proposition 1.4 shows
that the torus t0 is not generic. In fact, we will see in (6.2.3) that contact algebras do not afford
generic tori.
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4. Embeddings of W (n)

In preparation for our computation of the toral stabilizers and Weyl groups of the generic tori of
the Lie algebras of Cartan types W,S and H, we provide in this section embeddings W (µ(g)) →֒ g

for such Lie algebras.
The map

div : W (n) −→ An ;

n
∑

j=1

fj∂j 7→
n
∑

j=1

∂j(fj)

is called the divergence of W (n). The special algebra S(n) is the derived algebra of the subalgebra
ker div, cf. [23, (IV.3)].

Let r ≤ n. In the sequel, we shall identify Ar with the subalgebra of An that is generated
by x1, . . . , xr. A derivation D ∈ Derk(Ar) will be regarded as an element of Derk(An) by setting
D(xj) = 0 for r+1 ≤ j ≤ n. As before, we shall employ multi-index notation. In particular, εj
denotes the vector, whose coordinates are given by the Kronecker symbols δij .

Lemma 4.1. Let n ≥ 2. Then

σn : W (n−1) −→ S(n) ; D 7→ D − div(D)xn∂n

is an injective homomorphism of restricted Lie algebras.

Proof. Let D be an element of W (n−1). Since

div(σn(D)) = div(D)− ∂n(div(D)xn) = div(D)− div(D) = 0,

we have σn(W (n−1)) ⊆ ker div. According to [23, (IV.3.1)], the map div is a derivation. Given
D,E ∈W (n−1), we thus obtain

[σn(D), σn(E)] = [D − div(D)xn∂n, E − div(E)xn∂n]

= [D,E]−D(div(E))xn∂n + E(div(D))xn∂n + [div(D)xn∂n,div(E)xn∂n]

= [D,E]− div([D,E])xn∂n + [div(D)xn∂n,div(E)xn∂n]

= σn([D,E]),

so that σn : W (n−1) −→ ker div is a homomorphism of Lie algebras. As W (n−1) is simple, we
have

imσn = σn([W (n−1),W (n−1)]) ⊆ (ker div)(1) = S(n).

Moreover, the map σn is obviously injective.
In view of Jacobson’s formula, it suffices to verify the identity σn(x

[p]) = σn(x)
[p] on a basis of

W (n−1). Let a ≤ τ be an element of Nn−1
0 . By virtue of [23, (IV.2.7)], we have

(xa∂j)
[p] =

{

0 a 6= εj
xεj∂j a = εj

for every j ∈ {1, . . . , n−1}. Since

σn(x
a∂j) = xa∂j − ajx

a−εjxn∂n

there exist λi ∈ k such that

σn(x
a∂j)

[p](xi) = λi x
pa+εi−pεj ∀ i ∈ {1, . . . , n−1}.

This expression vanishes unless a = εj . In the remaining case, we readily obtain σn(xj∂j) =

xj∂j − xn∂n, so that σn(xj∂j)
[p] = σn(xj∂j). �
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We denote by P(2r) the Poisson algebra, i.e., the space A2r, endowed with the standard Poisson
bracket { , }. By definition, { , } is an associative bi-derivation, defined on the generators x1, . . . , x2r
by the rule:

{xi, xi+r} = 1 = −{xi+r, xi} 1 ≤ i ≤ r,

and the remaining {xi, xj} = 0 (see [23, p.168]). The center of P(2r) consists of the space k of
constant polynomials, and there is an exact sequence

(0) → k → P(2r)
DH−→ H ′′(2r)

of Lie algebras, where H ′′(2r) is the annihilator of the Hamiltonian form (see [23, p.163]). In
particular, H ′′(2r) is a p-subalgebra of W (2r). The image H ′(2r) of DH has codimension 1 in

H ′′(2r), and the derived algebra H ′(1) = H(2r) is the Hamiltonian algebra.
The Lie algebra P(2r) is restrictable, and any p-mapping of P(2r) renders the above exact

sequence an exact sequence of restricted Lie algebras. We define a p-mapping by the following
formula (cf. [22, p. 403]):

(4.1) (xa)[p] =

{

0 for a 6∈ {0, εi + εi+r ; i = 1, . . . , r},
xa for a ∈ {0, εi + εi+r ; i = 1, . . . , r}.

In particular, 1[p] = 1, and the center is a torus.

Lemma 4.2. Let r ≥ 1. Then the map

ϕr : W (r) −→ P(2r) ;
r

∑

j=1

fj∂j 7→
r

∑

j=1

xjfj(xr+1, . . . , x2r)

is an injective homomorphism of restricted Lie algebras.

Proof. We check that ϕr is a Lie algebra homomorphism. Given f, g ∈ Ar and i, j ∈ {1, . . . , r},
we have [f∂i, g∂j ] = f∂i(g)∂j − g∂j(f)∂i in W (r). Writing f(x′) for f(xr+1, . . . , x2r), we therefore
obtain

{xif(x
′), xjg(x

′)} = {xi, xjg(x
′)}f(x′) + xi{f(x

′), xjg(x
′)}

= xj{xi, g(x
′)}f(x′) + xi{f(x

′), xj}g(x
′)

= xj∂i+r(g(x
′))f(x′)− xi∂j+r(f(x

′))g(x′)

= ϕr([f∂i, g∂j ]).

Recall that (xa∂i)
[p] = 0 if a 6= εi, and (xi∂i)

[p] = xi∂i for all i ∈ {1, . . . , r}. A comparison
with (4.1), shows that ϕr

(

(xa∂i)
[p]
)

= ϕr(x
a∂i)

[p] for all a ∈ Nr
0. Consequently, ϕr is an injective

homomorphism of restricted Lie algebras. �

As a corollary, we readily obtain:

Lemma 4.3. Let r ≥ 1. The map DH ◦ ϕr induces an embedding W (r) →֒ H(2r) of restricted Lie
algebras. �

5. Toral stabilizers of Cartan type Lie algebras

In this section, we turn to the computation of the toral stabilizers of restricted Lie algebras of
Cartan type. Our approach involves embeddings of suitable p-subalgebras.
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5.1. Poisson algebras. We begin by determining the toral stabilizers of the Poisson algebra with
toral center. For r ≥ 1, we consider the Lie algebra

lr := kz ⊕ kx1 ⊕
r

⊕

i=1

kti,

whose bracket and p-mapping are given by

[ti, x1] = δi1x1 and t
[p]
i = ti , x

[p]
1 = z = z[p],

respectively, with all unspecified products being zero.

Lemma 5.1.1. For the restricted Lie algebra (lr, [p]), we have S(lr) ≃ Z/pZ.

Proof. Setting t :=
⊕r

i=2 kti, we obtain a direct sum decomposition

lr = l1 ⊕ t

of lr, whose second summand is a torus. Consequently, Corollary 2.4 implies

S(lr) ≃ S(l1)× S(t) ≃ S(l1).

According to [7, p.4215], we have S(l1) ∼= Z/pZ, as desired. �

A restricted Lie algebra g is referred to as trigonalizable if it can be embedded into a restricted
Lie algebra of triangular matrices. This is equivalent to every restricted simple g-module being
one-dimensional.

Theorem 5.1.2. Let P(2r) be the restricted Poisson algebra in 2r variables with toral center. Then
S(P(2r)) ≃ GLr(Fp) ⋉ (Fp)

r. Moreover, for any torus t ⊆ P(2r) of maximal dimension, we have
S(P(2r), t) = {g ∈ Autp(t) ; g(1) = 1}.

Proof. We first show that S(P(2r)) ≃ GLr(Fp)⋉W , whereW = (0) or W = (Fp)
r with the natural

action by GLr(Fp). In view of Lemma 4.2, there exists an embedding k⊕W (r) →֒ P(2r) originating
in the direct sum of the one-dimensional torus k with W (r). Let t = k ⊕ t′, where t′ ⊆ W (r) is
any torus of maximal dimension. Thanks to Lemma 2.1, Corollary 2.4 and Proposition 2.3(3), we
obtain inclusions







1 0

0 S(W (r), t′)






⊆ S(P(2r), t) ⊆







1 (Fp)
r

0 GLr(Fp)






.

Owing to [19, Thm. 1] and Proposition 3.3, the group S(W (r), t′) is isomorphic to GLr(Fp). Since
the matrix group on the right identifies with the semi-direct product of GLr(Fp) with the standard
module (Fp)

r, we obtain embeddings

GLr(Fp)⋉ (0) ⊆ S(P(2r), t) ⊆ GLr(Fp)⋉ (Fp)
r.

Consequently, S(P(2r), t) ≃ GLr(Fp) ⋉ W , where W := S(P(2r), t) ∩ [(1)⋉(Fp)
r] is a GLr(Fp)-

submodule of (Fp)
r. Since (Fp)

r is irreducible, we have W = (0) or W = (Fp)
r.

In order to show that W 6= (0), we consider the subspace

l = k + k(1+xr+1) +

r
∑

i=1

kxi(1+xi+r)
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of P(2r). We claim that l is a p-subalgebra of P(2r) which is isomorphic to lr. Using the fact that
the Poisson bracket is a bi-derivation for the associative structure, we obtain

{xi(1+xi+r), 1+xr+1} = {xi, 1+xr+1}(1+xi+r) = {xi, xr+1}(1+xi+r) = δi1(1+xi+r).

Since polynomials in xi and xi+r commute with polynomials in the remaining variables, we see that
all other brackets are 0. Hence, l ≃ lr as abstract Lie algebras. We have 1[p] = 1 by definition.
Also, using Jacobson’s formula, we obtain

(1+xr+1)
[p] = 1[p] + x

[p]
r+1 = 1.

Setting ti = xi(1+xi+r), we show that t
[p]
i = ti. One can easily check (ad ti)

p = ad ti by comparing
the action of these derivations on the associative generators x1, . . . , xr and 1+xr+1, . . . , 1+x2r of

P(2r). As the center C(P(2r)) coincides with k, there exists λ ∈ k such that t
[p]
i = ti+λ1. Consider

the decomposition ti = xi+xixi+r. Jacobson’s formula in conjunction with (4.1) yields

t
[p]
i = x

[p]
i + (xixi+r)

[p] +

p−1
∑

j=1

sj(xi, xixi+r) = xixi+r +

p−1
∑

j=1

sj(xi, xixi+r).

Observe that both, xi and xixi+r, belong to the subspace E := xi ·k[xi+r]. It is easy to check that
E is stable under adxi and adxixi+r. Hence all the sj(xi, xixi+r) belong to E. Consequently, we

obtain λ1 + ti = t
[p]
i ≡ xixi+r mod E, forcing λ = 0, as required.

According to [22, (7.5.10)], the space t := k +
∑r

i+1 kti ⊆ l is a torus of P(2r) of maximal
dimension. By Lemma 5.1.1, we have S(l, t) ≃ Z/pZ. Since the factor algebra l/k is trigonalizable
with torus t′ := t/k of maximal dimension, [7, (6.1)] implies S(l/k, t′) = {1}. Proposition 2.3 now
provides an embedding ξ in the top line of the following diagram:

S(l, t)
ξ

−−−−→

(

1 Liep(t
′, k)

0 It′

)

α





y





y

S(P(2r), t)

(

1 W
0 GLr(Fp)

)

.

The map α is the inclusion given by Lemma 2.1, and the matrices on the right describe the
endomorphisms of t = k ⊕ t′ according to the block decomposition (2.1). By construction of all
these maps, the diagram is commutative. Since im ξ ≃ S(l, t) 6= {1}, we have W 6= (0), as desired.

For the last statement of the theorem, observe that a maximal torus t always contains n = k.1
as a subtorus. Corollary 2.2 provides an inclusion S(P(2r), t) ⊆ {g ∈ Autp(t) ; g(1) = 1}. As these
groups have same order, this inclusion is an equality. �

5.2. Lie algebras of Cartan type. The main result of this section reads:

Theorem 5.2.1. Let g be a Lie algebra of Cartan type. Then there is an isomorphism

S(g) ∼= GLµ(g)(Fp).

Proof. Assume first that g is of type W . Also, if p = 3 assume that g 6= W (1). Proposition 3.3
provides a generic torus t0 ⊆ g and an isomorphism

W (g, t0) ∼= S(g).

The isomorphism W (g, t0) ∼= GLµ(g)(Fp) was established in [19, Thm. 1]. Now assume that p = 3
and g =W (1) ∼= sl2. Then Autp(g) is no longer connected, so we cannot use Premet’s result. Note
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that S(g) →֒ GL1(F3) ∼= Z/(2), so that we only need to see that S(g) is not trivial. This follows
from [7, Remark (1), p.4201].

When g is of type S or H, Lemmas 4.1 and 4.3 furnish embeddings W (µ(g)) →֒ g. Lemma 2.1
thus yields GLµ(g)(Fp) →֒ S(g), so that S(g) ∼= GLµ(g)(Fp).

The rest of the proof is devoted to contact algebras. Let n = 2r+1 be an odd number. Following
[23, (IV.5)], we endow the truncated polynomial ring An with the structure of a restricted Lie
algebra; the corresponding Lie bracket 〈 , 〉 is called contact bracket. In the sequel, K ′′(n) will

denote the vector space An, endowed with this bracket. Then K(n) = K ′′(n)(1) is the contact
algebra.

Let t :=
⊕r

i=1 kxixr+i⊕ k(1+xn) ⊆ K(n). Then t is a torus of maximal dimension in K(n), and
we claim that

S(K(n), t) ≃ GLr+1(Fp).

We identify Autp(t) with GLr+1(Fp), using the ordered basis {1+xn, x1xr+1, . . . , xrx2r}. Hence-
forth, all matrix representations will describe automorphisms of t by means of this basis.

By [22, (7.5.15)], we know that the centralizer c = CK ′′(n)(1+xn) is isomorphic to the Poisson
algebra P(2r) with toral center. Since t ⊆ c, Theorem 5.1.2 yields the following matrix description:

(5.1)

(

1 (Fp)
r

0 GLr(Fp)

)

≡ S(c, t) ⊆ S(K ′′(n), t),

with the inclusion following from Lemma 2.1.
We will now embed lower triangular matrices into S(K ′′(n), t), by means of a method similar to

the one used in Theorem 5.1.2. Consider the subspace

l := kxrx2r ⊕ kxrx2r(1+xn)⊕ k(1+xn) ⊆ K ′′(n).

We first prove that l is a restricted Lie algebra isomorphic to the one in [7, p. 4216] (or to l1 in
Lemma 5.1.1). We check that such an isomorphism is defined by the assignment

z 7→ xrx2r, x 7→ xrx2r(1+xn), t 7→ 1+xn.

Indeed, directly from the rules given in [23, p.173], we obtain

〈xrx2r, 1+xn〉 = 0 = 〈xrx2r, xrx2r(1+xn)〉

as well as

〈1+xn, xrx2r(1+xn)〉 = 〈1, xrx2r(1+xn)〉+ 〈xn, xrx2r(1+xn)〉

= 2xrx2r + 2xrx2rxn = 2xrx2r(1+xn).

In view of [23, p.177], we also have

(1+xn)
[p] = 1 + x[p]n = 1+xn.

Moreover, since 〈xrx2r, xrx2rxn〉 = 0, we finally obtain

(xrx2r(1+xn))
[p] = xrx2r.

Now let t′ :=
∑r−1

i=1 kxixi+r, so that t = k(1+xn) + t′ + kxrx2r. Write tl = k(1+xn) + kxrx2r
to ease notation. Since 〈t′, l〉 = 0, there is an embedding t′ ⊕ l →֒ K ′′(n) of restricted Lie algebras,
which in turn yields an embedding

S(t′ ⊕ l, t′ ⊕ tl) ≃ (1)× S(l, tl) →֒ S(K ′′(n), t)
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of finite groups. According to [7, p. 4216], the group S(l, tl) is generated by the transformation
xrx2r 7→ xrx2r, (1+xn) 7→ xrx2r + (1+xn). Using the previous matrix identification, this yields

(

1 0
v Ir

)

∈ S(K ′′(n), t), where v =











0
...
0
1











.

In view of (5.1), the group S(K ′′(n), t) also contains
(

1 0
0 GLr(Fp)

)

, so the irreducibility of the

GLr(Fp)-module (Fp)
r yields

(5.2)

(

1 0
(Fp)

r GLr(Fp)

)

⊆ S(K ′′(n), t).

Using (5.1) and (5.2), we see that S(K ′′(n), t) contains the subgroup generated by all shear matrices,
which, owing to [12, Lemma 6.7.1], coincides with SLr+1(Fp). By (5.2), it also contains matrices of
arbitrary determinant, whence S(K ′′(n), t) ∼= GLr+1(Fp). Since the factor algebra K ′′(n)/K(n) is
p-unipotent, Lemma 2.1 now yields the result. �

Taking into account Theorem 1.1 (1), we obtain the following remarkable corollary:

Corollary 5.2.2. Let g be a Lie algebra of Cartan type. Then the variety Tg(k) is irreducible. �

5.3. The Melikian algebra. For the sake of completeness, we mention the case of the restricted
Melikian algebra. Recall that this is a simple graded Lie algebra over a field of characteristic p = 5,
which is neither classical nor of Cartan type. We refer the reader to [20] for the details. As for
contact algebras, it can be shown that this algebra affords infinitely many conjugacy classes of tori
of maximal dimension.

Theorem 5.3.1. Assume that k has characteristic p = 5. Let M be the restricted Melikian algebra.
Then there is an isomorphism

S(M) ∼= GL2(Fp),

and the variety of embeddings TM(k) is irreducible.

Proof. By construction, there exists an embedding W (2) →֒ M (see [20, Sect. 1]). By [20, Cor.
4.4], all maximal tori in M have dimension 2, so that µ(W (2)) = µ(M). Let t ⊆ W (2) ⊆ M be a
torus of dimension 2. Using Lemma 2.1, we obtain embeddings S(W (2), t) ⊆ S(M, t) ⊆ Autp(t). By
Theorem 5.2.1, this forces S(M, t) = Autp(t) ∼= GL2(Fp). The fact that the variety of embeddings
is irreducible now follows from Theorem 1.1. �

6. Applications

The applications to be discussed in this final section pertain to weight space decompositions,
the non-existence of generic tori and invariants for certain Lie algebras of Cartan type. While the
second topic originates in Demuškin’s early work [3, 4] along with Strade’s corrections [22], our
observations on invariants are motivated by Premet’s paper [19].
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6.1. Irreducibility and Weights. Our first result illustrates why it is reasonable to consider toral
stabilizers as a replacement for Weyl groups when dealing with arbitrary restricted Lie algebras.

By definition, a restricted g-module M is a g-module such that for every x ∈ g, the operator
m 7→ x[p].m is the p-th power of the transformation of M effected by x. If t ⊆ g is a torus, then M
is a completely reducible t-module, giving rise to the weight space decomposition

M =
⊕

λ∈ΛM

Mλ.

Each λ ∈ ΛM is a linear form satisfying λ(t[p]) = λ(t)p for every t ∈ t. As a result, ΛM ⊆ Liep(t, k)
is a subset of the character group of t, i.e., the additive group of all homomorphisms t −→ k of
restricted Lie algebras, where the p-map on k is the associative p-th power. The group Autp(t) acts
contragrediently on Liep(t, k) via

h.ϕ := ϕ ◦ h−1 ∀ h ∈ Autp(t), ϕ ∈ Liep(t, k).

If t ⊆ g is a torus of maximal dimension, then S(g, t) ⊆ Autp(t) also acts on Liep(t, k).

Theorem 6.1.1. Let (g, [p]) be a restricted Lie algebra, t ⊆ g be a torus of maximal dimension. If
M is a restricted g-module with weight space decomposition

M =
⊕

λ∈ΛM

Mλ,

then ΛM ⊆ Liep(t, k) is S(g, t)-stable and the dimensions of the weight spaces are constant on the
S(g, t)-orbits.

Proof. As in the proof of Lemma 1.6, put A := k[Xt] and let j : t →֒ g⊗kA be the universal
embedding of t. In particular, given a commutative k-algebra R, an element ϕx : t → g ⊗k R
corresponds to x ∈ Speck(A)(R) if and only if ϕx = (idg⊗x) ◦ j. Consider the restricted A-Lie

algebra g̃ := g⊗k A. Then M̃ := M⊗kA is a restricted g̃-module, and the universal embedding
gives rise to a weight space decomposition

M̃ =
⊕

γ∈Γ
M̃

M̃γ

of the t-module M̃ , whose constituents are A-submodules of M̃ . Let x ∈ Speck(A)(k) be a k-rational
point. As observed in [7, (4.2)], we have

M =
⊕

γ∈Γ
M̃

Mγ(x),

where Mγ(x) = Mγ◦ϕ−1
x

is the weight space with weight γ ◦ ϕ−1
x relative to the torus ϕx(t) ⊆ g.

Since each M̃γ is a finitely generated projective module over the integral domain A, it has constant
rank and [15, p.166] yields

dimkMγ(x) = rk(M̃γ) ∀ x ∈ Xt(k).

In particular, these dimensions are non-zero integers which depend only on γ.
Let ι : t →֒ g be the canonical inclusion. Given g ∈ S(g, t), we have g.ι = ι ◦ g−1 ∈ Xt(k), and

M =
⊕

γ∈Γ
M̃

Mγ◦g

is the weight space decomposition of M relative to t. Thus, ΛM = g.ΓM̃ for all g ∈ S(g, t) and

dimkMg.λ = rk(M̃λ) = dimkMλ for every λ ∈ ΛM . �
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Corollary 6.1.2. Let t ⊆ g be a torus of maximal dimension, M =
⊕

λ∈ΛM
Mλ be a restricted

g-module. If the variety Tg(k) is irreducible, then the following statements hold:
(1) ΛM = {0}, or ΛM contains Liep(t, k) \ {0}.
(2) All weight spaces of M belonging to non-zero weights have the same dimension.

Proof. Let t ⊆ g be a torus of maximal dimension, M =
⊕

λ∈ΛM
Mλ be the corresponding weight

space decomposition of M . By Theorem 6.1.1, the set ΛM ⊆ Liep(t, k) is S(g, t)-stable.
According to Theorem 1.1, the variety Tg(k) has [Autp(t) : S(g, t)] irreducible components. In

view of our assumption, this yields S(g, t) = Autp(t). Consequently S(g, t) ∼= GLµ(g)(Fp) acts via

two orbits on Liep(t, k) ∼= HomFp(F
µ(g)
p ,Fp), namely {0} and Liep(t, k) \ {0}. �

Remark. Let g be such that Tg(k) is irreducible. For any restricted g-module M =
⊕

λ∈ΛM
Mλ,

we have ΛM = {0},Liep(t, k) \ {0} or Liep(t, k). We consider the Jacobson-Witt algebra g =W (n)
acting via derivations in the truncated polynomial ring An. Then, k ⊆ An is a submodule, and the
three possibilities occur for k, An/k, and An, respectively.

We record the particular case given by the adjoint representation:

Corollary 6.1.3. Let g = g0 ⊕
⊕

α∈Φ gα be the root space decomposition of g relative to a torus
t ⊆ g of maximal dimension. If the variety Tg(k) is irreducible, then Φ ∪ {0} = Liep(t, k), and all
root spaces of g have the same dimension.

Proof. If Φ = ∅, then g = g0 is nilpotent and, being an irreducible variety of dimension zero, Tg(k)
is a singleton. Consequently, t = (0), so that Liep(t, k) = {0}. The case where Φ 6= ∅ follows
directly from Corollary 6.1.2. �

6.2. Non-generic tori. We will prove that the Weyl groups of the Poisson algebra P(2r) do not
coincide with the toral stabilizer, and obtain as a consequence that contact algebras do not afford
generic tori. This result strengthens Strade’s observation [22], who showed that K(2r+1) possesses
infinitely many conjugacy classes of maximal tori.

To do so, we first gather some observations concerning automorphisms of P(2r). Any Lie algebra
automorphism of P(2r) stabilizes the center k ⊆ P(2r). The simple Lie algebra H(2r) can be
realized as the derived subalgebra of the quotient algebra P(2r)/k. There results a homomorphism

π : Aut(P(2r)) −→ Aut(H(2r))

of groups. Our analysis of Aut(P(2r)) involves two classes of automorphisms. A Lie algebra
automorphism σ ∈ Aut(P(2r)) is a semi-Poisson automorphism if there exists a non-zero scalar
α ∈ k× such that ασ preserves the associative structure of P(2r). If α = 1, then σ is referred to
as a Poisson automorphism. The set of semi-Poisson automorphisms is a subgroup of Aut(P(2r)),
which we denote by AutSP(P(2r)).

Let λ ∈ P(2r)∗ be a linear form which vanishes on P(2r)(1). Then

ϕλ :

{

P(2r) → P(2r)
f 7→ f+λ(f)

is an automorphism of the Lie algebra P(2r) and H := {ϕλ ; λ ∈ (P(2r)/P(2r)(1))∗} is a subgroup
of Aut(P(2r)) such that AutSP(P(2r)) ∩H = {idP(2r)}.
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Theorem 6.2.1. Let π : Aut(P(2r)) → Aut(H(2r)) be the natural map. Then ker(π) = H, and
we have

Aut(P(2r)) = AutSP(P(2r)) ⋉H.

Proof. It follows from [22, (7.3.6)] that the restriction of π to AutSP (P(2r)) is surjective. We will
proceed to verify ker(π) = H. This will prove that the restriction of π to AutSP(P(2r)) is also
injective, so that Aut(P(2r)) = AutSP(P(2r)) ⋉ H. Given σ ∈ ker(π), there exists a linear map

µ : P(2r)(1) → k such that σ(f) = f + µ(f) for all f ∈ P(2r)(1). Consequently,

{f, g} = {f + µ(f), g + µ(g)} = {σ(f), σ(g)}

= σ({f, g}) = {f, g} + µ
(

{f, g}
)

,

so that µ
(

{f, g}
)

= 0 for all f, g ∈ P(2r)(1). Since P(2r)(1) is a perfect Lie algebra, we have µ ≡ 0,

i.e. σ(f) = f for every f ∈ P(2r)(1).

We have a vector space decomposition P(2r) = P(2r)(1) ⊕ kxτ , where xτ = xp−1
1 · · · xp−1

2r is the

unique monomial of maximal degree d = 2r(p−1). Let α ∈ k and g ∈ P(2r)(1) be such that
σ(xτ ) = αxτ + g. Note that g is a linear combination of monomials of degree lower than d. To see
that σ ∈ H we need to show that α = 1 and g ∈ k.

Recall the notation i′ = i+r (resp. i−r) for i ≤ r (resp. i > r), so that {xi, xj} = δi′,j. Since
the element

{xi, x
τ} = −xp−1

1 · · · xp−2
i′ · · · xp−1

2r ,

lies in P(2r)(1), it is fixed by σ. Hence,

−xp−1
1 · · · xp−2

i′ · · · xp−1
2r = σ

(

{xi, x
τ}
)

= {σ(xi), σ(x
τ )} = {xi, α x

τ+g}

= −αxp−1
1 · · · xp−2

i′ · · · xp−1
2r + {xi, g},

so that
{xi, g} = (α−1)xp−1

1 · · · xp−2
i′ · · · xp−1

2r

for all i ∈ {1, . . . , 2r}. Since bracketing by xi lowers the degree by 1, {xi, g} is a linear combination
of monomials of degree < d−1. Consequently, both sides are zero, so that α = 1 and {xi, g} = 0
for all i. The latter condition implies that g is central, i.e. g ∈ k as desired. �

We turn to Weyl groups of the Poisson algebra.

Proposition 6.2.2. Let t ⊆ P(2r) be a torus of maximal dimension, H ⊆ Autp(P(2r)) be a
subgroup. Then the following statements hold:

(1) There exists an embedding NorH(t)/CentH(t) →֒ F∗
p ×GLr(Fp).

(2) W (P(2r), t) ( S(P(2r), t).
(3) The Poisson algebra P(2r) affords no generic torus.

Proof. (1) Let m ⊆ P(2r) denote the subspace of polynomials without constant term. Being the
unique maximal ideal of the local algebra A2r, m is stable under semi-Poisson automorphisms.
Owing to [22, (7.5.10)], the torus t is conjugate under a Poisson automorphism to one of the
following tori:

Tq = k ⊕

q
∑

i=1

k(1+xi)xi+r ⊕
r

∑

i=q+1

xixi+r, q ∈ {0, . . . , r}.

(But the conjugating automorphism is not restricted in general.) Each of these tori has the
form k ⊕ T ′ for some torus T ′ ⊆ m. Since Poisson automorphisms stabilize m, we also obtain
a decomposition t = k ⊕ t0, where t0 ⊆ m is a torus.
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Let g ∈ NorH(t). Thanks to Theorem 6.2.1, the automorphism g is a composite g = g0 ◦h, where
g0 is a semi-Poisson automorphism and h ∈ H. Now, t being a torus, we have t ⊆ P(2r)(1), so that
h acts trivially on t. Thus, g and g0 induce the same automorphism of t, whence g(k) ⊆ k and
g(t0) ⊆ t ∩m = t0. We obtain a well-defined mapping

NorH(t) −→ Autp(k)×Autp(t0) ; g 7→ (g|k, g|t0),

which induces the desired embedding NorH(t)/CentH(t) →֒ F∗
p ×GLr(Fp).

(2) According to Lemma 1.2, the Weyl group W (P(2r), t) is contained in S(P(2r), t). By part
(1), there is an embedding W (P(2r), t) →֒ F∗

p ×GLr(Fp), while Theorem 5.1.2 yields S(P(2r), t) ≃
GLr(Fp)⋉ (Fp)

r.
(3) This is a direct consequence of (2) and Theorem 1.5. �

Theorem 6.2.3. The contact algebra K(2r+1) affords no generic torus.

Proof. We write g := K ′′(2r+1) to ease notation, so that g(1) = K(2r+1). Note that g(1) is a
p-ideal of g such that the factor algebra is p-unipotent. As a consequence, all tori of g are contained
in g(1), and we have Sg = Sg(1) . Furthermore, if t ⊆ g(1) is a torus of maximal dimension, then

Lemma 2.1 and Theorem 5.2.1 yield S(g, t) = S(g(1), t) = Autp(t).
Let us prove that restriction to the derived subalgebra induces a surjective homomorphism res :

Autp(g)
◦ → Autp(g

(1)). By Theorem 3.1, the group on the right is connected. Thanks to [11, Prop.

7.4 B], it therefore suffices to show the surjectivity of the map Autp(g) → Autp(g
(1)). Setting

Φµ(D) := µ ◦D ◦ µ−1 for every µ ∈ Autk(A2r+1) and D ∈W (2r+1), we obtain an isomorphism

Φ : Autk(A2r+1) −→ Autp(W (2r+1)) ; µ 7→ Φµ

of groups. The automorphisms of A2r+1 naturally act on differential forms, and we consider the
subgroup

GK := {µ ∈ Autk(A2r+1) ; µ.ωK ∈ A×
2r+1ωK}.

According to [22, (7.3.2)], Φ induces an isomorphism GK ≃ Autp(g
(1)). From the definition g =

{D ∈ W (2r+1) ; D.ωK ∈ A2r+1ωK}, we see that for µ ∈ GK , the map Φµ induces a restricted

automorphism of g. Thus, any restricted automorphism of g(1) extends to g, as we wanted to show.
In the sequel, we write G := Autp(g)

◦ and GK := Autp(g
(1)). Assume that there exists a

generic torus t ⊆ g(1). In view of Proposition 1.4, the saturation GK .t is dense in S̄g(1) . The above
observations yield

G.t = res(G).t = GK .t,

so that G.t is a dense subset of S̄g = S̄g(1) . Applying Proposition 1.4 again, we conclude that t is
also a generic torus of g.

Note that the argument of the remark following Proposition 3.3 applies to any generic torus of

g(1), yielding t 6⊆ g
(1)
(−1). Since t ⊆ g(1), this means t 6⊆ g(−1). Owing to [22, (7.5.14)], we may assume

that 1+xn ∈ t. Then t is also a torus of maximal dimension of the centralizer c := Cg(1+xn).
By [22, (7.5.15)], there is an isomorphism ϕ : c → P(2r) of restricted Lie algebras such that
ϕ(1+xn) = 1, the canonical central element in the Poisson algebra. Applying Theorem 5.1.2, we
obtain S(c, t) = CentAutp(t)(1+xn). Since t ⊆ g is generic, Theorem 1.5 in conjunction with the
above observation S(g, t) = Autp(t) ensures that the map NorG(t) −→ Autp(t) is surjective. Thus,
given g ∈ Autp(t), there exists ϕ ∈ G such that ϕ|t = g. Since g fixes 1+xn, we have ϕ|c ∈ Autp(c).
Setting H := Autp(c), we obtain a surjection NorH(t) −→ Autp(t), which contradicts Proposition
6.2.2(1). �
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6.3. Invariants for Lie algebras of Cartan Type. Given a restricted Lie algebra (g, [p]) with
connected automorphism group G = Autp(g)

◦ and maximal torus t ⊆ g, we are interested in

comparing the invariants k[g]G and k[t]S(g) of the respective rings of polynomial functions. In case
S(g) = GLµ(g)(Fp), the generators of the latter algebra were explicitly determined by Dickson, cf.
[5].

We begin with some general observations concerning invariants of polynomial functions of a
finite-dimensional associative k-algebra A. Let G ⊆ Aut(A) be a connected, closed subgroup of
the automorphism group of A. Given a finite-dimensional A-module M , we let aM : M −→M be
the left multiplication effected by the element a ∈ A. Let T be an indeterminate. For a ∈ A, we
consider the characteristic polynomial

PM (T ; a) := det(T ·idM −aM) ∈ k[T ].

Then degPM (T ; a) = dimkM =: n and the functions ψM,i : A −→ k, given by

PM (T ; a) =

n
∑

i=0

ψM,i(a)T
i

belong to the ring k[A] of polynomial functions on A. Note that ψM,i = ψN,i whenever M ∼= N .
The group G acts contragrediently on k[A] via

(g.ψ)(a) := ψ(g−1(a)) ∀ g ∈ G, ψ ∈ k[A], a ∈ A.

We record the following basic observation:

Lemma 6.3.1. Let M be a finite-dimensional A-module. Then we have ψM,i ∈ k[A]G for every
i ∈ {0, . . . ,dimkM}.

Proof. Given g ∈ G, we let M (g) be the A-module with underlying k-space M and twisted action
defined via

a.m := g−1(a).m ∀ a ∈ A, m ∈M.

Then we have aM (g) = g−1(a)M , so that

ψM (g),i(a) = ψM,i(g
−1(a))

for every a ∈ A and i ∈ {0, . . . ,dimkM}.
Let S be a simple A-module. Since the connected group G acts trivially on the set of primitive

central idempotents of the algebra A/Rad(A), it follows that

S(g) ∼= S ∀ g ∈ G.

Consequently,

(g.ψS,i)(a) = ψS,i(g
−1(a)) = ψS(g),i(a) = ψS,i(a) ∀ a ∈ A, g ∈ G,

whence ψS,i ∈ k[A]G for i ∈ {0, . . . ,dimk S}.
Let (0) −→ M ′ −→ M −→ M ′′ −→ (0) be an exact sequence of finite-dimensional A-modules.

The identity

PM (T ; a) = PM ′(T ; a)PM ′′(T ; a) ∀ a ∈ A

implies that the ψM,i belong to the subalgebra of k[A] generated by the elements ψM ′,j and ψM ′′,ℓ.
Our result now follows by induction on the length of M . �
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Returning to our standard set-up, we let (g, [p]) be a restricted Lie algebra with automorphism
group G = Autp(g)

◦. Consider the two-sided ideal I � U(g) of the universal enveloping algebra

that is generated by the set {xp − x[p] ; x ∈ g}. The finite-dimensional algebra

U0(g) := U(g)/I

is the restricted enveloping algebra of g, see [23, (V.5.3)] for more details. By the universal property
of U0(g), the group G can be considered a connected subgroup of the automorphism group of
U0(g). Any finite-dimensional U0(g)-moduleM thus gives rise to invariant polynomials ψM,i, whose

restrictions to g are elements of the ring k[g]G of invariants of polynomial functions on g. We shall
henceforth consider the ψM,i as elements of this ring.

Let (t, [p]) be a torus of dimension m. Then Autp(t) ∼= GLm(Fp) acts contragrediently on the
ring k[t]. The following subsidiary result interprets Dickson’s work [5] in this context.

Lemma 6.3.2. Let (t, [p]) be a torus of dimension m. Then

k[t]GLm(Fp) = k[{ψU0(t),pi ; 0 ≤ i ≤ m−1}]

with algebraically independent generators.

Proof. Let X(t) be the character group of t. By definition, X(t) is the group of algebra homo-
mophisms λ : U0(t) −→ k. If {t1, . . . , tm} is a toral basis of t, then the map λ 7→ (λ(t1), . . . , λ(tm))
provides an isomorphism X(t) ∼= Fm

p of groups. Since t is a torus, the free U0(t)-module of rank 1
decomposes into a direct sum of one-dimensional restricted t-modules:

U0(t) =
⊕

λ∈X(t)

kλ.

Consequently, we obtain for t =
∑m

i=1 xiti ∈ t the identities

PU0(t)(T ; t) =
∏

λ∈X(t)

(T−λ(t)) =
∏

(a1,...,am)∈Fm
p

(T−a1x1− · · · −amxm).

Our result now follows directly from Dickson’s Theorem [5, (8.1.1)]. �

Let M be a U0(g)-module, t ⊆ g be a torus of maximal dimension. Thanks to Theorem 6.1.1, the

restrictions ψM,i|t belong to the subring k[t]S(g).
Given a commutative k-algebra A, we set Apr := {ap

r
; a ∈ A}. The Krull dimension of A will be

denoted dimA. Also, for a restricted Lie algebra (g, [p]), we define d(g) := max{dimk(kx)p ; x ∈ g}.
By [7, (8.6(3))], we have µ(g) ≤ d(g) ≤ rk(g). In particular, if g admits a self-centralizing torus,
then µ(g) = d(g) = rk(g).

Lemma 6.3.3. Let (g, [p]) be a restricted Lie algebra and t ⊆ g be a torus of maximal dimension.
Set ℓ := d(g)−µ(g). Then the following statements hold:

(1) There exists a p-polynomial Q(T ;x) ∈ k[g][T ] of the form

Q(T ;x) =

µ(g)
∑

i=0

ϕi(x)T
pi+ℓ

,

with ϕµ(g) = 1 and ϕ0 6= 0, such that for all x ∈ g,
∑µ(g)

i=0 ϕi(x)x
[p]i+ℓ

= 0. Furthermore, all

coefficients ϕi belong to k[g]G.

(2) Let M be a U0(g)-module such that M |U0(t) is free of rank pr. Then PM (T ;x) = Q(T ;x)p
r−ℓ

.

(3) For all t ∈ t, we have Q(T ; t) = PU0(t)(T ; t)
pℓ.
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(4) For all i ∈ {0, . . . , µ(g)}, the function x 7→ ϕi(x)
1/pℓ restricts to a rational function on S̄g.

Proof. We set µ := µ(g) and d := d(g) to ease notation. Also, for x ∈ g we denote by x = xs+xn its
Jordan-Chevalley decomposition, where xs and xn are p-semi-simple and p-nilpotent respectively,
and xs, xn ∈ (kx)p (see [23, (II.3.5)]).

(1) Let ν be the smallest integer for which there exists a non-empty open subset Ω ⊆ g such that

Ω[p]ν ⊆ Sg. By [18, Theorem 2], there exist polynomial functions ϕ0, . . . , ϕµ ∈ k[g], with ϕµ = 1,

such that
∑µ

i=0 ϕi(x)x
[p]ν+i

= 0 for all x ∈ g. We need to check that ν = ℓ. Since ϕµ(x) = 1, we

have x[p]
ν+µ

∈
∑ν+µ−1

j=0 kx[p]
j
, so that ν+µ ≤ d and ν ≤ d−µ = ℓ.

For the reverse inequality, we consider the subset Ω0 := {x ∈ Ω ; dimk(kx)p = d and dimk(kxs)p
= µ} of g. We first show that it is not empty. It suffices to check that the following two sets are
non-empty open subsets of g:

Ω′ := {x ∈ g ; dimk(kx)p = d} and Ω′′ := {x ∈ g ; dimk(kxs)p = µ}.

By construction Ω′ is not empty; for Ω′′ it follows for example from [7, 3.5(1)]. An element x ∈ g

belongs to Ω′ if and only if the system of vectors {x, x[p], . . . , x[p]
d−1

} has maximal rank over k.
This condition can be expressed in terms of non-vanishing of certain minors depending regularly

on x, so Ω′ is open. Regarding Ω′′, consider the morphism q : g → Sg ;x 7→ x[p]
dimk g

. The set
S0
g := {x ∈ Sg ; dimk(kx)p = µ} is an open subset of Sg, so that Ω′′ = q−1(S0

g ) is open as well.

Given x = xs + xn ∈ Ω0, we have x[p]
ν
= x

[p]ν
s . Our condition dimk(kxs)p = µ implies x

[p]µ
s ∈

∑µ−1
i=0 x

[p]i
s , so that taking pν-th powers yields

x[p]
ν+µ

= x[p]
ν+µ

s ∈

µ−1
∑

i=0

k x[p]
ν+i

s =

µ−1
∑

i=0

k x[p]
ν+i

.

Consequently, d = dimk(kx)p ≤ ν+µ, whence d−µ ≤ ν, as desired.
The G-invariance of the coefficients ϕi will be proved at the end of (2).
(2) First we show that PM (T ;x) is a p-polynomial in T . Note that for any torus t′ ⊆ g of

maximal dimension, the module M |U0(t′) is also free of rank pr. Indeed, consider the weight space

decompositions M =
⊕

λ∈ΛMλ =
⊕

λ′∈Λ′ Mλ′ relative to t and t′ respectively. By [7, (4.2)],
there exists an isomorphism ϕ : t′ → t such that λ 7→ λ ◦ ϕ is a bijection Λ → Λ′ satisfying
dimkMλ◦ϕ = dimkMλ for every λ ∈ Λ. Because restricted modules over a torus are determined
by weights and multiplicities of weight spaces, it readily follows that M |U0(t′) is free if and only if
M |U0(t) is free, of the same rank.

Let t ⊆ g be a torus of dimension µ. Since M |U0(t)
∼= U0(t)

pr , we obtain

PM (T ; t) = PU0(t)(T ; t)
pr

for every t ∈ t. Let O := {t ∈ t ; λ(t) 6= λ′(t) ∀λ 6= λ′ ∈ X(t)}, which is a dense open subset of
t. For t ∈ O, the polynomial PU0(t)(T ; t) ∈ k[T ] is square-free, and its set of roots is an additive
subgroup of k. Then [11, §20] implies that PU0(t)(T ; t) is a p-polynomial, whence ψU0(t0),i = 0 for

i 6∈ {pj ; 0 ≤ j ≤ µ}. Given t ∈ t, we obtain

ψM,i(t) =

{

ψpr

U0(t0),pj
(t) for i = pr+j, j ∈ {0, . . . , µ}

0 otherwise.

Suppose that i is not of the form pr+j with j ∈ {0, . . . , µ}. Then the polynomial function ψM,i(x)
vanishes on T :=

⋃

t∈Tor(g) t. By Lemma 1.6, T is dense in S̄g, so that ψM,i vanishes on S̄g. Thus
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we obtain

(6.1) PM (T ;x) =

µ
∑

j=0

ψM,pr+j(x)T pr+j

∀ x ∈ S̄g.

For arbitrary x = xs + xn ∈ g, the elements xs and xn act as commuting semi-simple and
nilpotent endomorphisms on M , so that PM (T ;x) = PM (T ;xs). Since xs ∈ S̄g, the above formula
implies ψM,i(x) = 0 unless i = pr+j for some j ∈ {0, . . . , µ}, showing that Formula (6.1) holds for
all x ∈ g.

Next we check that PM (T ;x) = Q(T, x)p
r−ℓ

, considered as elements of k[T ]. It suffices to verify

the identity for all x in some dense open subset of g. Since PM (T ;x) and Q(T ;x)p
r−ℓ

are monic
p-polynomials in T of the same degree, it is enough to show that they have the same set of roots.
For each x ∈ g, denote by RacQ(x) and RacP (x) the set of roots of Q(T ;x) and PM (T ;x). Since
Q(T ;x) annihilates x in g, it also annihilates xM ∈ Endk(M), the action of x in M . Therefore,
it must be divisible by the minimal polynomial of xM . Since the latter has the same roots as
PM (T ;x), we obtain RacP (x) ⊆ RacQ(x) for all x ∈ g. Conversely, for x = xs + xn, we have
RacP (x) = RacP (xs). When x ∈ Ω0 as above, the torus (kxs)p has dimension µ, and RacP (xs) is

an elementary abelian p-group of rank µ. On the other hand, since Q(T ;x) has degree pd and is
the pℓ-th power of a p-polynomial of degree pµ, RacQ(x) is an elementary abelian p-group of rank
at most d−ℓ = µ. This forces RacP (x) = RacQ(x) when x ∈ Ω0, as we needed.

We now show that the coefficients of Q(T ;x) are G-invariant. Note that there always exists a
moduleM such thatM |U0(t) is free of rank p

r for some r: for example, takeM = U0(g) with the left
regular action, and r = dimk g−µ. By Lemma 6.3.1, the coefficients of PM (T ;x) are G-invariant.
Since the coefficients of Q(T ;x) are their pr−ℓ-th powers, they are G-invariant as well: this is clear
when r−ℓ ≥ 0, and easy to check if r−ℓ < 0.

(3) readily follows from the proof of (2).

(4) Let β be an alternating µ-linear form on g, and let Ωβ := {x ∈ g ; β(x[p]
ℓ
, . . . , x[p]

d−1
) 6= 0}.

The collection of all Ωβ forms an open covering of the set of all x ∈ g such that {x[p]
ℓ
, . . . , x[p]

d−1
}

is a linearly independent family. Using the relation x[p]
d
= −

∑µ
i=0 ϕi(x)x

[p]ℓ+i
, we obtain for all

i ∈ {0, . . . , µ−1}:

(6.2) ϕi(x) = −
β(x[p]

ℓ
, . . . , x[p]

d
, . . . , x[p]

d−1
)

β(x[p]
ℓ
, . . . , x[p]

ℓ+i
, . . . , x[p]

d−1
)

∀ x ∈ Ωβ.

Now let t ∈ Tor(g). If t ∩ Ωβ 6= ∅, then β does not vanish on t, and there exists λ ∈ k× such that

β(t
[p]ℓ

1 , . . . , t
[p]ℓ

µ ) = λβ(t1, . . . , tµ)
pℓ for all t1, . . . , tµ ∈ t. Indeed, the pℓ-th root of the left hand side

defines an alternating µ-linear form on t, and so must be proportional to β. It follows that

(6.3) ϕi(x) = −
β(x, . . . , x[p]

µ
, . . . , x[p]

µ−1
)p

ℓ

β(x, . . . , x[p]i, . . . , x[p]µ−1)pℓ
∀ x ∈ t ∩ Ωβ.

This shows that x 7→ ϕi(x)
1/pℓ is a rational function on the Zariski closure of T∩Ωβ. For a suitable

choice of β, this is a non-empty open subset of T, so by Lemma 1.6 its Zariski closure is S̄g. �

We record the following corollary:

Corollary 6.3.4. Let (g, [p]) be a restricted Lie algebra and ℓ = d(g)−µ(g). Then the morphism

g → g ; x 7→ x[p]
ℓ
induces a dominant morphism g → S̄g. In particular, ℓ = 0 if and only if

µ(g) = rk(g).
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Proof. Since the p-mapping is invertible on Sg, we always have Sg ⊆ g[p]
ℓ
. In the proof of Lemma

6.3.3 (1), we showed that there exists a dense open subset Ω such that Ω[p]ℓ ⊆ Sg. Taking Zariski

closures yields g[p]
ℓ
⊆ S̄g, so g[p]

ℓ
is dense in S̄g. If ℓ = 0 then g = S̄g, and [7, (3.7)] yields

rk(g)−µ(g) = 0. The reverse implication is clear. �

Let f : A −→ B be an injective homomorphism of finitely generated, commutative k-algebras. If
there exists r ∈ N0 such that Bpr ⊆ im f , then f is called an inseparable isogeny of exponent ≤ r.
In that case, the comorphism f∗ : Maxspec(B) −→ Maxspec(A) is a homeomorphism.

If G is a group acting on A via automorphisms such that AG is finitely generated, then the
variety Maxpec(A)//G := Maxspec(AG) is called the algebraic quotient of Maxspec(A) by G. If, in
addition, all orbits are closed, then Maxpec(A)/G := Maxspec(AG) is referred to as the geometric
quotient of Maxspec(A) by G, see [14, (II.3.2)] for more details.

Theorem 6.3.5. Let (g, [p]) be a restricted Lie algebra with connected automorphism group G =
Autp(g)

◦ and t a torus of maximal dimension. Set ℓ := d(g)−µ(g).
(1) The canonical restriction map k[g] −→ k[t] induces an algebra homomorphism res : k[S̄g]

G →

k[t]W (g,t), whose image contains (k[t]GLµ(g)(Fp))p
ℓ
.

(2) We have dim k[S̄g]
G ≥ µ(g). Equality holds if and only if res is injective.

Assume further that g affords a generic torus t0. Then:
(3) The algebra k[S̄g]

G is finitely generated and of Krull dimension µ(g).

(4) If W (g, t0) = GLµ(g)(Fp), then res : k[S̄g]
G →֒ k[t0]

W (g,t0) is an inseparable isogeny of

exponent ≤ ℓ. In particular, the varieties S̄g//G and t0/W (g, t0) are homeomorphic.

Proof. We will write GLµ instead of GLµ(g)(Fp) to ease notation.

(1) Clearly, the restriction map induces a homomorphism res : k[S̄g]
G → k[t]W (g,t). Let Q(T ;x)

be as in Lemma 6.3.3, so that its coefficients ϕi belong to k[g]G. By Lemma 6.3.3(3), we have

res(ϕi) = ψpℓ

U0(t),pi
for all i ∈ {0, . . . , µ}. In view of Lemma 6.3.2, the ψU0(t),pi generate k[t]GLµ ,

whence (k[t]GLµ)p
ℓ
⊆ im res.

(2) We have (k[t]GLµ)p
ℓ
⊆ A := im res ⊆ k[t]. By the Theorem of Hilbert-Noether [1, (1.3.1)],

k[t] is a finitely generated module over the noetherian ring k[t]GLµ . So it is also a finitely generated

module over B := (k[t]GLµ)p
ℓ
. Being a B-submodule of k[t], the algebra A is noetherian as well.

Consequently, A is a finitely generated integral domain.

Owing to Lemma 6.3.2, the algebras (k[t]GLµ)p
ℓ
and k[t] have common Krull dimension µ(g).

Using [6, (8.2.1.A)], we obtain dimA = µ(g). It readily follows that dim k[S̄g]
G ≥ µ(g). Further-

more, since S̄g is irreducible (see [17, §2] or [7, (3.7)]), k[S̄g]
G is an integral domain. Therefore,

dim k[S̄g]
G = dimA if and only if ker res = (0).

(3) Owing to Proposition 1.4, the G-saturation G.t0 lies dense in S̄g. This readily implies that

res : k[S̄g]
G → k[t]W (g,t0) is injective, hence k[S̄g]

G ≃ A is a finitely generated algebra of Krull
dimension µ(g).

(4) readily follows from properties (1) to (3). �

The following result extends Premet’s Theorem [19, Thm. 1] concerning W (n), where S̄W (n) =
W (n).
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Theorem 6.3.6. Suppose that p ≥ 3 and let (g, [p]) be a restricted Lie algebra of Cartan type

W,S or H with generic torus t ⊆ g. Then the restriction map induces an isomorphism k[S̄g]
G ∼
−→

k[t]GLµ(g)(Fp). In particular, k[S̄g]
G is a polynomial ring in µ(g) variables.

Proof. First we note that for g =W (n), S(n) orH(n), there exists a generic torus t ⊆ g (Proposition
3.3), and the corresponding Weyl group W (g, t) ≃ GLµ(g))(Fp) (Theorems 1.5 and 5.2.1).

(1) Let g =W (n). For p = 3 and g =W (1) our assertion follows from the Chevalley Restriction
Theorem. Alternatively, consider the generic torus t0 ⊆ g, so that W (g, t) = GLn(Fp). By virtue of
[23, (IV.2.5)], the algebraW (n) has a self-centralizing maximal torus; in particular ℓ = d(g)−µ(g) =
0. Now Corollary 6.3.4 yields S̄g = g, and our assertion follows from Theorem 6.3.5(4).

(2) Let g = H(2r) and consider the W (2r)-module A2r. Let t0 be a generic torus of W (2r) such
that W (2r) = t0 ⊕W (2r)(0). Since A2r

∼= U0(W (2r))⊗U0(W (2r)(0))k is a free U0(t0)-module of rank

1, Lemma 6.3.3 implies

(6.4) PA2r(T ;x) =
2r
∑

i=0

ψi(x)T
pi ∀ x ∈W (2r),

with each ψi being a homogeneous polynomial function of degree p2r−pi on W (2r). Also note that,
for any subtorus t ⊆ t0 of dimension r, A2r is a free U0(t)-module of rank pr.

Let G = Autp(g)
◦. Then PA2r(T ;x) is the characteristic polynomial of x ∈ g acting on A2r. By

Lemma 6.3.1, the functions ψi|g are G-invariant. We show that they are pr-th powers in k[g]G.
Consider the Poisson algebra P(2r) with p-unipotent center. For any f ∈ P(2r), the linear map
Df = {f,−} is a derivation of the associative algebra A2r, so that Df ∈W (2r). According to [21,
Lemma 6.3], there exist polynomial functions φ0, . . . , φr ∈ k[P(2r)] such that

(6.5) PA2r(T ;Df ) =

r
∑

i=0

φi(f)
prT pr+i

∀ f ∈ P(2r).

The map D : P(2r) −→ W (2r) ; f 7→ Df induces a surjection P(2r)(1) ։ g. Hence there exists

a linear map δ : g −→ P(2r)(1) such that D ◦ δ = idg. In view of (6.4) and (6.5), the polynomial
maps ϕi := φi ◦ δ ∈ k[g] satisfy the identities

ϕi(h)
pr = φi(δ(h))

pr = ψi(Dδ(h)) = ψi(h) ∀ h ∈ g, i ∈ {0, . . . , r}.

Since ϕpr

i = ψi is G-invariant, we readily obtain that ϕi ∈ k[g]G as well.
Let t ⊆ g be a generic torus. Theorem 6.3.5 shows that the restriction map induces an embedding

res : k[S̄g]
G →֒ k[t]GLr(Fp). As noted before, A2r is a free U0(t)-module of rank pr, so

PA2r(T ; t) = PU0(t0)(T ; t)
pr = (

r
∑

i=0

κi(t)T
pi)p

r

∀ t ∈ t,

where the coefficients κi ∈ k[t] are the Dickson generators of k[t]GLr(Fp). In view of the above, we
obtain ϕi(t) = κi(t) for all i ∈ {0, . . . , r−1} and t ∈ t, so that κi = res(ϕi). Therefore, res is
surjective.

(3) Now we consider g = S(n) and check that ℓ = d(g)−µ(g) = 1. If ℓ = 0, then Corollary
6.3.4 implies rk(g) = µ(g), a contradiction. Since S(n) ⊆ W (n), we have d(g) ≤ d(W (n)) = n,
so that µ(S(n)) = n−1 implies ℓ = d(g)−µ(g) ≤ 1. By Theorem 6.3.5 we have an embedding

res : k[S̄g]
G →֒ k[t]GLn−1(Fp). Consider the p-polynomial Q(T ;x) =

∑n−1
i=0 ϕi(x)T

pi+1
∈ k[g][T ]

given by Lemma 6.3.3; we know that the functions g → k ; x 7→ ϕi(x)
1/p restrict to the Dickson

generators of k[t]GLn−1(Fp). We will show that these functions are polynomial on g, which will prove
that res is surjective.
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We use the notation of Section 3 for truncated polynomials and their derivations. Recall the
decomposition g = g(0) ⊕ g−1, where g(0) is a G-invariant subalgebra of codimension n. For every
x ∈ g, there is a unique decomposition (kx)p = tx ⊕ nx, where tx is a torus and nx a p-unipotent
subalgebra. We consider the set Ω := {x ∈ g ; dimk(kx)p = n, dimk tx = n−1, t∩ g(0) = (0)}. We
check that Ω is a non-empty open set: note that Ω = Ω′ ∩Ω′′, where

Ω′ := {x ∈ g ; dimk(kx)p = n} and Ω′′ := {x ∈ g ; dimk tx = n−1, tx ∩ g(0) = (0)}.

Since d(g) = ℓ+µ(g) = n, the set Ω′ is open and non-empty. For Ω′′, we have seen in the
proof of Lemma 6.3.3(1) that the condition dimk tx = n− 1 defines a non-empty open subset
of g. Given any such element x, the subspace tx is spanned by the linearly independent family

{x[p]
ℓ+1
, . . . , x[p]

ℓ+n−1
}. The condition that tx ∩ g(0) = (0) is equivalent to the fact that the residue

classes of {x[p]
ℓ
, . . . , x[p]

ℓ+n−1
} in g/g(0) form a system of maximal rank, which is an open condition.

Hence Ω′′ is open. We check that it is not empty. By Theorem 3.2 there exists a torus t0 of maximal
dimension such that t0 ∩ g(0) = (0). By [7, 3.5(1)], there exists t ∈ t0 such that (kt)p = t0: then
t ∈ Ω′′.

We will prove below that nx ⊆ g(0) for all x ∈ Ω. First, let us show how this property yields the
result we want. Set µ = n−1, and let β be a µ-linear alternating form on g, whose kernel contains
g(0). Let x ∈ Ω. For all a1, . . . , aµ ∈ (kx)p with Jordan-Chevalley decompositions ai = si + ni,
we have ni ∈ nx ⊆ g(0). Hence, we obtain β(a1, . . . , aµ) = β(s1, . . . , sµ). Now consider Ωβ = {x ∈

Ω ; β(x, x[p], . . . , x[p]
µ−1

) 6= 0}. This is again an open subset of g, and we can choose β so that it is
not empty. Using Equation (6.2), we obtain

ϕi(x) = ϕi(xs) = −
β(xs, . . . , x

[p]µ
s , . . . , x

[p]µ−1

s )p

β(xs, . . . , x
[p]i
s , . . . , x

[p]µ−1

s )p

= −
β(x, . . . , x[p]

µ
, . . . , x[p]

µ−1
)p

β(x, . . . , x[p]i , . . . , x[p]µ−1)p
.

for all x ∈ Ωβ. This shows that ϕ
1/p
i is a rational function on Ωβ, whence ϕ

1/p
i ∈ k(g). Since its

p-th power is polynomial and k[g] is integrally closed, we obtain ϕ
1/p
i ∈ k[g].

Let x ∈ Ω, so that tx∩g(0) = (0). Consequently, tx is conjugate to the generic torus t0 by Theorem

3.2, and we may assume that tx = t0. For all i ∈ {1, . . . , n}, let ξi := xi + 1 ∈ An. Thus ξpi = 1
and ξ1, . . . , ξn are invertible generators of An. We use the multi-index notation ξa = ξa11 · · · ξann
when a = (a1, . . . , an) ∈ Zn. The “partial derivative” ∂i satisfies ∂i(ξj) = δi,j for all i, j. Now for

i ∈ {1, . . . , n−1}, let θi := ξi∂i − ξn∂n, so that t0 =
∑n−1

i=1 kθi. We also set θn := ξn∂n ∈ W (n). It
is straightforward to check that

θi(ξ
a) = (ai − an)ξ

a, ∀ i ∈ {1, . . . , n−1}.

Hence, the subalgebra At0
n := {x ∈ An ; t(x) = 0 ∀ t ∈ t0} of t0-constants in An is given by

At0
n = k[ζ], with ζ = ξ1 · · · ξn−1ξ

−1
n .

Let us compute the centralizer of t0 in W (n). It is easy to check that {θ1, . . . , θn} is a basis of
the free An-module W (n). Write a derivation D ∈ W (n) as D =

∑n
i=1 fnθi, where fi ∈ An for all

i. Note that [t0, θn] = (0), so that 0 = [t,D] =
∑n

i=1 t(fi)θi for all t ∈ t0. It readily follows that

CW (n)(t0) =

n
⊕

i=1

k[ζ]θi.
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If, in addition, D ∈ (kx)p ⊆ CW (n)(t0) ∩ S(n), then

0 = div(D) =
n
∑

i=1

div(fiθi) =
n
∑

i=1

fi div(θi) + θi(fi) = fn + θn(fn).

Now fn = fn(ζ) is a polynomial expression in ζ. Denote formally f ′n(ζ) = dfn/dζ. Then θn(fn) =
f ′n(ζ)θn(ζ) = −ζf ′n(ζ). Consequently, we must have fn(ζ) = ζf ′n(ζ), whence fn ∈ kζ. Thus, there
exists λ ∈ k such that

D =
n−1
∑

i=1

fiθi + λζθn.

Thanks to the proof of [2, (2.2.3)], we get that the ring of constants Ax
n 6= k. Since Ax

n = A
(kx)p
n ⊆

At0
n = k[ζ], there exists a non-constant polynomial g ∈ k[ζ] such that D(g) = 0. Hence,

0 =

n−1
∑

i=0

fiθi(g) + λζθn(g) = λζθn(g) = −λζ2g′(ζ).

Since ζ is invertible and g 6∈ k, this forces λ = 0. We have thus shown that

(6.6) (kx)p ⊆
n−1
∑

i=1

k[ζ]θi.

The projection g ։ g/g(0) induces a linear map (kx)p → g/g(0). Using the inclusion (6.6)
we see that its image is spanned by the images of θ1, . . . , θn−1, and hence has dimension n−1.
Therefore the kernel (kx)p ∩g(0) has dimension 1. On the other hand, (kx)p ∩g(0) is a p-subalgebra
of (kx)p = t0 ⊕ nx which doesn’t intersect t0: so it must be nx, and nx ⊆ g(0), as we wanted to
show. �
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