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COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPSOLIVIER BRUNATAbstra
t. This arti
le is 
on
erned with the relative M
Kay 
onje
ture for�nite redu
tive groups. Let G be a 
onne
ted redu
tive group de�ned overthe �nite �eld Fq of 
hara
teristi
 p > 0 with 
orresponding Frobenius map
F . We prove that if the F -
oinvariants of the 
omponent group of the 
enterof G has prime order and if p is a good prime for G, then the relative M
Kay
onje
ture holds for GF at the prime p. In parti
ular, this 
onje
ture is truefor GF in de�ning 
hara
teristi
 for a simple and simply-
onne
ted group Gof type Bn, Cn, E6 and E7. Our main tools are the theory of Gelfand-Graev
hara
ters for 
onne
ted redu
tive groups with dis
onne
ted 
enter developedby Digne-Lehrer-Mi
hel and the theory of 
uspidal Levi subgroups. We alsoexpli
itly 
ompute the number of semisimple 
lasses of GF for any simplealgebrai
 group G. 1. Introdu
tionLet G be a �nite group and p be a prime divisor of |G|. As usually, we denoteby Irr(G) the set of irredu
ible 
hara
ters of G and by Irrp′(G) the subset of irre-du
ible 
hara
ters with degree prime to p. For any �xed p-Sylow subgroup P of

G, John M
Kay has 
onje
tured that | Irrp′(G)| = | Irrp′(NG(P ))|. This is a
tuallyproved for some groups but remains open in general. Re
ently, Isaa
s, Malle andNavarro redu
ed this 
onje
ture to a new question, the so-
alled indu
tive M
Kay
ondition, whi
h 
on
erns properties of perfe
t 
entral extensions of �nite simplegroups; see [8℄.In this arti
le, we are interested in the relative M
Kay 
onje
ture, asserting thatfor every linear 
hara
ter ν of the 
enter Z of G, if Irrp′(G|ν) denotes the subset of
hara
ters χ ∈ Irrp′(G) lying over ν (i.e. satisfying 〈χ, IndGZ (ν) 〉G 6= 0), then onehas the equality | Irrp′(G|ν)| = | Irrp′(NG(P )|ν)|. In order to prove the indu
tiveM
Kay 
ondition, we in parti
ular have to show that the relative M
Kay 
onje
tureholds for some perfe
t 
entral extensions of �nite simple groups. This is one of themotivations to 
onsider this question in this work.Let G be a 
onne
ted redu
tive group de�ned over a �nite �eld with q elements Fqof 
hara
teristi
 p > 0 with 
orresponding Frobenius map F : G → G. Throughoutthis paper, we will always assume that p is a good prime for G, that is p does notdivide the 
oe�
ients of the highest root of the root system asso
iated to G (see [4,1.14℄). Let T be a maximal F -stable torus of G 
ontained in an F -stable Borelsubgroup B of G and let U denote the unipotent radi
al of B (whi
h is F -stable).Note that, if U is not trivial, then the prime p divides the order of the �nite�xed-point subgroup G
F and the subgroup U

F ⊆ G
F is a p-Sylow subgroup of

G
F . Moreover, one has NGF (UF ) = B

F . If the 
enter of G is 
onne
ted, thenthe M
Kay 
onje
ture is true for the group G
F at the prime p. We will see in the1991 Mathemati
s Subje
t Classi�
ation. 20C15, 20C33.1
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2 OLIVIER BRUNATfollowing that the relative M
Kay 
onje
ture holds in this 
ase (see Proposition 6.5).This question is more di�
ult when the 
enter of G is dis
onne
ted. In this arti
le,we will solve it in a spe
ial situation. Denote by Z(G) = Z(G)/Z(G)◦ the groupof 
omponents of the 
enter of G and by H1(F,Z(G)) the set of the F -
lasses of
Z(G). Then our main result is the following.Theorem 1.1. Let G be a 
onne
ted redu
tive group de�ned over the �nite �eld
Fq of 
hara
teristi
 p > 0 and let F : G → G denote the 
orresponding Frobeniusmap. Let T be a maximal F -stable torus 
ontained in an F -stable Borel subgroup
B of G. If p is a good prime for G and if the group H1(F,Z(G)) is trivial or hasprime order, then for every linear 
hara
ter ν of Z(GF ), one has

| Irrp′(G
F |ν)| = | Irrp′(B

F |ν)|.As 
onsequen
e, this proves the relative M
Kay 
onje
ture in de�ning 
hara
-teristi
 for G
F with G a simple group given in Table 4.This paper is organized as follows. In Se
tion 2, we re
all some results fromBonnafé [1℄ on the 
uspidal Levi subgroups of 
onne
ted redu
tive groups. We willneed this theory �rst, in order to asso
iate to every linear 
hara
ter of Z(G) a
uspidal Levi subgroup of G (
orresponding to a 
uspidal lo
al system in Lusztigtheory), and se
ondly to 
ontrol the dis
onne
ted part of the inertial subgroup oflinear 
hara
ters of UF . In Se
tion 3, we apply the theory of Gelfand-Graev 
hara
-ters of GF for 
onne
ted redu
tive group G with dis
onne
ted 
enter, developed byDigne-Lehrer-Mi
hel in [5℄. Note that we need here that p is a good prime for G. Inparti
ular, we give a formula to 
ompute the s
alar produ
t of two Gelfand-Graev
hara
ters; see Proposition 3.2. As 
onsequen
e, we obtain an expli
it formula forthe number of semisimple 
lasses of G

F (see Theorem 3.5) and 
ompute this num-ber for G
F with G any simple algebrai
 group; see Corollary 3.6. Re
all that the
onstituents of the duals of Gelfand-Graev 
hara
ters (for the Alvis-Curtis dualityfun
tor) are the so-
alled semisimple 
hara
ters of G

F . When p is a good primefor G, the semisimple 
hara
ters are the p′-
hara
ters of G
F (that is, the elementsof Irrp′(G

F )). In Se
tion 4, using the results of Se
tion 3, we 
ompute the numberof semisimple 
hara
ters of G
F when H1(F,Z(G)) has prime order; see Proposi-tion 4.2. In Se
tion 5, we give a formula for the number of p′-
hara
ters of B

Fdepending on the 
uspidal Levi subgroups of G; see Proposition 5.6. Finally, inSe
tion 6, we show that if the 
enter of G is 
onne
ted or if H1(F,Z(G)) has primeorder, then for a linear 
hara
ter ν of Z(GF ) the number of semisimple 
hara
tersof G
F lying over ν does not depend on ν; see Proposition 6.5 and Proposition 6.6.We 
an then prove Theorem 1.1; see Remark 6.7.2. Cuspidal Levi subgroups and 
entral 
hara
tersLet G be a 
onne
ted redu
tive group de�ned over Fq with 
orresponding Frobe-nius map F : G → G. As above, we denote by T a maximal F -stable torus of G
ontained in an F -stable Borel subgroup B of G. Write Φ for the root system of

G and Φ+ for the set of positive roots with respe
t to B. Denote by ∆ the setof 
orresponding simple roots and by W the Weyl group of G with respe
t to T,identi�ed with the quotient N(T)/T. Moreover, we asso
iate to every α ∈ Φ are�e
tion wα ∈ W and for any subset I of ∆, we denote by WI the subgroup of
W generated by wα for α ∈ I. The subgroup PI = BWIB is a standard paraboli




COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 3subgroup of G (relative to B). We denote by LI the Levi subgroup of PI 
ontaining
T. Note that every Levi subgroup L of G is 
onjugate in G to a Levi LI for somesubset I of ∆.Let L be a Levi subgroup of G. Then the in
lusion Z(G) ⊆ Z(L) indu
es asurje
tive map

hL : Z(G) → Z(L),where Z(G) = Z(G)/Z(G)◦. We re
all that G is 
uspidal if ker(hL) 6= {1} forevery proper Levi L of G. Moreover, a linear 
hara
ter ζ of Z(G) is 
uspidal if, forevery Levi subgroup L of G, the subgroup ker(hL) is not 
ontained in ker(ζ).Let ζ be a linear 
hara
ter of Z(G). Then there is a Levi subgroup L (whi
h is
uspidal) and a 
uspidal 
hara
ter ζL of Z(L) su
h that
ζ = ζL ◦ hL.More pre
isely, for a subgroup K of Z(G), denote by L0(K) the set of Levi sub-groups L of G su
h that ker(hL) ⊆ K and by Lmin(K) the subset of minimal ele-ments of L0(K). In [1, 2.16℄, Bonnafé proves that the Levi subgroups of Lmin(K)are 
uspidal and G-
onjugate. Therefore, we asso
iate to the linear 
hara
ter ζ of

Z(G) a standard Levi LI of Lmin(ker(ζ)). Note that all Levi subgroups in Lmin(K)have the same semisimple rank.Let H1(F,Z(G)) be the set of F -
lasses of Z(G). Sin
e Z(G) is abelian, theLang map L : Z(G) → Z(G) : g 7→ g−1F (g) is a morphism of groups and we have
H1(F,Z(G)) = Z(G)/L(Z(G)). In parti
ular, a 
hara
ter ζ of H1(F,Z(G)) 
anbe seen as a 
hara
ter of Z(G) with L(Z(G)) in its kernel. Hen
e, we 
an asso
iateto every 
hara
ter ζ of H1(F,Z(G)) a 
uspidal Levi L of G and a 
uspidal ζL of
Z(L). Note that L 
an be 
hosen F -stable and with this 
hoi
e, ζL is F -stable.In the following, we write H1(F,Z(G))∧ for the set of irredu
ible 
hara
ters of
H1(F,Z(G)). 3. Number of semisimple 
lasses3.1. Gelfand-Graev 
hara
ters. Let G be a 
onne
ted redu
tive group de�nedover Fq with Frobenius map F : G → G. We denote by T a maximal F -stabletorus of G 
ontained in an F -stable Borel subgroup B of G. We write U for theunipotent radi
al of B. We re
all that p is supposed to be a good prime for G.As above, we denote by Φ the root system of G, by Φ+ the set of positive rootswith respe
t to B and by ∆ the set of 
orresponding simple roots. We write Xαfor the non-trivial minimal 
losed unipotent subgroup of U normalized by T and
orresponding to the root α ∈ Φ+. Re
all that the Frobenius map F indu
es apermutation on Φ su
h that F (Φ+) = Φ+ and F (∆) = ∆. Put

U0 =
∏

α∈Φ+\∆

Xα.Denote by U1 the quotient U/U0 and write πU0 : U → U1 for the 
anoni
alproje
tion map. Then we have U1 ≃
∏
α∈∆ Xα and(1) U

F
1 =

∏

ω∈O

X
F
ω ,where O is the set of F -orbits on ∆ and Xω =

∏
α∈ω Xα. Re
all that an elementof G is regular if its 
entralizer has a minimal possible dimension. By [6, 14.14℄ theregular unipotent elements of U are the elements u ∈ U su
h that for every α ∈ ∆,
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πU0(u)α 6= 1. Moreover by [6, 14.25℄, the set of regular unipotent 
lasses of GF areparametrized by H1(F,Z(G)). For z ∈ H1(F,Z(G)), denote by Uz the 
onjuga
y
lass of unipotent elements 
orresponding to z and put

γz : GF → C, g 7→

{
|Uz|/|GF | if g ∈ Uz
0 otherwiseRe
all that a linear 
hara
ter ψ of U
F is a regular 
hara
ter if it has U

F
0 in itskernel and if the indu
ed linear 
hara
ter on U

F
1 (always denoted by ψ) satis�es

Res
U

F
1

XF
ω
(ψ) 6= 1XF

ω
for every ω ∈ O. By [6, 14.28℄, the set of T

F -orbits of regular
hara
ters of U
F is parametrized by H1(F,Z(G)) as follows.Fix ψ1 a regular linear 
hara
ter of U

F and z ∈ H1(F,Z(G)). Choose tz ∈ Tsu
h that t−1
z F (tz) Z(GF ) = z. Then the T

F -orbit of the regular 
hara
ters of U
F
orresponding to z has ψz =tz ψ1 for representative.We now 
an de�ne the Gelfand-Graev 
hara
ters of G

F by setting for every
z ∈ H1(F,Z(G))

Γz = IndG
F

UF (φz).Denote by DG the Alvis-Curtis duality map. For z ∈ H1(F,Z(G)), there is avirtual 
hara
ter ϕz of UF (see the proof of [6, 14.33℄) with U
F
0 in its kernel, whi
his zero outside regular unipotent elements and satisfying

DG(Γz) = IndG
F

UF (ϕz).In parti
ular, DG(Γz) is 
onstant on Uz and there are 
omplex numbers cz,z′ (for
z′ ∈ H1(F,Z(G))) with(2) DG(Γz) =

∑

z′∈H1(F,Z(G))

cz,z′γz′ .Following [5℄, we now re
all how to 
ompute the 
oe�
ients cz,z′ . For this, weneed some notations. For z ∈ H1(F,Z(G)), put
σz =

∑

ψ∈Ψ
z−1

ψ(u),where u ∈ U1 and Ψz denotes the T
F -orbit of ψz. Moreover, for any 
hara
ter ζ of

H1(F,Z(G)), we de�ne
σζ =

∑

z∈H1(F,Z(G))

ζ(z)σz .In [5, 2.3, 2.5℄, the following result is proven.Proposition 3.1. With the above notation, if p is a good prime for G, then the ma-trix (cz,z′)z, z′∈H1(F,Z(G)) is invertible and its inverse is (ηGσz(z′)−1)z,z′∈H1(F,Z(G)),where ηG = (−1)Fq -rk(G). Moreover, we have cz,z′ = cz(z′)−1,1 and if we put
cζ =

∑
z∈H1(F,Z(G)) ζ(z)cz,1 for any 
hara
ter ζ of H1(F,Z(G)), then there isa fourth root of unity ξζ su
h that

cζ = ηGηLq
− 1

2 (ss-rk(Lζ))ξζ ,where Lζ is the 
uspidal Levi of G asso
iated to the 
hara
ter ζ as explained inSe
tion 2.



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 5Proposition 3.2. With the notation as above, if p is a good prime for G, then for
z1, z2 ∈ H1(F,Z(G)), one has

〈Γz1 ,Γz2 〉GF = |Z(G)◦F |
∑

ζ∈H1(F,Z(G))∧

ζ(z1)ζ(z2)q
l−(ss-rk(Lζ)),where Lζ is the 
uspidal Levi of G asso
iated to the 
hara
ter ζ of H1(F,Z(G))and l is the semisimple rank of G.Proof. Fix z1 and z2 in H1(F,Z(G)) and put I = 〈Γz1 ,Γz2 〉GF . Sin
e the dualityfun
tor DG is an isometry, one has I = 〈DG(Γz1), DG(Γz2) 〉GF . Furthermore,thanks to Equation (2), we dedu
e

〈DG(Γz1), DG(Γz2) 〉GF =
∑

z,z′∈H1(F,Z(G))

cz1,zcz2,z′〈 γz , γz′ 〉GF .Note that, if z′ 6= z, then 〈 γz , γz′ 〉GF = 0. Moreover, 〈 γz, γz 〉GF = |CGF (uz)| for
uz ∈ Uz. We dedu
e(3) I =

∑

z∈H1(F,Z(G))

cz1,zcz2,z|CGF (uz)|,However, the group CG(u1) is abelian (be
ause the 
hara
teristi
 is good for G).It then follows that |CGF (uz)| = |CGF (u1)| for every z ∈ H1(F,Z(G)); see [6,14.22℄. Moreover, [6, 14.23℄ implies
|H1(F,Z(G))|

|GF |

|CGF (uz)|
=

|GF |

|Z(G)◦F |ql
.Sin
e |H1(F,Z(G))| = |Z(G)F |/|Z(G)◦F |, we dedu
e(4) |CGF (uz)| = |Z(G)F |ql.For every ζ ∈ H1(F,Z(G))∧, we have cζ =

∑
z∈H1(F,Z(G)) ζ(z)cz,1. Denote by Tthe 
hara
ter table ofH1(F,Z(G)) (identi�ed with the quotient groupZ(G)/L(Z(G))as above). Write m = |H1(F,Z(G))|. Sin
e T is the 
hara
ter table of a �niteabelian group, it follows that T is invertible and T−1 = 1

m

t
T . We then dedu
ethat, for every z ∈ H1(F,Z(G))(5) cz =

1

m

∑

ζ∈H1(F,Z(G))∧

ζ(z)cζ .Furthermore, by Proposition 3.1 one has czi,z = czi(z)−1,1. Then Equations (3), (4)and (5) imply
I =

∑

z∈H1(F,Z(G))

1

m2

∑

ζ,ζ′∈H1(F,Z(G))∧

ζ(z1z−1)ζ′(z2z
−1)|CGF (uz)|cζcζ′

=
|Z(G)F |ql

m

∑

ζ,ζ′∈H1(F,Z(G))∧

ζ(z1)ζ
′(z2)〈 ζ, ζ

′ 〉H1(F,Z(G))cζcζ′

=
|Z(G)F |ql

m

∑

ζ∈H1(F,Z(G))∧

ζ(z1)ζ(z2)|cζ |
2.



6 OLIVIER BRUNATNow, Proposition 3.1 implies cζ = ηGηLq
− 1

2 (ss-rk(Lζ))ξζ . Thus
|cζ |

2 = q−(ss-rk(Lζ))|ξζ |
2 = q−(ss-rk(Lζ)).Moreover,

|Z(G)F |

m
= |Z(G)◦F |.This proves the 
laim. �Remark 3.3. Note that 〈Γz,Γz′ 〉GF does not depend on the fourth roots of unity

ξζ asso
iated to ζ ∈ H1(F,Z(G))∧ as in Proposition 3.1.Remark 3.4. If the 
enter of G is 
onne
ted, there is only one Gelfand-Graev
hara
ter Γ1 and the 
uspidal Levi subgroup asso
iated to the trivial 
hara
ter of
H1(F,Z(G)) is a maximal torus, whi
h has semisimple rank equal to zero. Thus,we obtain

〈Γ1,Γ1 〉GF = |Z(G)F |ql,whi
h is a well-known result [4, 8.3.1℄.3.2. Number of semisimple 
lasses.Theorem 3.5. Let G be a 
onne
ted redu
tive group de�ned over a �nite �eld of
hara
teristi
 p > 0 with q elements Fq and let F : G → G denote the 
orrespondingFrobenius map. Write S for a set of representatives of semisimple 
lasses of G
F .Denote by (G∗, F ∗) a dual pair of (G, F ). With the above notation, if p is a goodprime for G, then we have

|S| = |Z(G)◦F |
∑

ζ∈H1(F∗,Z(G∗))∧

ql−(ss-rk(L∗

ζ)),where l is the semisimple rank of G and L
∗
ζ is a 
uspidal Levi subgroup of G

∗asso
iated to ζ ∈ H1(F ∗,Z(G∗))∧ as explained in Se
tion 2.Proof. Denote by (G∗, F ∗) a pair dual to (G, F ). As explained in Se
tion 3.1, we
an asso
iate to every z ∈ H1(F ∗,Z(G∗)) a Gelfand-Graev 
hara
ter Γz of G
∗F∗ .Re
all that Γz is multipli
ity free. We 
an des
ribe more pre
isely the 
onstituentsof Γz as follows. Fix s ∈ S. Using Deligne-Lusztig 
hara
ters, Digne-Mi
hel de�nedin [6, 14.40℄ a 
lass fun
tion χs and proved that for every z ∈ H1(F ∗,Z(G∗)), thereis exa
tly one irredu
ible 
hara
ter of G

F , denoted by χs,z , whi
h is a 
ommon
onstituent of χs and Γz and satisfying (see [6, 14.49℄):(6) Γz =
∑

s∈S

χs,z.Equation (6) implies |S| = 〈Γ1,Γ1 〉G∗F∗ . Now, thanks to Proposition 3.2, theresult follows. �We now will pre
ise some notations. For a simple algebrai
 group G de�nedover Fq, if the 
orresponding Frobenius map is split, then we denote it by F+.Otherwise, if the Fq-stru
ture is given by a non-split Frobenius, we denote it by
F−. Moreover, if G is of type X and has split and non-split Frobenius map F+and F−, then we put ǫX(q) = G

F ǫ for ǫ ∈ {−1, 1}.Fix some positive integer n and denote by Gsc a simple simply-
onne
ted alge-brai
 group of type An. For any divisor r of n+1, there is a simple algebrai
 group
Gr of type An and a surje
tive morphism πr : Gsc → Gr satisfying ker(πr) equals



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 7Type |S|

ǫArn(q) r | (n+ 1) m = gcd(r, q − ǫ)
∑

d/m φ(d)q
n+1

d
−1

Bn(q) adjoint q = 0 mod 2

q = 1 mod 2

qn

qn + qn−1

Cn(q) adjoint q = 0 mod 2

q = 1 mod 2

qn

qn + q⌊n/2⌋

ǫD2n+1(q) adjoint q = 0, 2 mod 4

q = ǫ mod 4

q = −ǫ mod 4

q2n+1

q2n+1 + 2qn−1 + q2n−1

q2n+1 + q2n−1

SOǫ
4n+2(q)

q = 0 mod 2

q = 1 mod 2

q2n+1

q2n+1 + q2n−1

ǫD2n(q) adjoint q = 0 mod 2

q = 1 mod 2

q2n

q2n + 2qn + q2n−2

SOǫ
4n(q)

q = 0 mod 2

q = 1 mod 2

q2n

q2n + q2n−2

HS4n(q)
q = 0 mod 2

q = 1 mod 2

q2n

q2n + qn

ǫE6(q) adjoint,p 6= 2
q = 0,−ǫ mod 3

q = ǫ mod 3

q6

q6 + 2q2

E7 adjoint,p 6= 3
q = 0 mod 2

q = 1 mod 2

q7

q7 + q4Table 1. Number of semisimple 
lasses for simple algebrai
 groups.the subgroup of Z(Gsc) of order r. If Gr is de�ned over Fq with Frobenius map
F ǫ, then put ǫArn(q) = G

F ǫ

r .Corollary 3.6. Let G be a simple algebrai
 group de�ned over Fq with 
orrespond-ing Frobenius map F . If G
F is isomorphi
 to G

F
sc, then the number of semisimple
lasses of G

F is qn, where n is the semisimple rank of G. Otherwise, the numberof semisimple 
lasses of G
F is given in Table 1. As usually, we denote by φ theEuler fun
tion.Proof. Let G be a simple algebrai
 group de�ned over Fq with 
orresponding Frobe-nius F . Denote by (G∗, F ∗) a pair dual to (G, F ). In table 2, we re
all simplealgebrai
 groups in duality.Fix a linear 
hara
ter ζ of Z(G∗) and denote by L

∗
ζ a 
uspidal Levi subgroup of

Lmin(ker(ζ)). Write G
∗
sc for a simple simply-
onne
ted group of the same versionas G

∗ and by π : G
∗
sc → G

∗ the universal 
over of G
∗. The endomorphism F ∗ of
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G G

∗

An Gr G(n+1)/r

Bn simply-
onne
ted Cn of type adjointadjoint Cn of type simply-
onne
ted
D2n+1 simply-
onne
ted adjoint

SO4n+2 SO4n+2

D2n simply-
onne
ted adjoint
SO4n SO4n

HS4n HS4n

E6 simply-
onne
ted adjoint
E7 simply-
onne
ted adjointTable 2. Groups in duality

G
∗ is indu
ed by a unique Frobenius map (also denoted by F ∗) of G

∗
sc. Now, put

L̂
∗
ζ = π−1(L∗

ζ). Note that L̂
∗
ζ is a Levi subgroup of G

∗
sc with the same semisimplerank as L

∗
ζ . Moreover, following [1, 2.10℄, we dedu
e that L̂

∗
ζ ∈ Lmin(π−1(ker(ζ))).Note that, sin
e G

∗ is simple, one has ker(h
bL∗

ζ

) = π−1(ker(ζ)); see [1, 2.9℄.Suppose now that Z(G∗
sc) is 
y
li
 of order N . Then Z(G∗) is 
y
li
 of order

N ′ = N/| ker(π)|. Sin
e Im(ζ) is a subgroup of C× of order o(ζ) (we 
onsiderhere Irr(Z(G∗)) as a group with produ
t the tensor produ
t of 
hara
ters). it inparti
ular follows that ker(ζ) has order N ′/ o(ζ). But there is only one subgroup
K of Z(G∗) of order N ′/ o(ζ) and L

∗
ζ is then a standard Levi of Lmin(K) onlydepending on o(ζ). Furthermore, one has

|π−1(K)| = |K|| ker(π)| = N / o(ζ).Sin
e Z(G∗
sc) is 
y
li
, π−1(K) is then the unique subgroup of order N/ o(ζ). Then

L̂
∗
ζ is a Levi subgroup of G

∗
sc satisfying | ker(h

bL∗

ζ

)| = N/ o(ζ).In [1, Table 2.17℄, Bonnafé expli
itly 
omputes Lmin(K) for any subgroup K of
Z(G∗

sc). In Table 3, we re
all some information that we need. For more details, werefer to [1℄. For the notation in Table 3, we put µn = {z ∈ F
×

p |z
n = 1}.Hen
e, using Table 3 we then 
an �nd the 
uspidal Levi subgroup (and itssemisimple rank) asso
iated to every linear 
hara
ter of Z(G∗) for G

∗ of type
An, Bn, Cn, E6 and E7 and D2n+1. For example, suppose G is of type An. Thenusing the notation pre
eding Corollary 3.6 , there is an integer r su
h that G = Gr.Moreover, one has G

∗
r = Gr′ with r′ = (n + 1)/r. Note that |Z(Gr′)| = r. Let dbe a divisor of r and let ζ be a linear 
hara
ter of Z(Gr′) of order d. Then L̂

∗
ζ hassemisimple rank equal to n+1

d (d− 1).Suppose G is of type D2n and denote by π : G
∗
sc → G

∗ the universal 
overof G
∗ as above. The group Z(G∗

sc) has order 4 and exponent 2. Moreover, thethree non-trivial 
hara
ters of Z(G∗
sc) have distin
t kernel. These kernels are thesubgroups of order 2 of Z(G∗

sc) denoted by c1, c2 and c3 in Table 3. Note that if
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ss-rk(L)for L ∈ Lmin(K)

Z(L)

An µn+1

µ(n+1)/d

d | (n+ 1)

p ∤ d

n+1
d (d− 1) µd

Bn

p 6= 2
µ2 1 ⌊n+1

2 ⌋ µ2

Cn

p 6= 2
µ2 1 1 µ2

D2n+1

p 6= 2
µ4

1

µ2

n+ 2

2

µ4

µ2

D2n

p 6= 2
µ2 × µ2

1

c1

c2

c3

n+ 1

n

n

2

µ2 × µ2

µ2

µ2

µ2

E6

p 6= 3
µ3 1 4 µ3

E7

p 6= 2
µ2 1 3 µ2Table 3. Lmin(K) for simple simply-
onne
ted groups

ker(π) = c3 then G
∗ = SO4n and if ker(π) ∈ {c1, c2}, then G

∗ = HS4n. Let ζ bea non-trivial linear 
hara
ter of Z(G∗). Suppose �rst that G
∗ = G

∗
sc. Then, the
orresponding 
uspidal Levi L∗

ζ is a 
uspidal standard Levi subgroup G
∗
sc su
h that

ζ and hLζ
have the same kernel. If G

∗ = SO4n or G
∗ = HS4n , then Z(G∗) hasorder 2 and the semisimple rank of the 
uspidal Levi asso
iated to the non-trivial
hara
ter of Z(G∗) equals the semisimple rank of any elements of Lmin(ker(π)) (inthe group G

∗
sc).We now dis
uss the 
onditions on q given in the se
ond 
olumn of Table 1.Suppose that Z(G∗) is 
y
li
 of order N . Then, using [7, Table 1.12.6, 1.15.2℄, weshow that the order of H1(F ǫ∗,Z(G∗)) is the g
d of N and q − ǫ. If Z(G∗) is not
y
li
 (i.e. G is of type D2n) and if p 6= 2, then H1(F ǫ∗,Z(G∗)) = Z(G∗); see [7,Table 1.12.6, 1.15.2℄.The result then follows from Theorem 3.5.

�



10 OLIVIER BRUNAT4. Results on semisimple 
hara
tersLet G be a 
onne
ted redu
tive group de�ned over Fq (with Frobenius map F ) asabove and let (G∗, F ∗) denote a dual pair of (G, F ). Write S (resp. T ) for a set ofrepresentatives of semisimple 
lasses of G
∗F∗ (resp. a set of representatives of F ∗-stable semisimple 
lasses of G

∗). Moreover, we suppose that the elements of T are
F ∗-stable (whi
h is possible be
ause by Lang-Steinberg Theorem, we 
an 
hoose an
F ∗-stable representative in every F ∗-stable geometri
 
lass of G

∗). Put AG∗(s) =
CG∗(s)/CG∗(s)◦. Re
all that the 
lasses of G

∗F∗ with representative t ∈ G
∗F∗
onjugate to s in G

∗ are parametrized by the set of F ∗-
lasses of AG∗(s). Moreover,
AG∗(s) is abelian, implying |H1(F ∗, AG∗(s))| = |AG∗(s)F

∗

|. Note that there isan inje
tive morphism between AG∗(s)F
∗ and H1(F,Z(G))∧. Hen
e |AG∗(s)F

∗

|divides |H1(F,Z(G))| and for every divisor d of |H1(F,Z(G))|, we put(7) Td =
{
s ∈ T | d = |AG∗(s)F

∗

|
}
.For s ∈ S and z ∈ H1(F,Z(G)), we set ρs,z = DG(χs,z), where the 
hara
ter χs,zis the 
onstituent of the Gelfand-Graev 
hara
ter Γz de�ned in Equation (6). Put

Irrs(G
F ) = {ρs,z | s ∈ S, z ∈ H1(F,Z(G))}.The irredu
ible 
hara
ters ρs,z are the so-
alled semisimple 
hara
ters of G

F .Proposition 4.1. With the above notation, we have
| Irrs(G

F )| =
∑

d/|H1(F,Z(G))|

d2 |Td|.Proof. As explained in [6, p. 139℄, we embed G in a 
onne
ted redu
tive group with
onne
ted 
enter G̃ with the same derived subgroup and su
h that G is normal in
G̃. We extend F to G̃ (denoted by the same symbol). The in
lusion G ⊆ G̃ indu
esa surje
tive F ∗-equivariant morphism i∗ : G̃

∗ → G
∗. For s ∈ S, there is an F ∗-stable semisimple s̃ of G̃∗ su
h that i∗(s̃) = s. Write ρ

es for the semisimple 
hara
terof G̃F 
orresponding to s (this 
hara
ter is unique be
ause H1(F,Z(G̃)) is trivial).Then by [6, 14.49℄, the 
hara
ter ρs,1 is a 
onstituent of Res
eG

F

GF (ρ
es). Moreover, theinertial group G̃

F (s) of ρs,1 in G̃
F is su
h that G̃

F /G̃F (s) ≃ AG∗(s)F
∗ . Thusby Cli�ord theory, sin
e Res

eG
F

GF (ρ
es) is multipli
ity free (see [9℄), we dedu
e that

Res
eG

F

GF (ρ
es) has |AG∗(s)F

∗

| 
onstituents. It follows that
| Irrs(G

F )| =
∑

s∈S

|AG∗(s)F
∗

| =
∑

t∈T

∑

s∈S∩[t]G∗

|AG∗(s)F
∗

| =
∑

t∈T

|AG∗(t)F
∗

|2.The result follows. �Proposition 4.2. We keep the same notation as above and we suppose that p is agood prime for G. Suppose that H1(F,Z(G)) has prime order ℓ. Let ζ be a nontrivial linear 
hara
ter of H1(F,Z(G)). Write L for its asso
iated 
uspidal Levisubgroup. Then we have
| Irrs(G

F )| = |Z(G)◦F |
(
ql + (ℓ2 − 1)ql−(ss-rk(L))

)
,where l denotes the semisimple rank of G. In parti
ular, in Table 4, we give thenumber of semisimple 
hara
ters of G

F for simple groups G with Z(G))F of primeorder. For the notation of Table 4, we put m = gcd(r, q − ǫ).
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G
F
sc | Irrs(GF

sc)|

ǫArn(q) m prime qn + (m2 − 1)q
n+1

m
−1

Bn(q) q = 1 mod 2 qn + 3q⌊n/2⌋

Cn(q) q = 1 mod 2 qn + 3qn−1

ǫD2n+1(q) q = −ǫ mod 4 q2n+1 + 3q2n−1

SOǫ
2n(q) q = 1 mod 2 qn + 3qn−2

HS4n(q) q = 1 mod 2 q2n + 3qn

ǫE6(q), p 6= 2 q = ǫ mod 3 q6 + 8q2

E7(q), p 6= 3 q = 1 mod 2 q7 + 3q4Table 4. Number of semisimple 
hara
ters.Proof. We denote by T1 and Tℓ the sets as de�ned in Equation (7). We have
|T | = |T1| + |Tℓ| and |S| = |T1| + ℓ|Tℓ| implying

|T1| =
1

ℓ− 1
(ℓ|T | − |S|) and |Tℓ| =

1

ℓ− 1
(|S| − |T |).Furthermore, from [6, 14.42℄ we dedu
e that |T | = |Z(G)◦F |ql. Moreover, sin
e ℓ isprime, all non trivial linear 
hara
ters of H1(F,Z(G)) are faithful on H1(F,Z(G)).Their 
orresponding 
hara
ters ofZ(G) then have the same kernel (equal to L(Z(G))).Thus, they are asso
iated to a same 
uspidal Levi subgroup L, whi
h is the standardLevi of Lmin(L(Z(G))). Thanks to Theorem 3.5 we dedu
e that

|S| = |Z(G)◦F |
(
ql + (ℓ − 1)ql−(ss-rk(L))

)
.Now, using Proposition 4.1, we obtain

| Irrs(G
F )| = |T1| + ℓ2|Tℓ|

= (ℓ + 1)|S| − ℓ|T |
= |Z(G)◦F |

(
(ℓ+ 1)ql + (ℓ2 − 1)ql−(ss-rk(L)) − ℓql

)

= |Z(G)◦F |
(
ql + (ℓ2 − 1)ql−(ss-rk(L))

)
.Now, Table 4 follows from Table 3. However, note that for G = SO2n, we have todistinguish whether n is even or not. If n = 2k+ 1, then the number of semisimple
hara
ters of SOǫ

4k+2(q) is q2k+1 +3q2k−1 = qn+3qn−2. If n = 2k, then the numberof semisimple 
hara
ters of SOǫ
4k(q) is q2k + 3q2k−2 = qn + 3qn−2. �5. Chara
ters of p′-order in Borel subgroups5.1. Formula for the number of p′-
hara
ters. In this se
tion, we keep thesame notation as above. In parti
ular, T denotes a maximal F -stable torus of G
ontained in an F -stable Borel subgroup B of G. We 
onsider the group

B0 = U1 ⋊ T,where U1 = B/U0 (see �3.1 for the notation). Note that B0 is F -stable and
B
F
0 = U

F
1 ⋊ T

F . Moreover, the set Irrp′(B
F ) is in bije
tion with the set Irr(BF

0 );see [2, Lemma 4℄. As in the proof of Proposition 4.1, we 
onsider G̃ a 
onne
ted
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tive group with 
onne
ted 
enter 
ontaining G and su
h that they have thesame derived subgroup. We denote by T̃ the unique F -stable maximal torus of
G̃ 
ontaining T. We denote by Ω and Ω̃ the sets of T

F -orbits and T̃
F -orbits on

Irr(UF
1 ), respe
tively. As in Equation (1), we denote by O the set of F -orbits on

∆. Moreover, for every ω ∈ O, we �x a non-trivial 
hara
ter φω of X
F
ω (for thenotation, see Equation (1)). For J ⊆ O, we set

φJ = 1J ⊗
∏

ω∈J

φω ,where 1J =
∏
ω/∈J 1XF

ω
. Then by [4, 2.9, 8.1.2℄, the set {φJ | J ⊆ O} is a set ofrepresentatives of Ω̃.Proposition 5.1. We keep the notation as above. For every J ⊆ O, we denoteby ΩJ (resp. ΩJ,1) the element of Ω̃ (resp. Ω) 
ontaining φJ . Moreover, we set

nJ = |ΩJ |/|ΩJ,1|. Then
| Irrp′(B

F )| =
∑

J⊆O

nJ |CTF (φJ )|.Proof. First remark that nJ is an integer. Indeed, sin
e T
F ⊆ T̃

F , we dedu
e that
ΩJ is a disjoint union of T

F -orbits. In parti
ular, there is k su
h that(8) ΩJ =

k⊔

i=1

ΩJ,i,where ΩJ,i ∈ Ω (the notation is 
hosen su
h that φJ = φJ,1 ∈ ΩJ,1). Moreover,for every 1 ≤ i ≤ k, |ΩJ,i| = |ΩJ,1| be
ause ΩJ,i and ΩJ,1 are 
onjugate by anelement of T̃
F . Then |ΩJ,1| divides |ΩJ | and nJ = k. For 1 ≤ i ≤ nJ , �x ti ∈ T̃

Fsu
h that φJ,i = tiφJ,1 ∈ ΩJ,i and denote by CTF (φJ,i) the stabilizer of φJ,i in T
F .Then the inertial subgroup IJ,i of φJ,i in B

F
0 is U

F
1 ⋊ CTF (φJ,i). Moreover, sin
e

U
F
1 is abelian, we 
an extend φJ,i to IJ,i setting φ̃J,i(ut) = φJ,i(u) for u ∈ U

F
1and t ∈ CTF (φJ,i). Then, by Cli�ord theory, the 
hara
ters of B

F
0 su
h that φJ,iis a 
onstituent of their restri
tions to U

F
1 are exa
tly the irredu
ible 
hara
ters

Ind
B

F
0

IJ,i
(φ̃J,i ⊗ ψ) with ψ ∈ Irr(CTF (φJ,i)). There are |CTF (φJ,i)| su
h 
hara
ters.Hen
e, we dedu
e

| Irr(BF
0 )| =

∑

J⊆O

nJ∑

i=1

|CTF (φJ,i)|.Furthermore, we have |CTF (φJ,i)| = |ti CTF (φJ,1)|. The result follows. �For J ⊆ O, we de�ne(9) m(J) =
⊔

ω∈J

ω.Note that m(J) ⊆ ∆ and F (m(J)) = m(J).Lemma 5.2. We keep the notation as above. For J ⊆ O, we asso
iate to φJ the
F -stable standard Levi subgroup Lm(J) where m(J) is the subset of ∆ de�ned inRelation (9). Then we have

nJ = |H1(F,Z(Lm(J)))| and |CTF (φJ )| = nJ |Z(G)◦F |
∏

ω∈O\J

(q|ω| − 1),



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 13where nJ is the integer de�ned in Proposition 5.1.Proof. Re
all that ΩJ (resp. ΩJ,1) is the T̃
F -orbit (resp. T

F -orbit) of φJ . ByEquation (8), one has
|ΩJ | = nJ |ΩJ,1|.Moreover, as explained in the proof of [4, 8.1.2℄, we have |ΩJ | =

∏
ω∈J(qω − 1). Itthen follows that

|CTF (φJ )| = nJ
|TF |∏

ω∈J(q|ω| − 1)
.Furthermore, by [4, 2.9℄, we have |TF | = |Z(G)◦F |

∏
ω∈O(q|ω| − 1). Hen
e wededu
e

|CTF (φJ )| = nJ |Z(G)◦F |
∏

ω∈O\J

(q|ω| − 1).Let Lm(J) be the standard F -stable Levi subgroup of G 
orresponding to the subsetof simple roots m(J). Denote by Bm(J) ⊆ B an F -stable Borel subgroup of Lm(J)and by Um(J) the unipotent radi
al of Bm(J). The set m(J) is the set of simpleroots of Lm(J) asso
iated to Bm(J). In parti
ular, Equation (1) applied to the
onne
ted redu
tive group Lm(J) gives
U
F
1,m(J) =

∏

ω∈J

X
F
ω .We denote by φ′J the restri
tion of φJ to U

F
1,m(J). Then φ′J ∈ Irr(UF

1,m(J)) andthe map Irr(UF
1,m(J)) → Irr(UF

1 ), ϑ 7→ 1J ⊗ ϑ, is T
F -equivariant. Moreover, notethat φ′J is a regular 
hara
ter of U

F
1,m(J). Hen
e, using [6, 14.28℄, we dedu
e that

nJ = |H1(F,Z(Lm(J)))| as required. �Corollary 5.3. With the above notation, one has
| Irrp′(B

F )| = |Z(G)◦F |
∑

J⊆O

|Z(Lm(J))
F |2

∏

ω∈O\J

(q|ω| − 1),where m(J) is the subset of ∆ asso
iated to J as in Equation (9).Proof. It is a dire
t 
onsequen
e of Proposition 5.1 and Lemma 5.2 and the equality
|H1(F,Z(Lm(J)))| = |Z(Lm(J))

F |. �In the following, we will need the following result.Lemma 5.4. Fix I ∈ O and put I = O\I. Then we have
∑

I⊆J⊆O

∏

ω/∈J

(q|ω| − 1) = q|m(I)|,where m is the map de�ned in Equation (9).Proof. First remark that
∑

I⊆J⊆O

∏

ω/∈J

(q|ω| − 1) =
∑

J⊆I

∏

ω∈J

(q|ω| − 1).Furthermore, for every �nite set A and f : A→ R, one has(10) ∏

a∈A

(f(a) + 1) =
∑

J⊆A

∏

a∈J

f(a).



14 OLIVIER BRUNATWe apply Equation (10) with A = I and f : I → R, ω 7→ q|ω| − 1 and we dedu
e
∑

J⊆I

∏

ω∈J

(q|ω| − 1) =
∏

ω∈I

q|ω|

= q
P

ω∈I
|ω|Moreover, Equation (9) implies |m(I)| =

∑
ω∈I |ω| and the result follows. �Remark 5.5. If the 
enter ofG is 
onne
ted, then the 
enter of every Levi subgroup

L of G is 
onne
ted (be
ause the map hL is surje
tive). In parti
ular, Corollary 5.3and Lemma 5.4 (applied with I = ∅) give
| Irrp′(B

F )| = |Z(G)F |q|m(O)| = |Z(G)F |q|∆|,whi
h is a well-known result; see [2, Remark 1℄.5.2. The 
ase of quasi-simple groups. In this se
tion, we suppose that G isa quasi-simple algebrai
 group. We keep the notation as above. Re
all that for
I ⊆ ∆, the map hLI

: Z(G) → Z(LI) denotes the surje
tive map indu
ed bythe in
lusion Z(G) ⊆ Z(LI). Moreover, re
all that for every subgroup K of Z(G),there is I ⊆ ∆ su
h that K = ker(hLI
) (we use here the fa
t that G is quasi-simple;see [1, 2.9℄). Then we denote by IK a subset of ∆ su
h that K = ker(hLIK

) and
IK is minimal (for the in
lusion). In parti
ular, LIK

∈ Lmin(K).Proposition 5.6. With the above notation, if p is good for G, we have
| Irrp′(B

F )| = |Z(G)◦F |
∑

K≤Z(G)F

|Z(G)F |2

|K|2


q|IK | −

∑

K′∈max(K)

q|IK′ |


 ,where max(K) denotes the set of maximal proper subgroups of K.Proof. For a subgroup K of Z(G), we de�ne

AK = {I ∈ ∆ | IK ⊆ I} and BK = {J ∈ O | ker(hLm(J)
) = K}.where m(J) is the subset of ∆ asso
iated to J de�ned in Equation (9). ThenCorollary 5.3 implies

| Irrp′(B
F )| = |Z(G)◦F |

∑

K≤Z(G)F

∑

J∈BK

|Z(Lm(J))
F |2

∏

ω/∈J

(q|ω| − 1)

= |Z(G)◦F |
∑

K≤Z(G)F

|Z(Lm(J))
F |2

∑

J∈BK

∏

ω/∈J

(q|ω| − 1),be
ause for J ∈ BK , the numbers |Z(Lm(J))
F | are 
onstant. Furthermore, one has

BK = {J ∈ O | ker(hLm(J)
) ⊆ K}\{J ∈ O | ker(hLm(J)

) ( K}.Note that LIK
is F -stable. Then IK is a union of some F -orbits lying in a subset

ĨK of O, su
h that m(ĨK) = IK . Sin
e LIK
∈ Lmin(K), it follows

{J ∈ O | ker(hLm(J)
) ⊆ K} = {J ∈ O | ĨK ⊆ J}.Moreover, one has

{J ∈ O | ker(hLm(J)
) ( K} =

⊔

K′∈max(K)

{J ∈ O | ker(hLm(J)
) ⊆ K ′}

=
⊔

K′∈max(K)

{J ∈ O | ĨK′ ⊆ J}.



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 15Thus, if we put CK = {J ∈ O | ĨK ⊆ J}, then it follows
∑

J∈BK

∏

ω/∈J

(q|ω| − 1) =
∑

J∈CK

∏

w/∈J

(q|w| − 1) −
∑

K′∈max(K)

∑

J∈CK′

∏

ω/∈J

(q|ω| − 1)

= q|∆\m(eIK)| −
∑

K′∈maxK

q|∆\m(eIK′)|.The last equality 
omes from Lemma 5.4. Moreover, we have hLm(J)
(Z(G)F ) =

Z(Lm(J))
F implying |Z(Lm(J))

F | = |Z(G)F /K|. The result follows. �Proposition 5.7. Let G be a 
onne
ted redu
tive group de�ned over Fq with 
or-responding Frobenius F . Suppose p is a good prime for G and Z(G)F has primeorder ℓ. Put r = |I| for LI in Lmin({1}). Then we have
| Irrp′(B

F )| = |Z(G)◦F |
(
ql + (ℓ2 − 1)ql−r

)
,where l is the semisimple rank of G.Proof. First remark that we do not suppose that G is quasi-simple. Indeed, the set

Lmin({1}) is non-empty. If we denote by LI a standard Levi lying in Lmin({1}),then we have ker(hLI
) = {1}. Hen
e I = I{1} (see the beginning of �5.2 for thenotation). Moreover, we always have IZ(G)F = ∅. We 
an then apply the proof ofProposition 5.6. We obtain

| Irrp′(B
F )| = |Z(G)◦F |

(
|Z(G)F |2q|∆|−r + q|∆| − q|∆|−r

)

= |Z(G)◦F |
(
q|∆| + (|Z(G)F |2 − 1)q|∆|−r

)
.Sin
e |∆| is the semisimple rank of G, the result follows. �Remark 5.8. For a group G as in Proposition 5.7, if ζ denotes a non-trivial
hara
ter of H1(F,Z(G)) and Lζ its asso
iated 
uspidal Levi of G, then Lζ is F -stable and ker(hLζ

) is trivial. Then Lζ ∈ Lmin({1}). In parti
ular, the number rof Proposition 5.7 is equal to the semisimple rank of Lζ , implying
| Irrp′(B

F )| = |Z(G)◦F |
(
ql + (ℓ2 − 1)ql−(ss-rk(Lζ))

)
.Comparing with Proposition 4.2, we dedu
e

| Irrp′(G
F )| = | Irrp′(B

F )|.Hen
e, this then proves that, if p is a good prime for G and H1(F,Z(G) has primeorder, then the M
Kay 
onje
ture holds for G in de�ning 
hara
teristi
.Proposition 5.9. If G is a simple and simply-
onne
ted algebrai
 group of type
D2n, then

| Irrp′(B
F )| = q2n + 3q2n−2 + 6qn + 4qn−1.If G is a simple and simply-
onne
ted algebrai
 group of type D2n+1 with H1(F,Z(G))of order 4, then

| Irrp′(B
F )| = q2n+1 + 3q2n−1 + 12qn−1.



16 OLIVIER BRUNATProof. If G is simple and simply-
onne
ted group of type D2n, then Z(G)F is a�nite group of order 4 with exponent 2. Denote by c1, c2 and c3 its subgroups oforder 2. Moreover, using Table 3, we dedu
e
K |IK |

{1} n− 1

c1 n

c2 n

c3 2n− 2

Z(G)F 2n

K |IK |

{1} n− 1

Z2 2n− 1

Z(G)F 2n+ 1Type D2n Type D2n+1The result then follows from Proposition 5.6. �6. Restri
tion of semisimple 
hara
ters to the 
enterIn this se
tion, we keep the notation as above. To simplify the notation, we set
G = G

F , Z = Z(G)F and U = U
F . For z ∈ H1(F,Z(G)) and ν ∈ Irr(Z), we put

Γz,ν = IndGZU (ν ⊗ φz),where φz is the regular 
hara
ter of U 
orresponding to z. Note that by Cli�ordtheory, one has
IndZUU (φz) =

∑

ν∈Irr(Z)

ν ⊗ φz .We then dedu
e that
Γz =

∑

ν∈Irr(Z)

Γz,ν .Lemma 6.1. Denote by Ez and Ez,ν the set of 
onstituents of Γz and Γz,ν , respe
-tively. Then
Ez,ν = {χ ∈ Ez | 〈ResGZ (χ), ν 〉Z 6= 0}.Proof. We denote by R a set of representatives of the double 
osets ZU\G/Z.Therefore, for ϕ ∈ Irr(ZU), Ma
key's theorem implies

ResGZ (IndGZU (ϕ)) =
∑

r∈R

IndZr(ZU)∩Z

(
Resr(ZU)∩Z(rϕ)

)

=
∑

r∈R

ResZ (rϕ) .(11)Fix now ν, ν′ ∈ Irr(Z). Then Equation (11) applied with ϕ = ν ⊗ φz implies
〈Γz,ν , IndGZ (ν′) 〉G = 〈ResGZ (Γz,ν) , ν

′ 〉Z

= 〈
∑

r∈R

ν, ν′ 〉Z

= |R|〈 ν, ν′ 〉Z

= |R|δν,ν′ .The result then follows. �



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 17Remark 6.2. Note that if we denote by Fz and Fz,ν the set of 
onstituents of
DG(Γz) and DG(Γz,ν), respe
tively, then Fz,ν = {χ ∈ Ez | 〈ResGZ (χ, ν 〉Z 6= 0}.Indeed, by [6, 12.8℄ and [10, 2.2℄, DG(IndGZ (ν)) = IndGZ (ν). In parti
ular, DGindu
es a bije
tion between Ez,ν and Fz,ν .Lemma 6.3. With the above notation, for z, z′ ∈ H1(F,Z(G)) and ν, ν′ ∈ Irr(Z),one has

〈Γz,ν ,Γz′,ν 〉G = 〈Γz,ν′ ,Γz′,ν′ 〉G.Proof. We have to show that the s
alar produ
t 〈Γz,ν ,Γz′,ν 〉G does not depend on
ν. First remark that it follows from Lemma 6.1 that

〈Γz,ν ,Γz′,ν 〉G = 〈Γz,ν ,Γz′ 〉G.Denote by R a set of representatives of the double 
osets UZ\G/U . Then Ma
key'stheorem implies
〈Γz,ν ,Γz′ 〉G = 〈ResGU

(
IndGZU (ν ⊗ φz)

)
, φz′ 〉U

=
∑

r∈R

〈 IndUr(UZ)∩U

(
Resr(UZ)∩U (r(ν ⊗ φz)

)
, φz′ 〉U

=
∑

r∈R

〈 IndUrU∩U (rφz), φz′ 〉U .Note that the s
alar produ
t in the last equality does not depend on ν. This provesthe 
laim. �Corollary 6.4. With the above notation, for z, z′ ∈ H1(F,Z(G)) and ν ∈ Irr(Z),we have
〈Γz,ν ,Γz′,ν 〉G =

1

|Z|
〈Γz,Γz′ 〉G.Proof. We have

〈Γz ,Γz′ 〉G =
∑

ν, ν′∈Irr(Z)

〈Γz,ν ,Γz′,ν′ 〉G.If ν 6= ν′, we have 〈Γz,ν ,Γz′,ν′ 〉G = 0 be
ause by Lemma 6.1, the 
onstituents of
Γz,ν (resp. of Γz′,ν′) are 
onstituents of IndGZ (ν) (resp. IndGZ (ν′)) and the 
hara
ters
IndGZ (ν) and IndGZ (ν′) have no 
onstituents in 
ommon. Then

〈Γz,Γz′ 〉G =
∑

ν∈Irr(Z)

〈Γz,ν ,Γz′,ν 〉G.The result is now a 
onsequen
e of Lemma 6.3 �Proposition 6.5. With the above notation, if p is a good prime for G and the
enter of G is 
onne
ted, then for every linear 
hara
ter ν of Z(GF ), one has
| Irrs(G

F |ν)| =
1

|Z(GF )|
| Irrs(G

F )|.Proof. Sin
e the 
enter of G is 
onne
ted, there is only one Gelfand-Graev 
hara
ter
Γ1. Moreover, Remark 6.2 implies

| Irrs(G
F |ν)| = 〈Γ1,ν ,Γ1,ν 〉GF .



18 OLIVIER BRUNATFurthermore, one has | Irrs(GF )| = 〈Γ1,Γ1 〉GF . The result follows from Lemma 6.4
�Proposition 6.6. With the above notation, if p is a good prime for G and thegroup H1(F,Z(G)) has prime order ℓ, then for every linear 
hara
ter ν of Z(GF ),one has

| Irrs(G
F |ν)| =

1

|Z(GF )|
| Irrs(G

F )|.Proof. We 
onsider G̃ a 
onne
ted redu
tive group with 
onne
ted 
enter as in theproof of Proposition 4.1. Fix s a semisimple element of G
∗F∗ and s̃ a semisimpleelement of G̃∗F∗ su
h that i∗(s̃) = s. In the proof Proposition 4.1, we have seen that

Res
eG

F

GF (ρ
es) has |AG∗(s)F

∗

| 
onstituents. In fa
t, the 
onstituents of Res
eG

F

GF (ρ
es) arein bije
tion with Irr(AG∗(s)F

∗

). We denote by ρs,ϑ the 
onstituent 
orrespondingto ϑ ∈ Irr(AG∗(s)F
∗

). Moreover, this bije
tion 
ould be 
hosen su
h that thereis a surje
tive morphism ωs : H1(F,Z(G)) → Irr(AG∗(s)F
∗

) satisfying ρs,ϑ (for
ϑ ∈ Irr(AG∗(s)F

∗

)) is a 
onstituent of DG(Γz) for z ∈ H1(F,Z(G)) if and onlyif ωs(z) = ϑ. In parti
ular, the 
hara
ter ρs,ϑ lies in |H1(F,Z(G))|/|AG∗(s)F
∗

|di�erent duals of Gelfand-Graev 
hara
ters of GF . Furthermore, H1(F,Z(G)) hasprime order ℓ. It follows that a semisimple 
hara
ter of G
F is either a 
onstituentof only one D(Γz) or of all. We keep the notation of Remark 6.2 and put, for

ν ∈ Irr(Z(GF ))

Fν =
⋂

z∈H1(F,Z(G))

Fz,ν .The above dis
ussion implies that if z 6= z′, then(12) Fz,ν ∩ Fz′,ν = Fν .Moreover, one has
Irrp′(G

F |ν) =
⋃

z∈H1(F,Z(G))

Fz,ν .Therefore,
| Irrp′(G

F |ν)| = |
⋃

z∈H1(F,Z(G))

Fz,ν |

=

ℓ∑

k=1

(−1)k+1
∑

I⊆H1(F,Z(G)),|I|=k

|
⋂

z∈I

Fz,ν |

=
∑

z

|Fz,ν | + |Fν |
ℓ∑

k=2

(−1)k+1
∑

I⊆H1(F,Z(G)),|I|=k

1

=
∑

z

|Fz,ν | + |Fν |
ℓ∑

k=2

(−1)k+1

(
ℓ
k

)

=
∑

z

|Fz,ν | + |Fν |(1 − ℓ).Note that, sin
e the 
hara
ters Γz,ν are multipli
ity free, one has |Fz,ν | = 〈Γz,ν ,Γz,ν 〉GFand |Fν | = 〈Γz,ν ,Γz′,ν 〉GF where z and z′ are two �xed distin
t elements of
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H1(F,Z(G)). Fix two su
h elements z and z′. Then Corollary 6.4 implies

|Fz,ν | =
1

|Z(GF )|
〈Γz,Γz 〉GF and |Fν | =

1

|Z(GF )|
〈Γz,Γz′ 〉GF .Denote by L the 
uspidal Levi subgroup asso
iated to every non-trivial 
hara
terof H1(F,Z(G)) and by l the semisimple rank of G. Proposition 3.2 gives

〈Γz,Γz 〉 = |Z◦|
(
ql − (ℓ− 1)ql−(ss-rk(L))

) and 〈Γz,Γz′ 〉 = |Z◦|
(
ql − ql−(ss-rk(L))

)
,with Z◦ = Z(G)◦F . It follows

| Irrs(G
F |ν)| =

1

|Z(GF )|
|Z◦|

(
ql − (ℓ2 − 1)ql−(ss-rk(L))

)

=
1

|Z(GF )|
| Irrs(G

F )|.The last equality 
omes from Proposition 4.2. �Remark 6.7. As we remark in [3℄, the number | Irrp′(BF |ν)| does not depend on
ν for all ν ∈ Z(GF ) and

| Irrp′(B
F |ν)| =

1

|Z(GF )|
| Irrp′(B

F )|.Suppose now that p is a good prime for G and H1(F,Z(G)) has prime order. Then,thanks to Remark 5.8 and Proposition 6.6, we dedu
e
| Irrp′(B

F |ν)| = | Irrp′(G
F |ν)|,for every ν ∈ Irr(Z(GF )). This proves Theorem 1.1.A
knowledgements. Part of this work was done during the programme �Alge-brai
 Lie Theory� in Cambridge. I gratefully a
knowledge �nan
ial support by theIsaa
 Newton Institute.I wish to sin
erely thank Jean Mi
hel for pointing me in this dire
tion and forvaluable and 
larifying dis
ussions on the paper [5℄. I also wish to thank GunterMalle for his reading of the manus
ript.Referen
es[1℄ C. Bonnafé. Éléments unipotents réguliers des sous-groupes de Levi. Canad. J. Math.,56(2):246�276, 2004.[2℄ O. Brunat. On the indu
tive M
Kay 
ondition in the de�ning 
hara
teristi
. to appear inMath. Z.[3℄ O. Brunat and F. Himstedt. On equivariant bije
tions of 
hara
ters in �nite redu
tive groups.In preparation.[4℄ R.W. Carter. Finite groups of Lie type. Pure and Applied Mathemati
s (New York). JohnWiley & Sons In
., New York, 1985. Conjuga
y 
lasses and 
omplex 
hara
ters, A Wiley-Inters
ien
e Publi
ation.[5℄ F. Digne, G. I. Lehrer, and J. Mi
hel. On Gel′fand-Graev 
hara
ters of redu
tive groups withdis
onne
ted 
entre. J. Reine Angew. Math., 491:131�147, 1997.[6℄ F. Digne and J. Mi
hel. Representations of �nite groups of Lie type, volume 21 of LondonMathemati
al So
iety Student Texts. Cambridge University Press, Cambridge, 1991.[7℄ D. Gorenstein, R. Lyons, and R. Solomon. The 
lassi�
ation of the �nite simple groups,Number 3, volume 40 of Mathemati
al Surveys and Monographs. Ameri
an Mathemati
alSo
iety, Cambridge, 1991.[8℄ I.M. Isaa
s, G. Malle, and G. Navarro. A redu
tion theorem for M
Kay 
onje
ture. Invent.Math., 170:33�101, 2007.



20 OLIVIER BRUNAT[9℄ G. Lusztig. On the representations of redu
tive groups with dis
onne
ted 
entre. Astérique,168:157�166, 1988.[10℄ G. Malle. Height 0 
hara
ters of �nite groups of Lie type. Represent. Theory, 11:192�220,2007.Ruhr-Universität Bo
hum, Fakultät für Mathematik, Raum NA 2/33, D-44780Bo
hum,E-mail address: Olivier.Brunat�ruhr-uni-bo
hum.de


	1. Introduction
	2. Cuspidal Levi subgroups and central characters
	3. Number of semisimple classes
	3.1. Gelfand-Graev characters
	3.2. Number of semisimple classes

	4. Results on semisimple characters
	5. Characters of p'-order in Borel subgroups
	5.1. Formula for the number of p'-characters
	5.2. The case of quasi-simple groups

	6. Restriction of semisimple characters to the center
	References

