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COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPSOLIVIER BRUNATAbstrat. This artile is onerned with the relative MKay onjeture for�nite redutive groups. Let G be a onneted redutive group de�ned overthe �nite �eld Fq of harateristi p > 0 with orresponding Frobenius map
F . We prove that if the F -oinvariants of the omponent group of the enterof G has prime order and if p is a good prime for G, then the relative MKayonjeture holds for GF at the prime p. In partiular, this onjeture is truefor GF in de�ning harateristi for a simple and simply-onneted group Gof type Bn, Cn, E6 and E7. Our main tools are the theory of Gelfand-Graevharaters for onneted redutive groups with disonneted enter developedby Digne-Lehrer-Mihel and the theory of uspidal Levi subgroups. We alsoexpliitly ompute the number of semisimple lasses of GF for any simplealgebrai group G. 1. IntrodutionLet G be a �nite group and p be a prime divisor of |G|. As usually, we denoteby Irr(G) the set of irreduible haraters of G and by Irrp′(G) the subset of irre-duible haraters with degree prime to p. For any �xed p-Sylow subgroup P of

G, John MKay has onjetured that | Irrp′(G)| = | Irrp′(NG(P ))|. This is atuallyproved for some groups but remains open in general. Reently, Isaas, Malle andNavarro redued this onjeture to a new question, the so-alled indutive MKayondition, whih onerns properties of perfet entral extensions of �nite simplegroups; see [8℄.In this artile, we are interested in the relative MKay onjeture, asserting thatfor every linear harater ν of the enter Z of G, if Irrp′(G|ν) denotes the subset ofharaters χ ∈ Irrp′(G) lying over ν (i.e. satisfying 〈χ, IndGZ (ν) 〉G 6= 0), then onehas the equality | Irrp′(G|ν)| = | Irrp′(NG(P )|ν)|. In order to prove the indutiveMKay ondition, we in partiular have to show that the relative MKay onjetureholds for some perfet entral extensions of �nite simple groups. This is one of themotivations to onsider this question in this work.Let G be a onneted redutive group de�ned over a �nite �eld with q elements Fqof harateristi p > 0 with orresponding Frobenius map F : G → G. Throughoutthis paper, we will always assume that p is a good prime for G, that is p does notdivide the oe�ients of the highest root of the root system assoiated to G (see [4,1.14℄). Let T be a maximal F -stable torus of G ontained in an F -stable Borelsubgroup B of G and let U denote the unipotent radial of B (whih is F -stable).Note that, if U is not trivial, then the prime p divides the order of the �nite�xed-point subgroup G
F and the subgroup U

F ⊆ G
F is a p-Sylow subgroup of

G
F . Moreover, one has NGF (UF ) = B

F . If the enter of G is onneted, thenthe MKay onjeture is true for the group G
F at the prime p. We will see in the1991 Mathematis Subjet Classi�ation. 20C15, 20C33.1
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2 OLIVIER BRUNATfollowing that the relative MKay onjeture holds in this ase (see Proposition 6.5).This question is more di�ult when the enter of G is disonneted. In this artile,we will solve it in a speial situation. Denote by Z(G) = Z(G)/Z(G)◦ the groupof omponents of the enter of G and by H1(F,Z(G)) the set of the F -lasses of
Z(G). Then our main result is the following.Theorem 1.1. Let G be a onneted redutive group de�ned over the �nite �eld
Fq of harateristi p > 0 and let F : G → G denote the orresponding Frobeniusmap. Let T be a maximal F -stable torus ontained in an F -stable Borel subgroup
B of G. If p is a good prime for G and if the group H1(F,Z(G)) is trivial or hasprime order, then for every linear harater ν of Z(GF ), one has

| Irrp′(G
F |ν)| = | Irrp′(B

F |ν)|.As onsequene, this proves the relative MKay onjeture in de�ning hara-teristi for G
F with G a simple group given in Table 4.This paper is organized as follows. In Setion 2, we reall some results fromBonnafé [1℄ on the uspidal Levi subgroups of onneted redutive groups. We willneed this theory �rst, in order to assoiate to every linear harater of Z(G) auspidal Levi subgroup of G (orresponding to a uspidal loal system in Lusztigtheory), and seondly to ontrol the disonneted part of the inertial subgroup oflinear haraters of UF . In Setion 3, we apply the theory of Gelfand-Graev hara-ters of GF for onneted redutive group G with disonneted enter, developed byDigne-Lehrer-Mihel in [5℄. Note that we need here that p is a good prime for G. Inpartiular, we give a formula to ompute the salar produt of two Gelfand-Graevharaters; see Proposition 3.2. As onsequene, we obtain an expliit formula forthe number of semisimple lasses of G

F (see Theorem 3.5) and ompute this num-ber for G
F with G any simple algebrai group; see Corollary 3.6. Reall that theonstituents of the duals of Gelfand-Graev haraters (for the Alvis-Curtis dualityfuntor) are the so-alled semisimple haraters of G

F . When p is a good primefor G, the semisimple haraters are the p′-haraters of G
F (that is, the elementsof Irrp′(G

F )). In Setion 4, using the results of Setion 3, we ompute the numberof semisimple haraters of G
F when H1(F,Z(G)) has prime order; see Proposi-tion 4.2. In Setion 5, we give a formula for the number of p′-haraters of B

Fdepending on the uspidal Levi subgroups of G; see Proposition 5.6. Finally, inSetion 6, we show that if the enter of G is onneted or if H1(F,Z(G)) has primeorder, then for a linear harater ν of Z(GF ) the number of semisimple haratersof G
F lying over ν does not depend on ν; see Proposition 6.5 and Proposition 6.6.We an then prove Theorem 1.1; see Remark 6.7.2. Cuspidal Levi subgroups and entral haratersLet G be a onneted redutive group de�ned over Fq with orresponding Frobe-nius map F : G → G. As above, we denote by T a maximal F -stable torus of Gontained in an F -stable Borel subgroup B of G. Write Φ for the root system of

G and Φ+ for the set of positive roots with respet to B. Denote by ∆ the setof orresponding simple roots and by W the Weyl group of G with respet to T,identi�ed with the quotient N(T)/T. Moreover, we assoiate to every α ∈ Φ are�etion wα ∈ W and for any subset I of ∆, we denote by WI the subgroup of
W generated by wα for α ∈ I. The subgroup PI = BWIB is a standard paraboli



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 3subgroup of G (relative to B). We denote by LI the Levi subgroup of PI ontaining
T. Note that every Levi subgroup L of G is onjugate in G to a Levi LI for somesubset I of ∆.Let L be a Levi subgroup of G. Then the inlusion Z(G) ⊆ Z(L) indues asurjetive map

hL : Z(G) → Z(L),where Z(G) = Z(G)/Z(G)◦. We reall that G is uspidal if ker(hL) 6= {1} forevery proper Levi L of G. Moreover, a linear harater ζ of Z(G) is uspidal if, forevery Levi subgroup L of G, the subgroup ker(hL) is not ontained in ker(ζ).Let ζ be a linear harater of Z(G). Then there is a Levi subgroup L (whih isuspidal) and a uspidal harater ζL of Z(L) suh that
ζ = ζL ◦ hL.More preisely, for a subgroup K of Z(G), denote by L0(K) the set of Levi sub-groups L of G suh that ker(hL) ⊆ K and by Lmin(K) the subset of minimal ele-ments of L0(K). In [1, 2.16℄, Bonnafé proves that the Levi subgroups of Lmin(K)are uspidal and G-onjugate. Therefore, we assoiate to the linear harater ζ of

Z(G) a standard Levi LI of Lmin(ker(ζ)). Note that all Levi subgroups in Lmin(K)have the same semisimple rank.Let H1(F,Z(G)) be the set of F -lasses of Z(G). Sine Z(G) is abelian, theLang map L : Z(G) → Z(G) : g 7→ g−1F (g) is a morphism of groups and we have
H1(F,Z(G)) = Z(G)/L(Z(G)). In partiular, a harater ζ of H1(F,Z(G)) anbe seen as a harater of Z(G) with L(Z(G)) in its kernel. Hene, we an assoiateto every harater ζ of H1(F,Z(G)) a uspidal Levi L of G and a uspidal ζL of
Z(L). Note that L an be hosen F -stable and with this hoie, ζL is F -stable.In the following, we write H1(F,Z(G))∧ for the set of irreduible haraters of
H1(F,Z(G)). 3. Number of semisimple lasses3.1. Gelfand-Graev haraters. Let G be a onneted redutive group de�nedover Fq with Frobenius map F : G → G. We denote by T a maximal F -stabletorus of G ontained in an F -stable Borel subgroup B of G. We write U for theunipotent radial of B. We reall that p is supposed to be a good prime for G.As above, we denote by Φ the root system of G, by Φ+ the set of positive rootswith respet to B and by ∆ the set of orresponding simple roots. We write Xαfor the non-trivial minimal losed unipotent subgroup of U normalized by T andorresponding to the root α ∈ Φ+. Reall that the Frobenius map F indues apermutation on Φ suh that F (Φ+) = Φ+ and F (∆) = ∆. Put

U0 =
∏

α∈Φ+\∆

Xα.Denote by U1 the quotient U/U0 and write πU0 : U → U1 for the anonialprojetion map. Then we have U1 ≃
∏
α∈∆ Xα and(1) U

F
1 =

∏

ω∈O

X
F
ω ,where O is the set of F -orbits on ∆ and Xω =

∏
α∈ω Xα. Reall that an elementof G is regular if its entralizer has a minimal possible dimension. By [6, 14.14℄ theregular unipotent elements of U are the elements u ∈ U suh that for every α ∈ ∆,



4 OLIVIER BRUNAT
πU0(u)α 6= 1. Moreover by [6, 14.25℄, the set of regular unipotent lasses of GF areparametrized by H1(F,Z(G)). For z ∈ H1(F,Z(G)), denote by Uz the onjugaylass of unipotent elements orresponding to z and put

γz : GF → C, g 7→

{
|Uz|/|GF | if g ∈ Uz
0 otherwiseReall that a linear harater ψ of U
F is a regular harater if it has U

F
0 in itskernel and if the indued linear harater on U

F
1 (always denoted by ψ) satis�es

Res
U

F
1

XF
ω
(ψ) 6= 1XF

ω
for every ω ∈ O. By [6, 14.28℄, the set of T

F -orbits of regularharaters of U
F is parametrized by H1(F,Z(G)) as follows.Fix ψ1 a regular linear harater of U

F and z ∈ H1(F,Z(G)). Choose tz ∈ Tsuh that t−1
z F (tz) Z(GF ) = z. Then the T

F -orbit of the regular haraters of U
Forresponding to z has ψz =tz ψ1 for representative.We now an de�ne the Gelfand-Graev haraters of G

F by setting for every
z ∈ H1(F,Z(G))

Γz = IndG
F

UF (φz).Denote by DG the Alvis-Curtis duality map. For z ∈ H1(F,Z(G)), there is avirtual harater ϕz of UF (see the proof of [6, 14.33℄) with U
F
0 in its kernel, whihis zero outside regular unipotent elements and satisfying

DG(Γz) = IndG
F

UF (ϕz).In partiular, DG(Γz) is onstant on Uz and there are omplex numbers cz,z′ (for
z′ ∈ H1(F,Z(G))) with(2) DG(Γz) =

∑

z′∈H1(F,Z(G))

cz,z′γz′ .Following [5℄, we now reall how to ompute the oe�ients cz,z′ . For this, weneed some notations. For z ∈ H1(F,Z(G)), put
σz =

∑

ψ∈Ψ
z−1

ψ(u),where u ∈ U1 and Ψz denotes the T
F -orbit of ψz. Moreover, for any harater ζ of

H1(F,Z(G)), we de�ne
σζ =

∑

z∈H1(F,Z(G))

ζ(z)σz .In [5, 2.3, 2.5℄, the following result is proven.Proposition 3.1. With the above notation, if p is a good prime for G, then the ma-trix (cz,z′)z, z′∈H1(F,Z(G)) is invertible and its inverse is (ηGσz(z′)−1)z,z′∈H1(F,Z(G)),where ηG = (−1)Fq -rk(G). Moreover, we have cz,z′ = cz(z′)−1,1 and if we put
cζ =

∑
z∈H1(F,Z(G)) ζ(z)cz,1 for any harater ζ of H1(F,Z(G)), then there isa fourth root of unity ξζ suh that

cζ = ηGηLq
− 1

2 (ss-rk(Lζ))ξζ ,where Lζ is the uspidal Levi of G assoiated to the harater ζ as explained inSetion 2.



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 5Proposition 3.2. With the notation as above, if p is a good prime for G, then for
z1, z2 ∈ H1(F,Z(G)), one has

〈Γz1 ,Γz2 〉GF = |Z(G)◦F |
∑

ζ∈H1(F,Z(G))∧

ζ(z1)ζ(z2)q
l−(ss-rk(Lζ)),where Lζ is the uspidal Levi of G assoiated to the harater ζ of H1(F,Z(G))and l is the semisimple rank of G.Proof. Fix z1 and z2 in H1(F,Z(G)) and put I = 〈Γz1 ,Γz2 〉GF . Sine the dualityfuntor DG is an isometry, one has I = 〈DG(Γz1), DG(Γz2) 〉GF . Furthermore,thanks to Equation (2), we dedue

〈DG(Γz1), DG(Γz2) 〉GF =
∑

z,z′∈H1(F,Z(G))

cz1,zcz2,z′〈 γz , γz′ 〉GF .Note that, if z′ 6= z, then 〈 γz , γz′ 〉GF = 0. Moreover, 〈 γz, γz 〉GF = |CGF (uz)| for
uz ∈ Uz. We dedue(3) I =

∑

z∈H1(F,Z(G))

cz1,zcz2,z|CGF (uz)|,However, the group CG(u1) is abelian (beause the harateristi is good for G).It then follows that |CGF (uz)| = |CGF (u1)| for every z ∈ H1(F,Z(G)); see [6,14.22℄. Moreover, [6, 14.23℄ implies
|H1(F,Z(G))|

|GF |

|CGF (uz)|
=

|GF |

|Z(G)◦F |ql
.Sine |H1(F,Z(G))| = |Z(G)F |/|Z(G)◦F |, we dedue(4) |CGF (uz)| = |Z(G)F |ql.For every ζ ∈ H1(F,Z(G))∧, we have cζ =

∑
z∈H1(F,Z(G)) ζ(z)cz,1. Denote by Tthe harater table ofH1(F,Z(G)) (identi�ed with the quotient groupZ(G)/L(Z(G))as above). Write m = |H1(F,Z(G))|. Sine T is the harater table of a �niteabelian group, it follows that T is invertible and T−1 = 1

m

t
T . We then deduethat, for every z ∈ H1(F,Z(G))(5) cz =

1

m

∑

ζ∈H1(F,Z(G))∧

ζ(z)cζ .Furthermore, by Proposition 3.1 one has czi,z = czi(z)−1,1. Then Equations (3), (4)and (5) imply
I =

∑

z∈H1(F,Z(G))

1

m2

∑

ζ,ζ′∈H1(F,Z(G))∧

ζ(z1z−1)ζ′(z2z
−1)|CGF (uz)|cζcζ′

=
|Z(G)F |ql

m

∑

ζ,ζ′∈H1(F,Z(G))∧

ζ(z1)ζ
′(z2)〈 ζ, ζ

′ 〉H1(F,Z(G))cζcζ′

=
|Z(G)F |ql

m

∑

ζ∈H1(F,Z(G))∧

ζ(z1)ζ(z2)|cζ |
2.



6 OLIVIER BRUNATNow, Proposition 3.1 implies cζ = ηGηLq
− 1

2 (ss-rk(Lζ))ξζ . Thus
|cζ |

2 = q−(ss-rk(Lζ))|ξζ |
2 = q−(ss-rk(Lζ)).Moreover,

|Z(G)F |

m
= |Z(G)◦F |.This proves the laim. �Remark 3.3. Note that 〈Γz,Γz′ 〉GF does not depend on the fourth roots of unity

ξζ assoiated to ζ ∈ H1(F,Z(G))∧ as in Proposition 3.1.Remark 3.4. If the enter of G is onneted, there is only one Gelfand-Graevharater Γ1 and the uspidal Levi subgroup assoiated to the trivial harater of
H1(F,Z(G)) is a maximal torus, whih has semisimple rank equal to zero. Thus,we obtain

〈Γ1,Γ1 〉GF = |Z(G)F |ql,whih is a well-known result [4, 8.3.1℄.3.2. Number of semisimple lasses.Theorem 3.5. Let G be a onneted redutive group de�ned over a �nite �eld ofharateristi p > 0 with q elements Fq and let F : G → G denote the orrespondingFrobenius map. Write S for a set of representatives of semisimple lasses of G
F .Denote by (G∗, F ∗) a dual pair of (G, F ). With the above notation, if p is a goodprime for G, then we have

|S| = |Z(G)◦F |
∑

ζ∈H1(F∗,Z(G∗))∧

ql−(ss-rk(L∗

ζ)),where l is the semisimple rank of G and L
∗
ζ is a uspidal Levi subgroup of G

∗assoiated to ζ ∈ H1(F ∗,Z(G∗))∧ as explained in Setion 2.Proof. Denote by (G∗, F ∗) a pair dual to (G, F ). As explained in Setion 3.1, wean assoiate to every z ∈ H1(F ∗,Z(G∗)) a Gelfand-Graev harater Γz of G
∗F∗ .Reall that Γz is multipliity free. We an desribe more preisely the onstituentsof Γz as follows. Fix s ∈ S. Using Deligne-Lusztig haraters, Digne-Mihel de�nedin [6, 14.40℄ a lass funtion χs and proved that for every z ∈ H1(F ∗,Z(G∗)), thereis exatly one irreduible harater of G

F , denoted by χs,z , whih is a ommononstituent of χs and Γz and satisfying (see [6, 14.49℄):(6) Γz =
∑

s∈S

χs,z.Equation (6) implies |S| = 〈Γ1,Γ1 〉G∗F∗ . Now, thanks to Proposition 3.2, theresult follows. �We now will preise some notations. For a simple algebrai group G de�nedover Fq, if the orresponding Frobenius map is split, then we denote it by F+.Otherwise, if the Fq-struture is given by a non-split Frobenius, we denote it by
F−. Moreover, if G is of type X and has split and non-split Frobenius map F+and F−, then we put ǫX(q) = G

F ǫ for ǫ ∈ {−1, 1}.Fix some positive integer n and denote by Gsc a simple simply-onneted alge-brai group of type An. For any divisor r of n+1, there is a simple algebrai group
Gr of type An and a surjetive morphism πr : Gsc → Gr satisfying ker(πr) equals



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 7Type |S|

ǫArn(q) r | (n+ 1) m = gcd(r, q − ǫ)
∑

d/m φ(d)q
n+1

d
−1

Bn(q) adjoint q = 0 mod 2

q = 1 mod 2

qn

qn + qn−1

Cn(q) adjoint q = 0 mod 2

q = 1 mod 2

qn

qn + q⌊n/2⌋

ǫD2n+1(q) adjoint q = 0, 2 mod 4

q = ǫ mod 4

q = −ǫ mod 4

q2n+1

q2n+1 + 2qn−1 + q2n−1

q2n+1 + q2n−1

SOǫ
4n+2(q)

q = 0 mod 2

q = 1 mod 2

q2n+1

q2n+1 + q2n−1

ǫD2n(q) adjoint q = 0 mod 2

q = 1 mod 2

q2n

q2n + 2qn + q2n−2

SOǫ
4n(q)

q = 0 mod 2

q = 1 mod 2

q2n

q2n + q2n−2

HS4n(q)
q = 0 mod 2

q = 1 mod 2

q2n

q2n + qn

ǫE6(q) adjoint,p 6= 2
q = 0,−ǫ mod 3

q = ǫ mod 3

q6

q6 + 2q2

E7 adjoint,p 6= 3
q = 0 mod 2

q = 1 mod 2

q7

q7 + q4Table 1. Number of semisimple lasses for simple algebrai groups.the subgroup of Z(Gsc) of order r. If Gr is de�ned over Fq with Frobenius map
F ǫ, then put ǫArn(q) = G

F ǫ

r .Corollary 3.6. Let G be a simple algebrai group de�ned over Fq with orrespond-ing Frobenius map F . If G
F is isomorphi to G

F
sc, then the number of semisimplelasses of G

F is qn, where n is the semisimple rank of G. Otherwise, the numberof semisimple lasses of G
F is given in Table 1. As usually, we denote by φ theEuler funtion.Proof. Let G be a simple algebrai group de�ned over Fq with orresponding Frobe-nius F . Denote by (G∗, F ∗) a pair dual to (G, F ). In table 2, we reall simplealgebrai groups in duality.Fix a linear harater ζ of Z(G∗) and denote by L

∗
ζ a uspidal Levi subgroup of

Lmin(ker(ζ)). Write G
∗
sc for a simple simply-onneted group of the same versionas G

∗ and by π : G
∗
sc → G

∗ the universal over of G
∗. The endomorphism F ∗ of
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G G

∗

An Gr G(n+1)/r

Bn simply-onneted Cn of type adjointadjoint Cn of type simply-onneted
D2n+1 simply-onneted adjoint

SO4n+2 SO4n+2

D2n simply-onneted adjoint
SO4n SO4n

HS4n HS4n

E6 simply-onneted adjoint
E7 simply-onneted adjointTable 2. Groups in duality

G
∗ is indued by a unique Frobenius map (also denoted by F ∗) of G

∗
sc. Now, put

L̂
∗
ζ = π−1(L∗

ζ). Note that L̂
∗
ζ is a Levi subgroup of G

∗
sc with the same semisimplerank as L

∗
ζ . Moreover, following [1, 2.10℄, we dedue that L̂

∗
ζ ∈ Lmin(π−1(ker(ζ))).Note that, sine G

∗ is simple, one has ker(h
bL∗

ζ

) = π−1(ker(ζ)); see [1, 2.9℄.Suppose now that Z(G∗
sc) is yli of order N . Then Z(G∗) is yli of order

N ′ = N/| ker(π)|. Sine Im(ζ) is a subgroup of C× of order o(ζ) (we onsiderhere Irr(Z(G∗)) as a group with produt the tensor produt of haraters). it inpartiular follows that ker(ζ) has order N ′/ o(ζ). But there is only one subgroup
K of Z(G∗) of order N ′/ o(ζ) and L

∗
ζ is then a standard Levi of Lmin(K) onlydepending on o(ζ). Furthermore, one has

|π−1(K)| = |K|| ker(π)| = N / o(ζ).Sine Z(G∗
sc) is yli, π−1(K) is then the unique subgroup of order N/ o(ζ). Then

L̂
∗
ζ is a Levi subgroup of G

∗
sc satisfying | ker(h

bL∗

ζ

)| = N/ o(ζ).In [1, Table 2.17℄, Bonnafé expliitly omputes Lmin(K) for any subgroup K of
Z(G∗

sc). In Table 3, we reall some information that we need. For more details, werefer to [1℄. For the notation in Table 3, we put µn = {z ∈ F
×

p |z
n = 1}.Hene, using Table 3 we then an �nd the uspidal Levi subgroup (and itssemisimple rank) assoiated to every linear harater of Z(G∗) for G

∗ of type
An, Bn, Cn, E6 and E7 and D2n+1. For example, suppose G is of type An. Thenusing the notation preeding Corollary 3.6 , there is an integer r suh that G = Gr.Moreover, one has G

∗
r = Gr′ with r′ = (n + 1)/r. Note that |Z(Gr′)| = r. Let dbe a divisor of r and let ζ be a linear harater of Z(Gr′) of order d. Then L̂

∗
ζ hassemisimple rank equal to n+1

d (d− 1).Suppose G is of type D2n and denote by π : G
∗
sc → G

∗ the universal overof G
∗ as above. The group Z(G∗

sc) has order 4 and exponent 2. Moreover, thethree non-trivial haraters of Z(G∗
sc) have distint kernel. These kernels are thesubgroups of order 2 of Z(G∗

sc) denoted by c1, c2 and c3 in Table 3. Note that if



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 9Type of G Z(G) K
ss-rk(L)for L ∈ Lmin(K)

Z(L)

An µn+1

µ(n+1)/d

d | (n+ 1)

p ∤ d

n+1
d (d− 1) µd

Bn

p 6= 2
µ2 1 ⌊n+1

2 ⌋ µ2

Cn

p 6= 2
µ2 1 1 µ2

D2n+1

p 6= 2
µ4

1

µ2

n+ 2

2

µ4

µ2

D2n

p 6= 2
µ2 × µ2

1

c1

c2

c3

n+ 1

n

n

2

µ2 × µ2

µ2

µ2

µ2

E6

p 6= 3
µ3 1 4 µ3

E7

p 6= 2
µ2 1 3 µ2Table 3. Lmin(K) for simple simply-onneted groups

ker(π) = c3 then G
∗ = SO4n and if ker(π) ∈ {c1, c2}, then G

∗ = HS4n. Let ζ bea non-trivial linear harater of Z(G∗). Suppose �rst that G
∗ = G

∗
sc. Then, theorresponding uspidal Levi L∗

ζ is a uspidal standard Levi subgroup G
∗
sc suh that

ζ and hLζ
have the same kernel. If G

∗ = SO4n or G
∗ = HS4n , then Z(G∗) hasorder 2 and the semisimple rank of the uspidal Levi assoiated to the non-trivialharater of Z(G∗) equals the semisimple rank of any elements of Lmin(ker(π)) (inthe group G

∗
sc).We now disuss the onditions on q given in the seond olumn of Table 1.Suppose that Z(G∗) is yli of order N . Then, using [7, Table 1.12.6, 1.15.2℄, weshow that the order of H1(F ǫ∗,Z(G∗)) is the gd of N and q − ǫ. If Z(G∗) is notyli (i.e. G is of type D2n) and if p 6= 2, then H1(F ǫ∗,Z(G∗)) = Z(G∗); see [7,Table 1.12.6, 1.15.2℄.The result then follows from Theorem 3.5.

�



10 OLIVIER BRUNAT4. Results on semisimple haratersLet G be a onneted redutive group de�ned over Fq (with Frobenius map F ) asabove and let (G∗, F ∗) denote a dual pair of (G, F ). Write S (resp. T ) for a set ofrepresentatives of semisimple lasses of G
∗F∗ (resp. a set of representatives of F ∗-stable semisimple lasses of G

∗). Moreover, we suppose that the elements of T are
F ∗-stable (whih is possible beause by Lang-Steinberg Theorem, we an hoose an
F ∗-stable representative in every F ∗-stable geometri lass of G

∗). Put AG∗(s) =
CG∗(s)/CG∗(s)◦. Reall that the lasses of G

∗F∗ with representative t ∈ G
∗F∗onjugate to s in G

∗ are parametrized by the set of F ∗-lasses of AG∗(s). Moreover,
AG∗(s) is abelian, implying |H1(F ∗, AG∗(s))| = |AG∗(s)F

∗

|. Note that there isan injetive morphism between AG∗(s)F
∗ and H1(F,Z(G))∧. Hene |AG∗(s)F

∗

|divides |H1(F,Z(G))| and for every divisor d of |H1(F,Z(G))|, we put(7) Td =
{
s ∈ T | d = |AG∗(s)F

∗

|
}
.For s ∈ S and z ∈ H1(F,Z(G)), we set ρs,z = DG(χs,z), where the harater χs,zis the onstituent of the Gelfand-Graev harater Γz de�ned in Equation (6). Put

Irrs(G
F ) = {ρs,z | s ∈ S, z ∈ H1(F,Z(G))}.The irreduible haraters ρs,z are the so-alled semisimple haraters of G

F .Proposition 4.1. With the above notation, we have
| Irrs(G

F )| =
∑

d/|H1(F,Z(G))|

d2 |Td|.Proof. As explained in [6, p. 139℄, we embed G in a onneted redutive group withonneted enter G̃ with the same derived subgroup and suh that G is normal in
G̃. We extend F to G̃ (denoted by the same symbol). The inlusion G ⊆ G̃ induesa surjetive F ∗-equivariant morphism i∗ : G̃

∗ → G
∗. For s ∈ S, there is an F ∗-stable semisimple s̃ of G̃∗ suh that i∗(s̃) = s. Write ρ

es for the semisimple haraterof G̃F orresponding to s (this harater is unique beause H1(F,Z(G̃)) is trivial).Then by [6, 14.49℄, the harater ρs,1 is a onstituent of Res
eG

F

GF (ρ
es). Moreover, theinertial group G̃

F (s) of ρs,1 in G̃
F is suh that G̃

F /G̃F (s) ≃ AG∗(s)F
∗ . Thusby Cli�ord theory, sine Res

eG
F

GF (ρ
es) is multipliity free (see [9℄), we dedue that

Res
eG

F

GF (ρ
es) has |AG∗(s)F

∗

| onstituents. It follows that
| Irrs(G

F )| =
∑

s∈S

|AG∗(s)F
∗

| =
∑

t∈T

∑

s∈S∩[t]G∗

|AG∗(s)F
∗

| =
∑

t∈T

|AG∗(t)F
∗

|2.The result follows. �Proposition 4.2. We keep the same notation as above and we suppose that p is agood prime for G. Suppose that H1(F,Z(G)) has prime order ℓ. Let ζ be a nontrivial linear harater of H1(F,Z(G)). Write L for its assoiated uspidal Levisubgroup. Then we have
| Irrs(G

F )| = |Z(G)◦F |
(
ql + (ℓ2 − 1)ql−(ss-rk(L))

)
,where l denotes the semisimple rank of G. In partiular, in Table 4, we give thenumber of semisimple haraters of G

F for simple groups G with Z(G))F of primeorder. For the notation of Table 4, we put m = gcd(r, q − ǫ).



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 11
G
F
sc | Irrs(GF

sc)|

ǫArn(q) m prime qn + (m2 − 1)q
n+1

m
−1

Bn(q) q = 1 mod 2 qn + 3q⌊n/2⌋

Cn(q) q = 1 mod 2 qn + 3qn−1

ǫD2n+1(q) q = −ǫ mod 4 q2n+1 + 3q2n−1

SOǫ
2n(q) q = 1 mod 2 qn + 3qn−2

HS4n(q) q = 1 mod 2 q2n + 3qn

ǫE6(q), p 6= 2 q = ǫ mod 3 q6 + 8q2

E7(q), p 6= 3 q = 1 mod 2 q7 + 3q4Table 4. Number of semisimple haraters.Proof. We denote by T1 and Tℓ the sets as de�ned in Equation (7). We have
|T | = |T1| + |Tℓ| and |S| = |T1| + ℓ|Tℓ| implying

|T1| =
1

ℓ− 1
(ℓ|T | − |S|) and |Tℓ| =

1

ℓ− 1
(|S| − |T |).Furthermore, from [6, 14.42℄ we dedue that |T | = |Z(G)◦F |ql. Moreover, sine ℓ isprime, all non trivial linear haraters of H1(F,Z(G)) are faithful on H1(F,Z(G)).Their orresponding haraters ofZ(G) then have the same kernel (equal to L(Z(G))).Thus, they are assoiated to a same uspidal Levi subgroup L, whih is the standardLevi of Lmin(L(Z(G))). Thanks to Theorem 3.5 we dedue that

|S| = |Z(G)◦F |
(
ql + (ℓ − 1)ql−(ss-rk(L))

)
.Now, using Proposition 4.1, we obtain

| Irrs(G
F )| = |T1| + ℓ2|Tℓ|

= (ℓ + 1)|S| − ℓ|T |
= |Z(G)◦F |

(
(ℓ+ 1)ql + (ℓ2 − 1)ql−(ss-rk(L)) − ℓql

)

= |Z(G)◦F |
(
ql + (ℓ2 − 1)ql−(ss-rk(L))

)
.Now, Table 4 follows from Table 3. However, note that for G = SO2n, we have todistinguish whether n is even or not. If n = 2k+ 1, then the number of semisimpleharaters of SOǫ

4k+2(q) is q2k+1 +3q2k−1 = qn+3qn−2. If n = 2k, then the numberof semisimple haraters of SOǫ
4k(q) is q2k + 3q2k−2 = qn + 3qn−2. �5. Charaters of p′-order in Borel subgroups5.1. Formula for the number of p′-haraters. In this setion, we keep thesame notation as above. In partiular, T denotes a maximal F -stable torus of Gontained in an F -stable Borel subgroup B of G. We onsider the group

B0 = U1 ⋊ T,where U1 = B/U0 (see �3.1 for the notation). Note that B0 is F -stable and
B
F
0 = U

F
1 ⋊ T

F . Moreover, the set Irrp′(B
F ) is in bijetion with the set Irr(BF

0 );see [2, Lemma 4℄. As in the proof of Proposition 4.1, we onsider G̃ a onneted



12 OLIVIER BRUNATredutive group with onneted enter ontaining G and suh that they have thesame derived subgroup. We denote by T̃ the unique F -stable maximal torus of
G̃ ontaining T. We denote by Ω and Ω̃ the sets of T

F -orbits and T̃
F -orbits on

Irr(UF
1 ), respetively. As in Equation (1), we denote by O the set of F -orbits on

∆. Moreover, for every ω ∈ O, we �x a non-trivial harater φω of X
F
ω (for thenotation, see Equation (1)). For J ⊆ O, we set

φJ = 1J ⊗
∏

ω∈J

φω ,where 1J =
∏
ω/∈J 1XF

ω
. Then by [4, 2.9, 8.1.2℄, the set {φJ | J ⊆ O} is a set ofrepresentatives of Ω̃.Proposition 5.1. We keep the notation as above. For every J ⊆ O, we denoteby ΩJ (resp. ΩJ,1) the element of Ω̃ (resp. Ω) ontaining φJ . Moreover, we set

nJ = |ΩJ |/|ΩJ,1|. Then
| Irrp′(B

F )| =
∑

J⊆O

nJ |CTF (φJ )|.Proof. First remark that nJ is an integer. Indeed, sine T
F ⊆ T̃

F , we dedue that
ΩJ is a disjoint union of T

F -orbits. In partiular, there is k suh that(8) ΩJ =

k⊔

i=1

ΩJ,i,where ΩJ,i ∈ Ω (the notation is hosen suh that φJ = φJ,1 ∈ ΩJ,1). Moreover,for every 1 ≤ i ≤ k, |ΩJ,i| = |ΩJ,1| beause ΩJ,i and ΩJ,1 are onjugate by anelement of T̃
F . Then |ΩJ,1| divides |ΩJ | and nJ = k. For 1 ≤ i ≤ nJ , �x ti ∈ T̃

Fsuh that φJ,i = tiφJ,1 ∈ ΩJ,i and denote by CTF (φJ,i) the stabilizer of φJ,i in T
F .Then the inertial subgroup IJ,i of φJ,i in B

F
0 is U

F
1 ⋊ CTF (φJ,i). Moreover, sine

U
F
1 is abelian, we an extend φJ,i to IJ,i setting φ̃J,i(ut) = φJ,i(u) for u ∈ U

F
1and t ∈ CTF (φJ,i). Then, by Cli�ord theory, the haraters of B

F
0 suh that φJ,iis a onstituent of their restritions to U

F
1 are exatly the irreduible haraters

Ind
B

F
0

IJ,i
(φ̃J,i ⊗ ψ) with ψ ∈ Irr(CTF (φJ,i)). There are |CTF (φJ,i)| suh haraters.Hene, we dedue

| Irr(BF
0 )| =

∑

J⊆O

nJ∑

i=1

|CTF (φJ,i)|.Furthermore, we have |CTF (φJ,i)| = |ti CTF (φJ,1)|. The result follows. �For J ⊆ O, we de�ne(9) m(J) =
⊔

ω∈J

ω.Note that m(J) ⊆ ∆ and F (m(J)) = m(J).Lemma 5.2. We keep the notation as above. For J ⊆ O, we assoiate to φJ the
F -stable standard Levi subgroup Lm(J) where m(J) is the subset of ∆ de�ned inRelation (9). Then we have

nJ = |H1(F,Z(Lm(J)))| and |CTF (φJ )| = nJ |Z(G)◦F |
∏

ω∈O\J

(q|ω| − 1),



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 13where nJ is the integer de�ned in Proposition 5.1.Proof. Reall that ΩJ (resp. ΩJ,1) is the T̃
F -orbit (resp. T

F -orbit) of φJ . ByEquation (8), one has
|ΩJ | = nJ |ΩJ,1|.Moreover, as explained in the proof of [4, 8.1.2℄, we have |ΩJ | =

∏
ω∈J(qω − 1). Itthen follows that

|CTF (φJ )| = nJ
|TF |∏

ω∈J(q|ω| − 1)
.Furthermore, by [4, 2.9℄, we have |TF | = |Z(G)◦F |

∏
ω∈O(q|ω| − 1). Hene wededue

|CTF (φJ )| = nJ |Z(G)◦F |
∏

ω∈O\J

(q|ω| − 1).Let Lm(J) be the standard F -stable Levi subgroup of G orresponding to the subsetof simple roots m(J). Denote by Bm(J) ⊆ B an F -stable Borel subgroup of Lm(J)and by Um(J) the unipotent radial of Bm(J). The set m(J) is the set of simpleroots of Lm(J) assoiated to Bm(J). In partiular, Equation (1) applied to theonneted redutive group Lm(J) gives
U
F
1,m(J) =

∏

ω∈J

X
F
ω .We denote by φ′J the restrition of φJ to U

F
1,m(J). Then φ′J ∈ Irr(UF

1,m(J)) andthe map Irr(UF
1,m(J)) → Irr(UF

1 ), ϑ 7→ 1J ⊗ ϑ, is T
F -equivariant. Moreover, notethat φ′J is a regular harater of U

F
1,m(J). Hene, using [6, 14.28℄, we dedue that

nJ = |H1(F,Z(Lm(J)))| as required. �Corollary 5.3. With the above notation, one has
| Irrp′(B

F )| = |Z(G)◦F |
∑

J⊆O

|Z(Lm(J))
F |2

∏

ω∈O\J

(q|ω| − 1),where m(J) is the subset of ∆ assoiated to J as in Equation (9).Proof. It is a diret onsequene of Proposition 5.1 and Lemma 5.2 and the equality
|H1(F,Z(Lm(J)))| = |Z(Lm(J))

F |. �In the following, we will need the following result.Lemma 5.4. Fix I ∈ O and put I = O\I. Then we have
∑

I⊆J⊆O

∏

ω/∈J

(q|ω| − 1) = q|m(I)|,where m is the map de�ned in Equation (9).Proof. First remark that
∑

I⊆J⊆O

∏

ω/∈J

(q|ω| − 1) =
∑

J⊆I

∏

ω∈J

(q|ω| − 1).Furthermore, for every �nite set A and f : A→ R, one has(10) ∏

a∈A

(f(a) + 1) =
∑

J⊆A

∏

a∈J

f(a).



14 OLIVIER BRUNATWe apply Equation (10) with A = I and f : I → R, ω 7→ q|ω| − 1 and we dedue
∑

J⊆I

∏

ω∈J

(q|ω| − 1) =
∏

ω∈I

q|ω|

= q
P

ω∈I
|ω|Moreover, Equation (9) implies |m(I)| =

∑
ω∈I |ω| and the result follows. �Remark 5.5. If the enter ofG is onneted, then the enter of every Levi subgroup

L of G is onneted (beause the map hL is surjetive). In partiular, Corollary 5.3and Lemma 5.4 (applied with I = ∅) give
| Irrp′(B

F )| = |Z(G)F |q|m(O)| = |Z(G)F |q|∆|,whih is a well-known result; see [2, Remark 1℄.5.2. The ase of quasi-simple groups. In this setion, we suppose that G isa quasi-simple algebrai group. We keep the notation as above. Reall that for
I ⊆ ∆, the map hLI

: Z(G) → Z(LI) denotes the surjetive map indued bythe inlusion Z(G) ⊆ Z(LI). Moreover, reall that for every subgroup K of Z(G),there is I ⊆ ∆ suh that K = ker(hLI
) (we use here the fat that G is quasi-simple;see [1, 2.9℄). Then we denote by IK a subset of ∆ suh that K = ker(hLIK

) and
IK is minimal (for the inlusion). In partiular, LIK

∈ Lmin(K).Proposition 5.6. With the above notation, if p is good for G, we have
| Irrp′(B

F )| = |Z(G)◦F |
∑

K≤Z(G)F

|Z(G)F |2

|K|2


q|IK | −

∑

K′∈max(K)

q|IK′ |


 ,where max(K) denotes the set of maximal proper subgroups of K.Proof. For a subgroup K of Z(G), we de�ne

AK = {I ∈ ∆ | IK ⊆ I} and BK = {J ∈ O | ker(hLm(J)
) = K}.where m(J) is the subset of ∆ assoiated to J de�ned in Equation (9). ThenCorollary 5.3 implies

| Irrp′(B
F )| = |Z(G)◦F |

∑

K≤Z(G)F

∑

J∈BK

|Z(Lm(J))
F |2

∏

ω/∈J

(q|ω| − 1)

= |Z(G)◦F |
∑

K≤Z(G)F

|Z(Lm(J))
F |2

∑

J∈BK

∏

ω/∈J

(q|ω| − 1),beause for J ∈ BK , the numbers |Z(Lm(J))
F | are onstant. Furthermore, one has

BK = {J ∈ O | ker(hLm(J)
) ⊆ K}\{J ∈ O | ker(hLm(J)

) ( K}.Note that LIK
is F -stable. Then IK is a union of some F -orbits lying in a subset

ĨK of O, suh that m(ĨK) = IK . Sine LIK
∈ Lmin(K), it follows

{J ∈ O | ker(hLm(J)
) ⊆ K} = {J ∈ O | ĨK ⊆ J}.Moreover, one has

{J ∈ O | ker(hLm(J)
) ( K} =

⊔

K′∈max(K)

{J ∈ O | ker(hLm(J)
) ⊆ K ′}

=
⊔

K′∈max(K)

{J ∈ O | ĨK′ ⊆ J}.



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 15Thus, if we put CK = {J ∈ O | ĨK ⊆ J}, then it follows
∑

J∈BK

∏

ω/∈J

(q|ω| − 1) =
∑

J∈CK

∏

w/∈J

(q|w| − 1) −
∑

K′∈max(K)

∑

J∈CK′

∏

ω/∈J

(q|ω| − 1)

= q|∆\m(eIK)| −
∑

K′∈maxK

q|∆\m(eIK′)|.The last equality omes from Lemma 5.4. Moreover, we have hLm(J)
(Z(G)F ) =

Z(Lm(J))
F implying |Z(Lm(J))

F | = |Z(G)F /K|. The result follows. �Proposition 5.7. Let G be a onneted redutive group de�ned over Fq with or-responding Frobenius F . Suppose p is a good prime for G and Z(G)F has primeorder ℓ. Put r = |I| for LI in Lmin({1}). Then we have
| Irrp′(B

F )| = |Z(G)◦F |
(
ql + (ℓ2 − 1)ql−r

)
,where l is the semisimple rank of G.Proof. First remark that we do not suppose that G is quasi-simple. Indeed, the set

Lmin({1}) is non-empty. If we denote by LI a standard Levi lying in Lmin({1}),then we have ker(hLI
) = {1}. Hene I = I{1} (see the beginning of �5.2 for thenotation). Moreover, we always have IZ(G)F = ∅. We an then apply the proof ofProposition 5.6. We obtain

| Irrp′(B
F )| = |Z(G)◦F |

(
|Z(G)F |2q|∆|−r + q|∆| − q|∆|−r

)

= |Z(G)◦F |
(
q|∆| + (|Z(G)F |2 − 1)q|∆|−r

)
.Sine |∆| is the semisimple rank of G, the result follows. �Remark 5.8. For a group G as in Proposition 5.7, if ζ denotes a non-trivialharater of H1(F,Z(G)) and Lζ its assoiated uspidal Levi of G, then Lζ is F -stable and ker(hLζ

) is trivial. Then Lζ ∈ Lmin({1}). In partiular, the number rof Proposition 5.7 is equal to the semisimple rank of Lζ , implying
| Irrp′(B

F )| = |Z(G)◦F |
(
ql + (ℓ2 − 1)ql−(ss-rk(Lζ))

)
.Comparing with Proposition 4.2, we dedue

| Irrp′(G
F )| = | Irrp′(B

F )|.Hene, this then proves that, if p is a good prime for G and H1(F,Z(G) has primeorder, then the MKay onjeture holds for G in de�ning harateristi.Proposition 5.9. If G is a simple and simply-onneted algebrai group of type
D2n, then

| Irrp′(B
F )| = q2n + 3q2n−2 + 6qn + 4qn−1.If G is a simple and simply-onneted algebrai group of type D2n+1 with H1(F,Z(G))of order 4, then

| Irrp′(B
F )| = q2n+1 + 3q2n−1 + 12qn−1.



16 OLIVIER BRUNATProof. If G is simple and simply-onneted group of type D2n, then Z(G)F is a�nite group of order 4 with exponent 2. Denote by c1, c2 and c3 its subgroups oforder 2. Moreover, using Table 3, we dedue
K |IK |

{1} n− 1

c1 n

c2 n

c3 2n− 2

Z(G)F 2n

K |IK |

{1} n− 1

Z2 2n− 1

Z(G)F 2n+ 1Type D2n Type D2n+1The result then follows from Proposition 5.6. �6. Restrition of semisimple haraters to the enterIn this setion, we keep the notation as above. To simplify the notation, we set
G = G

F , Z = Z(G)F and U = U
F . For z ∈ H1(F,Z(G)) and ν ∈ Irr(Z), we put

Γz,ν = IndGZU (ν ⊗ φz),where φz is the regular harater of U orresponding to z. Note that by Cli�ordtheory, one has
IndZUU (φz) =

∑

ν∈Irr(Z)

ν ⊗ φz .We then dedue that
Γz =

∑

ν∈Irr(Z)

Γz,ν .Lemma 6.1. Denote by Ez and Ez,ν the set of onstituents of Γz and Γz,ν , respe-tively. Then
Ez,ν = {χ ∈ Ez | 〈ResGZ (χ), ν 〉Z 6= 0}.Proof. We denote by R a set of representatives of the double osets ZU\G/Z.Therefore, for ϕ ∈ Irr(ZU), Makey's theorem implies

ResGZ (IndGZU (ϕ)) =
∑

r∈R

IndZr(ZU)∩Z

(
Resr(ZU)∩Z(rϕ)

)

=
∑

r∈R

ResZ (rϕ) .(11)Fix now ν, ν′ ∈ Irr(Z). Then Equation (11) applied with ϕ = ν ⊗ φz implies
〈Γz,ν , IndGZ (ν′) 〉G = 〈ResGZ (Γz,ν) , ν

′ 〉Z

= 〈
∑

r∈R

ν, ν′ 〉Z

= |R|〈 ν, ν′ 〉Z

= |R|δν,ν′ .The result then follows. �



COUNTING p′-CHARACTERS IN FINITE REDUCTIVE GROUPS 17Remark 6.2. Note that if we denote by Fz and Fz,ν the set of onstituents of
DG(Γz) and DG(Γz,ν), respetively, then Fz,ν = {χ ∈ Ez | 〈ResGZ (χ, ν 〉Z 6= 0}.Indeed, by [6, 12.8℄ and [10, 2.2℄, DG(IndGZ (ν)) = IndGZ (ν). In partiular, DGindues a bijetion between Ez,ν and Fz,ν .Lemma 6.3. With the above notation, for z, z′ ∈ H1(F,Z(G)) and ν, ν′ ∈ Irr(Z),one has

〈Γz,ν ,Γz′,ν 〉G = 〈Γz,ν′ ,Γz′,ν′ 〉G.Proof. We have to show that the salar produt 〈Γz,ν ,Γz′,ν 〉G does not depend on
ν. First remark that it follows from Lemma 6.1 that

〈Γz,ν ,Γz′,ν 〉G = 〈Γz,ν ,Γz′ 〉G.Denote by R a set of representatives of the double osets UZ\G/U . Then Makey'stheorem implies
〈Γz,ν ,Γz′ 〉G = 〈ResGU

(
IndGZU (ν ⊗ φz)

)
, φz′ 〉U

=
∑

r∈R

〈 IndUr(UZ)∩U

(
Resr(UZ)∩U (r(ν ⊗ φz)

)
, φz′ 〉U

=
∑

r∈R

〈 IndUrU∩U (rφz), φz′ 〉U .Note that the salar produt in the last equality does not depend on ν. This provesthe laim. �Corollary 6.4. With the above notation, for z, z′ ∈ H1(F,Z(G)) and ν ∈ Irr(Z),we have
〈Γz,ν ,Γz′,ν 〉G =

1

|Z|
〈Γz,Γz′ 〉G.Proof. We have

〈Γz ,Γz′ 〉G =
∑

ν, ν′∈Irr(Z)

〈Γz,ν ,Γz′,ν′ 〉G.If ν 6= ν′, we have 〈Γz,ν ,Γz′,ν′ 〉G = 0 beause by Lemma 6.1, the onstituents of
Γz,ν (resp. of Γz′,ν′) are onstituents of IndGZ (ν) (resp. IndGZ (ν′)) and the haraters
IndGZ (ν) and IndGZ (ν′) have no onstituents in ommon. Then

〈Γz,Γz′ 〉G =
∑

ν∈Irr(Z)

〈Γz,ν ,Γz′,ν 〉G.The result is now a onsequene of Lemma 6.3 �Proposition 6.5. With the above notation, if p is a good prime for G and theenter of G is onneted, then for every linear harater ν of Z(GF ), one has
| Irrs(G

F |ν)| =
1

|Z(GF )|
| Irrs(G

F )|.Proof. Sine the enter of G is onneted, there is only one Gelfand-Graev harater
Γ1. Moreover, Remark 6.2 implies

| Irrs(G
F |ν)| = 〈Γ1,ν ,Γ1,ν 〉GF .



18 OLIVIER BRUNATFurthermore, one has | Irrs(GF )| = 〈Γ1,Γ1 〉GF . The result follows from Lemma 6.4
�Proposition 6.6. With the above notation, if p is a good prime for G and thegroup H1(F,Z(G)) has prime order ℓ, then for every linear harater ν of Z(GF ),one has

| Irrs(G
F |ν)| =

1

|Z(GF )|
| Irrs(G

F )|.Proof. We onsider G̃ a onneted redutive group with onneted enter as in theproof of Proposition 4.1. Fix s a semisimple element of G
∗F∗ and s̃ a semisimpleelement of G̃∗F∗ suh that i∗(s̃) = s. In the proof Proposition 4.1, we have seen that

Res
eG

F

GF (ρ
es) has |AG∗(s)F

∗

| onstituents. In fat, the onstituents of Res
eG

F

GF (ρ
es) arein bijetion with Irr(AG∗(s)F

∗

). We denote by ρs,ϑ the onstituent orrespondingto ϑ ∈ Irr(AG∗(s)F
∗

). Moreover, this bijetion ould be hosen suh that thereis a surjetive morphism ωs : H1(F,Z(G)) → Irr(AG∗(s)F
∗

) satisfying ρs,ϑ (for
ϑ ∈ Irr(AG∗(s)F

∗

)) is a onstituent of DG(Γz) for z ∈ H1(F,Z(G)) if and onlyif ωs(z) = ϑ. In partiular, the harater ρs,ϑ lies in |H1(F,Z(G))|/|AG∗(s)F
∗

|di�erent duals of Gelfand-Graev haraters of GF . Furthermore, H1(F,Z(G)) hasprime order ℓ. It follows that a semisimple harater of G
F is either a onstituentof only one D(Γz) or of all. We keep the notation of Remark 6.2 and put, for

ν ∈ Irr(Z(GF ))

Fν =
⋂

z∈H1(F,Z(G))

Fz,ν .The above disussion implies that if z 6= z′, then(12) Fz,ν ∩ Fz′,ν = Fν .Moreover, one has
Irrp′(G

F |ν) =
⋃

z∈H1(F,Z(G))

Fz,ν .Therefore,
| Irrp′(G

F |ν)| = |
⋃

z∈H1(F,Z(G))

Fz,ν |

=

ℓ∑

k=1

(−1)k+1
∑

I⊆H1(F,Z(G)),|I|=k

|
⋂

z∈I

Fz,ν |

=
∑

z

|Fz,ν | + |Fν |
ℓ∑

k=2

(−1)k+1
∑

I⊆H1(F,Z(G)),|I|=k

1

=
∑

z

|Fz,ν | + |Fν |
ℓ∑

k=2

(−1)k+1

(
ℓ
k

)

=
∑

z

|Fz,ν | + |Fν |(1 − ℓ).Note that, sine the haraters Γz,ν are multipliity free, one has |Fz,ν | = 〈Γz,ν ,Γz,ν 〉GFand |Fν | = 〈Γz,ν ,Γz′,ν 〉GF where z and z′ are two �xed distint elements of
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H1(F,Z(G)). Fix two suh elements z and z′. Then Corollary 6.4 implies

|Fz,ν | =
1

|Z(GF )|
〈Γz,Γz 〉GF and |Fν | =

1

|Z(GF )|
〈Γz,Γz′ 〉GF .Denote by L the uspidal Levi subgroup assoiated to every non-trivial haraterof H1(F,Z(G)) and by l the semisimple rank of G. Proposition 3.2 gives

〈Γz,Γz 〉 = |Z◦|
(
ql − (ℓ− 1)ql−(ss-rk(L))

) and 〈Γz,Γz′ 〉 = |Z◦|
(
ql − ql−(ss-rk(L))

)
,with Z◦ = Z(G)◦F . It follows

| Irrs(G
F |ν)| =

1

|Z(GF )|
|Z◦|

(
ql − (ℓ2 − 1)ql−(ss-rk(L))

)

=
1

|Z(GF )|
| Irrs(G

F )|.The last equality omes from Proposition 4.2. �Remark 6.7. As we remark in [3℄, the number | Irrp′(BF |ν)| does not depend on
ν for all ν ∈ Z(GF ) and

| Irrp′(B
F |ν)| =

1

|Z(GF )|
| Irrp′(B

F )|.Suppose now that p is a good prime for G and H1(F,Z(G)) has prime order. Then,thanks to Remark 5.8 and Proposition 6.6, we dedue
| Irrp′(B

F |ν)| = | Irrp′(G
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