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COUNTING p'-CHARACTERS IN FINITE REDUCTIVE GROUPS

OLIVIER BRUNAT

ABsTrACT. This article is concerned with the relative McKay conjecture for
finite reductive groups. Let G be a connected reductive group defined over
the finite field Fq of characteristic p > 0 with corresponding Frobenius map
F. We prove that if the F-coinvariants of the component group of the center
of G has prime order and if p is a good prime for G, then the relative McKay
conjecture holds for G at the prime p. In particular, this conjecture is true
for G in defining characteristic for a simple and simply-connected group G
of type Bn, Cn, Eg and E7. Our main tools are the theory of Gelfand-Graev
characters for connected reductive groups with disconnected center developed
by Digne-Lehrer-Michel and the theory of cuspidal Levi subgroups. We also
explicitly compute the number of semisimple classes of G¥ for any simple
algebraic group G.

1. INTRODUCTION

Let G be a finite group and p be a prime divisor of |G|. As usually, we denote
by Irr(G) the set of irreducible characters of G and by Irr, (G) the subset of irre-
ducible characters with degree prime to p. For any fixed p-Sylow subgroup P of
G, John McKay has conjectured that |Irr, (G)| = |Irry (Ng(P))|. This is actually
proved for some groups but remains open in general. Recently, Isaacs, Malle and
Navarro reduced this conjecture to a new question, the so-called inductive McKay
condition, which concerns properties of perfect central extensions of finite simple
groups; see [§].

In this article, we are interested in the relative McKay conjecture, asserting that
for every linear character v of the center Z of G, if Irr, (G|v) denotes the subset of
characters x € Irr, (G) lying over v (i.e. satisfying ( x,Ind$(v))e # 0), then one
has the equality |Irr, (G|v)| = |Irry (Ng(P)|v)|- In order to prove the inductive
McKay condition, we in particular have to show that the relative McKay conjecture
holds for some perfect central extensions of finite simple groups. This is one of the
motivations to consider this question in this work.

Let G be a connected reductive group defined over a finite field with ¢ elements I,
of characteristic p > 0 with corresponding Frobenius map F': G — G. Throughout
this paper, we will always assume that p is a good prime for G, that is p does not
divide the coeflicients of the highest root of the root system associated to G (see [4}
1.14]). Let T be a maximal F-stable torus of G contained in an F-stable Borel
subgroup B of G and let U denote the unipotent radical of B (which is F-stable).
Note that, if U is not trivial, then the prime p divides the order of the finite
fixed-point subgroup G and the subgroup UF C G¥ is a p-Sylow subgroup of
G!'. Moreover, one has Ngr(U¥) = BF. If the center of G is connected, then
the McKay conjecture is true for the group G at the prime p. We will see in the
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following that the relative McKay conjecture holds in this case (see Proposition [6.5]).
This question is more difficult when the center of G is disconnected. In this article,
we will solve it in a special situation. Denote by Z(G) = Z(G)/ Z(G)° the group
of components of the center of G and by H'(F, Z(G)) the set of the F-classes of
Z(G). Then our main result is the following.

Theorem 1.1. Let G be a connected reductive group defined over the finite field
F, of characteristic p > 0 and let F' : G — G denote the corresponding Frobenius
map. Let T be a mazximal F-stable torus contained in an F'-stable Borel subgroup
B of G. If p is a good prime for G and if the group H'(F, Z(G)) is trivial or has
prime order, then for every linear character v of Z(GT'), one has

[Tz (GF|v)] = [ Trry (B o).

As consequence, this proves the relative McKay conjecture in defining charac-
teristic for GI" with G a simple group given in Table Hl

This paper is organized as follows. In Section 2] we recall some results from
Bonnafé [I] on the cuspidal Levi subgroups of connected reductive groups. We will
need this theory first, in order to associate to every linear character of Z(G) a
cuspidal Levi subgroup of G (corresponding to a cuspidal local system in Lusztig
theory), and secondly to control the disconnected part of the inertial subgroup of
linear characters of UF". In Section[3, we apply the theory of Gelfand-Graev charac-
ters of G for connected reductive group G with disconnected center, developed by
Digne-Lehrer-Michel in [5]. Note that we need here that p is a good prime for G. In
particular, we give a formula to compute the scalar product of two Gelfand-Graev
characters; see Proposition As consequence, we obtain an explicit formula for
the number of semisimple classes of G (see Theorem [B.5) and compute this num-
ber for G with G any simple algebraic group; see Corollary 3.6l Recall that the
constituents of the duals of Gelfand-Graev characters (for the Alvis-Curtis duality
functor) are the so-called semisimple characters of G¥. When p is a good prime
for G, the semisimple characters are the p’-characters of G (that is, the elements
of Irr,y (GT')). In Section M, using the results of Section [3, we compute the number
of semisimple characters of G when H'(F, Z(G)) has prime order; see Proposi-
tion In Section Bl we give a formula for the number of p’-characters of B
depending on the cuspidal Levi subgroups of Gj; see Proposition Finally, in
Section B we show that if the center of G is connected or if H!(F, Z(G)) has prime
order, then for a linear character v of Z(G*") the number of semisimple characters
of GT' lying over v does not depend on v; see Proposition and Proposition
We can then prove Theorem [[T} see Remark

2. CUSPIDAL LEVI SUBGROUPS AND CENTRAL CHARACTERS

Let G be a connected reductive group defined over F, with corresponding Frobe-
nius map F' : G — G. As above, we denote by T a maximal F-stable torus of G
contained in an F-stable Borel subgroup B of G. Write ® for the root system of
G and @71 for the set of positive roots with respect to B. Denote by A the set
of corresponding simple roots and by W the Weyl group of G with respect to T,
identified with the quotient N(T)/T. Moreover, we associate to every a € @ a
reflection w, € W and for any subset I of A, we denote by W; the subgroup of
W generated by w, for a € I. The subgroup P; = BW;B is a standard parabolic
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subgroup of G (relative to B). We denote by L; the Levi subgroup of P containing
T. Note that every Levi subgroup L of G is conjugate in G to a Levi L; for some
subset I of A.

Let L be a Levi subgroup of G. Then the inclusion Z(G) C Z(L) induces a
surjective map

hi: Z2(G) — Z(L),

where Z(G) = Z(G)/Z(G)°. We recall that G is cuspidal if ker(hy,) # {1} for
every proper Levi L of G. Moreover, a linear character ¢ of Z(G) is cuspidal if, for
every Levi subgroup L of G, the subgroup ker(hy,) is not contained in ker(().

Let ¢ be a linear character of Z(G). Then there is a Levi subgroup L (which is
cuspidal) and a cuspidal character (1, of Z(L) such that

¢=CLohw.
More precisely, for a subgroup K of Z(G), denote by Lo(K) the set of Levi sub-
groups L of G such that ker(hr,) C K and by Ly, (K) the subset of minimal ele-
ments of L£o(K). In [I, 2.16], Bonnafé proves that the Levi subgroups of £in(K)
are cuspidal and G-conjugate. Therefore, we associate to the linear character ¢ of
Z(G) a standard Levi L; of Liyin(ker(¢)). Note that all Levi subgroups in £yin (K)
have the same semisimple rank.

Let H(F, Z(G)) be the set of F-classes of Z(G). Since Z(G) is abelian, the
Lang map L : Z(G) — Z(G) : g +— g~ 'F(g) is a morphism of groups and we have
HY(F,Z2(G)) = Z(G)/L(Z(GQ)). In particular, a character ¢ of H'(F, Z(G)) can
be seen as a character of Z(G) with £(Z(G)) in its kernel. Hence, we can associate
to every character ¢ of H'(F, Z(G)) a cuspidal Levi L of G and a cuspidal (1, of
Z(L). Note that L can be chosen F-stable and with this choice, (1, is F-stable.

In the following, we write H'(F, Z(G))" for the set of irreducible characters of
HY(F, Z(G)).

3. NUMBER OF SEMISIMPLE CLASSES

3.1. Gelfand-Graev characters. Let G be a connected reductive group defined
over F, with Frobenius map F' : G — G. We denote by T a maximal F-stable
torus of G contained in an F-stable Borel subgroup B of G. We write U for the
unipotent radical of B. We recall that p is supposed to be a good prime for G.

As above, we denote by ® the root system of G, by ®* the set of positive roots
with respect to B and by A the set of corresponding simple roots. We write X,
for the non-trivial minimal closed unipotent subgroup of U normalized by T and
corresponding to the root o € ®T. Recall that the Frobenius map F induces a
permutation on ® such that F(®+) = & and F(A) = A. Put

U= ][] X
acedPT\A

Denote by U; the quotient U/Uy and write 7y, : U — U; for the canonical
projection map. Then we have Uy ~ ] . Xq and

(1) ul = [[ xZ,
we©
where O is the set of F-orbits on A and X, = Ha€w X,.. Recall that an element

of G is regular if its centralizer has a minimal possible dimension. By [6] 14.14] the
regular unipotent elements of U are the elements v € U such that for every o € A,
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U, (W) # 1. Moreover by [6], 14.25], the set of regular unipotent classes of G are
parametrized by H'(F, Z(G)). For z € HY(F, Z(G)), denote by U, the conjugacy
class of unipotent elements corresponding to z and put

U.|/|GF| ifgel.

0

L (F
122G =Gy { otherwise

Recall that a linear character ¢ of UY is a regular character if it has U} in its
kernel and if the induced linear character on Uf" (always denoted by 1) satisfies

Resgg (¢) # 1xr for every w € O. By [6, 14.28], the set of TF-orbits of regular
characters of U is parametrized by H'(F, Z(G)) as follows.

Fix v a regular linear character of U and z € H'(F, Z(G)). Choose t, € T
such that t;1F(¢,) Z(GT') = z. Then the T -orbit of the regular characters of U
corresponding to z has 1), =% 4 for representative.

We now can define the Gelfand-Graev characters of G by setting for every
z€ HY(F, Z2(Q))

I, = ndSr(¢.).
Denote by Dg the Alvis-Curtis duality map. For z € H(F, Z(G)), there is a
virtual character ¢, of UF (see the proof of [6, 14.33]) with UZ in its kernel, which
is zero outside regular unipotent elements and satisfying

De(T.) = IndSr (¢.).
In particular, Dg(T';) is constant on U, and there are complex numbers c, . (for
2 € HY(F, 2(G))) with
2) Da(T2)= Y covar
z’€HY(F,Z(G))

Following [5], we now recall how to compute the coefficients c. ... For this, we
need some notations. For z € H(F, Z(G)), put

0, = Z ¢(U)a

Ppew, 1

where u € U; and ¥, denotes the T -orbit of 1),. Moreover, for any character ¢ of
HY(F, Z2(G)), we define
o = Z ((2)o,.
z€HY(F,Z(G))

In [5, 2.3,2.5], the following result is proven.

Proposition 3.1. With the above notation, if p is a good prime for G, then the ma-
triz (Cz,21)z, e o1 (F,2(G)) 8 invertible and its inverse is (nGO’Z(Z/)fl)z)zleHl(F7z(G))7
where ng = (—1)F™%G) Moreover, we have c, . = Cozy-1 and if we put
¢ = Dem(rz(a) S(2)ez1 for any character ¢ of HY(F,Z(Q)), then there is
a fourth root of unity & such that

= nGnqu % (ss—rk(LC))é-C7

where L¢ is the cuspidal Levi of G associated to the character ¢ as explained in
Section [2.
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Proposition 3.2. With the notation as above, if p is a good prime for G, then for
21, 22 € HY(F, Z(G)), one has

<Fz17Fz2 >GF = |Z(G)°F| Z C(Zl)C(Zz)qlf(ss—rk(Lc)),
CEH(F,Z(G))"
where L¢ is the cuspidal Levi of G associated to the character ¢ of H! (F, Z2(G))

and | is the semisimple rank of G.

Proof. Fix z; and 23 in HY(F, Z(G)) and put I = (I',,,T,, )gr. Since the duality
functor Dg is an isometry, one has I = (Dg(I's,), Da(T'2,) )gr. Furthermore,
thanks to Equation (), we deduce

<DG(P21)7DG(F22) >GF = Z ch,ZCZQ7Z,<,727/yZ, >GF'
z,2/ €HY (F,Z(QG))

Note that, if 2’ # z, then (~,,v, )gr = 0. Moreover, (7,7, )gr = | Caqr(u,)| for
u, € U,. We deduce

(3) I = Z Czl,zcm,z| CGF (’U,z)|,

z€H(F,Z(G))

However, the group Cg(uq) is abelian (because the characteristic is good for G).
It then follows that |Cgr(u.)| = | Cgr(u1)| for every z € HL(F, Z(G)); see [6,
14.22]. Moreover, [0, 14.23] implies

G”| G"]

HYF, Z2(G | — _

S reere o R (IR

Since |[HY(F, Z2(G))| = | Z(G)F'|/| Z(G)°F|, we deduce

(4) |Car(u:)| = Z(G)"q".

For every ¢ € H'(F, Z(G))", we have ¢, = > cem(rz(c)) ((2)cz1. Denote by T
the character table of H'(F, Z(G)) (identified with the quotient group Z(G)/L(Z(G))
as above). Write m = |H'(F, Z(G))|. Since T is the character table of a finite

abelian group, it follows that T is invertible and 7! = %tT. We then deduce
that, for every z € H'(F, Z(G))

(%) == Y e

m
CeH' (F,Z2(G)"

Furthermore, by Proposition B.I]one has c., . = c,(.)-1,1. Then Equations (@), ()
and (@) imply

= Y LY G Y Car s em

2€H(F,Z(G)) m ¢, C'eHY(F,Z(G)N
| Z(G)F|q
= )

¢.¢'eH (F,Z(G)"

C(20)¢ (22)( ¢, ¢ Vi (r,2(a)) ccTa

F|,l I
- O s e

CeH' (F,Z2(G)"
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Now, Proposition Bl implies ¢, = nGnLq’%(ss‘rk(LC))ﬁg. Thus
|CC|2 _ q—(ss—rk(Lg))|€C|2 — q—(ss—rk(Lg))'

Moreover,

| Z(WC;)F| _ | Z(G)0F|

This proves the claim. O

Remark 3.3. Note that (I',, T,/ )gr does not depend on the fourth roots of unity
& associated to ¢ € H'(F, Z(G))" as in Proposition Bl

Remark 3.4. If the center of G is connected, there is only one Gelfand-Graev
character I'; and the cuspidal Levi subgroup associated to the trivial character of
HY(F, Z(G)) is a maximal torus, which has semisimple rank equal to zero. Thus,
we obtain

(T4, T1)ar = | Z(G)Fld,

which is a well-known result [4] 8.3.1].
3.2. Number of semisimple classes.

Theorem 3.5. Let G be a connected reductive group defined over a finite field of
characteristic p > 0 with q elements Fy and let F' : G — G denote the corresponding
Frobenius map. Write S for a set of representatives of semisimple classes of G
Denote by (G*, F*) a dual pair of (G, F). With the above notation, if p is a good
prime for G, then we have

SI=1UGyF| Y g,
CEH (F*,Z(G*)"

where | is the semisimple rank of G and Lf is a cuspidal Levi subgroup of G*
associated to ( € H'(F*, Z(G*))" as explained in Section[2.

Proof. Denote by (G*, F*) a pair dual to (G, F). As explained in Section B we
can associate to every z € H'(F*, Z(G*)) a Gelfand-Graev character T', of G*F".
Recall that T', is multiplicity free. We can describe more precisely the constituents
of I', as follows. Fix s € S§. Using Deligne-Lusztig characters, Digne-Michel defined
in [6], 14.40] a class function xs and proved that for every z € H'(F*, Z(G*)), there
is exactly one irreducible character of G¥', denoted by xs, ., which is a common
constituent of x, and I', and satisfying (see [6, 14.49]):

(6) I‘z = Z Xs,z-

seS
Equation (B)) implies |S| = (T'1,T'1 )g«r=. Now, thanks to Proposition B2 the
result follows. O

We now will precise some notations. For a simple algebraic group G defined
over F,, if the corresponding Frobenius map is split, then we denote it by F*.
Otherwise, if the [ -structure is given by a non-split Frobenius, we denote it by
F~. Moreover, if G is of type X and has split and non-split Frobenius map FT
and F~, then we put ‘X (q) = G for e € {~1,1}.

Fix some positive integer n and denote by Gg. a simple simply-connected alge-
braic group of type A,,. For any divisor r of n+ 1, there is a simple algebraic group
G, of type A, and a surjective morphism 7, : Gy — G, satisfying ker(7,.) equals
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Type S|
nti_
‘A(@) i+ | m=ged(r,g—e) Daym Pdg T !
=0 mod 2 n
B.,.(q) adjoint 4 q
q=1 mod 2 q" + q”—l
=0 mod?2 n
Cn(q) adjoint q q
g=1 mod 2 q" + gln/?]
g=0,2 mod 4 g2t
€D2n+1(q) adjoint q=¢€¢ mod4 q2n+1 + 2qn—1 4 q2n—1
g=—¢ mod4 gt 4 gt
¢ q=0 mod 2 g2t
SO4n+2(Q) _—_ 1
q=1 mod 2 g* "t 4 g2
=0 mod2 2n
“Dayn(q) adjoint q q
g=1 mod 2 @+ 2¢" + 72
€ q=20 mod 2 q2n
SO4n (Q) 9 S
g=1 mod 2 " + g*
qg=0 mod 2 "
g=1 mod 2 e
=0,—€¢ mod 3 6
¢Eg (q) adjoint, p # 2 q q
qg=¢ mod3 q% + 2¢?
qg=0 mod 2 q’
Er adjoint, p # 3
g=1 mod 2 q +q¢*

TABLE 1. Number of semisimple classes for simple algebraic groups.

the subgroup of Z(Gsc) of order r. If G, is defined over F, with Frobenius map
F¢, then put A7 (¢) = G,

Corollary 3.6. Let G be a simple algebraic group defined over F, with correspond-
ing Frobenius map F. If G is isomorphic to GL, then the number of semisimple
classes of GT' is ", where n is the semisimple rank of G. Otherwise, the number
of semisimple classes of GT' is given in Table[D. As usually, we denote by ¢ the

Euler function.

Proof. Let G be a simple algebraic group defined over IF, with corresponding Frobe-
nius F. Denote by (G*, F*) a pair dual to (G, F). In table 2] we recall simple
algebraic groups in duality.

Fix a linear character ¢ of Z(G*) and denote by L{ a cuspidal Levi subgroup of
Lomin(ker(¢)). Write G, for a simple simply-connected group of the same version
as G* and by 7 : G}, — G* the universal cover of G*. The endomorphism F* of
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G G*
An G, Gnt1)/r
B, simply-connected C,, of type adjoint
adjoint C,, of type simply-connected
D41 simply-connected adjoint
SO4n o SOu4n+2
Dy, simply-connected adjoint
SOun, SOun
HS4, HS4,
Es simply-connected adjoint
Er simply-connected adjoint

TABLE 2. Groups in duality

G* is induced by a unique Frobenius map (also denoted by F*) of GX,. Now, put
ﬁz = 77 '(L¥). Note that iz is a Levi subgroup of G, with the same semisimple
rank as L. Moreover, following [, 2.10], we deduce that iz € Luin(m 1 (ker(¢))).
Note that, since G* is simple, one has ker(hiz) = 1 (ker(¢)); see [1, 2.9].

Suppose now that Z(GZ.) is cyclic of order N. Then Z(G*) is cyclic of order
N’ = N/|ker(w)|. Since Im(¢) is a subgroup of C* of order o(¢) (we consider
here Irr(Z(G*)) as a group with product the tensor product of characters). it in
particular follows that ker(¢) has order N’/ o(¢). But there is only one subgroup
K of Z(G*) of order N'/o(() and L is then a standard Levi of Luyin(K) only
depending on o(¢). Furthermore, one has

7= (K)| = | K| ker(m)] = N / o(C).
Since Z(G*,) is cyclic, 7~ (K) is then the unique subgroup of order N/ o(¢). Then
ﬁz is a Levi subgroup of G}, satisfying |ker(h£2)| = N/o(().

In [I, Table 2.17], Bonnafé explicitly computes Ly (K) for any subgroup K of
Z(GL.). In Table[3] we recall some information that we need. For more details, we
refer to [I]. For the notation in Table B we put p, = {z € F: |z" =1}.

Hence, using Table B we then can find the cuspidal Levi subgroup (and its
semisimple rank) associated to every linear character of Z(G*) for G* of type
Ay, B, Cyn, Eg and E7 and Ds, 1. For example, suppose G is of type A,. Then
using the notation preceding Corollary [3.6], there is an integer r such that G = G,..
Moreover, one has G} = G,» with 7' = (n + 1)/r. Note that |Z(G, )| = r. Let d
be a divisor of r and let ¢ be a linear character of Z(G,) of order d. Then ﬁz has
semisimple rank equal to "TH(d -1).

Suppose G is of type Da, and denote by 7 : G, — G* the universal cover
of G* as above. The group Z(G}.) has order 4 and exponent 2. Moreover, the
three non-trivial characters of Z(GZ.) have distinct kernel. These kernels are the
subgroups of order 2 of Z(G%,) denoted by ¢1, ¢2 and c3 in Table Bl Note that if
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ss-rk(L)
Typeof G | Z(G) K Z(L)
for L € Lyin(K)
H(n+1)/d
An g1 | d](n+1) wi(d - 1) ta
ptd
B,
12 1 |23 P2
p#2
Cn 1 1
2 H2
p#2
Dapt1 1 n+2 4
Ha
p#2 H2 2 2
1 n+1 M2 X 2
D2n C1 n H2
M2 X 2
p#2 €2 n 12
C3 2 M2
Es
3 1 4 M3
p#3
E;
2 1 3 M2
p#2

TABLE 3. Lpin(K) for simple simply-connected groups

ker(m) = c3 then G* = SOy, and if ker(w) € {c1, 2}, then G* = HSy,. Let ¢ be
a non-trivial linear character of Z(G*). Suppose first that G* = GZ,. Then, the
corresponding cuspidal Levi L{ is a cuspidal standard Levi subgroup G{. such that
¢ and hy,. have the same kernel. If G* = SOy, or G* = HSy,, , then Z(G*) has
order 2 and the semisimple rank of the cuspidal Levi associated to the non-trivial
character of Z(G*) equals the semisimple rank of any elements of £, (ker(w)) (in
the group G¥,).

We now discuss the conditions on ¢ given in the second column of Table [
Suppose that Z(G*) is cyclic of order N. Then, using [7, Table 1.12.6,1.15.2], we
show that the order of H!(F<*, Z(G*)) is the gcd of N and ¢ — e. If Z(G*) is not
cyclic (i.e. G is of type Da,) and if p # 2, then H'(F*, Z(G*)) = Z(G*); see [T,
Table 1.12.6,1.15.2].

The result then follows from Theorem

O
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4. RESULTS ON SEMISIMPLE CHARACTERS

Let G be a connected reductive group defined over F, (with Frobenius map F') as
above and let (G*, F’*) denote a dual pair of (G, F'). Write S (resp. T) for a set of
representatives of semisimple classes of G* (resp. a set of representatives of F*-
stable semisimple classes of G*). Moreover, we suppose that the elements of 7 are
F*-stable (which is possible because by Lang-Steinberg Theorem, we can choose an
F*-stable representative in every F*-stable geometric class of G*). Put Ag~(s) =
Ca-(s)/ Ca-(s)°. Recall that the classes of G*" with representative t € G*F~
conjugate to s in G* are parametrized by the set of F*-classes of Ag-(s). Moreover,
Ag-(s) is abelian, implying |H'(F*, Ag-(s))| = |Ag-(s)" |. Note that there is
an injective morphism between Ag-(s)” and H'(F,Z(G))". Hence |Ag-(s)"
divides |[H'(F, Z(G))| and for every divisor d of |H'(F, Z(G))|, we put

(7) %:{seﬂd:mG*(S)F*}.

For s € S and z € HY(F, Z(G)), we set ps . = Da(xs.-), where the character xs_ .
is the constituent of the Gelfand-Graev character I', defined in Equation (@). Put
Ity (GF) = {ps. |5 €S, z€ H'(F,2(G))}.

The irreducible characters ps . are the so-called semisimple characters of GF.

Proposition 4.1. With the above notation, we have

m(Gh= Y @l
d/|H'(F,2(G))|

Proof. As explained in [6] p. 139], we embed G in a connected reductive group with
connected center G with the same derived subgroup and such that G is normal in
G. We extend F to G (denoted by the same symbol). The inclusion G C G induces
a surjective F'*-equivariant morphism ¢* : G* — G*. For s € S, there is an F*-
stable semisimple 5 of G* such that i*(8) = s. Write pz for the semisimple character
of GT corresponding to s (this character is unique because H'(F, Z(G)) is trivial).
Then by [6 14.49], the character p, 1 is a constituent of Resgi (pz). Moreover, the
inertial group G¥(s) of ps1 in G¥ is such that GF/GF(s) ~ Ag-(s)F". Thus
by Clifford theory, since Resgi (ps) is multiplicity free (see [9]), we deduce that
Resgi (ps) has [Ag-(s)F"| constituents. It follows that

[Trg(GF)[ =Y [Aa () =" > [Aa(9) | =) 1Aa- ()" *,
s€S teT seSN[t]qx* teT
The result follows. g

Proposition 4.2. We keep the same notation as above and we suppose that p is a
good prime for G. Suppose that H'(F, Z(G)) has prime order {. Let ¢ be a non
trivial linear character of H'(F,Z(G)). Write L for its associated cuspidal Levi
subgroup. Then we have

|Il“I"S(GF)| — |Z(G)°F| (ql + ([2 _ 1)ql—(ss—rk(L))) :

where | denotes the semisimple rank of G. In particular, in Table [§, we give the
number of semisimple characters of G for simple groups G with Z(G))¥" of prime
order. For the notation of Table[f] we put m = ged(r,q — €).
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GL | s (GO)|

€A” (q) m prime q" + (m? — 1)q"$1_1
B.(q) ¢g=1 mod?2 |q"+ 3ql"/2

Cn(q) g=1 mod2 |¢"+3¢g"!
‘Dant1(q)  g¢=—e mod4 | ¢ 4 3¢>7!
S05,,(q) g=1 mod2 |q"+3¢"?

HS4,(q) g=1 mod?2 | ¢*"+3¢"

‘Ee(q), p#2 g=¢ mod3 |¢®+8¢>

E:x(q), p#3 ¢=1 mod2 |q"+3¢*

TABLE 4. Number of semisimple characters.

Proof. We denote by 77 and 7; the sets as defined in Equation (7). We have
7| = |T1| + | 7| and |S| = |T1| + {| 7| implying

1 1
Tl = 7= (T] - |S]) and |Ti| = 7= (S| - 7).

Furthermore, from [6, 14.42] we deduce that |7| = | Z(G)°'|¢!. Moreover, since ¢ is
prime, all non trivial linear characters of H'(F, Z(G)) are faithful on H!(F, Z(G)).
Their corresponding characters of Z(G) then have the same kernel (equal to L(Z(G))).
Thus, they are associated to a same cuspidal Levi subgroup L, which is the standard
Levi of Limin(L(Z(GQ))). Thanks to Theorem [3.5] we deduce that

151 =12(G)°T| (¢ + (¢ = 1)g =),
Now, using Proposition ] we obtain
|es(GF)| = |Th] + |74
= (+1)|S|—T]
|Z(G)°F| ((5 + 1)ql + (52 _ 1)ql7(ss—rk(L)) _ qu)
_ |Z(G)OF| (ql 4 (62 _ 1)ql—(ss—rk(L))) .
Now, Table [ follows from Table Bl However, note that for G = SOs,,, we have to
distinguish whether n is even or not. If n = 2k + 1, then the number of semisimple
characters of SO, 5(q) is ¢**1 +3¢%* =1 = ¢" +3¢" 2. If n = 2k, then the number
of semisimple characters of SO, (q) is ¢** + 3¢?*~2 = ¢" + 3¢" 2. O

5. CHARACTERS OF p’-ORDER IN BOREL SUBGROUPS

5.1. Formula for the number of p’-characters. In this section, we keep the
same notation as above. In particular, T denotes a maximal F-stable torus of G
contained in an F-stable Borel subgroup B of G. We consider the group

BQ = U1 X ’I‘7
where U; = B/Ug (see §31] for the notation). Note that By is F-stable and
B} = Uf x TF. Moreover, the set Irr,, (BY') is in bijection with the set Irr(Bf);

see [2, Lemma 4]. As in the proof of Proposition 4.1l we consider G a connected
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reductive group with connected center containing G and such that they have the
same derived subgroup. We denote by T the unique F-stable maximal torus of
G containing T. We denote by © and €2 the sets of T -orbits and T -orbits on
Irr(UY), respectively. As in Equation (), we denote by O the set of F-orbits on
A. Moreover, for every w € O, we fix a non-trivial character ¢, of XZ (for the
notation, see Equation (). For J C O, we set

¢J = 17® H (bwu
wed
where 17 = [] .; 1xr. Then by [4 2.9,8.1.2|, the set {¢,|J C O} is a set of

representatives of €.

Proposition 5.1. We keep the notation as above. For every J C O, we denote
by Qy (resp. §1j1) the element of Q0 (resp. 1) containing ¢y. Moreover, we set
ny= |QJ|/|QJ)1|. Then

| Trr, (BY)] = > ny| Copr (6))-

JCO

Proof. First remark that ny is an integer. Indeed, since TF C TF, we deduce that
Q0 is a disjoint union of TF-orbits. In particular, there is k such that

k
(8) Q= |

i=1
where 7; € Q (the notation is chosen such that ¢; = ¢51 € Q;1). Moreover,
for every 1 < i < k, |Q2y,;] = |Qs1] because ,,; and €, are conjugate by an
element of TF. Then |21 divides |Q;] and ny = k. For 1 < i < ny, fix t; € TF
such that ¢;; = “¢;1 € Qy,; and denote by Cpr () the stabilizer of ¢, in TF.
Then the inertial subgroup I;; of ¢, in BY is UY x Cpr(¢s,;). Moreover, since
U is abelian, we can extend ¢;; to I;; setting $J7i(ut) = ¢si(u) for u € UT
and t € Cpr(¢s,). Then, by Clifford theory, the characters of B{ such that ¢,
is a constituent of their restrictions to Uf" are exactly the irreducible characters

Indig (&h ® 1) with ¢ € Irr(Crpr(ds;)). There are | Cpr(dy,)| such characters.

S

Hence, we deduce

| Tre(By)| = Z Z | Cor (ds,i)-

JCO i=1

Furthermore, we have | Ctr(¢y;)| = |' Cpr(ds1)|- The result follows. O

For J C O, we define
9) m(J) = |_| w.

weJ
Note that m(J) C A and F(m(J)) = m(J).

Lemma 5.2. We keep the notation as above. For J C O, we associate to ¢y the
F-stable standard Levi subgroup Ly, ;) where m(J) is the subset of A defined in
Relation (@). Then we have

ny = [H"(F,Z(Lyp))| and |Crr(és) =ns|Z(G)F| T] (' -1),
weO\J
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where ny is the integer defined in Proposition [5.1l

Proof. Recall that Q; (resp. ;1) is the TF -orbit (resp. TF-orbit) of ¢;.
Equation (8), one has
|QJ| = nJ|QJ11|.

Moreover, as explained in the proof of [4} 8.1.2], we have Q] =[] c,(¢” —1). It
then follows that
|Car ()] = mo e

T ey (0T =1
Furthermore, by [4, 2.9], we have |T¥| = |Z(G)°F|]] co(q!“! — 1). Hence we
deduce

| Crr(00) = ns| Z(G)F| ] (@' —1).
weO\J

Let Ly, () be the standard F-stable Levi subgroup of G corresponding to the subset
of simple roots m(J). Denote by B,,;) € B an F-stable Borel subgroup of Ly,
and by U,,(s) the unipotent radical of B,, ;). The set m(J) is the set of simple
roots of Ly,(s) associated to B,,(s). In particular, Equation () applied to the
connected reductive group Ly, gives

Ul = 11 X5
weJ
We denote by ¢, the restriction of ¢; to Ufm(J). Then ¢/, € Irr(Ufm(J)) and
the map Irr(Ufm(J)) — Irr(UY), ¥ — 15 ® 9, is T -equivariant. Moreover, note
that ¢/, is a regular character of Uf m(J)- Hence, using [6, 14.28], we deduce that

g = |H"(F, Z(Lyy(s)))| as required. O
Corollary 5.3. With the above notation, one has
| Iy (BF)| = | Z(G)°F| Y |Z2(L * 11 @' -,
JCO weO\J

where m(J) is the subset of A associated to J as in Equation (9).

Proof. Tt is a direct consequence of Proposition[5.J]and Lemma[5.2] and the equality
[ H"(F, Z(Lyn()| = |Z2(Liner) " |- O

In the followmg, we will need the following result.

Lemma 5.4. Fiz I € O and put I = O\I. Then we have
S L@ - 1) = g,
ICICOwgJ

where m is the map defined in Equation (J).
Proof. First remark that

oI -n=> T]wW -

ICJCOw¢J JCTweJ

Furthermore, for every finite set A and f: A — R, one has

(10) [[r@+1=3 []s@

acA JCAa€eJ
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We apply Equation (I0) with A=T and f: T — R, w — ¢/l — 1 and we deduce

SIIe -0 = [Te

JCTwEJ wel
= qzw T \u.)\
Moreover, Equation (@) implies |m(I)| = Y .7 |w| and the result follows. O

Remark 5.5. If the center of G is connected, then the center of every Levi subgroup
L of G is connected (because the map hy, is surjective). In particular, Corollary 5.3l
and Lemma 5.4 (applied with I = ) give

| Ty (BF)] = [ 2(G) 7 [¢™ N = | Z(G) ¢,
which is a well-known result; see [2, Remark 1].

5.2. The case of quasi-simple groups. In this section, we suppose that G is
a quasi-simple algebraic group. We keep the notation as above. Recall that for
I C A, the map hr, : Z(G) — Z(Ls) denotes the surjective map induced by
the inclusion Z(G) C Z(Ly). Moreover, recall that for every subgroup K of Z(G),
there is I C A such that K = ker(hy,,) (we use here the fact that G is quasi-simple;
see [1} 2.9]). Then we denote by I a subset of A such that K = ker(hy,, ) and

I is minimal (for the inclusion). In particular, Ly, € Lyin(K).

Proposition 5.6. With the above notation, if p is good for G, we have

o ZIG)F)2 [ 7 -
| Trr, (BY)| = | Z(G)°F| Z % gtxl — Z g'= ]

K<Z(G)F X K’€max(K)
where max(K) denotes the set of mazimal proper subgroups of K.
Proof. For a subgroup K of Z(G), we define
Ax ={l € A|lIx CI} and Bk ={J¢€ O|ker(hy,, )= K}.

where m(J) is the subset of A associated to J defined in Equation (@). Then
Corollary B3] implies

Ly (B = [2(G)°F] Y Y 1ZLn) P I - 1)

K<Z(G)F JEBK weJ
= 2G| Y 12" Y JT@ -,
K<Z(G)F JEBK wJ

because for J € By, the numbers |Z(L,,( ;)" are constant. Furthermore, one has
Bi ={J € O] ker(hL C KI\{J € O] ker(hy, C K}

ljote that Ly, is F—stzﬂ)le. Then I is a union of some F-orbits lying in a subset

Ik of O, such that m(Ix) = Ix. Since Ly, € Lyin(K), it follows

{J€O|ker(hy,, ) CK}=1{J€O|Ix CJ}
Moreover, one has

{J €O ker(hy

m(J)) m(J))

CK} = || {7€0|ker(h
K’emax(K)

|| {Jeo|lx it

K’emax(K)

m(J)) m(])) - K/}
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Thus, if we put Cx = {J € O |Ix C J}, then it follows

> e -v = > J[e-n- > > [~

JEBK w¢J JeECK w¢J K’eémax(K) JeECk w¢J
gl T Tl
K’'émax K
The last equality comes from Lemma 4 Moreover, we have hy, , , (Z(G)F)

Ol

Z(Lyy(sy)" implying | Z (L))" = |2(G)* /K|. The result follows.

Proposition 5.7. Let G be a connected reductive group defined over Fy with cor-
responding Frobenius F. Suppose p is a good prime for G and Z(G)¥ has prime
order £. Putr = |I| for Ly in Lmin({1}). Then we have

| Trry (BY)| = | Z(G)*| (' + (2 = 1)g' "),
where | is the semisimple rank of G.

Proof. First remark that we do not suppose that G is quasi-simple. Indeed, the set
Lmin({1}) is non-empty. If we denote by L; a standard Levi lying in Lpnin({1}),
then we have ker(hr,) = {1}. Hence I = I{1y (see the beginning of §5.2] for the
notation). Moreover, we always have Iz(g)r = (. We can then apply the proof of
Proposition 5.6l We obtain

Ty (BY)| = |Z(G)F| (|2(G)F g2 + &1 = g2
= 2@ (¢ + (12(Q)" ]~ 1g*).
Since |A| is the semisimple rank of G, the result follows. O

Remark 5.8. For a group G as in Proposition (.7 if ¢ denotes a non-trivial
character of H'(F, Z(G)) and L¢ its associated cuspidal Levi of G, then L¢ is F-
stable and ker(hy,) is trivial. Then L¢ € Lyin({1}). In particular, the number r
of Proposition [.7is equal to the semisimple rank of L¢, implying

| Irryy (BF)| = |Z(G)OF| (ql + (fz — 1)ql_(ss'rk(L<))> )
Comparing with Proposition [£2 we deduce
|Irrp/(GF)| = |Irryy (BF)l'

Hence, this then proves that, if p is a good prime for G and H'(F, Z(G) has prime
order, then the McKay conjecture holds for G in defining characteristic.

Proposition 5.9. If G is a simple and simply-connected algebraic group of type
Do, then
|Irrp/(BF)| — q2n 4 3q2n72 4 6q’n, 4 4qn71.
If G is a simple and simply-connected algebraic group of type Day, 1 with HY(F, Z(G))
of order 4, then
|Irrp/(BF)| — q2’n,+1 4 3q2n71 4 12qn71.
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Proof. If G is simple and simply-connected group of type Da,, then Z(G)f is a
finite group of order 4 with exponent 2. Denote by c¢1, co and c3 its subgroups of
order 2. Moreover, using Table 8] we deduce

K Tk|
{1} | n-1 K [Tkl
c1 n {1} n—1
Co n Zio 2n—1
3 2n —2 Z(G)F | 2n+1
Z(G)F | 2n
Type Da, Type Dapt1
The result then follows from Proposition O

6. RESTRICTION OF SEMISIMPLE CHARACTERS TO THE CENTER

In this section, we keep the notation as above. To simplify the notation, we set
G=GY Z=172(G)F and U = UF. For 2 € H(F, Z(G)) and v € Irr(Z), we put
., =hd5;ve®g¢.),

where ¢, is the regular character of U corresponding to z. Note that by Clifford
theory, one has

mdf"(¢:) = Y v@ ¢

velrr(Z)

.= Y T..

velrr(Z)

We then deduce that

Lemma 6.1. Denote by E, and E, ,, the set of constituents of I'; and T, ,,, respec-
tively. Then

E.. ={x € E.|(ResZ(x),v)z # 0}.

Proof. We denote by R a set of representatives of the double cosets ZU\G/Z.
Therefore, for ¢ € Irr(ZU), Mackey’s theorem implies

Resg(lnng(@)) = Z Ind““Z(ZU)ﬂZ (ReST(ZU)mZ(T@))
reR
(11) = Z Resz ("p).
reR
Fix now v, v/ € Irr(Z). Then Equation ([l applied with ¢ = v ® ¢, implies
(T.,,IndZ(V))e = (ResZ(T..),V )z
= < Z v, V/ >Z
reR
= |R{v,v" )z
= |R|0y,..

The result then follows. O
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Remark 6.2. Note that if we denote by F, and F,, the set of constituents of
Dg(T.) and Dg(T.,), respectively, then F,, = {x € E.|(Res§(x,v)z # 0}.
Indeed, by [6, 12.8] and [10, 2.2, Dg(Ind$(v)) = Ind%(v). In particular, D¢
induces a bijection between F, , and F, ,.

Lemma 6.3. With the above notation, for z, 2’ € H'(F, Z(G)) and v, V' € Irr(2),
one has

<1—‘z,1/7 I‘z’,u >G = <1—‘z,1/’7 Fz’,u’ >G-

Proof. We have to show that the scalar product (T, ,,T'./ ., )¢ does not depend on
v. First remark that it follows from Lemma [6.1] that

<FZ,U7FZ’,V>G = <Pz,uarz’ >G-

Denote by R a set of representatives of the double cosets UZ\G/U. Then Mackey’s
theorem implies

<FZ,U7FZ’ >G = <R€Sg (Inng(V b2 (bz)) a¢z’ >U

= Z<Indg(UZ)mU (Resrwz)nu("(v © ¢2)) , ¢= Ju
reR

= ) (Idfynp("6s) 6 )u
reR

Note that the scalar product in the last equality does not depend on v. This proves
the claim. (]

Corollary 6.4. With the above notation, for z, 2’ € H'(F, Z(G)) and v € Irr(Z),
we have )
<Fz,U7Fz’,v >G = _<FZ7FZ’ >G-
2]
Proof. We have
<szrz/>G = Z <Fz,van',1/ >G-

v,v'€lrr(Z)
If v # v/, we have (T', ,,T', v )¢ = 0 because by Lemma [6.1], the constituents of
I., (resp. of ') are constituents of Ind§ (v) (resp. Ind$ (1)) and the characters
Ind$ (v) and Ind§(+) have no constituents in common. Then

<1—‘2sz’ >G = Z <PZ7V7 | >G'
velrr(Z)
The result is now a consequence of Lemma, [6.3] O

Proposition 6.5. With the above notation, if p is a good prime for G and the

center of G is connected, then for every linear character v of Z(GF'), one has
1
| Trrs (GF|v)| = === | Trrs (GT)].
| Z(GT)

Proof. Since the center of G is connected, there is only one Gelfand-Graev character
T';. Moreover, Remark implies

|II‘I‘S(GF|V)| =(T'1 ., T1.)ar.
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Furthermore, one has | Irrs(G')| = (I';,I'; )gr. The result follows from Lemma[6.4]
O

Proposition 6.6. With the above notation, if p is a good prime for G and the
group H'(F, Z(G)) has prime order £, then for every linear character v of Z(GF'),
one has
1

Ity (G V)| = ey | Irr (GF).

| I‘I‘S( |V)| |Z(GF)|| I‘I‘S( )|
Proof. We consider G a connected reductive group with connected center as in the
proof of Proposition Bl Fix s a semisimple element of G*F" and § a semisimple
element of G*¥" such that i*(3) = s. In the proof Proposition @1} we have seen that

Resgi (ps) has |Ag-(s)"| constituents. In fact, the constituents of Resgi (pz) are
in bijection with Irr(Ag-(s)"" ). We denote by p, the constituent corresponding
to ¥ € Trr(Ag~(s)F"). Moreover, this bijection could be chosen such that there
is a surjective morphism w, : H'(F, Z(G)) — Irr(Ag-(s)") satistying ps s (for
9 € Trr(Ag-(s)"")) is a constituent of Dg(T,) for = € H'(F, Z(G)) if and only
if ws(z) = 9. In particular, the character p, o lies in |H'(F, Z(G))|/|Ag- ()"
different duals of Gelfand-Graev characters of G'. Furthermore, H'(F, Z(G)) has
prime order ¢. It follows that a semisimple character of G¥ is either a constituent
of only one D(T',) or of all. We keep the notation of Remark and put, for

v € Irr(Z(GH))
F, = N Feo

zeHY(F,Z(G))

The above discussion implies that if z # 2/, then

(12) Fz,Vsz’,V:Fu-
Moreover, one has
Irry (GF|v) = U E,,.
z€EH'(F,Z(G))
Therefore,
ey (GF )] = | | Pl
zeH1(F,2(G))
[
= 20 Y IR
k=1 ICHY(F,Z(G)),|I|=k z€I

4
SRR Y
z k=2

ICH(F,2(G)),|I|=k

4
k1 L
Z|Fz,,,|+|F,,|Z(—1) + (k
z k=2
S IF |+ R (1= 0).

Note that, since the charactersI", , are multiplicity free, one has |F, ,| = (T, ,,T, . )qr
and |F,| = (I';,,l . )gr where z and 2’ are two fixed distinct elements of
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HY(F, Z(G)). Fix two such elements z and 2’. Then Corollary 6.4 implies
1 1
|Fov| = == (T:.T.)gr and |F)|=—=——==(T:, Ty )ar.
| Z(GT)| | Z(GT)|
Denote by L the cuspidal Levi subgroup associated to every non-trivial character
of H(F, Z(G)) and by [ the semisimple rank of G. Proposition 3.2 gives

<1—\z,1—\z> _ |Zo| (ql _ ([ _ 1)ql—(ss—rk(L))> and <1—\271—\zl> — |Zo| (ql _ ql—(ss—rk(L))> ,
with Z° = Z(G)°F. It follows

1
Irrs G_F — A ( I 62 -1 l—(ss—rk(L)))
(@] = gy 271 (4 = (2 = D
1
= —— |, (GF)].
| Z(GF)|
The last equality comes from Proposition |

Remark 6.7. As we remark in [3], the number | Irr, (B |v)| does not depend on
v for all v € Z(GF) and
1

[ty (B )| = | ey (BT

Suppose now that p is a good prime for G and H'(F, Z(G)) has prime order. Then,
thanks to Remark [5.8 and Proposition [6.6] we deduce

| Trry (B [v)| = [ Trry (GF o))
for every v € Irr(Z(GT")). This proves Theorem [[1l
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