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ON A PROBLEM POSED BY STEVE SMALE

PETER BÜRGISSER AND FELIPE CUCKER

Abstract. The 17th of the problems proposed by Steve Smale for the
21st century asks for the existence of a deterministic algorithm comput-
ing an approximate solution of a system of n complex polynomials in n

unknowns in time polynomial, on the average, in the size N of the input
system. A partial solution to this problem was given by Carlos Beltrán
and Luis Miguel Pardo who exhibited a randomized algorithm doing so.
In this paper we further extend this result in several directions. Firstly,
we exhibit a linear homotopy algorithm that efficiently implements a
non-constructive idea of Mike Shub. This algorithm is then used in
a randomized algorithm, call it LV, à la Beltrán-Pardo. Secondly, we
perform a smoothed analysis (in the sense of Spielman and Teng) of
algorithm LV and prove that its smoothed complexity is polynomial in
the input size and σ−1, where σ controls the size of of the random per-
turbation of the input systems. Thirdly, we perform a condition-based
analysis of LV. That is, we give a bound, for each system f , of the ex-
pected running time of LV with input f . In addition to its dependence
on N this bound also depends on the condition of f . Fourthly, and to
conclude, we return to Smale’s 17th problem as originally formulated
for deterministic algorithms. We exhibit such an algorithm and show
that its average complexity is NO(log log N). This is nearly a solution to
Smale’s 17th problem.
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2 PETER BÜRGISSER AND FELIPE CUCKER

3.4. Smoothed Analysis of LV 12
3.5. Condition-based Analysis of LV 13
3.6. A Near Solution of Smale’s 17th Problem 13
4. Complexity Analysis of ALH 14
5. A Useful Change of Variables 17
6. Smoothed Analysis of the Mean Square Condition Number 19
6.1. Outline 19
6.2. Coarea Formula 20
6.3. The Geometric Situation 21
6.4. Induced Probability Measures 24
6.5. Proof of Theorem 6.1 27
6.6. Expected Volume of Parallelepipeds 30
7. Effective Sampling in the Solution Variety 32
8. Average-case Analysis of LV (proof) 34
9. Smoothed Analysis of LV (proof) 35
10. Homotopies with a Fixed Extremity 36
10.1. Condition-based Analysis of LV (proof) 38
10.2. The Complexity of a Deterministic Homotopy Continuation 38
11. A near solution to Smale’s 17th problem 40
11.1. The case D ≤ n 41
11.2. The case D > n 43
11.3. Proof of Lemma 11.4 46
References 47

1. Introduction

In 2000, Steve Smale published a list of mathematical problems for the
21st century [28]. The 17th problem in the list reads as follows:

Can a zero of n complex polynomial equations in n unknowns be
found approximately, on the average, in polynomial time with a
uniform algorithm?

Smale pointed out that “it is reasonable” to homogenize the polynomial
equations by adding a new variable and to work in projective space af-
ter which he made precise the different notions intervening in the question
above. We provide these definitions in full detail in Section 2. Before doing
so, in the remaining of this section, we briefly describe the recent history of
Smale’s 17th problem and the particular contribution of the present paper.
The following summary of notations should suffice for this purpose.

We denote by Hd the linear space of complex homogeneous polynomial
systems in n + 1 variables, with a fixed degree pattern d = (d1, . . . , dn).
We let D = maxi di, N = dimC Hd, and D =

∏
i di. We endow this space

with the unitarily invariant Bombieri-Weyl Hermitian product and consider
the unit sphere S(Hd) with respect to the norm induced by this product.
We then make this sphere a probability space by considering the uniform
measure on it. The expression “on the average” refers to expectation on
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this probability space. Also, the expression “approximate zero” refers to
a point for which Newton’s method, starting at it, converges immediately,
quadratically fast.

This is the setting underlying the series of papers [21, 22, 23, 24, 25] —
commonly referred to as “the Bézout series”— written by Shub and Smale
during the first half of the 1990s, a collection of ideas, methods, and results
that pervade all the research done in Smale’s 17th problem since this was
proposed. The overall idea in the Bézout series is to use a linear homotopy.
That is, one starts with a system g and a zero ζ of g and considers the
segment Ef,g with extremities f and g. Here f is the system whose zero
we want to compute. Almost surely, when one moves from g to f , the
zero ζ of g follows a curve in projective space to end in a zero of f . The
homotopy method consists of dividing the segment Ef,g in a number, say k,
of subsegments Ei small enough to ensure that an approximate zero xi of
the system at the origin of Ei can be made into an approximate zero xi+1

of the system at its end (via one step of Newton’s method). The difficulty
of this overall idea lies in the following issues:

(1) How does one choose the initial pair (g, ζ)?
(2) How does one choose the subsegments Ei? In particular, how large

k should be?

The state of the art at the end of the Bézout series, i.e., in [25], showed
an incomplete picture. For (2), the rule consisted of taking a regular sub-
division of Ef,g for a given k, executing the path-following procedure, and
repeating with k replaced by 2k if the final point could not be shown to be
an approximate zero of f (Shub and Smale provided criteria for checking
this). Concerning (1), Shub and Smale proved that good initial pairs (g, ζ)
(in the sense that the average number of iterations for the rule above was
polynomial in the size of f) existed for each degree pattern d, but they could
not exhibit a procedure to generate one such pair.

The next breakthrough took a decade to come. Beltrán and Pardo pro-
posed in [4, 5] that the initial pair (g, ζ) should be randomly chosen. The
consideration of randomized algorithms departs from the formulation of
Smale’s 17th problem1 but it is widely accepted that, in practical terms,
such algorithms are as good as their deterministic siblings. And in the case
at hand this departure turned out to pay off. The average (over f) of the
expected (over (g, ζ)) number of iterations of the algorithm proposed in [5] is
O(n5N2D3 logD). One of the most notable features of the ideas introduced

1In his description of Problem 17 Smale writes “Time is measured by the number of
arithmetic operations and comparisons, ≤, using real machines (as in Problem 3)” and in
the latter he points that, “In [Blum-Shub-Smale,1989] a satisfactory definition [of these
machines] is proposed.” The paper [9] quoted by Smale deals exclusively with deterministic
machines. Furthermore, Smale adds that “a probability measure must be put on the space
of all such f , for each d = (d1, . . . , dn), and the time of an algorithm is averaged over the
space of f .” Hence, the expression ‘average time’ refers to expectation over the input data
only.
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by Beltrán and Pardo is the use of a measure on the space of pairs (g, ζ)
which is friendly enough to perform a probabilistic analysis while, at the
same time, does allow for an efficient sampling.

Shortly after the publication of [4, 5] Shub wrote a short paper of a
great importance [20]. Complexity bounds in both the Bézout series and
the Beltrán-Pardo results rely on condition numbers. Shub and Smale had
introduced a measure of condition µnorm(f, ζ) for f ∈ Hd and ζ ∈ C

n+1

which, in case ζ is a zero of f , quantifies how much does ζ vary when f is
slightly perturbed. Using this measure they defined the condition number
of a system f by taking

(1) µmax(f) := max
ζ|f(ζ)=0

µnorm(f, ζ).

The bounds mentioned above make use of an estimate for the worst-condi-
tioned system along the segment Ef,g, that is, of the quantity

(2) max
q∈Ef,g

µmax(q).

The main result in [20] shows that there exists a partition of Ef,g which
successfully computes an approximate zero of f whose number k of pieces
satisfies

(3) k ≤ CD3/2

∫

q∈Ef,g

µ2
2(q) dq,

where C is a constant and µ2 is the mean square condition number of q given
by

(4) µ2
2(q) :=

1

D
∑

ζ|q(ζ)=0

µ2
norm(q, ζ).

This partition is explicitly described in [20]. Unfortunately, however, this
description does not appear to lead to a constructive procedure to compute
the partition.

In an oversight of this non-constructibility, Beltrán and Pardo [6] provided
a new version of their randomized algorithm2 with an improved complexity
of O(D3/2nN).

A first goal of this paper is to validate Beltrán and Pardo’s analysis in [6]
by exhibiting an efficiently constructible partition of Ef,g which satisfies a
bound like (3). Our way of doing so owes much to the ideas in [20]. The
path-following procedure ALH relying on this partition is described in detail

2The algorithm in [6] explicitly calls as a subroutine “the homotopy algorithm of [20]”
without noticing that the partition in [20] is non-algorithmic. Actually, the word ‘algo-
rithm’ is never used in [20]. The main goal of [20], as stated in the abstract, is to motivate
“the study of short paths or geodesics in the condition metric” —the proof of (3) does not
require the homotopy to be linear and one may wonder whether other paths in Hd may
substantially decrease the integral in the right-hand side. This goal has been addressed,
but not attained, in [7]. As of today it remains a fascinating open problem.
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in §3.1 together with a result, Theorem 3.1, bounding its complexity as
in (3).

The second goal of this paper is to perform a smoothed analysis of a
randomized algorithm (essentially Beltrán-Pardo randomization plus ALH)
computing a zero of f , which we call LV. What smoothed analysis is, is
succinctly explained in the citation of the Gödel prize 2008 awarded to its
creators, Daniel Spielman and Teng Shang-Hua3.

Smoothed Analysis is a novel approach to the analysis of algo-
rithms. It bridges the gap between worst-case and average case
behavior by considering the performance of algorithms under a
small perturbation of the input. As a result, it provides a new
rigorous framework for explaining the practical success of algo-
rithms and heuristics that could not be well understood through
traditional algorithm analysis methods.

In a nutshell, smoothed analysis is a probabilistic analysis which replaces
the ‘evenly spread’ measures underlying the usual average-case analysis (uni-
form measures, standard normals, . . . ) by a measure centered at the input
data. That is, it replaces the ‘average data input’ (an unlikely input in
actual computations) by a small random perturbation of a worst-case data
and substitutes the typical quantity studied in the average-case context,

E
f∼R

ϕ(f),

by

sup
f

E
f∼C(f ,r)

ϕ(f).

Here ϕ(f) is the function of f one is interested in (e.g., the complexity of an
algorithm over input f), R is the ‘evenly spread’ measure mentioned above
and C(f , r) is an isotropic measure centered at f with a dispersion (e.g.,
variance) given by a (small) parameter r > 0.

An immediate advantage of smoothed analysis is its robustness with re-
spect to the measure C (see §3.4 below). This is in contrast with the most
common critique to average-case analysis: “A bound on the performance of
an algorithm under one distribution says little about its performance un-
der another distribution, and may say little about the inputs that occur in
practice” [30].

The precise details of the smoothed analysis we perform for zero finding
are in §3.4.

To describe the third goal of this paper we recall Smale’s ideas of complex-
ity analysis as exposed in [27]. In this program-setting paper Smale writes
that he sees “much of the complexity theory [. . . ] of numerical analysis
conveniently represented by a two-part scheme.” The first part amounts to

3See http://www.fmi.uni-stuttgart.de/ti/personen/Diekert/citation08.pdf for
the whole citation

http://www.fmi.uni-stuttgart.de/ti/personen/Diekert/citation08.pdf
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obtain, for the running time time(f) of an algorithm on input f , an estimate
of the form

(5) time(f) ≤ K(size(f) + µ(f))c

where K, c are positive constants and µ(f) is a condition number for f . The
second takes the form

(6) Prob{µ(f) ≥ T} ≤ T−c

“where a probability measure has been put on the space of inputs.” The first
part of this scheme provides understanding on the behavior of the algorithm
for specific inputs f (in terms of their condition as measured by µ(f)). The
second, combined with the first, allows one to obtain probability bounds for
time(f) in terms of size(f) only. But these bounds say little about time(f)
for actual input data f .

Part one of Smale’s program is missing in the work related with his 17th
problem. All estimates on the running time of path-following procedures for
a given f occurring in both the Bézout series and the work by Beltrán and
Pardo are expressed in terms of the quantity in (2) or the integral in (3),
not purely in terms of the condition of f . We fill this gap by showing for
the expected running time of LV a bound like (5) with µ(f) = µmax(f). The
precise statement, Theorem 3.6, is in §3.5 below.

Last but not least, to close this introduction, we return to its opening
theme: Smale’s 17th problem. Even though randomized algorithms are ef-
ficient in theory and reliable in practice they do not offer an answer to the
question of the existence of a deterministic algorithm computing approxi-
mate zeros of complex polynomial systems in average polynomial time. The
situation is akin to the development of primality testing. It was precisely
with this problem that randomized algorithms became a means to deal with
apparently intractable problems [29, 16]. Yet, the eventual display of a de-
terministic polynomial-time algorithm [1] was justly welcomed as a major
achievement. The fourth main result in this paper exhibits a deterministic
algorithm computing approximate zeros in average time NO(log log N). To do
so we design and analyze a deterministic homotopy algorithm, call it MD,
whose average complexity is polynomial in n and N and exponential in D.
This already yields a polynomial-time algorithm when one restricts the de-
gree D to be at most n1−ε for any fixed ε > 0 (and, in particular, when
D is fixed as in a system of quadratic or cubic equations). Algorithm MD

is fast when D is small. We complement it with an algorithm that uses a
procedure proposed by Jim Renegar [17] and which computes approximate
zeros similarly fast when D is large.

In order to prove the results described above we have relied on a number of
ideas and techniques. Some of them —e.g., the use of the coarea formula or
of the Bombieri-Weyl Hermitian inner product— are taken from the Bézout
series and are pervasive in the literature on the subject. Some others —
notably the use of the Gaussian distribution and its truncations in Euclidean
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space instead of the uniform distribution on a sphere or a projective space—
are less common. The blending of these ideas has allowed us a development
which unifies the treatment of the several situations we consider for zero
finding in this paper.

Acknowledgments. We thank Carlos Beltrán, Jean-Pierre Dedieu and
Mike Shub for helpful criticism and comments.

2. Preliminaries

2.1. Setting and Notation. For d ∈ N we denote by Hd the subspace
of C[X0, . . . ,Xn] of homogeneous polynomials of degree d. For f ∈ Hd we
write

f(x) =
∑

α

(
d

α

)1/2

aαXα

where α = (α0, . . . , αn) is assumed to range over all multi-indices such that

|α| =
∑n

k=0 αk = d,
(d
α

)
denotes the multinomial coefficient, and Xα :=

Xα0
0 Xα1

1 · · ·Xαn
n . That is, we take for basis of the linear space Hd the

Bombieri-Weyl basis consisting of the monomials
(

d
α

)1/2
Xα. A reason to do

so is that the Hermitian inner product associated to this basis is unitarily

invariant. That is, if g ∈ Hd is given by g(x) =
∑

α

(d
α

)1/2
bαXα, then the

canonical Hermitian inner product

〈f, g〉 =
∑

|α|=d

aα bα

satisfies, for all element ν in the unitary group U(n + 1), that

〈f, g〉 = 〈f ◦ ν, g ◦ ν〉.
Fix d1, . . . , dn ∈ N\{0} and let Hd = Hd1 × . . .×Hdn be the vector space of
polynomial systems f = (f1, . . . , fn) with fi ∈ C[X0, . . . ,Xn] homogeneous
of degree di. The space Hd is naturally endowed with a Hermitian inner
product 〈f, g〉 =

∑n
i=1〈fi, gi〉. We denote by ‖f‖ the corresponding norm of

f ∈ Hd.
Recall that N = dimC Hd and D = maxi di. Also, in the rest of this

paper, we assume D ≥ 2 (the case D = 1 being solvable with elementary
linear algebra).

Let P
n := P(Cn+1) denote the complex projective space associated to

C
n+1 and S(Hd) the unit sphere of Hd. These are smooth manifolds that

naturally carry the structure of a Riemannian manifold (for P
n the metric is

called Fubini-Study metric). We will denote by dP and dS their Riemannian
distances which, in both cases, amount to the angle between the arguments.
Specifically, for x, y ∈ P

n one has

(7) cos dP(x, y) =
|〈x, y〉|
‖x‖ ‖y‖ .
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Ocasionally, for f, g ∈ Hd \ {0}, we will abuse language and write dS(f, g)

to denote this angle, that is, the distance dS

( f
‖f‖ ,

g
‖g‖
)
.

We define the solution variety to be

VP := {(f, ζ) ∈ Hd × P
n | f 6= 0 and f(ζ) = 0}.

This is a smooth submanifold of Hd×P
n and hence also carries a Riemannian

structure. We denote by VP(f) the zero set of f ∈ Hd in P
n. By Bézout’s

Theorem, it contains D points for almost all f . Let Df(ζ)|Tζ
denote the

restriction of the derivative of f : C
n+1 → C

n at ζ to the tangent space
Tζ := {v ∈ C

n+1 | 〈v, ζ〉 = 0} of P
n at ζ. The subvariety of ill-posed pairs is

defined as

Σ′
P := {(f, ζ) ∈ VP | rankDf(ζ)|Tζ

< n}.
Note that (f, ζ) 6∈ Σ′

P
means that ζ is a simple root of f . In this case, by the

implicit function theorem, the projection VP → Hd, (g, x) 7→ g can be locally
inverted around (f, ζ). The image Σ of Σ′

P
under the projection VP → Hd

is called the discriminant variety.

2.2. Newton’s Method. In [19], Mike Shub introduced the following pro-
jective version of Newton’s method. We associate to f ∈ Hd (with Df(x)
of rank n for some x) a map Nf : C

n+1 \ {0} → C
n+1 \ {0} defined (almost

everywhere) by

Nf (x) = x − Df(x)−1
|Tx

f(x).

Note that Nf (x) is homogeneous of degree 0 in f and of degree 1 in x so
that Nf induces a rational map from P

n to P
n (which we will still denote

by Nf ) and this map is invariant under multiplication of f by constants.
We note that Nf (x) can be computed from f and x very efficiently: since

the Jacobian Df(x) can be evaluated with O(N) arithmetic operations [3],
one can do with a total of O(N + n3) arithmetic operations.

It is well-known that when x is sufficiently close to a simple zero ζ of f ,
the sequence of Newton iterates beginning at x will converge quadratically
fast to ζ. This property lead Steve Smale to define the following intrinsic
notion of approximate zero.

Definition 2.1. By an approximate zero of f ∈ Hd associated with a zero
ζ ∈ P

n of f we understand a point x ∈ P
n such that the sequence of Newton

iterates (adapted to projective space)

xi+1 := Nf (xi)

with initial point x0 := x converges immediately quadratically to ζ, i.e.,

dP(xi, ζ) ≤
(1

2

)2i−1
dP(x0, ζ)

for all i ∈ N.
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2.3. Condition Numbers. How close need x to be from ζ to be an ap-
proximate zero? This depends on how well conditioned the zero ζ is.

For f ∈ Hd and x ∈ C
n+1 \ {0} we define the (normalized) condition

number µnorm(f, x) by

µnorm(f, x) := ‖f‖
∥∥∥(Df(x)|Tx

)−1diag(
√

d1‖x‖d1−1, . . . ,
√

dn‖x‖dn−1)
∥∥∥ ,

where the right-hand side norm denotes the spectral norm and diag(ai) de-
notes the diagonal matrix with entries ai. Note that µnorm(f, x) is homo-
geneous of degree 0 in both arguments, hence it is well defined for (f, x) ∈
Hd × P

n.
The following result (essentially, a γ-Theorem in Smale’s theory of esti-

mates for Newton’s method [26]) quantifies our claim above.

Theorem 2.2. Assume f(ζ) = 0 and dP(x, ζ) ≤ u0

D3/2µnorm(f,ζ)
where u0 :=

3 −
√

7 ≈ 0.3542. Then x is an approximate zero of f associated with ζ.

Proof. This is an immediate consequence of the projective γ-Theorem in [8,
p.263, Thm. 1] combined with the higher derivative estimate [8, p.267,
Thm. 2]. �

3. Statement of Main Results

3.1. The Homotopy Continuation Routine ALH. Suppose that we are
given an input system f ∈ Hd and an initial pair (g, ζ) in the solution va-
riety VP such that f and g are R-linearly independent. Let α = dS(f, g).
Consider the line segment Ef,g in Hd with endpoints f and g. We parame-
terize this segment by writing

Ef,g = {qτ ∈ Hd | τ ∈ [0, 1]}

with qτ being the only point in Ef,g such that dS(g, qτ ) = τα (see Figure 1).
Explicitly, we have qτ = tf + (1 − t)g, where t = t(τ) is given by Equa-
tion (12). If Ef,g does not intersect the discriminant variety Σ, there is a
unique continuous map [0, 1] → VP, τ 7→ (qτ , ζτ ) such that (q0, ζ0) = (g, ζ),
called the lifting of Ef,g with origin (g, ζ). In order to find an approxima-
tion of the zero ζ1 of f = q1 we may start with the zero ζ = ζ0 of g = q0

and numerically follow the path (qτ , ζτ ) by subdividing [0, 1] into points
0 = τ0 < τ1 < · · · < τk = 1 and by successively computing approxima-
tions xi of ζτi by Newton’s method.

More precisely, we consider the following algorithm ALH (Adaptive Linear
Homotopy) with the stepsize parameter λ = 7.53 · 10−3.



10 PETER BÜRGISSER AND FELIPE CUCKER

Algorithm ALH

input f, g ∈ Hd and ζ ∈ P
n such that g(ζ) = 0

α := dS(f, g), r := ‖f‖, s := ‖g‖
τ := 0, q := g, x := ζ

repeat

∆τ := λ
αD3/2µ2

norm(q,x)

τ := min{1, τ + ∆τ}
t := s

r sin α cot(τα)−r cos α+s

q := tf + (1 − t)g

x := Nq(x)

until τ = 1

RETURN x

Our main result for this algorithm, which we will prove in Section 4, is
the following.

Theorem 3.1. The algorithm ALH stops after at most k steps with

k ≤ 217D3/2 dS(f, g)

∫ 1

0
µ2

norm(qτ , ζτ ) dτ.

The returned point x is an approximate zero of f with associated zero ζ1.

Remark 3.2. 1. The bound in Theorem 3.1 is optimal up to a constant
factor. This easily follows by an inspection of its proof given in §4.

2. Algorithm ALH requires the computation of µnorm which, in turn, re-
quires the computation of the operator norm of a matrix. This cannot be
done exactly with rational operations and square roots only. We can do,
however, with a sufficiently good approximation of µ2

norm(q, x) and there
exist several numerical methods efficiently computing such an approxima-
tion. We will therefore neglect this issue pointing, however, for the sceptical
reader that another course of action is possible. Indeed, one may replace
the operator by the Frobenius norm in the definition of µnorm and use the
bounds ‖M‖ ≤ ‖M‖F ≤

√
rank(M)‖M‖ to show that this change preserves

the correctness of ALH and adds a multiplicative factor n in the right-hand
side of Theorem 3.1. A similar comment applies to the computation of α
and cot(τα) in algorithm ALH which cannot be done exactly with rational
operations.

3.2. Randomization and Complexity: the Algorithm LV. ALH will
serve as the basic routine for a number of algorithms computing zeros of
polynomial systems in different contexts. In these contexts both the input
system f and the origin (g, ζ) of the homotopy may be randomly chosen: in
the case of (g, ζ) as a computational technique and in the case of f in order
to perform a probabilistic analysis of the algorithm’s running time.
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In both cases, a probability measure is needed: one for f and one for the
pair (g, ζ). The measure for f will depend on the kind of probabilistic ana-
lysis (standard average-case or smoothed analysis) we perform. In contrast,
we will consider only one measure on VP—which we denote by ρst— for
the initial pair (g, ζ). It consists of drawing g from Hd from the standard
Gaussian distribution (defined via the isomorphism Hd ≃ R

2N given by
the Bombieri-Weyl basis) and then choosing one of the (almost surely) D
zeros of g from the uniform distribution on {1, . . . ,D}. The formula for the
density of ρst will be derived later, see Lemma 6.6(5). The above procedure
is clearly non-constructive as computing a zero of a system is the problem
we wanted to solve in the first place. One of the major contributions in [4]
was to show that this drawback can be repaired. The following result (a
detailed version of the effective sampling in [6]) will be proved in Section 7
as a special case of more general results we will need in our development.

Proposition 3.3. We can compute a random pair (g, ζ) ∈ VP according to
the density ρst with O(N) choices of random real numbers from the standard
Gaussian distribution and O(DnN + n3) arithmetic operations (including
square roots of positive numbers).

Algorithms using randomly drawn data are called probabilistic (or ran-
domized). Those that always return a correct output are said to be of type
Las Vegas. The following algorithm (which uses Proposition 3.3) belongs to
this class.

Algorithm LV

input f ∈ Hd

draw (g, ζ) ∈ VP from ρst

run ALH on input (f, g, ζ)

For an input f ∈ Hd algorithm LV either outputs an approximate zero x
of f or loops forever. By the running time t(f, g, ζ) we will understand the
number of elementary operations (i.e., arithmetic operations, elementary
functions, and comparisons) performed by LV on input f with initial pair
(g, ζ). For fixed f , this is a random variable and its expectation t(f) :=

E(g,ζ)∼ρst
(t(f, g, ζ)) is said to be the expected running time of LV on input f .

For all f, g, ζ0, the running time t(f, g, ζ) is given by the number of itera-
tions K(f, g, ζ) of ALH with input this triple times the cost of an iteration,
the latter being dominated by that of computing one Newton iterate (which
is O(N + n3) independently of the triple (f, g, ζ), see §2.2). It therefore
follows that analyzing the expected running times of LV amounts to do so
for the expected value —over (g, ζ) ∈ VP drawn from ρst— of K(f, g, ζ). We
denote this expectation by

K(f) := E
(g,ζ)∼ρst

(K(f, g, ζ)).
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3.3. Average Analysis of LV. To talk about average complexity of LV re-
quires specifying a measure for the set of inputs. The most natural choice
is the standard Gaussian distribution on Hd. Since K(f) is invariant un-
der scaling, we may equivalently assume that f is chosen in the unit sphere
S(Hd) from the uniform distribution. With this choice, we say a Las Vegas
algorithm is average polynomial time when the average —over f ∈ S(Hd)—
of its expected running time is polynomially bounded in the size N of f .
The following result shows that LV is average polynomial time. It is essen-
tially the main result in [6] (modulo the existence of ALH and with specific
constants).

Theorem 3.4. The average of the expected number of iterations of Algo-
rithm LV is bounded as (n ≥ 4)

E
f∈S(Hd)

K(f) ≤ 3707D3/2N(n + 1).

3.4. Smoothed Analysis of LV. A smoothed analysis of an algorithm con-
sists of bounding, for all possible input data f , the average of its running
time (its expected running time if it is a Las Vegas algorithm) over small
perturbations of f . To perform such an analysis, a family of measures (pa-
rameterized by a parameter r controlling the size of the perturbation) is
considered with the following characteristics:

(1) the density of an element f depends only on the distance ‖f − f‖.
(2) the value of r is closely related to the variance of ‖f − f‖.

Then, the average above is estimated as a function of the data size N and
the parameter r, and a satisfying result, which is described by the expres-
sion smoothed polynomial time, demands that this function is polynomially
bounded in r−1 and N . Possible choices for the measures’ family are the
Gaussians N(f, σ2I) (used, for instance, in [13, 18, 31, 32]) and the uniform
measure on disks B(f, r) (used in [2, 10, 11]). Other families may also be
used and an emerging impression is that smoothed analysis is robust in the
sense that its dependence on the chosen family of measures is low. This
tenet was argued for in [14] where a uniform measure is replaced by an ad-
versarial measure (one having a pole at f) without a significant loss in the
estimated averages.

In this paper, for reasons of technical simplicity and consistency with
the rest of the exposition, we will work with truncated Gaussians defined
as follows. For f ∈ Hd and σ > 0 we shall denote by N(f , σ2I) the
Gaussian distribution on Hd with mean f and covariance matrix σ2I (de-
fined with respect to the Bombieri-Weyl basis). Further, for A > 0 let
PA,σ := Prob{‖f‖ ≤ A | f ∼ N(0, σ2I)}. We define the truncated Gauss-

ian NA(f, σ2I) with center f ∈ Hd as the probability measure on Hd with
density

(8) ρ(f) =

{
ρf,σ(f)

PA,σ
if ‖f − f‖ ≤ A

0 otherwise,
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where ρf ,σ denotes the density of N(f, σ2I). Note that NA(f, σ2I) is isotropic

around its mean f .
For our smoothed analysis we will take A =

√
2N . In this case, we have

PA,σ ≥ 1
2 for all σ ≤ 1 (Lemma 8.2). Note also that Var(‖f − f‖) ≤ σ2, so

that any upper bound polynomial in σ−2 is also an upper bound polynomial
in Var(‖f − f‖)−1.

We can now state our smoothed analysis result for LV.

Theorem 3.5. For any 0 < σ ≤ 1, Algorithm LV satisfies

sup
f∈S(Hd)

E
f∼NA(f,σ2I)

K(f) ≤ 3707D3/2
(
N + 2−1/2

√
N
)
(n + 1)

1

σ
.

3.5. Condition-based Analysis of LV. We are here interested in estimat-
ing K(f) for a fixed input system f ∈ S(Hd). Such an estimate will have to
depend on, besides N , n, and D, the condition of f . We measure the latter
using Shub and Smale’s [21] µmax(f) defined in (1). Our condition-based
analysis of LV is summarized in the following statement.

Theorem 3.6. The expected number of iterations of Algorithm LV with input
f ∈ S(Hd) \ Σ is bounded as

K(f) ≤ 157109D3N(n + 1)µ2
max(f).

3.6. A Near Solution of Smale’s 17th Problem. We finally want to
consider deterministic algorithms finding zeros of polynomial systems. Our
goal is to exhibit one such algorithm working in nearly-polynomial average
time, more precisely in average time NO(log log N). A first ingredient to do
so is a deterministic homotopy algorithm which is fast when D is small.
This consists of algorithm ALH plus the initial pair (U,z1), where U =

(U1, . . . , Un) ∈ S(Hd) with U i = 1√
2n

(Xdi
0 − Xdi

i ) and z1 = (1 : 1 : . . . : 1).

We consider the following algorithm MD (Moderate Degree):

Algorithm MD

input f ∈ Hd

run ALH on input (f, U,z1)

We write KU (f) := K(f, U,z1) for the number of iterations of algorithm
MD with input f . We are interested in computing the average over f of
KU (f) for f randomly chosen in S(Hd) from the uniform distribution.

The complexity of MD is bounded as follows.

Theorem 3.7. The average number of iterations of Algorithm MD is bounded
as

E
f∈S(Hd)

KU (f) ≤ 314217D3 N(n + 1)D+1.

Algorithm MD is efficient when D is small, say, when D ≤ n. For D > n
we use another approach, namely, a real number algorithm designed by Jim
Renegar [17] which in this case has a performance similar to that of MD
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when D ≤ n. Putting both pieces together we will reach our last main
result.

Theorem 3.8. There is a deterministic real number algorithm that on in-
put f ∈ Hd computes an approximate zero of f in average time NO(log log N),
where N = dimHd measures the size of the input f . Moreover, if we restrict
data to polynomials satisfying

D ≤ n
1

1+ε or D ≥ n1+ε,

for some fixed ε > 0, then the average time of the algorithm is polynomial
in the input size N .

4. Complexity Analysis of ALH

The goal of this section is to prove Theorem 3.1. An essential component
in this proof is an estimate of how much does µnorm(f, ζ) change when f or ζ
(or both) are slightly perturbed. The following result gives upper and lower
bounds on this variation. It is a precise version, with explicit constants, of
Theorem 1 of [20].

Proposition 4.1. Assume D ≥ 2. Let 0 < ε ≤ 0.13 be arbitrary and
C ≤ ε

5.2 . For all f, g ∈ S(Hd) and all x, ζ ∈ P
n, if d(f, g) ≤ C

D1/2µnorm(f,ζ)

and d(ζ, x) ≤ C
D3/2µnorm(g,ζ)

, then

1

1 + ε
µnorm(g, x) ≤ µnorm(f, ζ) ≤ (1 + ε)µnorm(g, x). �

In what follows, we will fix the constants as ε = 0.13 and C = ε
5.2 = 0.025.

Remark 4.2. The constants C and ε implicitly occur in the statement of
Theorem 3.1 since the 217 therein is a function of these numbers. But their
role is not limited to this since they also occur in the algorithm ALH in the

parameter λ = C(1−ε)
2(1+ε)3

controlling the update τ + ∆τ of τ . We note that for

the former we could do without precise values by using the big Oh notation.
In contrast, we cannot talk of a constructive procedure unless all of its steps
are precisely given.

Proof of Theorem 3.1. Let 0 = τ0 < τ1 < . . . < τk = 1 and ζ0 = x0, x1, . . . , xk

be the sequences of τ -values and points in P
n generated by the algorithm

ALH. To simplify notation we write qi instead of qτi and ζi instead of ζτi .

We claim that, for i = 0, . . . , k − 1, the following inequalities are true:

(a) dP(xi, ζi) ≤
C

D3/2µnorm(qi, ζi)

(b)
µnorm(qi, xi)

(1 + ε)
≤ µnorm(qi, ζi) ≤ (1 + ε)µnorm(qi, xi)

(c) dS(qi, qi+1) ≤
C

D3/2µnorm(qi, ζi)



ON A PROBLEM POSED BY STEVE SMALE 15

(d) dP(ζi, ζi+1) ≤
C

D3/2µnorm(qi, ζi)

(1 − ε)

(1 + ε)

(e) dP(xi, ζi+1) ≤
2C

(1 + ε)D3/2µnorm(qi, ζi)

We proceed by induction showing that

(a, i) ⇒ (b, i) ⇒ ((c, i) and (d, i)) ⇒ (e, i) ⇒ (a, i + 1).

Inequality (a) for i = 0 is trivial.
Assume now that (a) holds for some i ≤ k − 1. Then, Proposition 4.1

(with f = g = qi) implies

µnorm(qi, xi)

(1 + ε)
≤ µnorm(qi, ζi) ≤ (1 + ε)µnorm(qi, xi)

and thus (b). We now show (c) and (d). To do so, let τ∗ > τi be such that∫ τ∗
τi

(‖q̇τ‖+ ‖ζ̇τ‖)dτ = C
D3/2µnorm(qi,ζi)

(1−ε)
(1+ε) or τ∗ = 1, whichever the smallest.

Then, for all t ∈ [τi, τ∗],

dP(ζi, ζt) =

∫ t

τi

‖ζ̇τ‖ dτ ≤
∫ τ∗

τi

(‖q̇τ‖ + ‖ζ̇τ‖)dτ

≤ C

D3/2µnorm(qi, ζi)

(1 − ε)

(1 + ε)

and, similarly,

dS(qi, qt) ≤
C

D3/2µnorm(qi, ζi)

(1 − ε)

(1 + ε)
≤ C

D3/2µnorm(qi, ζi)
.

It is therefore enough to show that τi+1 ≤ τ∗. This is trivial if τ∗ = 1.
We therefore assume τ∗ < 1. The two bounds above allow us to apply
Proposition 4.1 and to deduce, for all τ ∈ [τi, τ∗],

µnorm(qτ , ζτ ) ≤ (1 + ε)µnorm(qi, ζi).

From ‖ζ̇τ‖ ≤ µnorm(qτ , ζτ ) ‖q̇τ‖ (cf. [8, §12.3-12.4]) it follows that

C

D3/2µnorm(qi, ζi)

(1 − ε)

(1 + ε)
=

∫ τ∗

τi

(‖q̇τ‖ + ‖ζ̇τ‖)dτ ≤
∫ τ∗

τi

2µnorm(qτ , ζτ )‖q̇τ‖dτ

≤ 2(1 + ε)µnorm(qi, ζi)

∫ τ∗

τi

‖q̇τ‖dτ ≤ 2dS(qi, qτ∗)(1 + ε)µnorm(qi, ζi).

Consequently, using (b), we obtain

dS(qi, qτ∗) ≥
C(1 − ε)

2(1 + ε)2D3/2µ2
norm(qi, ζi)

≥ C(1 − ε)

2(1 + ε)3D3/2µ2
norm(qi, xi)

.

The parameter λ in ALH is chosen as C(1−ε)
2(1+ε)3

(or slightly less). By the

definition of τi+1 − τi in ALH we have α(τi+1 − τi) = λ
D3/2µ2

norm(qi,xi)
. So we

obtain
dS(qi, qτ∗) ≥ α(τi+1 − τi) = dS(qi, qi+1).
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This implies τi+1 ≤ τ∗ as claimed and hence, inequalities (c) and (d). With
them, we may apply Proposition 4.1 to deduce, for all τ ∈ [τi, τi+1],

(9)
µnorm(qi, ζi)

1 + ε
≤ µnorm(qτ , ζτ ) ≤ (1 + ε)µnorm(qi, ζi).

Next we use the triangle inequality, (a), and (d), to obtain

dP(xi, ζi+1) ≤ dP(xi, ζi) + dP(ζi, ζi+1)

≤ C

D3/2µnorm(qi, ζi)
+

C

D3/2µnorm(qi, ζi)

(1 − ε)

(1 + ε)

=
2C

(1 + ε)D3/2µnorm(qi, ζi)
,

which proves (e). Theorem 2.2 yields that xi is an approximate zero of qi+1

associated with its zero ζi+1. Indeed, by our choice of C and ε, we have
2C ≤ u0(1 + ε) and hence dP(xi, ζi+1) ≤ u0

D3/2µnorm(qi,ζi)
. Therefore, xi+1 =

Nqi+1(xi) satisfies

dP(xi+1, ζi+1) ≤
1

2
dP(xi, ζi+1).

Using (e) and the right-hand inequality in (9) with t = ti+1, we obtain

dP(xi+1, ζi+1) ≤
C

(1 + ε)D3/2µnorm(qi, ζi)
≤ C

D3/2µnorm(qi+1, ζi+1)
,

which proves (a) for i + 1. The claim is thus proved.
The estimate dP(xk, ζk) ≤ C

D3/2µnorm(qk,ζk)
just shown for i = k− 1 implies

by Theorem 2.2 that the returned point xk is an approximate zero of qk = f
with associated zero ζ1.

Consider now any i ∈ {0, . . . , k − 1}. Using (9) and (b) we obtain
∫ τi+1

τi

µ2
norm(qτ , ζτ )dτ ≥

∫ τi+1

τi

µ2
norm(qi, ζi)

(1 + ε)2
dτ =

µ2
norm(qi, ζi)

(1 + ε)2
(τi+1 − τi)

≥ µ2
norm(qi, xi)

(1 + ε)4
(τi+1 − τi)

=
µ2

norm(qi, xi)

(1 + ε)4
λ

αD3/2µ2
norm(qi, xi)

=
λ

(1 + ε)4αD3/2
≥ 1

217

1

αD3/2
.

This implies ∫ 1

0
µ2

norm(qτ , ζτ )dτ ≥ k

217

1

αD3/2
,

which proves the stated bound on k. �
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5. A Useful Change of Variables

The remaining of this article is devoted to prove Theorems 3.4–3.8. All
of them involve expectations —over random f and/or g— of the integral

∫ 1

0
µ2

2(qτ )dτ

where, we recall, µ2
2(qτ ) := 1

D
∑

ζ∈VP(qτ ) µ2
norm(qτ , ζ). In all cases, we will

eventually deal with such an expectation with f and g Gaussian. Since a
linear combination (with fixed coefficients) of two such Gaussian systems
is Gaussian as well, it is convenient to parameterize the interval Ef,g by
a parameter t ∈ [0, 1] representing a ratio of Euclidean distances (instead
of a ratio of angles as τ does). Thus we write, abusing notation, qt =
tf + (1 − t)g. For fixed t, as noted before, qt follows a Gaussian law. For
this new parametrization we have the following result.

Proposition 5.1. Let f, g ∈ Hd be R-linearly independent and τ0 ∈ [0, 1].
Then

dS(f, g)

∫ 1

τ0

µ2
2(qτ )dτ ≤

∫ 1

t0

‖f‖ ‖g‖ µ2
2(qt)

‖qt‖2
dt,

where

t0 =
‖g‖

‖g‖ + ‖f‖(sin α cot(τ0α) − cos α)

is the fraction of the Euclidean distance ‖f−g‖ corresponding to the fraction
τ0 of the angle α = dS(f, g).

Proof. For t ∈ [0, 1], abusing notation, we let qt = tf + (1 − t)g and τ(t) ∈
[0, 1] be such that τ(t)α is the angle between g and qt. This defines a bijective
map [t0, 1] → [τ0, 1], t 7→ τ(t). We denote its inverse by τ 7→ t(τ). We claim
that

(10)
dτ

dt
=

sin α

α

‖f‖ · ‖g‖
‖qt‖2

.

Note that the stated inequality easily follows from this claim by the trans-
formation formula for integrals together with the bound sinα ≤ 1.

To prove Claim (10), denote r = ‖f‖ and s = ‖g‖. We will explicitly
compute t(τ) by some elementary geometry. For this, we introduce cartesian
coordinates in the plane spanned by f and g and assume that g has the
coordinates (s, 0) and f has the coordinates (r cos α, r sin α), see Figure 1.
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Figure 1. Computing t(τ).

Then, the lines determining qτ have the equations

x = y
cos(τα)

sin(τα)
and x = y

r cos α − s

r sin α
+ s

from where it follows that the coordinate y of qτ is

(11) y =
rs sinα sin(τα)

r sin α cos(τα) − r cos α sin(τα) + s sin(τα)
.

Since t(τ) = y
r sin α it follows that

(12) t(τ) =
s

r sin α cot(τα) − r cos α + s
.

This implies the stated formula for t0 = t(τ0). Derivating with respect to τ ,
using (11) and sin(τα) = y

‖qτ‖ , we obtain from (12)

dt

dτ
=

αrs sin α

(r sinα cos(τα) − r cos α sin(τα) + s sin(τα))2

=
αy2

rs sin2(τα) sin α
=

α‖qt(τ)‖2

rs sinα
.

This finishes the proof of Claim (10). �

In all the cases we will deal with, the factor ‖f‖ ‖g‖ will be easily bounded
and factored out the expectation. We will ultimately face the problem of
estimating expectations of the form

E
qt∼N(qt,σ

2
t I)

(
µ2

2(qt)

‖qt‖2

)

for different choices of qt and σt. In the next section we perform such
analysis.
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6. Smoothed Analysis of the Mean Square Condition Number

6.1. Outline. The goal of this section is to prove the following result.

Theorem 6.1. Let q ∈ Hd and σ > 0. For q ∈ Hd drawn from N(q, σ2I)
we have

E
Hd

(µ2
2(q)

‖q‖2

)
≤ e(n + 1)

2σ2
.

Note that the assumption does not require a bound on the norm of q.
Indeed, using µ2(λq) = µ2(q), it is easy to see that the assertion for q, σ
implies the assertion for λq, λσ, for any λ > 0.

Before going into the details, we give a brief outline of the proof of The-
orem 6.1. From now on we will distinguish points [ζ] ∈ P

n from their
representatives ζ in the sphere S

n := {ζ ∈ C
n+1 | ‖ζ‖ = 1}. Note that

[ζ] ∩ S
n is a circle with radius one. It will therefore be necessary to work

with the “lifting”

V := {(q, ζ) ∈ Hd × S
n | q(ζ) = 0}

of the solution variety VP. Think of choosing (q, ζ) at random from V by first
choosing q ∈ Hd from N(q, σ2I), then choosing one of its D zeros [ζ] ∈ P

n

at random from the uniform distribution on {1, . . . ,D}, and finally choosing
a representative ζ in the unit circle [ζ] ∩ S

n uniformly at random (we will
derive in §6.3 an explicit expression of the corresponding probability density
ρV on V , see (23)). Then we have (cf. Lemma 6.6)

(13) E
Hd

(µ2
2(q)

‖q‖2

)
= E

V

(µ2
norm(q, ζ)

‖q‖2

)
,

where EHd
and EV refer to the expectations with respect to the distribution

N(q, σ2I) on Hd and the probability density ρV on V , respectively.
To estimate the right-hand side in (13) we reduce the problem to one

in a space of matrices. This is how. Let M denote the space C
n×(n+1) of

matrices. In the special case, where all the degrees di are one, the solution
manifold V specializes to the manifold

W :=
{(

M, ζ) ∈ M × S
n | Mζ = 0}.

Consider the following map of differentiable vector bundles over S
n:

(14) Ψ: V → W, (q, ζ) 7→ (M, ζ), where M = diag(d
−1/2
i )Dq(ζ).

By the definition of µnorm we have, for (q, ζ) ∈ V ,

µnorm(q, ζ) = ‖q‖ · ‖M †‖,
where M † = M∗(MM∗)−1 denotes the Moore-Penrose inverse of M and
‖M †‖ its spectral norm. Therefore,

(15) E
V

(µ2
norm(q, ζ)

‖q‖2

)
= E

W

(
‖M †‖2

)
,
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where EW denotes the expectation with respect to the pushforward den-
sity ρW of the density ρV via the map Ψ.

We have thus reduced our problem to the probability analysis of ‖M †‖,
which is a quantity closely related to the matrix condition number κ(M) =
‖M‖‖M †‖. In order to proceed, we need to get some understanding of the
probability density ρW . For this, it will be useful to consider the projection
p2 : W → S

n, (M, ζ) 7→ ζ with fibers

Mζ := {M ∈ M | Mζ = 0} ≃ p−1
2 (ζ).

The probability density ρW defines a pushforward density ρSn on S
n, as well

as conditional probability densities ρ̃Mζ
on the fibers Mζ (see §6.2 for the

formal definition) and we have (cf. (20)),

(16) E
W

(
‖M †‖2

)
= E

ζ∼ρSn

(
E

M∼eρMζ

(
‖M †‖2

))
,

where ρ̃Mζ
is the density of the conditional distribution of M on Mζ . For

the proof of Theorem 6.1 it is therefore enough to show that for all ζ ∈ S
n

(17) E
M∼eρMζ

(
‖M †‖2

)
≤ e(n + 1)

2σ2
.

We will provide the proof of this bound in §6.5. The analysis of the situation
reveals that the density ρ̃Mζ

is closely related to a Gaussian, namely it has
the form (c denoting a normalization factor)

ρ̃Mζ
(M) = c · det(MM∗) ρMζ

(M),

where ρMζ
is a noncentered Gaussian density on Mζ . This fact allows one

to prove tail bounds similarly as it was done in Sankar et al. [18, §3].
We begin now by recalling the fundamental coarea formula and then pro-

ceed in the following subsections by a careful analysis of the geometry of the
bundle map Ψ: V → W , which allows to compute the resulting probability
densities.

6.2. Coarea Formula. Suppose that X,Y are Riemannian manifolds of
dimensions m, n, respectively such that m ≥ n. Let ϕ : X → Y be differen-
tiable. By definition, the derivative dxϕ : TxX → Tϕ(x)Y at a regular point
x ∈ X is surjective. Hence the restriction of dxϕ to the orthogonal com-
plement of its kernel yields a linear isomorphism. The absolute value of its
determinant is called the normal Jacobian of ϕ at x and denoted NJϕ(x).
We set NJϕ(x) := 0 if x is not a regular point. We note that the fiber
Fy := ϕ−1(y) is a Riemannian submanifold of X of dimension m − n if y is
a regular value of ϕ. Sard’s lemma states that almost all y ∈ Y are regular
values.

We recall the fundamental coarea formula, sometimes also called Fubini’s
Theorem for Riemannian manifolds. A proof can be found e.g., in [15,
Appendix].
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Proposition 6.2. Suppose that X,Y are Riemannian manifolds of dimen-
sions m, n, respectively, and let ϕ : X → Y be a surjective differentiable
map. Put Fy = ϕ−1(y). Then we have for any function χ : X → R that is
integrable with respect to the volume measure of X that

∫

X
χdX =

∫

y∈Y

(∫

Fy

χ

NJϕ
dFy

)
dY. �

Now suppose that we are in the situation described in the statement of
Proposition 6.2 and we have a probability measure on X with density ρX .
For a regular value y ∈ Y we set

(18) ρY (y) =

∫

Fy

ρX

NJϕ
dFy.

The coarea formula implies that for all measurable sets B ⊆ Y we have
∫

ϕ−1(B)
ρX dX =

∫

B
ρY dY.

Hence ρY is a probability density on Y . We call it the pushforward of ρX

with respect to ϕ.
For a regular value y ∈ Y and x ∈ Fy we define

(19) ρFy(x) =
1

ρY (y)

ρX(x)

NJϕ(x)
.

Clearly, this defines a probability density on Fy. The coarea formula implies
that for all measurable functions χ : X → R

∫

X
χρX dX =

∫

y∈Y

(∫

Fy

χρFy dFy

)
ρY (y) dY,

provided the left-hand integral exists. Therefore, we can interpret ρFy as
the density of the conditional distribution of x in the fiber Fy and briefly
express the formula above as

(20) E
x∼ρX

(χ(x)) = E
y∼ρY

(
E

x∼ρFy

(χ(x))
)
.

6.3. The Geometric Situation. The Bombieri-Weyl Hermitian inner prod-
uct on Hd and the standard metric on the sphere S

n define a Riemannian
metric on Hd × S

n on which the unitary group U(n + 1) operates isomet-
rically. The solution variety V is easily seen to be a U(n + 1)-invariant
Riemannian submanifold of Hd × S

n. Note that the fiber V (q) of the pro-
jection π1 : V → Hd, (q, ζ) 7→ q at q ∈ Hd is a disjoint union of D = d1 · · · dn

circles if q does not lie in the discriminant variety Σ. Moreover, the pro-
jection π2 : V → S

n, (q, ζ) 7→ ζ defines a vector bundle. In the special
case where all the degrees are one, π2 specializes to the vector bundle
p2 : W → S

n, (M, ζ) 7→ ζ with fibers Mζ . The various maps we are con-
sidering are summarized in the following commutative diagram
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Figure 2. The geometric situation.

In order to understand the fibers of π2, we are going to decompose the
vector bundle π2 : V → S

n as an orthogonal sum of three subbundles: V =
C ⊕ L ⊕ R. The fibers of these subbundles over ζ ∈ S

n are defined as the
following linear subspaces of Hd:

Cζ := {(c1〈X, ζ〉d1 , . . . , cn〈X, ζ〉dn) | c1, . . . , cn ∈ C}

Lζ :=

{(√
d1〈X, ζ〉d1−1m1X, . . . ,

√
dn〈X, ζ〉dn−1mnX

)
| M ∈ Mζ

}

Rζ := {h ∈ Hd | h(ζ) = 0,Dh(ζ) = 0}
where mi denotes the ith row of M . Moreover, given ζ ∈ S

n and M ∈ Mζ ,
we define gM,ζ ∈ Lζ by

gM,ζ := diag
(√

di〈X, ζ〉di−1
)
MX.

For each ζ this defines a map

(21) Mζ → Lζ , M 7→ gM,ζ .

Example 6.3. In case ζ = e0 = (1, 0, . . . , 0) we have

Me0 =








0
...
0

∣∣∣∣∣∣∣
A


 : A ∈ C

n×n





.

Note that ‖M †‖ = ‖A−1‖ for M ∈ Me0 . Also, writing X = (X1, . . . ,Xn),
we obtain

Ce0 := {(c1X
d1
0 , . . . , cnXdn

0 ) | c1, . . . , cn ∈ C}

Le0 :=

{(√
d1X

d1−1
0 A1X, . . . ,

√
dnXdn−1

0 AnX

)
| A ∈ C

n×n

}

Re0 :=

{
h ∈ Hd | hi =

di∑

k=2

Xk
0 qik with qik ∈ C[X] homog. of degree di − k

}
.

The next lemma summarizes the properties of the decomposition V =
C ⊕ L ⊕ R.
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Lemma 6.4. For all ζ ∈ S
n,

(1) Hd = Cζ ⊕ Lζ ⊕ Rζ is an orthogonal decomposition.

(2) The map in (21) is a linear isometry (w.r.t. the restriction to Mζ of
the standard Hermitian inner product in M ).

(3) DgM,ζ(ζ) = diag
(√

di

)
M . In particular, Ψ(gM,ζ , ζ) = (M, ζ).

(4) For given q ∈ Hd, the orthogonal decomposition q = k+gM,ζ +h with
k ∈ Cζ , M = [mij ] ∈ M , and h ∈ Rζ can be computed as

ki = qi(ζ)〈X, ζ〉di

mij = d
−1/2
i

(
∂Xjqi(ζ) − qi(ζ)ζj

)

h = q − k − gM,ζ .

Proof. Since the truth of the first three assertions is preserved under the
action of U(n + 1) we may assume that ζ = e0 = (1, 0, . . . , 0). The validity
of part (1) and (2) is now apparent in Example 6.3.

Part (3) is a straightforward calculation.
For Part (4), it is easy to see that Dk(ζ)v = 〈v, ζ〉q(ζ) for v ∈ C

n+1. This
gives k. Also, q = k + gM,ζ + h implies, using Part (3),

M = diag(d
−1/2
i )DgM,ζ(ζ) = diag(d

−1/2
i )

(
Dq(ζ) − Dk(ζ)

)
.

The expression for h is trivial. �

Let (q, ζ) ∈ V . Lemma 6.4 implies that there are uniquely determined
M ∈ Mζ and h ∈ Rζ such that q = gM,ζ + h. Moreover, we have

‖q‖2 = ‖gM,ζ‖2 + ‖h‖2 = ‖M‖2
F + ‖h‖2

with ‖M‖F = (tr(MM∗))1/2 denoting the Frobenius norm, as well as

Dq(ζ) = DgM,ζ(ζ) = diag
(√

di

)
M.

In particular, we get (M, ζ) = Ψ(q, ζ) for (q, ζ) ∈ V , where Ψ is the bundle
map from (14). We conclude that for (M, ζ) ∈ W

(22) Rζ → Ψ−1(M, ζ), h 7→ (gM,ζ + h, ζ)

is a bijective map (actually an isometry of Riemannian manifolds).
To apply the coarea formula it is essential to compute the normal Jaco-

bians of the projections πi, pi and of the map Ψ. In the next lemma, let
Σ′ := π−1

1 (Σ) ⊆ V denote the inverse image of the discriminant variety Σ.

Proposition 6.5. Consider the map Φ: V → W, (q, ζ) 7→ (N, ζ), where
N = Dq(ζ). For (q, ζ) ∈ V \ Σ′ we have

(1) NJΦ(q, ζ) = Dn.
(2) NJπ1(q, ζ) = NJp1(N, ζ) = det(In + (N †)∗N †)−1.

(3) NJp1(M,ζ)
NJp2(M,ζ) = det(MM∗).

(4) NJΨ(q, ζ) = 1
D · NJp1(N,ζ)

NJp1(M,ζ) .
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Proof. (1). This is shown in [6, Lemma 1].
(2) and (3). These are shown in [22] (see also [8, Section 13.2, Lemmas 2-

3]) for the projections of the solution varieties lying in P
n(Hd) × P

n. It is
straightforward to see that one gets the same normal Jacobian determinants
for solutions varieties in Hd × S

n.
(4). The scalar multiplication C → C, z 7→ λz with λ ∈ C has the

Jacobian determinant |λ|2. This implies that the map

sc: M → M , N 7→ M = diag(d
−1/2
i )N

has the Jacobian determinant D−n−1. The assertion follows now from (1)
using Ψ = p−1

1 ◦ sc ◦ p1 ◦ Φ. �

6.4. Induced Probability Measures. Fix q ∈ Hd and σ > 0 and sup-
pose that a random q ∈ Hd is chosen according to the Gaussian distribution
N(q, σ2I) with mean q and isotropic covariance matrix σ2I. The corre-
sponding density shall be denoted by ρHd

and EHd
stands for expectation

taken with respect to that density. We now associate with ρHd
the function

ρV : V → R defined by

(23) ρV (q, ζ) :=
1

2πD ρHd
(q)NJπ1(q, ζ).

The next result shows that ρV is the probability density function of the
distribution on V we described in §6.1.

Lemma 6.6. (1) The function ρV is a probability density on V .
(2) The expectation of any function ϕ : V → R that is integrable with

respect to ρV can be expressed as EV (ϕ) = EHd
(ϕav), where

ϕav(q) :=
1

2πD

∫

V (q)
ϕdV (q)

with V (q) = {ζ ∈ S
n | q(ζ) = 0}.

(3) The pushforward of ρV with respect to π1 equals ρHd
.

(4) For q 6∈ Σ, the conditional density on the fiber V (q) is the density
of the uniform distribution on V (q) (which is a disjoint union of D
unit circles).

(5) The probability density ρst on VP introduced in §3.2 is obtained from
the density ρV in the case q = 0, σ = 1 as the pushforward under
the canonical map V → VP, (f, ζ) 7→ (f, [ζ]). Explicitly, we have

ρst(q, [ζ]) =
1

D
1

(2π)N
e−

1
2
‖q‖2

NJπ1(q, ζ).

Proof. The coarea formula (Proposition 6.2) applied to π1 : V → Hd implies
∫

V
ϕρV dV =

∫

q∈Hd

∫

ζ∈V (q)
ϕ(q, ζ)

ρV (q, ζ)

NJπ1(q, ζ)
dV (q) dHd

=

∫

q∈Hd

ϕav(q) ρHd
(q) dHd.
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Taking ϕ = 1 reveals that ρV is a density, proving the first assertion. The
above formula also shows the second assertion.

By Equation (18) the pushforward density ρ with respect to π1 satisfies

ρ(q) =

∫

ζ∈V (q)

ρV (q, ζ)

NJπ1(q, ζ)
dV (q) = ρHd

(q).

This shows the third assertion. By (19) the conditional density satisfies

ρV (q)(q) =
1

ρHd
(q)

ρV (q, ζ)

NJπ/x1(q, ζ)
=

1

2πD ,

which shows the forth assertion. The fifth assertion is trivial. �

We are now going to compute the pushforward density ρW of ρV with
respect to the map Ψ: V → W . We will also compute the pushforward
density of ρW and the conditional density on the fiber Mζ with respect to
the projection p2 : W → S

n.
For this purpose, fix ζ ∈ S

n and decompose

(24) q = kζ + gζ + hζ

according to the orthogonal decomposition Hd = Cζ ⊕ Lζ ⊕ Rζ . Let M ζ

denote the image of gζ under the isometry γζ : Lζ → Mζ . We denote by
ρCζ

, ρMζ
, ρRζ

the densities of the Gaussians in the spaces Cζ ,Mζ , Rζ with

covariance matrices σ2I and means kζ ,M ζ , hζ , respectively. Then, due to
the isotropy of the covariance matrices, the density ρHd

factors as

(25) ρHd
(k + gM,ζ + h) = ρCζ

(k) · ρMζ
(M) · ρRζ

(h).

For instance we have for k ∈ Cζ

ρCζ
(k) = (σ

√
2π)−2n exp

(
− 1

2σ2
‖k − kζ‖2

)
.

As kζ lies in Cζ it is of the form kζ = (c1〈X, ζ〉d1 , . . . , cn〈X, ζ〉dn), hence

q(ζ) = kζ(ζ) = (c1, . . . , cn). This yields ‖q(ζ)‖2 =
∑

i |ci|2 = ‖kζ‖2. There-
fore

(26) a(ζ) := ρCζ
(0) = (σ

√
2π)−2n exp

(
− 1

2σ2
‖q(ζ)‖2

)
.

Lemma 6.7. (1) The pushforward density ρW of ρV with respect to Ψ
equals

ρW (M, ζ) =
1

2π
a(ζ) · ρMζ

(M) · NJp1(M, ζ).

(2) The conditional density on the fiber Ψ−1(M, ζ) is induced from the

density ρRζ
via the isometry Rζ

∼→ Ψ−1(M, ζ) of (22).
(3) The pushforward density ρSn of ρW with respect to p2 : W → S

n

equals

ρSn(ζ) =
1

2π
a(ζ) · E

Mζ

(det(MM∗)),
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where the expectation refers to the Gaussian density ρMζ
.

(4) The conditional density ρ̃Mζ
on the fiber Mζ of p2 : W → S

n equals

ρ̃Mζ
(ζ) =

det(MM∗) ρMζ
(M)

EMζ
(det(MM∗))

.

Proof. Fix (M, ζ) ∈ W . Equation (18) applied to Ψ yields

ρW (M, ζ) =

∫

(q,ζ)∈Ψ−1(M,ζ)

1

NJΨ(q, ζ)
ρV (q, ζ) dΨ−1(M, ζ)

Recall the isometry Rζ → Ψ−1(M, ζ), h 7→ (gM,ζ + h, ζ) from (22). The
density ρHd

, according to (25), factors as

ρHd
(gM,ζ + h) = ρCζ

(0) · ρMζ
(M) · ρRζ

(h).

In (26) we have set a(ζ) = ρCζ
(0) . Using Proposition 6.5(2), the density ρV

can be thus written as

ρV (gM,ζ + h, ζ) =
1

2πD ρHd
(gM,ζ + h)NJp1(N, ζ),

where N = diag(
√

di)M . Combining these observations with Proposition 6.5(4)
and the definition (23) of ρV we obtain

ρW (M, ζ) =

∫

h∈Rζ

D NJp1(M, ζ)

NJp1(N, ζ)

1

2πD a(ζ) ρMζ
(M) ρRζ

(h)NJp1(N, ζ) dh

=
1

2π
a(ζ) ρMζ

(M)NJp1(M, ζ)

∫

h∈Rζ

ρRζ
(h) dh

=
1

2π
a(ζ) ρMζ

(M)NJp1(M, ζ),

which proves the first assertion.
By Equation (19), the conditional density in Ψ−1(M, ζ) is given by

ρΨ−1(M,ζ)(q, ζ) =
1

ρW (M, ζ)

ρV (q, ζ)

NJΨ(q, ζ)
.

Plugging in here the definition of ρV , the formula for ρW from the first
assertion, and the expressions for the normal Jacobians of Proposition 6.5,
we get, after a short calculation, that ρΨ−1(M,ζ)(q, ζ) = ρRζ

(q). This proves
the second assertion.

Equation (18) applied to p2 yields, for ζ ∈ S
n,

ρSn(ζ) =

∫

M∈Mζ

1

NJp2(M, ζ)
ρW (M, ζ) dM.

Using Proposition 6.5(3) this implies

ρSn(ζ) =
1

2π
a(ζ)

∫

M∈Mζ

det(MM∗)ρMζ
(M) dM

=
1

2π
a(ζ) E

Mζ

(det(MM∗))
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showing the third assertion.
The fourth assertion immediately follows from the first, the third and the

definition (19) of the conditional density. �

6.5. Proof of Theorem 6.1. In the following we fix A ∈ C
n×n, σ > 0 and

denote by ρ(A) the density of A ∈ Cn×n chosen from N(A,σ2I). Moreover,
we consider the density

ρ̃(A) = c−1 |det A|2 ρ(A) where c := E
A∼ρ

(|det A|2).

We note that ρ̃ corresponds to the conditional density ρ̃Mζ0
in the fiber

Mζ0 ≃ C
n×n, see Example 6.3 and Lemma 6.7(4).

We shall denote by S(Cn) the sphere of vectors v ∈ C
n with ‖v‖ = 1.

Lemma 6.8. For any v ∈ S(Cn) and any t > 0 we have

Prob
A∼eρ

{
‖A−1v‖ ≥ t

}
≤ 1

4σ4t4
.

Proof. We first claim that, because of unitary invariance, we may assume
that v = en := (0, . . . , 0, 1). To see this, take S ∈ U(n) such that v = Sen.
Consider the isometric map A 7→ B = S−1A which transforms the density
ρ̃(A) to a density of the same form, namely

ρ̃′(B) = ρ̃(A) = c−1|detA|2ρ(A) = c−1|det B|2ρ′(B),

where ρ′(B) denotes the density of N(S−1A,σ2I) and c = Eρ(|det A|2) =

Eρ′(|det B|2). Thus the assertion for en and random B (chosen from any
isotropic Gaussian distribution) implies the assertion for v and A, noting
that A−1v = B−1en. This proves the claim.

Let ai denote the ith row of A. Almost surely, the rows a1, . . . , an−1 are
linearly independent. We are going to characterize ‖A−1en‖ in a geometric
way. Let Sn := span{a1, . . . , an−1} and denote by a⊥n the orthogonal projec-
tion of an onto S⊥

n . Consider w := A−1en, which is the nth column of A−1.
Since AA−1 = I we have 〈w, ai〉 = 0 for i = 1, . . . , n − 1 and hence w ∈ S⊥

n .
Moreover, 〈w, an〉 = 1, so ‖w‖ ‖a⊥n ‖ = 1 and we arrive at

(27) ‖A−1en‖ =
1

‖a⊥n ‖
.

Let An ∈ C
(n−1)×n denote the matrix obtained from A by omitting an.

We shall write vol(An) = det(AA∗)1/2 for the (n − 1)-dimensional volume
of the parallelepiped spanned by the rows of An. Similarly, |detA| can be
interpreted as the n-dimensional volume of the parallelepiped spanned by
the rows of A.

Now we write ρ(A) = ρ1(An)ρ2(an) where ρ1 and ρ2 are the density
functions of N(An, σ2I) and N(an, σ2I), respectively (the meaning of An

and an being clear). Moreover, note that

vol(A)2 = vol(An)2 ‖a⊥n ‖2.
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Fubini’s Theorem combined with (27) yields for t > 0
∫

‖A−1en‖≥t
vol(A)2ρ(A) dA =

∫

An∈C(n−1)×n

vol(An)2 ρ1(An)

·
(∫

‖a⊥
n ‖≤1/t

‖a⊥n ‖2ρ2(an) dan

)
dAn.(28)

We next show that for fixed, linearly independent a1, . . . , an−1 and λ > 0
we have

(29)

∫

‖a⊥
n ‖≤λ

‖a⊥n ‖2ρ2(an) dan ≤ λ4

2σ2
.

For this, note that a⊥n ∼ N(a⊥n , σ2I) in S⊥
n ≃ C where a⊥n is the orthogonal

projection of an onto S⊥
n . Thus, proving (29) amounts to showing
∫

|z|≤λ
|z|2ρz(z)dz ≤ λ4

2σ2

for the Gaussian density ρz(z) = 1
2πσ2 e−

1
2σ2 |z−z|2 of z ∈ C, where z ∈ C.

Clearly, it is enough to show that

(30)

∫

|z|≤λ
ρz(z)dz ≤ λ2

2σ2
.

Without loss of generality we may assume that z = 0, since the integral in
the left-hand side is maximized at this value of z. Then, writing z = σw,
we have

∫

|z|≤λ
ρ0(z)dz =

∫

|w|≤λ
σ

1

2π
e−

1
2
|w|2 dw =

∫ λ
σ

0

1

2π
e−

1
2
r2

2πr dr

= −e−
1
2
r2

∣∣∣∣
λ
σ

0

= 1 − e−
λ2

2σ2 ≤ λ2

2σ2
,

which proves inequality (29).
Plugging (29) with λ = 1

t into (28) we obtain
∫

‖A−1en‖≥t
vol(A)2ρ(A) dA ≤ 1

2σ2t4
E
ρ1

(
vol(An)2

)
.

Lemma 6.11, stated in §6.6 below, tells us that

E
ρ1

(
vol(An)2

)
≤ 1

2σ2 E
ρ

(
vol(A)2

)
.

Therefore,
∫

‖A−1en‖≥t
vol(A)2ρ(A) dA ≤ 1

4σ4t4
E
ρ

(
vol(A)2

)
.
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By the definition of the density ρ̃, this means that

Prob
A∼eρ

{
‖A−1en‖ ≥ t} ≤ 1

4σ4t4
,

which was to be shown. �

Lemma 6.9. For fixed u ∈ S(Cn), 0 ≤ s ≤ 1, and random v uniformly
chosen in S(Cn) we have

Prob
v

{
|uTv| ≥ s

}
= (1 − s2)n−1.

Proof. Recall the Riemannian distance dP in P
n−1 := P(Cn) from (7). Ac-

cordingly, for 0 ≤ θ ≤ π/2, we have

Prob
v

{
|uTv| ≥ cos θ

}
=

vol
{
[v] ∈ P

n−1 | dP([u], [v]) ≤ θ
}

vol Pn−1
= (sin θ)2(n−1),

where the last equality is due to [10, Lemma 2.1]. �

The goal is to prove the bound (17) on the conditional expectation in the
fibers Mζ . For this, we first provide an upper bound on the probability tail.
We may assume without loss of generality that ζ = e0.

Lemma 6.10. For any t > 0 we have

Prob
A∼eρ

{
‖A−1‖ ≥ t

}
≤ e2(n + 1)2

16σ4

1

t4
.

Proof. We use an idea in Sankar et al. [18, §3]. For any invertible A ∈ C
n×n

there exists u ∈ S(Cn) such that ‖A−1u‖ = ‖A−1‖. For almost all A, the
vector u is uniquely determined up to a scaling factor θ of modulus 1. We
shall denote by uA a representative of such u.

The following is an easy consequence of the singular value decomposition
of ‖A−1‖: for any v ∈ S(Cn) we have

(31) ‖A−1v‖ ≥ ‖A−1‖ · |uT
A v|.

We choose now a random pair (A, v) with A following the law ρ̃ and, in-
dependently, v ∈ S(Cn) from the uniform distribution. Lemma 6.8 implies
that

Prob
A,v

{
‖A−1v‖ ≥ t

√
2

n + 1

}
≤ (n + 1)2

16σ4t4
.

On the other hand, we have by (31)

Prob
A,v

{
‖A−1v‖ ≥ t

√
2/(n + 1)

}

≥ Prob
A,v

{
‖A−1‖ ≥ t and |uT

A v| ≥
√

2/(n + 1)
}

≥ Prob
A

{
‖A−1‖ ≥ t

}
Prob
A,v

{
|uT

A v| ≥
√

2/(n + 1)
∣∣∣ ‖A−1‖ ≥ t

}
.
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Lemma 6.9 tells us that for any fixed u ∈ S(Cn) we have

Prob
v

{
|uT v| ≥

√
2/(n + 1)

}
= (1 − 2/(n + 1))n−1 ≥ e−2,

the last inequality as (n+1
n−1)n−1 = (1 + 2

n−1)n−1 ≤ e2. We thus obtain

Prob
A

{
‖A−1‖ ≥ t

}
≤ e2 Prob

A,v

{
‖A−1v‖ ≥ t

√
2

n + 1

}
≤ e2(n + 1)2

16σ4t4
,

as claimed. �

We can now finally provide the proof of Theorem 6.1.

Proof of Theorem 6.1. Fix ζ ∈ S
n and let E and Prob refer to the conditional

distribution in the fiber Mζ with density ρ̃Mζ
. Lemma 6.10 implies that

Prob
{
‖M †‖ ≥ T

}
≤ e2(n + 1)2

16σ4

1

T 2

for any T > 0. Hence we obtain, for any T0 > 0,

E
(
‖M †‖2

)
=

∫ ∞

0
Prob

{
‖M †‖2 ≥ T

}
dT

≤ T0 +
∫∞
T0

Prob
{
‖M †‖2 ≥ T

}
dT ≤ T0 + e2(n+1)2

16σ4
1
T0

,

using
∫∞
T0

T−2 dT = T−1
0 . Choosing T0 = e(n+1)

4σ2 yields E

(
‖M †‖2

)
≤ e(n+1)

2σ2 .

This proves the estimate (17) for any ζ ∈ S
n. As outlined in §6.1, this

completes the proof of Theorem 6.1. �

6.6. Expected Volume of Parallelepipeds. Here we complete the proof
of Theorem 6.1 by providing the proof of the following result.

Lemma 6.11. Suppose that A ∈ C
n×n, σ > 0, and A is chosen from

N(A,σ2I). Then for any i ∈ [n] we have

E

(
vol(Ai)

2
)
≤ 1

2σ2 E

(
vol(A)2

)
.

In the following we assume 1 ≤ m ≤ n. Let us recall a few notations:
If B ∈ C

m×n then we write vol(B) = vol(b1, . . . , bm) = det(BB∗)1/2 for the
m-dimensional volume of the parallelepiped spanned by the rows bi of B. If
i ∈ [m] we denote by Bi the matrix obtained from B by omitting the ith
row.

Lemma 6.12. Suppose B ∈ C
m×n is chosen from N(0, I). Then we have

E

(
vol(B)2

)
= 2m n!/(n − m)!.

Proof. We denote by bi the ith row of B. Denote by S the span of fixed

linearly independent b1, . . . , bm−1. We decompose bm = b
‖
m+b⊥m, with b

‖
m ∈ S

and b⊥m ∈ S⊥. Conditional on Bm = {b1, . . . , bm−1}, the vector b
‖
m has

the distribution of N(0, σ2I) in S ≃ C
m−1 and b⊥m has the distribution of
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N(0, σ2I) in S⊥ ≃ C
n−m+1. Moreover, b

‖
m and b⊥m are independent. Hence

E(‖b⊥m‖2) = 2(n − m + 1).
From vol(B) = vol(Bm) · ‖b⊥m‖ we get

E

(
vol(B)2

)
= E

(
E(‖b⊥m‖2 | Bm) vol(Bm)

)

= 2(n − m + 1) E

(
vol(Bm)

)
.

The assertion follows by induction. �

We extend the previous result to the case of noncentered Gaussian distri-
butions. Write [m] := {1, 2, . . . ,m}.
Lemma 6.13. Let A ∈ C

m×n have rows ai and suppose σ > 0. For a subset
I ⊆ [m] of cardinality 0 < k ≤ m we put

rvol2I :=
1

k! (2σ2)k
vol(ai | i ∈ I)2.

We further set rvol2∅ := 1. Suppose A ∈ C
m×n is chosen from N(A,σ2I).

Then we have

1

m! (2σ2)m
E

(
vol(A)2

)
=

m∑

k=0

(
n − k

m − k

)
1(m
k

)
∑

I⊆[m]
|I|=k

rvol2I .

Proof. Consider the mth alternating power
∧m

C
m together with the stan-

dard Hermitian inner product. Let ai denote the ith row of A. Then
‖a1 ∧ . . . ∧ am‖ = vol(a1, . . . , am).

Write ai = ai + σbi where bi ∈ C
n, bi ∈ N(0, I), for i = 1, . . . ,m. The

multilinearity of the wedge product then implies that

a1 ∧ . . . ∧ am =

m∑

k=0

σm−k
∑

I⊆[m]
|I|=k

∧

i∈I

ai ∧
∧

i6∈I

bi.

This implies

(32) ‖a1 ∧ . . . ∧ am‖2 =

m∑

k=0

(σ2)m−k
∑

I⊆[m]
|I|=k

∥∥∥
∧

i∈I

ai ∧
∧

i6∈I

bi

∥∥∥
2
+ mixed terms.

The expectations of the mixed terms vanish due to the invariance with
respect to the transformations bi 7→ ±bi. Therefore,

(33) E
(
‖a1 ∧ . . . ∧ am‖2

)
=

m∑

k=0

(σ2)m−k
∑

I⊆[m]
|I|=k

E

(∥∥∥
∧

i∈I

ai ∧
∧

i6∈I

bi

∥∥∥
2
)

.

Let I = {1, 2, . . . , k} and denote by b⊥k+1, . . . , b
⊥
m the orthogonal projec-

tions of bk+1, . . . , bm onto span{a1, . . . , ak}⊥, respectively. Assume this span
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has complex dimension k. Then

(34)
∥∥∥
∧

i∈I

ai ∧
∧

i6∈I

bi

∥∥∥
2

= vol(a1, . . . , ak)
2 vol(b⊥k+1, . . . , b

⊥
m)2.

If span{a1, . . . , ak} has complex dimension less than k, this equality still
holds since both left- and right-hand sides are zero. Note that (b⊥k+1, . . . , b

⊥
m)

is standard normally distributed in span{a1, . . . , ak}⊥ ≃ C
n−k. Hence, by

Lemma 6.12,

E

(
vol(b⊥k+1, . . . , b

⊥
m)2
)

= 2m−k (n − k)!

(n − m)!
.

We conclude with (33) that

E
(
‖a1 ∧ . . . ∧ am‖2

)
=

m∑

k=0

(2σ2)m−k (n − k)!

(n − m)!

∑

I⊆[m]
|I|=k

vol(ai | i ∈ I)2.

The assertion follows dividing both sides by m! (2σ2)m. �

Proof of Lemma 6.11 . Without loss of generality, take i = n. Lemma 6.13
applied to An ∈ C

(n−1)×n (with m = n − 1) yields

1

(n − 1)! (2σ2)n−1 E

(
vol(An)2

)
=

n−1∑

k=0

n − k(
n−1

k

)
∑

I⊆[n−1]
|I|=k

rvol2I

= n

n−1∑

k=0

1(n
k

)
∑

I⊆[n−1]
|I|=k

rvol2I ≤ n

n∑

k=0

1(n
k

)
∑

I⊆[n]
|I|=k

rvol2I .

By Lemma 6.13 applied to A, the latter equals

n
1

n! (2σ2)n
E
(
vol(A)2

)
,

which shows the assertion. �

7. Effective Sampling in the Solution Variety

We turn now to the question of effective sampling in the solution variety
endowed with the measure ρst. More precisely, we provide the proof of
Proposition 3.3 stated in Section 3.2.

We specialize the discussion in §6.4 to the case q = 0, σ = 1 using the
notation introduced there. Recall, drawing (q, [ζ]) ∈ VP from ρst amounts
to choosing a system q ∈ Hd from the standard Gaussian distribution and
then choosing one of the D projective zeros of q at random from the uniform
distribution. This procedure is clearly non-effective, as computing a zero of q
is the problem we wanted to solve in the first place. However, the following
description of ρst suggests that we may proceed differently.
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Proposition 7.1. In the setting of §6.4 suppose q = 0, σ = 1. Then the
pushforward density ρM of ρW with respect to p1 : W → M equals the stan-
dard Gaussian distribution in M . The conditional distributions in the fibers
of p1 are uniform distributions on unit circles. Moreover, the pushforward
density ρSn of ρW with respect to p2 : W → S

n equals the uniform density
on S

n. Finally, the conditional distribution in the fibers of Ψ is induced from
the standard Gaussian in Rζ via the isometry (22).

Proof. Let M ∈ M be of full rank and ζ ∈ S
n such that Mζ = 0. Note that

ρW (M,λζ) = ρW (M, ζ) for λ ∈ C of absolute value 1. Therefore, Equa-
tion (18) yields ρM (M) = 2πρW (M, ζ)/NJp1(M, ζ). Lemma 6.7 implies
that ρM (M) = a(ζ) · ρMζ

(M). In the case q = 0, σ = 1 we have (see (26))

a(ζ) = (2π)−n, ρMζ
(M) = (2π)−n2

exp
(
− 1

2
‖M‖2

F

)
.

Hence ρM (M) = a(ζ)ρMζ
(M) equals the density of the standard Gaussian

distribution on M . Equation (19) implies now that the conditional density
in the fiber of M equals 1/(2π), as claimed.

Lemma 6.7(3) shows that ρSn is independent of ζ and hence equals the
uniform density on S

n. The last assertion is immediate from Lemma 6.7(2).
�

Proof of Proposition 3.3. The procedure for drawing pairs (g, [ζ]) from ρst

is the following:

(1) choose M ∈ M from the standard Gaussian distribution (almost
surely M has rank n),

(2) compute the unique [ζ] ∈ P
n such that Mζ = 0,

(3) choose a representative ζ uniformly at random in [ζ] ∩ S
n,

(4) compute gM,ζ ,
(5) choose h ∈ Rζ from the standard Gaussian distribution,
(6) compute q = gM,ζ + h and return (q, [ζ]).

An elegant way of choosing h in step 5 is to draw q ∈ Hd from N(0, I)
and then to compute the image h of q under the orthogonal projection
Hζ → Rζ . Since the orthogonal projection of a standard Gaussian is a
standard Gaussian, this amounts to draw h from a standard Gaussian in Rζ .
The projection is easily computed using Lemma 6.4(4).

It is easy to check that O(N) samples from the standard Gaussian dis-
tribution on R are sufficient for implementing this procedure. As for the
operation count: step (4) turns out to be the most expensive one and can
be done, e.g., as follows. Suppose that all the coefficients of 〈X, ζ〉k−1 have
already been computed. Then each coefficient of 〈X, ζ〉k = (X0ζ0 + · · · +
Xnζn)〈X, ζ〉k−1 can be obtained by O(n) arithmetic operations, hence all

the coefficients of 〈X, ζ〉k are obtained with O
(
n
(n+k

n

))
operations. It follows

that 〈X, ζ〉di can be computed with O(dinNi) operations, hence O(DnN)
operations suffice for the computation of gM,ζ . It is clear that this is also an
upper bound on the cost of computing (q, ζ). �
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8. Average-case Analysis of LV (proof)

We first draw a conclusion of Theorem 3.1, that we will need several times.

Proposition 8.1. The expected number of iterations of ALH on input f ∈
Hd \ Σ is bounded as

K(f) ≤ 217D3/2
E

g∈S(Hd)

(
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

)
.

Proof. Fix g ∈ Hd such that the segment Ef,g does not intersect the dis-
criminant variety Σ (which is the case for almost all g, as f 6∈ Σ). To each

of the zeros ζ(i) of g there corresponds a lifting [0, 1] → V, τ 7→ (qτ , ζ
(i)
τ ) of

Ef,g such that ζ
(i)
0 = ζ(i). Theorem 3.1 states that

K(f, g, ζ(i)) ≤ 217D3/2 dS(f, g)

∫ 1

0
µ2

norm(qτ , ζ(i)
τ ) dτ.

Since ζ
(1)
τ , . . . , ζ

(D)
τ are the zeros of qτ , we have by the definition (4) of the

mean square condition number

(35)
1

D

D∑

i=1

K(f, g, ζ(i)) ≤ 217D3/2 dS(f, g)

∫ 1

0
µ2

2(qτ ) dτ.

The assertion follows now from (compare Lemma 6.6)

K(f) = E
(g,ζ)∼ρst

(K(f, g, ζ)) = E
g∈S(Hd)

(
1

D

D∑

i=1

K(f, g, ζ(i))

)
. �

Theorem 3.1, Proposition 5.1, and Theorem 6.1 now allow us a quick
derivation of our remaining main results, Theorems 3.5–3.7. To warm up,
we first prove Theorem 3.4. This illustrates the blending of these previous
results in a simpler setting.

In the following we set A :=
√

2N and write PA,σ = Prob{‖f‖ ≤ A | f ∼
N(0, σ2I)} for σ > 0.

Lemma 8.2. We have PA,σ ≥ 1
2 for all 0 < σ ≤ 1.

Proof. Clearly it suffices to assume σ = 1. The random variable ‖f‖2 is
chi-square distributed with 2N degrees of freedom. Its mean equals 2N .
In [12, Corollary 6] is is shown that the median of a chi-square distribution
is always less than its mean. �

Proof of Theorem 3.4. We use Proposition 8.1 to obtain

E
f∈S(Hd)

K(f) ≤ 217D3/2
E

f∈S(Hd)
E

g∈S(Hd)

(
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

)

= 217D3/2
E

f∼NA(0,I)
E

g∼NA(0,I)

(
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

)
.
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The equality follows from the fact that, since both dS(f, g) and µ2
2(qτ ) are

homogeneous of degree 0 in both f and g, we may replace the uniform
distribution on S(Hd) by any rotationally invariant distribution on Hd, in
particular by the centered truncated Gaussian NA(0, I) defined in (8). Now
we use Proposition 5.1 (with τ0 = 0) to get

(36) E
f∈S(Hd)

K(f) ≤ 217D3/2A2
E

f∼NA(0,I)
E

g∼NA(0,I)

(∫ 1

0

µ2
2(qt)

‖qt‖2
dt

)
.

Denoting by ρ0,1 the density of N(0, I), the right-hand side of (36) equals

217D3/2 A2

P 2
A,1

∫

‖f‖≤A

∫

‖g‖≤A

(∫ 1

0

µ2
2(qt)

‖qt‖2
dt

)
ρ0,1(g) ρ0,1(f) dg df

≤ 217D3/2 A2

P 2
A,1

E
f∼N(0,I)

E
g∼N(0,I)

(∫ 1

0

µ2
2(qt)

‖qt‖2
dt

)

= 217D3/2 A2

P 2
A,1

∫ 1

0
E

qt∼N(0,(t2+(1−t)2)I)

(
µ2

2(qt)

‖qt‖2

)
dt,

where the last equality follows from the fact that, for fixed t, the random
polynomial system qt = tf + (1 − t)g has a Gaussian distribution with law
N(0, σ2

t I), where σ2
t := t2 + (1 − t)2. Note that we deal with nonnegative

integrands, so the interchange of integrals is justified by Tonelli’s theorem.

By Lemma 8.2 we have A2

P 2
A,1

≤ 8N .

We now apply Theorem 6.1 to deduce that
∫ 1

0
E

qt∼N(0,σ2
t I)

(
µ2

2(qt)

‖qt‖2

)
dt ≤ e(n + 1)

2

∫ 1

0

dt

t2 + (1 − t)2
=

eπ(n + 1)

4
.

Consequently,

E
f∈S(Hd)

K(f) ≤ 217D3/2 · 8N · eπ(n + 1)

4
≤ 3707D3/2N(n + 1). �

Remark 8.3. The proof (modulo the existence of ALH) for the average com-
plexity of LV given by Beltrán and Pardo in [6] differs from the one above.
It relies on the fact (elegantly shown by using integral geometry arguments)
that, for all τ ∈ [0, 1], when f and g are uniformly drawn from the sphere,
so is qτ/|qτ‖. The extension of this argument to more general situations ap-
pears to be considerably more involved. In contrast, as we shall shortly see,
the argument based on Gaussians in the proof above carries over, mutatis
mutandis, to the smoothed analysis context.

9. Smoothed Analysis of LV (proof)

The smoothed analysis of LV is shown similarly to its average-case anal-
ysis.
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Proof of Theorem 3.5. Fix f ∈ S(Hd). Reasoning as in the proof of Theo-
rem 3.4 and using ‖f‖ ≤ ‖f‖ + ‖f − f‖ ≤ 1 + A, we show that

E
f∼NA(f,σ2I)

K(f) ≤ 217D3/2 (A + 1)A

PA,σPA,1
E

f∼N(f ,σ2I)
E

g∼N(0,I)

(∫ 1

0

µ2
2(qt)

‖qt‖
dt

)

= 217D3/2 (A + 1)A

PA,σPA,1

∫ 1

0
E

qt∼N(qt,σ
2
t I)

(
µ2

2(qt)

‖qt‖

)
dt

with qt = tf and σ2
t = (1− t)2 +σ2t2. We now apply Theorem 6.1 to deduce

∫ 1

0
E

qt∼N(qt,σ
2
t I)

(
µ2

2(qt)

‖qt‖2

)
dt ≤ e(n + 1)

2

∫ 1

0

dt

(1 − t)2 + σ2t2
=

eπ(n + 1)

4σ
.

Consequently, using Lemma 8.2, we get

E
f∼NA(f ,σ2I)

K(f) ≤ 217D3/2 · 4 · (2N +
√

2N )
eπ(n + 1)

4σ

which proves the assertion. �

10. Homotopies with a Fixed Extremity

The next two cases we wish to analyze (the condition-based analysis of LV

and a solution for Smale’s 17th problem with moderate degrees) share the
feature that one endpoint of the homotopy segment is fixed, not randomized.
This sharing actually allows one to derive both corresponding results (Theo-
rems 3.6 and 3.7, respectively) as a consequence of the following statement.

Theorem 10.1. For g ∈ S(Hd) \ Σ we have

E
f∈S(Hd)

(
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

)
≤ 724D3/2N(n + 1)µ2

max(g) + 0.01.

The idea to prove Theorem 10.1 is simple. For small values of τ the
system qτ is close to g and therefore, the value of µ2

2(qτ ) can be bounded by
a small multiple of µ2

max(g). For the remaining values of τ , the corresponding
t = t(τ) is bounded away from 0 and therefore so is the variance σ2

t in the
distribution N(qt, σ

2
t I) for qt. This allows one to control the denominator

in the right-hand side of Theorem 6.1 when using this result. Here are the
precise details.

In the following fix g ∈ S(Hd) \ Σ. First note that we may again replace
the uniform distribution of f on S(Hd) by the truncated Gaussian NA(0, I).
We therefore need to bound the quantity

Qg := E
f∼NA(0,I)

(
dS(f, g)

∫ 1

0
µ2

2(qτ )dτ

)
.

To simplify notation, we set as before ε = 0.13, C = 0.025, λ = 7.53 · 10−3,
and define

δ0 :=
λ

D3/2µ2
max(g)

, tA :=
1

1 + A + 1.00001 A
δ0

.
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Proposition 10.2. We have

Qg ≤ (1 + ε)2δ0 µ2
max(g) +

A

PA,1

∫ 1

tA

E
qt∼N(qt,t

2I)

(
µ2

2(qt)

‖qt‖2

)
dt,

where qt = (1 − t)g.

Proof. Let ζ(1), . . . , ζ(D) be the zeros of g and denote by (qτ , ζ
(j)
τ )τ∈[0,1] the

lifting of Ef,g in V corresponding to the initial pair (g, ζ(j)) and final sys-
tem f ∈ Hd \ Σ.

Equation (9) for i = 0 in the proof of Theorem 3.1 shows the following:
for all j and all τ ≤ λ

dS(f,g)D3/2µ2
norm(g,ζ(j))

we have

µnorm(qτ , ζ
(j)
τ ) ≤ (1 + ε)µnorm(g, ζ(j)) ≤ (1 + ε)µmax(g).

In particular, this inequality holds for all j and all τ ≤ δ0
dS(f,g) and hence, for

all such τ , we have

(37) µ2(qτ ) ≤ (1 + ε)µmax(g).

Splitting the integral in Qg at τ0(f) := min
{
1, δ0

dS(f,g)

}
we obtain

Qg = E
f∼NA(0,I)

(
dS(f, g)

∫ τ0(f)

0
µ2

2(qτ ) dτ
)
+ E

f∼NA(0,I)

(
dS(f, g)

∫ 1

τ0(f)
µ2

2(qτ ) dτ
)
.

Using (37) we bound the first term in the right-hand side as follows,

E
f∼NA(0,I)

(
dS(f, g)

∫ τ0(f)

0
µ2

2(qτ ) dτ
)
≤ (1 + ε)2 δ0µmax(g)2.

To bound the second term, we w.lo.g. assume that τ0(f) ≤ 1. We apply
Proposition 5.1 to obtain, for a fixed f ,

dS(f, g)

∫ 1

τ0(f)
µ2

2(qτ ) dτ ≤
∫ 1

t0(f)
‖f‖µ2

2(qt)

‖qt‖2
dt,

where t0(f) is given by

t0(f) =
1

1 + ‖f‖(sin α cot δ0 − cos α)
, α := dS(f, g).

Now note that ‖f‖ ≤ A since we draw f from NA(0, I). This will allow us
to bound t0(f) from below by a quantity independent of f . For ‖f‖ ≤ A we
have

0 ≤ sinα cot δ0 − cos α ≤ 1

sin δ0
− cos α ≤ 1

sin δ0
+ 1

and moreover, sin δ0 ≥ 0.99999 δ0 since δ0 ≤ 2−3/2λ ≤ 0.00267. We can
therefore bound t0(f) as

t0(f) ≥ 1

1 + A + A
sin(δ0)

≥ 1

1 + A + 1.00001 A
δ0

= tA.
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We can now bound the second term in Qg as follows

E
f∼NA(0,I)

(
dS(f, g)

∫ 1

τ0(f)
µ2

2(qτ ) dτ
)
≤ E

f∼NA(0,I)

(
A

∫ 1

tA

µ2
2(qt)

‖qt‖2
dt
)

= A

∫ 1

tA

E
f∼NA(0,I)

(
µ2

2(qt)

‖qt‖2

)
dt ≤ A

PA,1

∫ 1

tA

E
f∼N(0,I)

(
µ2

2(qt)

‖qt‖2

)
dt.

To conclude, note that, for fixed t and when f is distributed following N(0, I),
the variable qt = (1 − t)g + tf follows the Gaussian N(qt, t

2I), where gt =
(1 − t)g. �

Proof of Theorem 10.1. By homogeneity we can replace the uniform distri-
bution on S(Hd) by NA(0, I), so that we only need to estimate Qg by the
right-hand side of Proposition 10.2. In order to bound the first term there
we note that

(1 + ε)2δ0 µ2
max(g) = (1 + ε)2λD−3/2 ≤ (1 + ε)2λ ≤ 0.01.

For bounding the second term we apply Theorem 6.1 to deduce that
∫ 1

tA

E
qt∼N(qt,t

2I)

(µ2
2(qt)

‖qt‖2

)
dt ≤

∫ 1

tA

e(n + 1)

2t2
dt =

e(n + 1)

2

(
1

tA
− 1

)

=
e(n + 1)A

2

(
1 +

1.00001

δ0

)
.

Replacing this bound in Proposition 10.2 we obtain

Qg ≤ eA2(n + 1)

2PA,1

(
1 +

1.00001

λ
D3/2µ2

max(g)

)
+ 0.01

≤ 2eN(n + 1)D3/2µ2
max(g)

(
1

D3/2
+

1.00001

λ

)
+ 0.01

≤ 724N(n + 1)D3/2µ2
max(g) + 0.01,

where we used D ≥ 2 for the last inequality. �

10.1. Condition-based Analysis of LV (proof).

Proof of Theorem 3.6. The result follows immediately by combining Propo-
sition 8.1 with Theorem 10.1, with the roles of f and g swapped. �

10.2. The Complexity of a Deterministic Homotopy Continuation.
We next prove Theorem 3.7, beginning with some general considerations.
The unitary group U(n + 1) naturally acts on P

n as well as on Hd via
(ν, f) 7→ f ◦ ν−1. The following lemma results from the unitary invariance
of our setting. The proof is immediate.

Lemma 10.3. Let g ∈ Hd, ζ ∈ P
n be a zero of g, and ν ∈ U(n + 1).

Then µnorm(g, ζ) = µnorm(g ◦ ν−1, νζ). Moreover, for f ∈ Hd, we have
K(f, g, ζ) = K(f ◦ ν−1, g ◦ ν−1, νζ). 2
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Recall U i = 1√
2n

(Xdi
0 − Xdi

i ) and denote by z(i) a dith primitive root of

unity. The D zeros of U = (U 1, . . . , Un) are the points zj =
(
1 : zj1

(1) : . . . :

zjn

(n)

)
∈ P

n for all the possible tuples j = (j1, . . . , jn) with ji ∈ {0, . . . , di−1}.
Clearly, each zj can be obtained from z1 := (1 : 1 : . . . : 1) by a unitary

transformation νj , which leaves U invariant, that is,

νjz1 = zj, U ◦ ν−1
j = U.

Hence Lemma 10.3 implies µnorm(U,zj) = µnorm(U,z1) for all j. In partic-

ular, µmax(U ) = µnorm(U,z1).

Proposition 10.4. KU (f) = K(f, U,z1) satisfies

E
f∈S(Hd)

KU (f) = E
f∈S(Hd)

1

D

D∑

j=1

K(f, U,zj).

Proof. Lemma 10.3 implies for all j

K(f, U,z1) = K(f ◦ ν−1
j , U ◦ ν−1

j , νjz1) = K(f ◦ ν−1
j , U,zj).

It follows that

KU (f) = K(f, U,z1) =
1

D

D∑

j=1

K(f ◦ ν−1
j , U,zj).

The assertion follows now since, for all measurable functions ϕ : S(Hd) → R

and all ν ∈ U(n + 1), we have

E
f∈S(Hd)

ϕ(f) = E
f∈S(Hd)

ϕ(f ◦ ν),

due to the isotropy of the uniform measure on S(Hd), �

Lemma 10.5. We have

µ2
max(U ) ≤ 2n max

i

1

di
(n + 1)di−1 ≤ 2 (n + 1)D.

Proof. Recall µmax(U) = µnorm(U,z1), so it suffices to bound µnorm(U,z1).

Consider M := diag(d
− 1

2
i ‖z1‖1−di)DU(z1) ∈ R

n×(n+1). By definition we
have (cf. §2.3)

µnorm(U,z1) = ‖U‖ ‖M †‖ = ‖M †‖ =
1

σmin(M)
,

where σmin(M) denotes the smallest singular value of M . It can be charac-
terized as a constrained minimization problem as follows:

σ2
min(M) = min

u
‖Mu‖2 subject to u ∈ (ker M)⊥, ‖u‖2 = 1.
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In our situation, ker M = R(1, . . . , 1) and DU(z1) is given by the following
matrix, shown here for n = 3:

DU(z1) =
1√
2n



−d1 d1 0 0
−d2 0 d2 0
−d3 0 0 d3


 .

Hence for u = (u0, . . . , un) ∈ R
n+1,

‖Mu‖2 =
1

2n

n∑

i=1

di

(n + 1)di−1
(ui −u0)

2 ≥ 1

2n
min

i

di

(n + 1)di−1
·

n∑

i=1

(ui −u0)
2.

A straightforward calculation shows that

n∑

i=1

(ui − u0)
2 ≥ 1 if

n∑

i=0

ui = 0,
n∑

i=0

u2
i = 1.

The assertion follows by combining these observations. �

Proof of Theorem 3.7. Equation (35) in the proof of Proposition 8.1 implies
for g = U that

1

D

D∑

i=1

K(f, U,zi) ≤ 217D3/2 dS(f, U)

∫ 1

0
µ2

2(qτ ) dτ.

Using Proposition 10.4 we get

E
f∈S(Hd)

KU (f) ≤ 217D3/2
E

f∈S(Hd)

(
dS(f, U)

∫ 1

0
µ2

2(qτ ) dτ
)
.

Applying Theorem 10.1 with g = U we obtain

E
f∈S(Hd)

KU (f) ≤ 217D3/2
(
724D3/2N(n + 1)µ2

max(U) + 0.01
)
.

We now plug in the bound µmax(U )2 ≤ 2(n + 1)D of Lemma 10.5 to obtain

E
f∈S(Hd)

KU (f) ≤ 314216D3 N(n + 1)D+1 + 2.17D3/2.

This is bounded from above by 314217D3 N(n + 1)D+1, which completes
the proof. �

11. A near solution to Smale’s 17th problem

We finally proceed with the proof of Theorem 3.8. The algorithm we will
exhibit uses different routines for D ≤ n and D > n. Our exposition reflects
this structure.
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11.1. The case D ≤ n. Theorem 3.7 bounds the number of iterations of
Algorithm MD as

E
f∈S(Hd)

KU (f) = O(D3NnD+1).

For comparing the order of magnitude of this upper bound to the input
size N =

∑n
i=1

(n+di
n

)
we need the following technical lemma (which will be

useful for the case D > n as well).

Lemma 11.1. (1) For D ≤ n, n ≥ 4, we have

nD ≤
(

n + D

D

)ln n

.

(2) For D2 ≥ n ≥ 1 we have

ln n ≤ 2 ln ln

(
n + D

n

)
+ 4.

(3) For 0 < c < 1 there exists K such that for all n,D

D ≤ n1−c =⇒ nD ≤
(

n + D

n

)K

.

(4) For D ≤ n we have

nD ≤ N2 ln ln N+O(1).

(5) For n ≤ D we have

Dn ≤ N2 ln ln N+O(1).

Proof. Stirling’s formula states n! =
√

2πnn+ 1
2 e−ne

Θn
12n with 0 < Θn < 1. Let

H(x) = x ln 1
x +(1−x) ln 1

1−x denote the binary entropy function, defined for
0 < x < 1. By a straightforward calculation we get from Stirling’s formula
the following asymptotics for the binomial coefficient: for any 0 < m < n
we have

(38) ln

(
n

m

)
= nH

(m

n

)
+

1

2
ln

n

m(n − m)
− 1 + εn,m,

where −0.1 < εn,m < 0.2.

(1) The first claim is equivalent to eD ≤
(n+D

D

)
. The latter is easily

checked for D ∈ {1, 2, 3} and n ≥ 4. So assume n ≥ D ≥ 4. By monotonicity

it suffices to show that eD ≤
(2D

D

)
for D ≥ 4. Equation (38) implies

ln

(
2D

D

)
> 2D ln 2 +

1

2
ln

2

D
− 1.1

and the right-hand side is easily checked to be at least D, for D ≥ 4.

(2) If D ≥ m :=
√

n then
(n+D

n

)
≥
(n+⌈√n⌉

n

)
. Equation (38) implies

ln

(
n + ⌈√n⌉

n

)
≥ (n + m)H

( m

n + m

)
+

1

2
ln

1

m
− 1.1.
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The entropy function can be bounded as

H
( m

n + m

)
≥ m

n + m
ln
(
1 +

n

m

)
≥ m

n + m
ln m.

It follows that

ln

(
n + ⌈√n⌉

n

)
≥ 1

2

√
n ln n − 1

4
ln n − 1.1 ≥ 1

4

√
n ln n

the right-hand inequality holding for n ≥ 10. Hence

ln ln

(
n + ⌈√n⌉

n

)
≥ 1

2
ln n + ln ln n − ln 4 ≥ 1

2
lnn − 2,

the right-hand inequality holding for n ≥ 2. This shows the second claim
for n ≥ 10. The cases n ≤ 9 are easily directly checked.

(3) Writing D = nδ we obtain from Equation (38)

ln

(
n + D

n

)
= (n + D)H

( δ

1 + δ

)
− 1

2
ln D + O(1).

Estimating the entropy function yields

H
( δ

1 + δ

)
≥ δ

1 + δ
ln
(
1 +

1

δ

)
≥ δ

2
ln

1

δ
=

δε

2
ln n,

where ε is defined by δ = n−ε. By assumption, ε ≥ c. From the last two
lines we get

1

D ln n
ln

(
n + D

n

)
≥ c

2
− 1 − c

2D
+ O

(
1

lnn

)
.

In the case c ≤ 3
4 we have D ≥ n1/4 and we bound the above by

c

2
− 1

2n1/4
+ O

(
1

ln n

)
,

which is greater than c/4 for sufficiently large n. In the case c ≥ 3
4 we bound

as follows

1

D ln n
ln

(
n + D

n

)
≥ c

2
− 1 − c

2
+ O

(
1

ln n

)
= c − 1

2
+ O

(
1

ln n

)
≥ 1

5

for sufficiently large n.
We have shown that for 0 < c < 1 there exists nc such that for n ≥ nc,

D ≤ n1−c, we have

nD ≤
(

n + D

n

)Kc

,

where Kc := max{4/c, 5}. By increasing Kc we can achieve that the above
inquality holds for all n,D with D ≤ n1−c.

(4) Clearly, N ≥
(n+D

n

)
. If D ≤ √

n then, by part (3), there exists K such
that

nD ≤
(

n + D

n

)K

≤ NK .
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Otherwise D ∈ [
√

n, n] and the desired inequality is an immediate conse-
quence of parts (1) and (2).

(5) Use
(n+D

n

)
=
(n+D

D

)
and swap the roles of n and D in part (4) above.

�

Theorem 3.7 combined with Lemma 11.1(4) implies that

(39) E
f

KU (f) = N2 ln lnN+O(1) if D ≤ n.

Note that this bound is nearly polynomial in N . Moreover, if D ≤ n1−c for
some fixed 0 < c < 1, then Lemma 11.1(3) implies

(40) E
f

KU (f) = NO(1).

In this case, the expected running time is polynomially bounded in the input
size N .

11.2. The case D > n. The homotopy continuation algorithm MD is not
efficient for large degrees—the main problem being that we do not know
how to deterministically compute a starting system g with small µmax(g).
However, it turns out that an algorithm due to Jim Renegar [17], based on
the factorization of the u-resultant, computes approximate zeros and is fast
for large degrees.

Before giving the specification of Renegar’s algorithm, we need to fix some
notation. We identify P

n
0 := {(x0 : · · · : xn) ∈ P

n | x0 6= 0} with C
n via

the bijection (x0 : · · · : xn) 7→ (x1/x0, . . . , xn/x0). By ‖x‖aff we denote the
Euclidean norm of x ∈ Pn

0 , i.e.,

‖x‖aff =
( n∑

i=1

∣∣∣
xi

x0

∣∣∣
2) 1

2

and we put ‖x‖aff = ∞ if x ∈ P
n\P

n
0 . By a δ-approximation of a zero ζ ∈ C

n

of f ∈ Hd we understand an x ∈ C
n such that ‖x − ζ‖aff ≤ δ.

We want to relate δ-approximations with approximate zeros in the sense of
Definition 2.1. More precisely, we want a criterium allowing us to guarantee
that a δ-approximation is an approximate zero. To do so we use Theorem 2.2
together with the following result.

Lemma 11.2. For x, y ∈ C
n we have dP(x, y) ≤ ‖x − y‖aff .

Proof. Let x, y ∈ C
n and put e := (1, 0) ∈ C

n+1. By our identification of C
n

with P
n
0 , the distance θ := dP(x, y) in P

n is defined by (cf. (7)),

cos θ =
|〈e + x, e + y〉‖
‖e + x‖ · ‖e + y‖ .

We have

‖x−y‖2 ≥ ‖(e+x)−(e+y)‖2 = 1+‖x‖2 +1+‖y‖2−2‖e+x‖·‖e+y‖ cos θ.
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Writing r := ‖x‖, s := ‖y‖, a := 1
2‖x − y‖, we obtain

cos θ ≥ r2 + s2 + 2 − 4a2

2
√

1 + r2
√

1 + s2
.

Using 2
√

(1 + r2)(1 + s2) ≤ r2 + s2 + 2 this can be bounded below as

cos θ ≥ 1 − 4a2

r2 + s2 + 2
.

By the triangle inequality we have 2a ≤ r+s, hence r2+s2 ≥ 2a2. Therefore,

cos θ ≥ 1 − 4a2

2a2 + 2
=

1 − a2

1 + a2
.

Hence θ ≤ θ0, where θ0 is defined by cos θ0 = 1−a2

1+a2 . We have

cos2 θ0

2
=

1 + cos θ0

2
=

1

1 + a2
,

hence tan θ0
2 = a. It follows that

tan
θ

2
≤ tan

θ0

2
= a.

Summarizing, we have shown that

dP(x, y) ≤ 2 tan
dP(x, y)

2
≤ ‖x − y‖aff . �

Corollary 11.3. Let x be a δ-approximation of a zero ζ of f . Recall C =
0.025. If D3/2µnorm(f, x)δ ≤ C, then x is an approximate zero of f .

Proof. By Lemma 11.2 we have dP(x, ζ) ≤ ‖x − ζ‖aff ≤ δ. Suppose that

D3/2µnorm(f, x)δ ≤ C. Then, by Proposition 4.1 with g = f , we have
µnorm(f, ζ) ≤ (1 + ε)µnorm(f, x) with ε = 0.13. Hence

D3/2µnorm(f, ζ)dP(x, ζ) ≤ (1 + ε)D3/2µnorm(f, x)δ ≤ (1 + ε)C.

We have (1 + ε)C ≤ u0 = 3 −
√

7. Now use Theorem 2.2. �

Consider now R ≥ δ > 0. Renegar’s Algorithm Ren(R, δ) from [17] takes
as input f ∈ Hd , decides whether its zero set V (f) ⊆ P

n is finite, and
if so, computes δ-approximations x to at least all zeros ζ of f satisfying
‖ζ‖aff ≤ R. (The algorithm even finds the multiplicities of those zeros ζ, see
[17] for the precise statement.)

Renegar’s Algorithm can be formulated in the BSS-model over R. Its
running time on input f (the number of arithmetic operations and inequality
tests) is bounded by

(41) O
(

nD4(logD)

(
log log

R

δ

)
+ n2D4

(
1 +

∑
i di

n

)4)
.

To find an approximate zero of f we may use Ren(R, δ) together with Corol-
lary 11.3 and iterate with R = 4k and δ = 2−k for k = 1, 2, . . . until we are
successful. More precisely, we consider the following algorithm:
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Algorithm ItRen

input f ∈ Hd

for k = 1, 2, . . . do

run Re(4k, 2−k) on input f

for all δ-approximations x found

if D3/2µnorm(f, x)δ ≤ C stop and RETURN x

Let Σ0 := Σ ∪ {f ∈ Hd | V (f) ∩ P
n
0 = ∅}. It is obvious that ItRen stops

on inputs f 6∈ Σ0. In particular, ItRen stops almost surely.
The next result bounds the probability Probfail that the main loop of

ItRen, with parameters R and δ, fails to output an approximate zero for a
standard Gaussian input f ∈ Hd (and given R, δ). We postpone its proof
to §11.3.

Lemma 11.4. We have Probfail = O(n3N2D6Dδ4 + nR−2).

Let T (f) denote the running time of algorithm ItRen on input f .

Proposition 11.5. We have for standard Gaussian f ∈ Hd

E
f

T (f) = (nND)O(1).

Proof. The probability that ItRen stops in the (k + 1)th loop is bounded
above by the probability pk that Re(4k, 2−k) fails to produce an approximate
zero. Lemma 11.4 tells us that

pk = O
(
n3N2D6D 16−k

)
.

If Ak denotes the running time of the (k + 1)th loop we conclude

E
f

T (f) ≤
∞∑

k=0

Akpk.

According to (41), Ak is bounded by

O
(

nD4(logD)(log k) + n2D4

(
1 +

∑
i di

n

)4

+ (N + n3)D
)

,

where the last term accounts for the cost of the tests. The assertion now fol-
lows by distributing the products Akpk and using that the series

∑
k≥1 16−k,

and
∑

k≥1 16−k log k have finite sums. �

Proof of Theorem 3.8. We use Algorithm MD if D ≤ n and Algorithm ItRen

if D > n. We have already shown (see (39), (40)) that the assertion holds
if D ≤ n. For the case D > n we use Proposition 11.5 together with the
inequality DO(1) ≤ DO(n) ≤ NO(log log N) which follows from Lemma 11.1(5).

Moreover, in the case D ≥ n1+ε, Lemma 11.1(3) implies D ≤ Dn ≤ NO(1).
�
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11.3. Proof of Lemma 11.4. Let E denote the set of f ∈ Hd such that
there is an x on the output list of Ren(R, δ) on input f that satisfies C <

D3/2µnorm(f, x)δ. Then

Probfail ≤ Prob
f∈Hd

{
min

ζ∈V (f)
‖ζ‖aff ≥ R

}
+ ProbE .

Lemma 11.4 follows immediately from the following two results.

Lemma 11.6. For R > 0 and standard Gaussian f ∈ Hd we have

Prob
f∈Hd

{
min

ζ∈V (f)
‖ζ‖aff ≥ R

}
≤ n

R2
.

Proof. Choose f ∈ Hd standard Gaussian and pick one of the D zeros

ζ
(1)
f , . . . , ζ

(D)
f of f uniformly at random, call it ζ. By Proposition 7.1, ζ ∈ P

n

is uniformly distributed. Therefore,

Prob
f∈Hd

{
min

i
‖ζ(i)

f ‖aff ≥ R
}
≤ Prob

ζ∈Pn

{
‖ζ‖aff ≥ R

}
.

To estimate the right-hand side probability we observe that

‖ζ‖aff ≥ R ⇐⇒ dP(ζ, Pn−1) ≤ π

2
− θ,

where θ is defined by R = tan θ and P
n−1 := {x ∈ P

n | x0 = 0}. Therefore,

Prob
ζ∈Pn

{
‖ζ‖aff ≥ R

}
=

vol
{
x ∈ P

n | dP(x, Pn−1) ≤ π
2 − θ

}

vol(Pn)
.

Due to [10, Lemma 2.1] and using vol(Pn) = πn/n!, this can be bounded by

vol(Pn−1)vol(P1)

vol(Pn)
sin2

(
π

2
− θ

)
= n cos2 θ =

n

1 + R2
≤ n

R2
. �

Lemma 11.7. We have Prob E = O(n3N2D6Dδ4).

Proof. Assume that f ∈ E . Then, there exist ζ, x ∈ P
n
0 such that f(ζ) = 0,

‖ζ‖aff ≤ R, ‖ζ − x‖aff ≤ δ, Ren returns x, and D3/2µnorm(f, x)δ > C.
We proceed by cases. Suppose first that δ ≤ C

D3/2µnorm(f,ζ)
. Then, by

Proposition 4.1,

(1 + ε)−1C < (1 + ε)−1D3/2µnorm(f, x)δ ≤ D3/2µnorm(f, ζ)δ,

hence

µmax(f) ≥ µnorm(f, ζ) ≥ (1 + ε)−1CD−3/2δ−1.

If, on the other hand, δ > C
D3/2µnorm(f,ζ)

, then we have

µmax(f) ≥ µnorm(f, ζ) ≥ CD−3/2δ−1.

Therefore, for any f ∈ E ,

µmax(f) ≥ (1 + ε)−1CD−3/2δ−1 =: A0D
−3/2δ−1.
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Theorem C of [22] states that Probf{µmax(f) ≥ ρ−1} = O(n3N2Dρ4) for
all ρ > 0. Therefore, we get

Prob E ≤ Prob
f∈Hd

{
µmax(f) ≥ A0D

−3/2δ−1
}

= O(n3N2DD6δ4)

as claimed. �
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[23] M. Shub and S. Smale. Complexity of Bézout’s theorem III: condition number and
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