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NONVANISHING OF KRONECKER COEFFICIENTS FOR

RECTANGULAR SHAPES

PETER BÜRGISSER, MATTHIAS CHRISTANDL, AND CHRISTIAN IKENMEYER

Abstract. We prove that for any partition (λ1, . . . , λd2) of size dm

there exists k ≥ 1 such that the tensor square of the irreducible rep-
resentation of the symmetric group Skdm with respect to the rectangu-
lar partition (km, . . . , km) contains the irreducible representation cor-
responding to the stretched partition (kλ1, . . . , kλd2). We also prove
a related approximate version of this statement in which the stretch-
ing factor k is effectively bounded in terms of d. This investigation is
motivated by questions of geometric complexity theory.

1. Introduction

Kronecker coefficients are the multiplicities occuring in tensor product de-
compositions of irreducible representations of the symmetric groups. These
coefficients play a crucial role in geometric complexity theory of [12, 13],
which is an approach to arithmetic versions of the famous P versus NP prob-
lem and related questions in computational complexity via geometric repre-
sentation theory. As pointed out in [1], for implementing this approach, one
needs to identify certain partitions λ ⊢d2 dm with the property that the Kro-
necker coefficient associated with λ,�,� vanishes, where � := (m, . . . ,m)
stands for the rectangle partition of length d. Computer experiments show
that such λ occur rarely. Our main result confirms this experimental finding.
We prove that for any λ ⊢d2 dm there exists a stretching factor k such that
the Kronecker coefficient of kλ, k�, k� is nonzero. (Here, kλ stands for the
partition arising by multiplying all components of λ by k.) We also prove
a related approximate version of this statement (Theorem 2) that suggests
that the stretching factor k may be chosen not too large.

Our proof relies on a recently discovered connection between Kronecker
coefficients and the spectra of composite quantum states [2, 8]. Let ρAB be
the density operator of a bipartite quantum system and ρA, ρB denote the
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2 PETER BÜRGISSER, MATTHIAS CHRISTANDL, AND CHRISTIAN IKENMEYER

density operators corresponding to the systems A and B, respectively. It
turns out that the set of possible triples of spectra (specρAB, specρA, specρB)
is obtained as the closure of the set of triples (λ, µ, ν) of normalized partitions
λ, µ, ν with nonvanishing Kronecker coefficient, where we set λ := 1

|λ|λ. For

proving the main theorem it is therefore sufficient to construct, for any
prescribed spectrum λ, a density matrix ρAB having this spectrum and such
that the spectra of ρA and ρB are uniform distributions.

In [8] the set of possible triples of spectra (specρAB, specρA, specρB) is
interpreted as the moment polytope of a complex algebraic group variety,
thus linking the problem to geometric invariant theory. We do not not use
this connection in our paper. Instead we argue as in [2] using the estimation
theorem of [7]. The exponential decrease rate in this estimation allows us
to derive the bound on the stretching factor in Theorem 2.

2. Preliminaries

2.1. Kronecker coefficients and its moment polytopes. A partition λ
of n ∈ N is a monotonically decreasing sequence λ = (λ1, λ2, . . .) of natural
numbers such that λi = 0 for all i but finitely many i. The length ℓ(λ) of
λ is defined as the number of its nonzero parts and its size as |λ| :=

∑

i λi.
One writes λ ⊢ℓ n to express that λ is a partition of n with ℓ(λ) ≤ d. Note
that λ̄ := λ/n = (λ1/n, λ2/n, . . .) defines a probability distribution on N.

It is well known [6] that the complex irreducible representations of the
symmetric group Sn can be labeled by partitions λ ⊢ n of n. We shall denote
by [λ] the irreducible representation of Sn associated with λ. The Kronecker

coefficient gλ,µ,ν associated with three partitions λ, µ, ν of n is defined as the
dimension of the space of Sn-invariants in the tensor product [λ]⊗ [µ]⊗ [ν].
Note that gλ,µ,ν is invariant with respect to a permutation of the partitions.
It is known that gλ,µ,ν = 0 vanishes if ℓ(λ) > ℓ(µ)ℓ(ν). Equivalently, gλ,µ,ν

may also be defined as the multiplicity of [λ] in the tensor product [µ]⊗ [ν].
The Kronecker coefficients also appear when studying representations of

the general linear groups GL(d) over C. We recall that irreducible GL(d)-
modules are labeled by their highest weight, a monotonically decreasing
list of d integers, cf. [6]. We will only be concerned with highest weights
consisting of nonnegative numbers, which are therefore of the form λ ⊢d k
for modules of degree k. We shall denote by Vλ the irreducible GL(d)-module
with highest weight λ.

Suppose now that λ ⊢d1d2
k. When restricting with respect to the mor-

phism GL(d1) × GL(d2) → GL(d1d2), (α, β) 7→ α ⊗ β, then the module Vλ

splits as follows:

(1) Vλ =
⊕

µ,ν

gλ,µ,νVµ ⊗ Vν .

Even though being studied for more than fifty years, Kronecker coeffi-
cients are only understood in some special cases. For instance, giving a
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combinatorial interpretation of the numbers gλ,µ,ν is a major open problem,
cf. [14, 15] for more information.

We are mainly interested in whether gλ,µ,ν vanishes or not. For studying
this in an asymptotic way one may consider, for fixed d = (d1, d2, d3) ∈ N3

with d1 ≤ d2 ≤ d3 ≤ d1d2, the set

Kron(d) :=
{ 1

n
(λ1, λ2, λ3) | ∃n λi ⊢di

n, gλ1,λ2,λ3
6= 0

}

.

It turns out that Kron(d) is a rational polytope in Qd1+d2+d3 . This follows
from general principles from geometric invariant theory, namely Kron(d)
equals the moment polytope of the projective variety P(Cd1 ⊗ Cd2 ⊗ Cd3)
with respect to the standard action of the group GL(d1)×GL(d2)×GL(d3),
cf. [11, 5, 8]. For an elementary proof that Kron(d) is a polytope see [4].

2.2. Spectra of density operators. Let H be a d-dimensional complex
Hilbert space and denote by L(H) the space of linear operators mapping
H into itself. For ρ ∈ L(H) we write ρ ≥ 0 to denote that ρ is positive
semidefinite. The set of density operators on H is defined as

S(H) := {ρ ∈ L(H) | ρ ≥ 0, trρ = 1}.

Density operators are the mathematical formalism to describe the states of
quantum objects. The spectrum specρ of ρ is a probability distribution on
[d] := {1, . . . , d}.

The state of a system composed of particles A and B is described by a
density operator on a tensor product of two Hilbert spaces, ρAB ∈ L(HA ⊗
HB). The partial trace ρA = trB(ρAB) ∈ L(HA) of ρAB obtained by tracing
over B then defines the state of particle A. We recall that the partial trace

trB is the linear map trB : L(HA ⊗HB) → L(HA) uniquely characterized by
the property trB(ρA⊗ρB) = tr(ρB) ρA for all ρA ∈ L(HA) and ρB ∈ L(HB).

2.3. Admissible spectra and Kronecker coefficients. The quantum

marginal problem asks for a description of the set of possible triples of spec-
tra (specρAB, specρA, specρB) for fixed dA = dimHA and dB = dimHB.
In [2, 8, 4] it was shown that this set equals the closure of the moment
polytope for Kronecker coefficients, so

Kron(dA, dB , dAdB) =
{

(specρAB , specρA, specρB) | ρAB ∈ L(HA ⊗HB)
}

.

We remark that this result is related to Horn’s problem that asks for the
compatibility conditions of the spectra of Hermitian operators A, B, and
A+B on finite dimensional Hilbert spaces. In [9] a similar characterization
of these triple of spectra in terms of the Littlewood Richardson coefficients
was given. The latter are the multiplicities occuring in tensor products
of irreducible representations of the general linear groups. For Littlewood
Richardson coefficients one can actually avoid the asymptotic description
since the so called saturation conjecture is true [10].
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2.4. Estimation theorem. We will need a consequence of the estima-
tion theorem of [7]. The group Sk × GL(d) naturally acts on the tensor
power (Cd)⊗k. Schur-Weyl duality describes the isotypical decomposition of
this module as

(2) (Cd)⊗k =
⊕

λ⊢dk

[λ] ⊗ Vλ.

We note that this is an orthogonal decomposition with respect to the stan-
dard inner product on (Cd)⊗k. Let Pλ denote the orthogonal projection of
(Cd)⊗k onto [λ]⊗Vλ. The estimation theorem [7] states that for any density
operator ρ ∈ L(Cd) with spectrum r we have

(3) tr(Pλ ρ
⊗k) ≤ (k + 1)d(d−1)/2 exp

(

−
k

2
‖λ− r‖2

1

)

(see [2] for a simple proof). This shows that the probability distribution
λ 7→ tr(Pλ ρ

⊗k) is concentrated around r with exponential decay in the
distance ‖λ− r‖1.

3. Main results

Theorem 1. (1) For all probability distributions r on [d2], the triple (r, u, u)

is contained in Kron(d, d, d2), where u = (1
d , . . . ,

1
d ) denotes the uniform

distribution on [d].
(2) Let λ ⊢ dm be a partition into at most d2 parts for m,d ≥ 1 and let

� := (m, . . . ,m) denote the rectangular partition of dm into d parts. Then

there exists a stretching factor k ≥ 1 such that gkλ,k�,k� 6= 0.

This result shows that finding partitions λ with gλ,�,� = 0, as required
for the purposes of geometric complexity theory, requires a careful search.

The next result indicates that the stretching factor k may be chosen not
too large.

Theorem 2. Let λ ⊢d2 dm and ǫ > 0. Then there exists a stretching factor

k = O(d4

ǫ2
log d

ǫ ) and there exist partitions Λ ⊢d2 kdm and R1, R2 ⊢d kdm of

kdm such that gkλ,R1,R2
6= 0 and

‖Λ − kλ‖1 ≤ ǫ|Λ| ‖Ri − k�‖1 ≤ ǫ|Ri| for i = 1, 2.

3.1. Proof of Theorem 1. We know that Kron(d, d, d2) is a rational poly-
tope, i.e., defined by finitely many affine linear inequalities with rational
coefficients. This easily implies that a rational point in Kron(d, d, d2) actu-
ally lies in Kron(d, d, d2). Hence the second part of Theorem 1 follows from
the first part.

The first part of Theorem 1 follows from the spectral characterization of
Kron(d, d, d2) described in §2.3 and the following result.

Proposition 1. For any probability distribution r on [d2] there exists a

density operator ρAB ∈ S(HA ⊗HB) with spectrum r such that trA(ρAB) =
1
dId and trB(ρAB) = 1

d Id, where HA ≃ HB ≃ Cd.
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The proof of Proposition 1 proceeds by different lemmas. It will be conve-
nient to use the bra and ket notation of quantum mechanics. Suppose that
HA and HB are d-dimensional Hilbert spaces. We recall first the Schmidt

decomposition: for any |ψ〉 ∈ HA⊗HB, there exist orthonormal bases {|ui〉}
of HA and {|vi〉} of HB as well as nonnegative real numbers αi, called
Schmidt coefficients, such that |ψ〉 =

∑

i αi|ui〉 ⊗ |vi〉. Indeed, the αi are
just the singular values of |ψ〉 when we interpret it as a linear operator in
L(H∗

A,HB) ≃ HA ⊗HB.

Lemma 3. Suppose that |ψ〉 ∈ HA ⊗ HB has the Schmidt coefficients αi

and consider ρ := |ψ〉〈ψ| ∈ L(HA ⊗ HB). Then trB(ρ) ∈ L(HA), obtained

by tracing over the B-spaces, has eigenvalues α2
i .

Proof. We have |ψ〉 =
∑

i αi|ui〉 ⊗ |vi〉 for some orthonormal bases {|ui〉}
and {|vi〉} of HA and HB, respectively. This implies

ρ = |ψ〉〈ψ| =
∑

i,j

αiαj |ui〉〈uj | ⊗ |vi〉〈vj |

and tracing over the B-spaces yields trB(|ψ〉〈ψ|) =
∑

i α
2
i |ui〉〈ui|. �

Let |0〉, . . . , |d − 1〉 denote the standard orthonormal basis of Cd. We
consider the discrete Weyl operators X,Z ∈ L(Cd) from [3] defined by

X|i〉 = |i+ 1〉, Z|i〉 = ωi |i〉,

where ω denotes a primitive dth root of unity and the addition is modulo d.
We note that X and Z are unitary matrices and X−1ZX = ωZ.

We consider now two copies HA and HB of Cd and define the “maximal
entangled state” |ψ00〉 := 1√

d

∑

ℓ |ℓ〉|ℓ〉 of HA ⊗HB. By definition, |ψ00〉 has

the Schmidt coefficients 1√
d
. Hence the vectors

|ψij〉 := (id ⊗XiZj)|ψ00〉,

obtained from |ψ00〉 by applying a tensor product of unitary matrices, have
the Schmidt coefficients 1√

d
as well.

Lemma 4. The vectors |ψij〉, for 0 ≤ i, j < d, form an orthonormal bases

of HA ⊗HB.

Proof. We have, for some dth root of unity θ,

〈ψij |ψkℓ〉 = 〈ψ00|(id ⊗ Z−jX−i)(id ⊗XkZℓ) |ψ00〉

= θ 〈ψ00|id ⊗Xk−iZℓ−j|ψ00〉

= θ
∑

m,m′

〈mm|id ⊗Xk−iZℓ−j|m′m′〉

= θ
∑

m

〈m|Xk−iZℓ−j|m〉 = θ tr
(

Xk−iZℓ−j
)

.

It is easy to check that θ tr
(

Xk−iZℓ−j
)

= 0 if ℓ 6= j or k 6= i. �
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Proof of Proposition 1. Let rij be the given probability distribution. Ac-
cording to Lemma 4, the density operator ρAB :=

∑

ij rij |ψij〉〈ψij | has the

eigenvalues rij. Lemma 3 tells us that trB(|ψij〉〈ψij |) has the eigenvalues

1/d, hence trB(|ψij〉〈ψij |) = 1
d Id. It follows that trB(ρAB) = 1

d Id. Analo-

gously, we get trA(ρAB) = 1
d Id. �

3.2. Proof of Theorem 2. The proof is essentially the one of Theorem 2
in [2]. Suppose that λ ⊢d2 dm. By Proposition 1 there is a density operator
ρAB having the spectrum r := λ. Let PX denote the orthogonal projection
of (HA)⊗k onto the sum of its isotypical components [µ] ⊗ Vµ satisfying
‖µ − u‖1 ≤ ǫ, where u denotes the uniform distribution on [d]. Then PX

equals the orthogonal projection of (HA)⊗k onto the sum of its isotypical
components [µ] ⊗ Vµ satisfying ‖µ − u‖1 > ǫ. The estimation theorem (3)
implies that

tr(PX (ρA)⊗k) ≤ (k + 1)d(k + 1)d(d−1)/2 e−
k

2
ǫ2 ≤ (k + 1)d(d+1)/2 e−

k

2
ǫ2,

since there at most (k + 1)d partitions of k of length at most d.
Let PY denote the orthogonal projection of (HB)⊗k onto the sum of its

isotypical components [ν] ⊗ Vν satisfying ‖ν − u‖1 ≤ ǫ, and let PZ denote
the orthogonal projection of (HA ⊗ HB)⊗k onto the sum of its isotypical
components [Λ] ⊗ VΛ satisfying ‖Λ − r‖1 ≤ ǫ. Then we have, similarly as
for PX ,

tr(PY (ρB)⊗k) ≤ (k + 1)d(d+1)/2 e−
k

2
ǫ2,

tr(PZ (ρAB)⊗k) ≤ (k + 1)d
2(d2+1)/2 e−

k

2
ǫ2.

By choosing k = O(d4

ǫ2
log d

ǫ ) we can achieve that

tr(PX (ρA)⊗k) <
1

3
, tr(PY (ρB)⊗k) <

1

3
, tr(PZ (ρAB)⊗k) <

1

3
.

We put σ := (ρAB)⊗k in order to simplify notation and claim that

(4) tr((PX ⊗ PY )σPZ) > 0.

In order to see this, we decompose id = PX ⊗ PY + PX ⊗ id + PX ⊗ PY .
From the definition of the partial trace we have

tr
(

(PX ⊗ id)σ
)

= tr
(

PX(ρA)⊗k
)

<
1

3
.

Similarly,

tr
(

(PX ⊗ PY )σ
)

≤ tr
(

(id ⊗ PY )σ
)

= tr
(

PY (ρB)⊗k
)

<
1

3
.

Hence tr
(

(PX ⊗ PY )σ
)

> 1
3 . Using tr

(

(PX ⊗ PY )σPZ

)

≤ tr(σPZ) < 1
3 , we

get

tr
(

(PX ⊗ PY )σPZ

)

= tr
(

(PX ⊗ PY )σ
)

− tr
(

(PX ⊗ PY )σPZ

)1

3
−

1

3
= 0,

which proves Claim (4).
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Claim (4) implies that there exist partitions µ, ν,Λ with normalizations
ǫ-close to u, u, r, respectively, such that (Pµ ⊗ Pν)PΛ 6= 0. Recalling the
isotypical decomposition (2), we infer that

([Λ] ⊗ VΛ) ∩ ([µ] ⊗ Vµ) ⊗ ([ν] ⊗ Vν) 6= ∅.

Statement (1) implies that gµ,ν,Λ 6= 0 and hence the assertion follows for
R1 = µ,R2 = ν. �
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