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WONDERFUL VARIETIES: A GEOMETRICAL

REALIZATION

S. CUPIT-FOUTOU

Abstract. We give a geometrical realization of wonderful vari-
eties by means of a suitable class of invariant Hilbert schemes.
Consequently, we prove Luna’s conjecture asserting that wonderful
varieties can be classified by some triples of combinatorial invari-
ants: the spherical systems.
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Introduction

Wonderful varieties are complex algebraic varieties which general-
ize De Concini-Procesi compactifications of symmetric spaces studied
in [DP]: they are equipped with an action of a connected reductive
algebraic group G, they are smooth, toroidal and spherical (i.e. they
contain a dense orbit for a Borel subgroup B of G). The (unique) closed
orbit, the B-weights of the function field of a wonderful variety as well
as its B-stable but not G-stable prime divisors are invariants of spe-
cial interest. They are/yield combinatorial invariants in the sense that
they can be expressed in terms of the root system of the acting group
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2 STÉPHANIE CUPIT-FOUTOU

G. After Wasserman completed the classification of rank 2 wonderful
varieties ([W]), Luna highlighted in [Lu3] some properties enjoyed by
such triples and took them as axioms to set up the definition of spher-
ical systems. In case the group G is of type A, Luna proved in loc.
cit. that there corresponds a unique wonderful variety to any spherical
system. Luna’s conjecture asserts that this holds in general. Thanks
to Losev’s work ([Lo]), the uniqueness part of this problem is known
to be true. The existence part remained an open problem; its has been
proved only in a few additional cases ([BP, Bra, BC2]). The approach
followed there is Lie theoretical: one provides case by case a subgroup
H of G such that G/H admits a wonderful compactification.

Wonderful varieties play an important role in invariant deformation
theory ([J, BC1, Bri3]). By means of the so-called invariant Hilbert
schemes introduced by Alexeev and Brion in [AB], we were able to
construct geometrically in [C] some peculiar wonderful varieties. This
allowed us to answer positively Luna’s conjecture in the setting of the
spherical systems which have as third combinatorial datum the emp-
tyset. We generalize here this approach to a wider class of invariant
Hilbert schemes in order to prove Luna’s conjecture in full generality.

Many geometrical properties of wonderful varieties can be read off
spherical systems and vice versa ([Lu3]). This dictionary allows many
reductions to prove Luna’s conjecture. In particular, it suffices to con-
sider the so-called spherically closed spherical systems.

After having recalled, in the first section, Luna’s definition of such
spherical systems, we attach to any such object (for a simply connected
reductive algebraic group G) a set of characters (ωD, χD) indexed by a
finite set D. The ωD’s are dominant weights of G defined after [F] and
the χD’s are characters of some well-determined diagonalizable group
C. The characters ωD, (resp. χD) encapsulate the first, (resp. the
third), datum of the spherical system under consideration.

We end up the first section with some brief recalls on wonderful
varieties and their associated spherical systems. Further, we shall give
the geometrical interpretation of the characters (ωD, χD).

In the second section, given a spherically closed spherical system S,
we consider the G × C-module

V = ⊕DV ((ωD, χD))

where V ((ωD, χD)) stands for the irreducible G × C-module associ-
ated to the weight (ωD, χD). We thus study the invariant Hilbert
scheme Hilb(S) which parameterizes the non-degenerate subvarieties of
V whose coordinate ring is isomorphic as a G×C-module to ⊕λV (λ),
λ being in the monoid spanned by the dominant weights (λD, χD).
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This invariant Hilbert scheme contains in particular as closed point
the G×C-orbitclosure X0 within V of

∑

D v(ωD ,χD); v(ωD ,χD) is a high-
est weight vector of V ((ωD, χD)).

One of the novelties here compared to [C] is that the algebraic group
on which the invariant Hilbert scheme depends is no longer the given
group G.

We thus describe the tangent space at X0 of Hilb(S); it has a struc-
ture of Tad-module ([AB]) where Tad denotes the adjoint torus of the
given group G. We shall show that the first datum of the given spher-
ical system S (the so-called spherical roots of S) is encoded in this
tangent space. More specifically, generalizing the arguments developed
in [BC1], we obtain

Theorem 1. (Theorem 12) The tangent space at X0 of Hilb(S) is a
multiplicity free Tad-module; its Tad-weights are the spherical roots of
S.

Afterwards, we show that the corresponding obstruction space is triv-
ial (Theorem 23). As a consequence, we obtain the following statement
in the third section.

Theorem 2. (Theorem 24) The invariant Hilbert scheme Hilb(S) is a
toric Tad-variety; it is the affine space A

r with r being the number of
spherical roots of Σ.

In case of spherical systems with emptyset as third datum, the G-
module V is defined up to pairwise distinct dominant weights satisfying
an additional property no longer shared when dealing with an arbitrary
spherical system. This setting was considered in [J, BC2]. The first
assertion of the two previous theorems were obtained therein by means
of the already known classification of wonderful varieties of rank 1 (resp.
of strict wonderful varieties) ([A], resp. [BC1]); the dimension of the
invariant Hilbert scheme is upper bounded by the number of spherical
roots.

Let X1 be a closed point of Hilb(S) whose Tad-orbit is dense in
Hilb(S). Regarding X1 as a subvariety in V , we consider its coordinate
ring k[X1] and we set

R(S) = ⊕λ∈Γ(S)k[X1]λe
λ ⊗ k[AΣ]

where Γ(S) stands for the monoid spanned by the weights (ωD, χD) and
k[X1]λ for the isotypical component associated to the highest weight λ.

The algebraic torus GD
m whose charactergroup is spanned by the

(ωD, χD)’s acts naturally on R(S).



4 STÉPHANIE CUPIT-FOUTOU

Theorem 3. (Theorem 25) Let X̃ be the affine variety whose spectrum

is the ring R(S) and Xreg consist of the points of X̃ whose G×C-orbit
is of maximal dimension. Then the variety

X(S) = X̃reg/G
D
m

is a wonderful G-variety whose spherical system is the given S.

In combination, with Luna’s dictionary set up, we can conclude by
proving that Luna’s conjecture is true (Corollary 26).

Acknowledgments . I am grateful to Michel Brion for his advice and sug-
gestions on and around the subject. I announced the results contained
in this paper during the workshop ”Enveloping Algebras and Geometric
Representation Theory”, held in Oberwolfach in March 2009; I thank
the organizers of this meeting for having given me this opportunity.

1. Notation and Basic material

The ground field k is the field of complex numbers. Throughout
this paper, G denotes a simply connected reductive algebraic group,
B a Borel subgroup and T ⊂ B a maximal torus of G. Considering
the relative set of simple roots S of G, we define as usual the support
Suppβ of any integral linear combination β =

∑

nαα of simple roots α
to be the set of simple roots α such that nα 6= 0. We label the simple
roots as in Bourbaki ([Bo]).

1.1. Spherical systems.

Definition 4 ([W, Lu3]). A spherical root is one of the following char-
acters of T : α1 and 2α1 of type A1; α1+α′

1 of type A1×A1; α1+2α2+α3

of type A3; α1 + . . . + αn of type An, n ≥ 2; α1 + 2α2 + 3α3 of type B3;
α1 + . . .+αn of type Bn, n ≥ 2; α1 +2α2 + . . .+2αn−1 +αn of type Cn;
2α1 + . . . + 2αn−2 + αn−1 + αn of type Dn, n ≥ 4; α1 + 2α2 + 3α3 + 2α4

of type F4; α1 + α2, 2α1 + α2 and 4α1 + 2α2 of type G2.

The set of spherical roots of G is the set of spherical roots whose
support is a subset of the set of simple roots S of G. We denote it by
Σ(G).

Definition 5 ([BL], 1.1.6). Let Sp be a subset of S and σ be a spherical
root of G. The couple (Sp, σ) is said to be compatible if

Spp(σ) ⊂ Sp ⊂ Sp(σ)

where Sp(σ) is the set of simple roots orthogonal to σ and Spp(σ) is
one of the following sets

- Sp(σ) ∩ Suppσ \ {αr} if σ = α1 + . . . + αr with Suppσ of type Br,
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- Sp(σ) ∩ Suppσ \ {α1} if Suppσ is of type Cr,

- Sp(σ) ∩ Suppσ otherwise.

Definition 6. Let Sp be a set of some simple roots, Σ a set of spherical
roots of G and A a multiset of functionals on the lattice spanned by Σ.
The triple (Sp, Σ, A) is called a spherical system if

(A1) δ(γ) ≤ 1 for any δ ∈ A and any γ ∈ Σ. Further if δ(γ) = 1 then
γ ∈ Σ ∩ S.

(A2) δ+
α (γ) + δ−α (γ) = (α∨, γ) for any δ ∈ A and any γ ∈ Σ.

(A3) A is the union of all A(α)’s with α ∈ Σ ∩ S.

(Σ1) (α∨, σ) ∈ 2Z≤0 for all σ ∈ Σ \ {2α} and all α ∈ S such that
2α ∈ Σ.

(Σ2) (α∨, σ) = (β∨, σ) for all σ ∈ Σ and all α, β ∈ S which are mutu-
ally orthogonal and such that α + β ∈ Σ.

(S) The couple ({σ}, Sp) is compatible for any σ ∈ Σ.

1.2. Colors of a spherical system. The purpose of this subsection
is to attach to any spherical system S = (Sp, Σ, A) of G, a finite set of
pairwise distinct characters (ωD, χD).

Let ωα denote the fundamental weight associated to the simple root
α.

Let us start by recalling Foschi’s definition ([F]) of the dominant
weights ωD. Set

∑

β ωβ β ∈ S and δ+
α (β) = 1 for a fixed α in S ∩ Σ

∑

β ωβ β ∈ S and δ−α (β) = 1 for a fixed α in S ∩ Σ
2ωα if α ∈ S2a

ωα + ωβ if α + β ∈ Σ with α and β orthogonal simple roots
ωα for the remaining α in S \ Sp.

Note that these weights may not be pairwise distinct: among the first
two defined dominant weights, some may occur twice– but no more.
These weights define thus a multiset and in the remainder we denote
by D its indexing set. Set

Sa = 2S ∩ Σ and Sb = S \ (Sp ∪ (S ∩ Σ) ∪ Sa) .

If α and β are orthogonal simple roots whose sum is in Σ, write α ∼ β.
Then, regarding A as an abstract set, D can be written as the following
disjoint union

D = A ∪ Sa ∪ (Sb/ ∼).

We now introduce some additional characters χD indexed by D (see
also Lemma 3.2.1 in [Bri3]).
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Given any γ in Σ and any D ∈ D, define (after [Lu2])

aγ
D =















δ+
α (γ) if D = δ+

α

δ−α (γ) if D = δ−α
1
2
(γ, α∨) if D = Dα ∈ Sa

(γ, α∨) if D = Dα ∈ Sb

.

Let Gr
m be the torus whose charactergroup is spanned by the set Σ

of spherical roots and G
D
m the torus GL(V )G, V being the G-module

⊕DV (ωD). Consider the epimorhism

G
D
m → G

r
m : (tD)D∈D 7→

(

∏

D∈D

t
a

γ
D

D

)

γ∈Σ

.

Let C be its kernel C; it is a diagonalizable group.
The character χD is defined as the image of the D-component char-

acter
εD : (tD)D 7→ tD

through the dual map of C → G
D
m.

Lemma 7. The (ωD, χD)’s are linearly independent and form in turn
a basis of the charactergroup of GD

m. Further they satisfy the following
equalities

(γ, 0) =
∑

D

aγ
D(ωD, χD) for all γ ∈ Σ.

The set of characters (ωD, χD) will be referred in the remainder as
the set of colors of S.

1.3. Wonderful varieties.

Definition 8. A smooth complete algebraic variety equipped with an
action of G is said to be wonderful

(i) if it contains a dense G-orbit whose complementary is a finite union
of smooth prime divisors Di (i = 1, ..., r) with normal crossings;

(ii) its G-orbitclosures are given by the ∩i∈IDi’s, I being a subset of
the indexing set {1, ..., r}.

Wonderful varieties X are spherical (see [Lu1]) and as already re-
called in the introduction one can attach to any X a spherical system
(Sp

X , ΣX , AX) as follows; see Section 5.1 in [Lu3] for details. The Pi-
card group of X has as basis the B-stable but not G-stable divisors
D of X. Let H be the generic stabilizer of X such that BH is open
in G and π : G → G/H be the quotient morphism. Then, π−1(D)
can be represented by an equation which is a B × H-eigenvector. The
corresponding B ×H-character of π−1(D) is given by one of the colors
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(ωD, χD) associated to (Sp
X , ΣX , AX); see for instance Lemma 3.2.1 and

its proof in [Bri3].

2. Invariant Hilbert scheme attached to a spherical

system

Fix a spherical system S = (Sp, Σ, A) of G.

2.1. Definition of Hilb(S). Set

G = G × C and V (S) = ⊕DV (λD)

where V (λD) is the irreducible G × C-module associated to the color
λD = (ωD, χD) of S.

Denote Γ the monoid spanned by the characters λD.
Consider the functor Hilb(S) introduced (in a more general setting)

by Alexeev and Brion which assigns to any scheme S (endowed with
the trivial action of G) the following set of families π : X → S such
that

π∗OX
∼= ⊕λ∈ΓFλ ⊗ V (λ)∗ as OS −G-modules

where Fλ denotes an invertible sheaf.
This functor is representable by a quasiprojective scheme, the invari-

ant Hilbert scheme HilbG

Γ (V ) (Theorem 1.7 in [AB]).
In particular, Hilb(S) contains as closed point the horospherical G-

variety X0(S) given by the G-orbitclosure within V of

vD =
∑

D∈D

vλD
.

A G-subvariety of V is said to be non-degenerate if its projections
onto the irreducible modules V (λD) are all non-trivial. The non-
degenerate subvarieties of V whose coordinate ring is isomorphic as
a G-module to that of X0(S) are parameterized by an open scheme,
Hilb(S), of HilbG

Γ (V ) (Corollary 1.17 in [AB]).
By abuse of terminology, we shall refer to Hilb(S) as the invariant

Hilbert scheme associated to the spherical system S.
There exists an action of the adjoint torus Tad of G on the invariant

Hilbert scheme Hilb(S) and X0(S) is the unique Tad-fixed point of
Hilb(S); see Section 2 in [AB].

Note that whenever the dominant weights ωD are pairwise distinct
the invariant Hilbert scheme associated to the group G itself and to V
as a G-module maps to Hilb(S). As stated in the introduction, this case
falls in the setting of [J, BC1]. Indeed, the invariant Hilbert schemes
studied therein are those associated to a finite dimensional G-module
V = ⊕iV (λi) such that the monoid Γ spanned by the dominant weights
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λi is saturated. Namely, the dominant weights in the integral span of
Γ are themselves elements of Γ. This saturation property is fulfilled by
the colors of a spherical system only if the latter has the emptyset as
a third datum.

2.2. Tangent space of Hilb(S). Let g be the Lie algebra of G and
GvD the stabilizer of vD in G. By Proposition 1.15 in [AB], the tan-

gent space at X0 of Hilb(S) is included in the Tad-module (V/g.vλ)
GvD .

Further, both of these Tad-modules are isomorphic whenever the codi-
mension of the boundary X0 \ G.vD is greater or equal to 2. This
condition occurs exactly when the third datum of the spherical system
S is the emptyset.

Let us recall the action of the adjoint torus Tad on (V/g.vλ)
Gv

D de-
fined in [AB]. For any element t of Tad, set

t.v = (λD − µ)(t)v for any weightvector v in V (λD)µ.

Let denote Σ(D) the set of Tad-weights of (V/g.vλ)
GvD .

Note that the elements of Σ(D) are in the integral span of the weights
λD; they are in particular characters of T × C of shape (γ, 0) where γ
is in the integral span of the dominant weights ωD. However, we shall
refer to them below just as characters γ of T .

In the following, two simple roots which are not orthogonal are called
adjacent.

Definition 9. A spherical system is called spherically closed if none of
its spherical roots γ ∈ Σ\S is such that (Sp, 2γ) is compatible. (Sp, {})
is compatible.

Proposition 10. Let S be a spherically closed spherical system. Then

Σ(D) = Σ ∪ {α + α′ : α, α′ adjacent simple roots in Σ} .

Proof. Take γ a character of T whose support does not contain any
simple root in Σ. If γ belongs to Σ then it is a weight in Σ(D); further
the triple (Sp, Σ(D), ∅) is a spherical system of G (see [BC1]). Note
that the dominant weights ωD of this spherical systems coincide with
those of S - which is no longer true for the respective characters χD’s.
Let γ be in Σ(D). If γ does not belong to Σ then it is not in the integral
span of the colors (ωD, χD) of S: a contradiction.

Observe now that any α+α′ as stated in the proposition is clearly in
Σ(D). Moreover, any spherical root whose support contains a spherical
root α is either α itself or of shape α + α′ where α is orthogonal to
α + α′ and α′ is a simple root adjacent to α but not in Σ. Both α and
α + α′ are obviously in Σ(D) when they are spherical roots of S.
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Consequently, to obtain the proposition, we are left to prove the
inclusion of Σ(D) in the right-hand side set in case of weight whose
support intersects Σ. This is achieved in Proposition 13 below. �

Remark 11. Considering the case of pairwise distinct dominant weights
ωD, this proposition does not hold in general while forgetting the C-
module structure. Firstly, if γ is a loose spherical root of S then 2γ
belongs to Σ(D) but γ itself does not. Secondly, Σ(D) is contained in
Σ only for peculiar spherical systems (among those containing no loose
spherical root); see [C] and also [BC1].

Essentially from the characterization of the G-orbit closures of codi-
mension 1 in X0 along with the preceding proposition, we obtain.

Corollary 12. The tangent space at X0 of the invariant Hilbert scheme
Hilb(S) is a multiplicity free Tad-module; its Tad-weights are the spher-
ical roots of S.
Proposition 13. Suppose S is a spherically closed spherical system
of G. Let γ be a Tad-weight in Σ(S) whose support contains a simple
root α in Σ. Then γ is a root and it is equal to α or α + α′ with α′ a
simple root. In the latter case, either γ or α′ belongs to Σ.

Proof. Note that (α + α′, 0) is in the integral span of the λD’s if and
only if either α and α′ are both in Σ or α + α′ is in Σ. The latter
assertion of the proposition follows.

In order to prove the first assertion of the proposition, we shall pro-
ceed as follows. Note first that α is clearly in Σ(D). When γ is not
equal to α, we shall prove, in the following lemmas, that γ − α, γ − α′

(α′ being one of the simple roots adjacent to α) and γ are roots. �

Lemma 14. [Proposition 3.4 in [BC1]] Let γ be a weight in Σ(D).
Suppose there exists a simple root δ in the support of γ such that γ − δ
is not a root. Then (γ, δ) is positive. Moreover, if γ is orthogonal to δ
then so are the dominant weights ωD.

Proof. The proof is conducted in loc. cit. in case the ωD’s are pairwise
distinct. Nevertheless, it is still valid thanks mainly to the following
property of spherical systems: If α and β are arbitrary simple roots and
spherical roots of a same spherical system then there exists at most one
dominant weight among the ωD’s which is neither orthogonal to α nor
to β. This property is due to Axiom (A2) of spherical systems. �

Lemma 15. Let α be a simple root in Σ and α′ a simple root adjacent
to α. One of the dominant weights ωD is orthogonal to α but not to α′.
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Proof. Being a spherical root of S, the simple root α lies in the integral
span of the λD’s hence at least one of the ωD’s is not orthogonal to α′.
The lemma follows from Axiom (A2) of spherical systems. �

Let us fix some further notation and convention for the remainder.
In the following lemmas, γ and α are distinct weights in Σ(D) with α
lying in the support of γ. A weightvector of Tad-weight γ is represented
by a vector vγ in the weightspace ⊕VλD−γ. The root vector associated
to a root β of G is denoted by Xβ . As element of the Lie algebra of
G, they act on the G-module V ; the corresponding action is simply
denoted by Xβv for some v in V .

Lemma 16. The character γ − α is a root.

Proof. Let us proceed by contradiction: suppose γ − α is not a root.
Since Xαvγ has to lie in g.vλ, the vector Xαvγ is trivial in V . Moreover,
by Lemma 14, (γ, α) is strictly positive. Consequently, the representa-
tive vγ thus lies in V (λ+

α )⊕ V (λ−
α ) where λ+

α and λ−
α are the dominant

weights among the ωD’s which are not orthogonal to α. Since the vec-
tor vγ can not be dominant, there exists a simple root δ in the support
of γ such that the vector Xδv is not trivial in V . It follows that the
weight γ − δ is a root. Thanks to Lemma 15, γ is thus equal to α + δ
hence γ has to be a root: a contradiction. �

Lemma 17. If the weight γ is not a root then the vector Xαv is not
trivial in V .

Proof. Thanks to Lemma 16, (γ − α, α∨) is positive hence (γ, α) is
strictly positive. By the same arguments as those used in the proof of
Lemma 16, we get a contradiction whenever Xαv is trivial in V . �

Lemma 18. The supports of α and γ − α are not orthogonal.

Proof. Let us proceed by contradiction. Then the weightvector vγ can
be written as X−αvγ−α where vγ−α is a weightvector of Tad-weight γ−α.
In particular, Xαv is not trivial in V . By means of Lemma 15, we get
a contradiction. �

Lemma 19. There exists a simple root α′ adjacent to α such that the
character γ − α′ is a root. In particular, α′ lies in the support of γ.

Proof. Note first that by the previous lemma, the support of γ contains
a simple root α′ adjacent to α. One of the dominant weights ωD is thus
non-orthogonal to α′ since so is α. Let us proceed by contradiction:
suppose γ − α′ is not a root. Then Xα′v is trivial in V and (γ, α′) is
strictly positive by Lemma 14. It follows that γ is not a root.



WONDERFUL VARIETIES: A GEOMETRICAL REALIZATION 11

Thanks to the previous lemmas, α′ is not a weight in Σ(D) hence it
is not a spherical root in Σ. Recalling that γ is in the integral span
of the weights ωD, we get that (ωD − γ, α′) is negative for every D.
But since Xα′v is trivial in V , the representative of vγ can be taken in
the module V (λD) associated to the (single) dominant weight which is
not orthogonal to α′. Since Xαv is not trivial in V by Lemma 17, the
support of γ − α does not contain the root α. Together with the fact
that α′ belongs to the support of γ, we get that(γ − α, α) is strictly
negative. It follows that γ is a root since so is γ − α by Lemma 16: a
contradiction. �

Lemma 20. The weight γ is a root.

Proof. We first claim: Let α and α′ be non-orthogonal pairwise simple
roots and δ an arbitrary root. If δ + α is not a root then neither is
δ + α−α′. Apply the claim to δ := γ −α which is a root as previously
proved. We get that if γ is not a root then neither is γ−α′ for any simple
root α′ adjacent to α. This yields a contradiction with Lemma 19. �

2.3. Obstruction space. Given D, D′ in D, consider the morphism
of G-modules

mD,D′ : V (λD) ⊕ V (λD′) −→ V (λD + λD′)

such that
vλD

⊗ vλD′
7−→ vλD+λD′

.

We shall regard mD,D on the symmetric product V (λD) · V (λD). Set

KD,D′ = ker mD,D′ for any D, D′ in D.

As a slight generalization of Proposition 2.7 in [C], we have

Proposition 21. The G-invariants
(

T 2
X0

)G
of the second cotangent

module T 2
X0

at X0 is an obstruction space for the functor Hilb(S). Fur-
ther it is contained in the kernel of

H1(Gvλ
, V/g.vλ) −→ ⊕D,D′H1(Gvλ

, KD,D′)

induced by v 7→
∑

D v · vλD
for v ∈ V and v · vλD

∈ V · V (λD).

Recall the definition of Σ(D) stated in the previous section.

Proposition 22. Any Tad-weight vector of H1(gvλ
, V/g.vλ) can be rep-

resented by a cocycle ϕα,γ indexed by a simple root α in S \ Sp and a
Tad-weight γ in Σ(D) and defined as follows

ϕα,γ :

{

Xα 7→ [Xr
−αvγ ]

Xδ 7→ 0 if δ 6= α with δ ∈ S or −δ ∈ Sp
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The vector [vγ ] stands for the γ-weightvector of (V/g.vλ)
Gvλ with vγ

chosen in some suitable ⊕DV (λD)λD−γ; r = max{i ≥ 0 : X i
−αvγ 6=

0 in V }.

Proof. In case the support of γ + rα does not contain any spherical
root, this proposition is already proved in [C]. Suppose thus we are
not in this situation. Let ϕ be a Tad-weight of H1(gvλ

, V/g.vλ). As in
Lemma 5.31 in [C], ϕ satisfies the following property: given a simple
root α, Xβϕ(Xα) ∈ g.vλ for every β distinct to α. The proposition
follows. �

Corollary 23. The obstruction space for the functor Hilb(S) of in-
variant deformations is trivial.

Proof. Keep the notation of the two propositions right above. We will
show that no ϕα,γ maps trivially through the map of Proposition 21.
As before, we are left to consider the weights γ+rα whose support does
not contain any spherical root of S. We follow the lines of the proof
of Proposition 5.33 in [C]: we provide a dominant weight λD such that
vγ.vλD

∈ ⊕D,D′KD,D′ is not trivial and annihilated by the root operator
X−α.

Note that for the weights γ under consideration, there are at least
two dominant weights among the ωD’s which are not orthogonal to γ.

If γ = α then clearly there exists λD such that vγ.vλD
is not trivial

and annihilated by X−α since X−α.vγ = 0 in V and (λD, α∨) = 1.
Thanks to the axioms (A1)−(A3) (see also Lemma 15), the remaining

weights γ share the following property. There exists a dominant weight,
say λ, which is not orthogonal to γ, orthogonal to α and such that the
representative of the Tad-weightvector of weight γ can be chosen in the
weightspace ⊕DV (λD)λD−γ and such that the vector vγ .vλ is not trivial
in ⊕D,D′KD,D′. The dominant weight λ is thus the required weight. �

3. The scheme Hilb(S) and the wonderful variety X(S)

Many ideas in the two last subsections are in the spirit of those
developed in [Bri3].

Take a spherical system S = (Sp, Σ, A) of G.

3.1. Geometrical description of Hilb(S).

Theorem 24. The invariant Hilbert scheme Hilb(S) is an affine toric
variety for the adjoint torus of G; its weights are the spherical roots of
S. More specifically, it is an affine space.
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Proof. We argue as in [C]. Schlessinger’s criterion along with Theo-
rem 23 imply that Hilb(S) is smooth. The characters (ωD, χD) defining
the monoid Γ being linearly independent, Hilb(S)◦ is affine, connected
and acted on by the adjoint torus with finitely many orbits and a single
fixed point; see Corollary1.17, Theorem 2.7 and Corollary 4.3 in [AB].
Therefore Hilb(S)◦ is an affine space and its dimension is as stated
by Theorem 12. �

3.2. Geometrical realization of X(S). Let X1 be a closed point of
the invariant Hilbert scheme Hilb(S) whose Tad-orbit is dense. Regard-
ing X1 as a subvariety of V , consider the G × T-algebra

R(S) = ⊕λ∈Γ(S)k[X1]λe
λ ⊗ k[e(γ,0) : γ ∈ Σ].

Define

X̃ = SpecR(S).

Then X̃ is an affine spherical G × T -variety and X̃ → Spec
(

R(S)G
)

is the universal family of Hilb(S).

The algebraic torus GD
m acts naturally on X̃; e(ωD ,χD) is of weight εD

hence eγ is of weight
∑

aγ
DεD since (γ, 0) =

∑

D aγ
D(ωD, χD). Note that

the G × GD
M -variety X̃ is spherical.

Let X̃reg ⊂ X̃ consist of the points of X̃ whose G-orbit is of maximal
dimension.

Theorem 25. The G-variety

X(S) = X̃reg/G
D
m

is wonderful. Further its spherical system is the given S in case the
latter is spherically closed.

Proof. By construction, the G-variety X(S) is complete, smooth, toroidal
and spherical hence wonderful. Let (Sp

X , ΣX , AX) be its spherical sys-
tem. Its closed G-orbit is given by X0/GD

m whence Sp
X = Sp where X0

is the Tad-fixed closed point of Hilb(S). The spherical roots of X coin-
cides with Σ by Theorem 12. Let us now determine the matrix A(X).
First note that the B-weights of the colors of X are given by the ωD’s.
Let fλD

∈ k[X1]λD
where λD = (ωD, χD). The invariant algebra RU of

the unipotent radical U of the Borel subgroup B is generated by the
fλD

eλD ’s and the eγ ’s. The canonical section of any prime divisor of X
being G-invariant, it can be identified to some eγ with γ ∈ Σ. It follows
that the canonical section of a color X of B-weight ωD can be identified
to fλD

eλD and in turn that A(X) is the matrix with aγ
D as coefficients

since
∏

f
a

γ
D

λD
is a GD

m-invariant function of X̃ for any γ ∈ Σ. �



14 STÉPHANIE CUPIT-FOUTOU

Corollary 26. Luna’s conjecture is true: to any spherical system, there
corresponds a unique wonderful variety.

Proof. It suffices to consider spherical systems which are spherically
closed; see Section 6 in [Lu3]. The existence part is given by the
previous theorem. The proof of the uniqueness is conducted as follows.

Let X be a wonderful G-variety with spherical system S, D its set
of colors and ωD the B-weight of a color D ∈ D. The variety X
coincides with the normalization (in the function field of X) of some
G-orbitclosure X ′ within

∏

D P (V (ωD)). This fact slightly generalizes
Proposition 2 in [Bri2]. Further, H0(X,OX(D)) is either isomorphic
as a G-module to V (ωD) or V (ωD) ⊕ V (0) (see [Bri1]). We thus have
a finite morphism

X →
∏

D

P
(

H0(X,OX(D))
)

.

Consider the affine multicone X̂ (resp. X̂ ′) over X (resp. X̂) with
respect to the above morphism. We have in particular

X̂ = Spec ⊕(nD)D∈ZD H0

(

X,OX

(

∑

D

nDD

))

.

From Proposition 3.1.1 in [Bri3], we know that X̂//G = Spec(k[X̂]G)
is isomorphic to Ar where r is the rank of X.

Let H be the generic stabilizer of X and K the largest subgroup of
H of X such that H/K is diagonalizable. Then H/K is isomorphic to
the diagonalizable group C defined in Subsection 1.2.

The principal fiber of the quotient map π : X̂ → X̂//G is isomorphic
to the spherical G×H/K-variety CE(G/K) = Speck[G/K] and π real-
izes a degeneration of CE(G/K) into X0(S); see Section 3.2 in [Bri3].

Together with Theorem 24, it follows that π′ : X̂ ′ → X̂ ′//G is the
universal family of the invariant Hilbert scheme Hilb(S).

This implies that if X and X ′ are wonderful G-varieties which have
the same spherical system then K and K ′ are isomorphic. And since
H/K and H ′/K ′ are isomorphic so are the subgroups H and H ′. In
turn, X and X ′ are isomorphic thanks to the uniqueness of the won-
derful compactification. �
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