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Abstract

In this paper, we show the second part of Schur-Weyl duality for mixed tensor
space. The quantum group U = U(gl,) of the general linear group and a
g-deformation B (q) of the walled Brauer algebra act on V& @ V** where
V = R" is the natural U-module. We show that Endgn (4 (V®" @ V*®°)
is the image of the representation of U, which we call the rational g-Schur
algebra. As a byproduct, we obtain a basis for the rational ¢-Schur algebra.
This result holds whenever the base ring R is a commutative ring with one
and ¢ an invertible element of R.
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Introduction

Schur-Weyl duality plays an important role in representation theory since
it relates the representations of the general linear group with the representa-
tions of the symmetric group. The classical Schur-Weyl duality due to Schur
([14]) states that the actions of the general linear group G = GL,, and the
symmetric group &,, on tensor space V™ with V' = C" satisfy the bicen-
tralizer property, that is Endg, (V®™) is generated by the action of G and
correpondingly, Endg(V®™) is generated by the action of &,,. This duality
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has been generalized to subgroups and groups related with G (e. g. orthogo-
nal, symplectic groups, Levi subgroups) and corresponding algebras related
with the group algebra of the symmetric group (e. g. Brauer algebras, Ariki-
Koike algebras), as well as deformations of these algebras. In general, the
phrase ’Schur-Weyl duality’ has come to indicate such a bicentralizer prop-
erty for two algebras acting on some module.

One such generalization is the mixed tensor space V" ® V*®* where V
is the natural G- or equivalently CG-module and V* its dual, thus V" ®
V*®% has a CG-module structure as the tensor product of CG-modules. The
centralizer algebra is known to be the walled Brauer algebra 987 ([1]), and
CG and B7 satisty the bicentralizer property on mixed tensor space. For
s = 0, one recovers the classical Schur-Weyl duality. In that case, the walled
Brauer algebra B!, coincides with the group algebra of the symmetric group
S,. A g-deformation of these results also exist ([11,12]), but only for cases
when the centralizer algebra is semisimple.

In this paper, we generalize the results of |1, [11, [12] for a very general
setting. Let R be a commutative ring with 1 and ¢ € R invertible. Let
U be (an integral version of) the quantum group over R, which replaces
the general linear group in the quantized case. Let B (¢q) be a certain
g-deformation of the walled Brauer algebra defined by Leduc [12]. In [4],
we gave an alternative, combinatorial desription of this algebra in terms of
knot diagrams. This algebra acts on mixed tensor space V& ® V*®* where
V = R" is the natural U-module. Let S;(n;7,s) = Endgy ) (VE" ® V*®?)
be the centralizer algebra of the action of B} (q). We call S,(n;r,s) the
rational g-Schur algebra. The main result of this paper states that S,(n;r, s)
is the image of the representation of U on V¥ ® V*®*. So far, this was
only known for R = C, ¢ = 1 and R = C(q). In these cases, the algebras
act semisimply on the mixed tensor space, so it suffices to decompose this
module into irreducible modules. We show that the rational ¢-Schur algebra
is free over R and determine an explicit combinatorial basis. This generalizes
the result of [3], which gives a basis for infinite fields with ¢ = 1.

The other part of Schur-Weyl duality for mixed tensor space is also true,
and was shown in [4]: the centralizer algebra of the U-action on mixed tensor
space is generated by B (q). To show that result, we used the well-known
duality between the Hecke algebra H,,s(q) = B}, ,(¢) and the quantum
group U on tensor space V® 5 This paper now completes the proof of
Schur-Weyl duality for mixed tensors.

The main problem to show this part of Schur-Weyl duality is that it is

2



a priori not clear that the centralizer algebra of B} (¢) is R-free of rank
independent of the ground ring R.

In order to prove Schur-Weyl duality in the general case we make use
of the following fact: the mixed tensor space V& ® V*** can be embedded
into a tensor space V& *(=1s  Although this embedding & is not a homo-
morphism of U-modules, it is a homomorphism of U’-modules where U’ is
the subalgebra of U corresponding to the special linear group. We will see
that replacing U by U’ is not significant. Associated with this embedding
is an algebra homomorphism 7 : S, (n,7 + (n — 1)s) — S,(n;r,s) where
Sy(n, 7+ (n—1)s) is the image of the representation of U’ on V&r+(=1s the
(ordinary) q-Schur algebra. This homomorphism was motivated by [3] and
is given by restriction to the U’-submodule V& @ V*®% of y@r+(n-1)s,

Let pora : U — S (n,7 + (n — 1)s) be the representation of U’ on
Ver+m=1s = Similarly, let puxa @ U — S,(n;r,s) be the representation of
U on V¥ @ V*®. Since pmxd = T © Pord a0d pora is surjective, puxa is
surjective (i.e. Schur-Weyl duality for the mixed tensor space holds) if 7 is
surjective. It remains to show that 7 is surjective or equivalently, that = has
a right inverse. We show a stronger statement, namely that the right inverse
can be chosen to be a homomorphism of R-modules.

At this point, we switch over to the coefficient spaces: S,(n,r+ (n—1)s)
and S,(n;r, s) are dual algebras of coalgebras A,(n, r+(n—1)s) and A,(n;r, s)
respectively. We define a map ¢ : Ay (n;r,s) — A,(n,r + (n — 1)s) such that
m =", Thus 7 has a right inverse if + has a left inverse, namely the dual of
this left inverse. So the problem is reduced to find a left inverse of ¢.

For this purpose, we give suitable bases for A,(n,r + (n — 1)s) and
A,(n;r,s), such that the matrix of ¢ with respect to this bases has a nice
form. The description of A,(n,r + (n — 1)s) and a basis thereof is well
known (see [2,9]). The basis is indexed by standard bitableaux. We de-
velop a basis for A,(n;r, s) and thus for S,(n;r, s) which is indexed by pairs
of so-called rational standard bitableaux. To show that the basis elements
generate A,(n;r, s), we develop the Rational Straightening Algorithm, which
is applied together with the well known straightening algorithm for bideter-
minants. Note that the resulting basis of S,(n;r,s) does not coincide with
the basis for ¢ = 1 in [3] which arises by mapping a cellular basis with the
surjection 7.

Using g-versions of determinantal identities such as the Laplace Expan-
sion and Jacobi’s Ratio Theorem, we show that a basis element of A,(n;r, s)
maps under ¢ to a multiple of a basis element of A,(n,r + (n — 1)s), thus a
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left inverse is easy to find, which proves the main results.

1. Preliminaries

Let n be a given positive integer. In this section, we introduce the quan-
tized enveloping algebra of the general linear Lie algebra gl, over a com-
mutative ring R with parameter ¢ and summarize some well known results;
see for example [8, 110, 13]. We will start by recalling the definition of the
quantized enveloping algebra over Q(¢) where ¢ is an indeterminate.

Let PV be the free Z-module with basis hq, ..., h, andleteq, ..., e, € PV"
be the corresponding dual basis: ¢; is given by ¢;(h;) :=6;; for j =1,...,n,
where § is the usual Kronecker symbol. For i =1,...,n— 1 let a; € P"" be
defined by «; :=¢; — €;41.

Definition 1.1. The quantum general linear algebra U,(gl,,) is the associa-
tive Q(q)-algebra with 1 generated by the elements e;, f; (1 = 1,...,n — 1)
and ¢" (h € PV) with the defining relations

L =1, ¢¢" =t

"eiq" = ¢ Wey, " fig" =g W,

K, —K!
eifj - fjei = 5ivjz—7q—llv where K; := qhi_hi“’

ele; — (¢4 q Neeje; +ejei =0 for i —j| =1,

fRfi=q+a O fififi+ i =0 for|i—j| =1,
€iej = €;¢€;, flf] = f]fl for ‘Z — j| > 1.
We note that the subalgebra generated by the K;,e;, f; (i =1,...,n—1) is

isomorphic with U,(sl,,). U,(gl,,) is a Hopf algebra with comultiplication A,
counit € and antipode S defined by

Al =q"®q",

Ale)=e @K '+1®e, Afy)=fiol+K @[,
eld") =1, ele)) =e(f;) =0,

S(q")=q7", Sle) = —eiK;, S(fi) =—K;'fs.

Note that A and e are homomorphisms of algebras and S is an invertible
anti-homomorphism of algebras. Let Vi) be a free Q(g)-vector space with



basis {v1,...,v,}. We make Vg (q) into a Ug(gl,)-module via

o, = W forhe PV, j=1,....n
(v ifj=i+1 _Jvip it =a
€ivj = { 0 otherwise fiv; = { 0 otherwise.

We call V) the vector representation of Uy(gl,). This is also a Uy(sl,)-
module, by restriction of the action.

Let [l], (in Z[g,q "] resp in R) be deﬁned by 1]y = 228 2 (1], =
141l —1],...[1], and let e = Z [l] ;. Let Uqufl] (resp., Uy, 1)
be the Z[q, ¢~ subalgebra of U (g[ ) generated by the ¢" (resp., K;) and the
divided powers e ) and f for I > 0. Uy 41 is a Hopf algebra and we have

l
AE”) = D Pl @ K
k=0

q k(l—k)fi(l—k)KZk ® fz(k)

>
—
=4
—
|

0
1 lql(l 1) (l)Kl
_ 1)lq—ll D f —zf

1 )
e(e))) = e(f)=o.

Furthermore, the Zlg, ¢~ ']-lattice Vy, 41y in Vg generated by the v; is
invariant under the action of Ugy -1 and of U’Z[q 1 Now, make the

N
aQ
—
=
~—
I
/\/-\w
Il

transition from Z[q,¢"!] to an arbitrary commutative ring R with 1: Let
q € R be invertible and consider R as a Z[q,q ']-module via specializ-
ing ¢ € Zlg,q7'] — ¢ € R. Then, let Ug = R ®g)y4-1) Uzglgqe-1 and
Ul = R®2q,4-1)Uyy, -1 Ur inherits a Hopf algebra structure from Ugjg,q-1)
and Vg := R ®zq.41 Vz[q.4-1) 18 @ Ug-module and by restriction also a U',-
module.

If no ambiguity arises, we will henceforth omit the index R and write U,
U’ instead of Ug, U’ and V instead of Vi. Furthermore, we will write e(l)
as shorthand for 1 ® e leU r, similarly for the f; @ , K; short for 1 ® K;, and
q" short for 1 ® ¢".

Suppose W, W, and Wy are U-modules, then one can define U-module
structures on Wp @ Wy = Wy ®g Wy and W* = Hompg(W, R) using the



comultiplication and the antipode by setting x(w; ® ws) = A(x)(w; ® ws)
and (zf)(w) = f(S(z)w).

Definition 1.2. Let r, s be nonnegative integers. The U-module V& @V *®*
is called mized tensor space.

Let I(n,r) be the set of r-tuples with entries in {1,...,n} and let I(n,s)
be defined similarly. The elements of I(n,r) (and I(n,s)) are called multi
indices. Note that the symmetric groups &, and &, act on I(n,r) and
I(n,s) respectively from the right by place permutation, that is if s; is
a Coxeter generator and i = (iy,42,...) is a multi index, then let i.s; =
(41, 85-1,%541,%4,%j12,...). Then a basis of the mixed tensor space V" ®
V*®* can be indexed by I(n,r) x I(n,s). Fori= (iy,...,i,) € I(n,r) and
i=01,...,ds) € I(n,s) let

Vi =0, ® ... 0V, OV, Q... Qu;, € VE @V

where {v],..., v} is the basis of V* dual to {vi,...,v,}. Then {vy; | i €
I(n,r),j € I(n,s)} is a basis of V& @ V*®*,

We have another algebra acting on V& ® V*®° namely the quantized
walled Brauer algebra 87! (q) introduced in [4]. This algebra is defined as a
diagram algebra, in terms of Kauffman’s tangles. A presentation by genera-
tors and relations can be found in [4]. Note that this algebra and its action
coincides with Leduc’s algebra ([12], see the remarks in [4]).

Here, all we need is the action of generators given in the following dia-
grams. B (q) is generated by the elements

A

E:;:::L x T:::T7 S'Z.:;:::l'\il:::ltzz:f7 Sj:l:::lT:::TXT:::T

where the non-propagating edges in E' connect vertices in columns r, r + 1
while the crossings in S; and S; connect vertices in columns 7, ¢ + 1 and
columns 7 + j, 7+ j + 1 respectively. If vy; = v ® v;, ® v, ® v/, then the



action of the generators on V" @ V*®* is given by

n
2t —m—1 * /
viE = G5 ¢ R u Qv ®u

s=1
q vy if 45 = 4441
vyjS; = Visilj if 45 < 4441
Viglj T (¢ = Quiy  if 4 > i
) q v if j; = Jj+1
viiS; = Vij.s; if jj > Jj+1
vijs, + (@7 — @Quiy i < g

The action of B (¢) on V¥ @ V*®* commutes with the action of U.

Theorem 1.3 ([4]). Let o : B} (¢q) — Endy(VE" @ V*®°) be the representa-
tion of the quantized walled Brauer algebra on the mized tensor space. Then
o 18 surjective, that is

EndU(V®T ® V*@S) >~ %QS(q)/ann%ﬁs(q)(V®T.®V*®S)'
The main result of this paper is the other half of the preceding theorem:

Theorem 1.4. Let puya : U — Enday (o (VE" @ V*®?) be the representation
of the quantum group. Then punyq 1S surjective, that is

End%ﬁs(‘])(‘/@r ® V*®s) = U/annu(V®"®V*®s)'

Theorems and [[.4] together state that the mixed tensor space is a
(U, B}, (¢))-bimodule with the double centralizer property. In the literature,
this is also called Schur—Weyl Duality. Theorem [I.4] will be proved at the
end of this paper.

For s = 0, this is well known. 9B}, ;(¢) is the Hecke algebra H,,, and V=™
is the (ordinary) tensor space.

Definition 1.5. If m is a positive integer, let H,, be the associative R-
algebra with one generated by elements T},...,7T,,_1 with respect to the
relations

(Ti+q)(Ty—qg ') =0fori=1,...,m—1

LT Ty =Ty TiTiyy fori=1,...,m—2
T;1; = 1,7, for |i — j| > 2.



If we &,, is an element of the symmetric group on m letters, and w =
SiySiy - - - 8, 15 a reduced expression as a product of Coxeter generators, let
T,="T,T,...T,. Then the set {T}, | w € &,,} is a basis of H,,.

Note that H,, acts on V™ since H,, = B}, (q), the isomorphism given
by T; — S;.

Theorem 1.6 ([5, [7]). Let pora : U — Endg(V®™) be the representation of
U on V™. Then im poq = Endy,, (V®™). This algebra is called the q-Schur
algebra and denoted by S,(n,m).

We will refer to V™ as ordinary tensor space.

2. Mixed tensor space as a submodule

Recall that U’ is the subalgebra of U corresponding to the Lie algebra
sl,,.

Theorem 2.1. If m is a nonnegative integer, let porq : U — Endg(V®™) be
the representation of U on V€™, Then

Pord (U> = Pord (U/) .

Proof. Define the weight of i € I(n,m) to be wt(i) = A = (A\q,...,\,), such
that A; is the number of entries in i, that are equal to i. If A = (A1,...,\,)
is a composition of m into n parts, i. e. A\ + ...+ A\, = m, let V¥ be
the R-submodule of V®™ generated by all v; with wt(i) = A. Then V&™
is the direct sum of all V,*™ where A runs through the set of compositions
of m into n parts. Let ) be the projection onto V,*™. [7] shows, that the
restriction of poq : U — S,(n,m) to any subalgebra U’ C U is surjective, if
the subalgebra U’ contains the divided powers egl), fi(l) and preimages of the
projections .

Therefore, we define a partial order on the set of compositions of m into
n parts by A < p if and only if (A — Ao, Ao — Az, ..., A1 — M) < (p1 —
H2y 2 — {3, - - - fin—1 — M) in the lexicographical order. It suffices to show,
that for each composition A, there exists an element u € U’ such that uv; = 0
whenever wt(i) < A (i. e. wt(i) < A and wt(i) # A) and wv; = v; whenever
wt(i) = A. In Theorem 4.5 of [13], it is shown that certain elements

|:Ki; C:| o ﬁ Kiqc—s+1 _ Ki—lq—c+s—1
t g —q*

s=1



are elements of U fori=1,....,n—1,c€ Z and t € N. Let
n—1
w=T] mee,
paiey Ai = Aig1 +m+1

which is an element of U’ since \; — A\;;1 +m+1 > 0. Then u has the desired
properties. ]

The next lemma is motivated by [3, §6.3].

Lemma 2.2. There is a well defined U'-monomorphism k : V* — V&=t
given by

'U: = (_Q)Z Z (_q)l(w)’u(ll..%...n).w

wEGn—l
= (—q)i Z (_Q)l(w)v(m...i...n)Tw:(_Q)iv(lz...i...n) Z (_q>l(w)Tw
weS,_1 weES,—1

where i means leaving out 1.

Proof. 1t is clear, that x is a monomorphism of R-modules. By definition,
K = ¢"#+157%5p* and Ko 5.0 = ql_‘sm’q‘siﬂd_lv(lmjmn). Thus k com-

mutes with K;. Now ey = —6; ;¢ "0}, . If j # 4,9+ 1 then

em(v}‘) = (_Q)jeiZ(_Q)l(w)U(l...ii+1...j...n)Tw

w

= (0 S0P T = 0= R(ew))

w

For j =i resp. 1 + 1 we get

(Vi) = (=)™ Y (=)™ (ewy s )T =0

w

eik(v;) = (—Q)iZ(_Q)l(w)(eiv(l...iiﬂ...n))Tw

w

= (_q)l Z(_Q)l(w)v(lzﬁn)Tw = _q_l"{(vzil—l)

w

Furthermore, for [ > 2 we clearly have egl)vj = 0 and ey)/ﬁ(vj) = 0. The
argument for f; works similarly. O



Lemma enables us to consider the mixed tensor space V& @ V*®*
as a U'-submodule T7* of V& *+("=1s yia an embedding which we will also
denote by x. Thus B} (¢) acts on T

If we restrict the action of an element of U’ on V& +(*~1s o1 equivalently
of the g-Schur algebra S,(n,r + (n — 1)s) to T™°, then we get an element
of Endg(1™*). Since the actions of U" and B (¢) commute, this is also an
element of Endgy () (T7*). Let Sy(n;r,s) := Endgn (o (VE" @ V*®°), thus
we have an algebra homomorphism 7 : Sy(n,7 + (n — 1)s) — Sy(n;r,s) by
restriction of the action to T7% = V& @ V*®* Our aim is to show that 7
is surjective, for then each element of Endgy () (V®" @ V*®°) is given by the
action of an element of U’. ’

Lemma 2.3. Let M be a free R-module with basis B = {by,...,b} and let
U be a submodule of M given by a set of linear equations on the coefficients
with respect to the basis B, i. e. there are elements a;; € R such that U =
{Docibi € M 2 saie; =0 for alli}. Let {by,..., b} be the basis of M* =
Hompg(M, R) dual to B and let X be the submodule generated by all Zj a;;b;.
Then U = (M*/X)".

Proof. (M*/X)* is isomorphic to the submodule of M** given by linear forms
on M* that vanish on X. Via the natural isomorphism M** = M, this is
isomorphic to the set of elements of M that are annihilated by X. An element
m = >, ciby is annihilated by X if and only if 0 = Zj,k aijbi(ckby) =
> @ikcy for all i and this is true if and only if m € U. O

Note that an element ¢ € (M*/X)* corresponds to the element ¢ =
Yo @(bF + X)b; of U. In our case Sy(n,m) and Sy(n;r,s) are R-submodules
of R-free algebras, namely Endg(V®™) and Endg (V" @V *®?) resp., given by
a set of linear equations, which we will determine more precisely in Sections
and [

Definition 2.4. Let M = Endg(V®™) and U = S,(n,m). Then U is defined
as the algebra of endomorphisms commuting with a certain set of endomor-
phisms and thus is given by a system of linear equations on the coefficients.
Let A,(n,m) = M*/X as in Lemma 23l Similarly let A,(n;r,s) = M*/X
with M = Endg(V® @ V*®*) and U = S,(n;r, s).

By Lemma 23] we have A,(n,m)* = S,(n,m) and A, (n;r,s)* = S,(n;r,s).
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We will proceed as follows: We will take m = r + (n — 1)s and define
an R-homomorphism ¢ : A,(n;r,s) — Ay(n,r+ (n — 1)s) such that * = 7 :
Sy(n,r + (n—1)s) — S,(n;r,s). Then we will define an R-homomorphism
¢ Ag(n,r + (n — 1)s) — Ag(n;r,s) such that ¢ o v = ida (s by giving
suitable bases for A,(n,r+ (n—1)s) and A,(n;r, s). Dualizing this equation,
we get mo ¢* = 1" o ¢* = idg,(nyrs), and this shows that 7 is surjective.
Actually A,(n,r+(n—1)s) and A,(n;r, s) are coalgebras and ¢ is a morphism
of coalgebras, but we do not need this for our results.

3. Ay(n,m)

The description of A,(n,m) is well known, see e. g. [2]. Let A,(n) be the
free R-algebra on generators z;; (1 <1,j <n) subject to the relations

TipTjpy = qrpTy  ifi<j

TriTrj = (ThTp  ifi<j

TijT = Ty ifi<kandj>|

LTk = Ty + (¢ — q_l)xﬂzvkj ifi<kandj<I.

Note that these relations define the commutative algebra in n? commuting
intederminates x;; in case ¢ = 1. The free algebra on the generators z;; is
obviously graded (with all the generators in degree 1), and since the relations
are homogeneous, this induces a grading on A,(n). Then

Lemma 3.1 ([2]). A,(n,m) is the R-submodule of A,(n) of elements of
homogeneous degree m.

Proof. Since our relations of the Hecke algebra differ from those in [2] ((7; —
q)(Ti+1) = 0 is replaced by (T;+q)(T; — ¢~ ') = 0), and thus A,(n, m) differs
as well, we include a proof here.

Suppose that ¢ is an endomorphism commuting with the action of a
generator S;. For convenience, we assume that m = 2 and S = 5;. ¢ can be
written as a linear combination of the basis elements E;;) ) mapping vy, @ v;
to v; ® vj, and all other basis elements to 0. For the coefficient of E(;;) (),
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we write ¢;cji, such that ¢ = ZMM cikCitEj),kt)- On the one side we have

S(QO(’Uk &® Ul)) =9 <Z CikCj1V; & Uj)
i,

-1
= E CikCj 1V Q v; +¢q E CikCiV; @ V;

1<j 7

+ Z cincii(v; @ v; + (q_1 —q)v; @ v;)
>j

= Z CikCj1Vj X v; + q_l Z CikCilV; @ U; + (q_l - Q) Z CikCilUj X v;
i#j % i<j

Now, suppose that & > [. Then
p(S(or @ u)) = p(u @ vy + (¢ = QJup @ v)
= Z (lecik +(q " - Q)Cjkcil) v; @ v;
2%

Similar formulas hold for £ = [ and k£ < [. Comparing coefficients leads to
the relations given above. O

A,(n,m) has a basis consisting of monomials, but it will turn out to be
more convenient for our purposes to work with a basis of standard bide-
terminants (see [9]). Note that the supersymmetric quantum letterplace
algebra in [9] for L= = P~ = {1,...,n}, L™ = P* = () is isomorphic to
A~1(n) =2 Ay(n)°PP, and we will adjust the results to our situation.

A partition X of m is a sequence A = (A, A9, ..., Ax) of nonnegative
integers such that \;y > Ay > ... > A\, and Zle A; = m. Denote the set
of partitions of m by AT(m). The Young diagram [)\] of a partition \ is
{(4,j) e NxN:1<i<k1<j <N} Itcan be represented by an array
of boxes, \; boxes in the first row, Ay boxes in the second row, etc.

A A-tableau tis amap f: [\] — {1,...,n}. A tableau can be represented
by writing the entry f(7,j) into the (7, j)-th box. A tableau t is called stan-
dard, if the entries in each row are strictly increasing from left to right, and
the entries in each column are nondecreasing downward. In the literature,
this property is also called semi-standard, and the role of rows and columns
may be interchanged. A pair [t,t'] of A\-tableaux is called a bitableau. It is
standard if both t and t' are standard A-tableaux.
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Note that the next definition differs from the definition in [9] by a sign.

Definition 3.2. Let iy,...,1,j1,...,jr be elements of {1,...,n}, For i; <
1o < ... <1y let the right quantum minor be defined by

(ivia - igliige - Gi)r = D (0" Tiji T -+ T

weSy
For arbitrary iy, ..., %, the right quantum minor is then defined by the rule
(v gy - iklga - gie = —q (i iyiigadiingg -kl e Gk

for 4; > 7;,1. Similarly, let the left quantum minor be defined by

(vl g = > (=) iy o Tingus - - T i 1 < - < i
weSy
iy iglgr - e = —q ikl diadn e gk i G0 > G

Finally let the quantum determinant be defined by

det, ;== (12...n|12...n), = (12...n]|12...n),.

If [t,t] is a bitableau, and t;,to, ..., t; resp. ), t,,...,t are the rows of t

resp. t', then let
(tt) = (telte)r - - (t2lt), (] t1),

(t|t') is called a bideterminant.

Remark 3.3. We note the following properties of quantum minors:

1.

(i1 .. ciglgr - Jk)r = —q(n-.dkldn - Jigadi- - Ji)e fOr i > jina

(’il .. ’Lk|j1 .. jk)l = —q(il .. .il+1’il .. Zk‘jl .. jk)l for 1 > ’il+1.

2. If iy < dpg < ... < dp and j1 < Jo < ... < Jg, then right and left
quantum minors coincide, and we simply write (iy . ..4x|j1 ... Jx). This
notation thus indicates that the sequences of numbers are increasing.
In general, right and left quantum minors differ by a power of —q.

3. If two ;s or j;’s coincide, then the quantum minors vanish.

4. The quantum determinant det, is an element of the center of A,(n).

13



Definition 3.4. Let the content of a monomial z; ;, ...%;,;,. be defined
as the tuple (o, 8) = ((aq,...,an), (B1,...,B,)) where o; is the number of
indices 7; such that i, = 4, and f; is the number of indices j; such that j, = j.
Note that > a; = ) 8; = m for each monomial of homogeneous degree m.
For such a tuple (a, ), let P(a, 5) be the subspace of A,(n, m) generated by
the monomials of content («, ). Furthermore, let the content of a bitableau
[t, ] be defined similarly as the tuple (a, 3), such that a; is the number of
entries in t equal to ¢ and (; is the number of entries in t' equal to j.

Theorem 3.5 (|9]). The bideterminants (t|t') of the standard A-tableaux with
A a partition of m form a basis of A,(n,m), such that the bideterminants of
standard \-tableaux of content («, 3) form a basis of P(«, ).

The proof in [9] works over a field, but the arguments are valid if the
field is replaced by a commutative ring with 1. The reversed order of the
minors is due to the opposite algebra. Note that for i; < iy < ... < 4; and
7 <j2<...<jkwehave

R(k=1) S . —l(w

q 2z (i192...%lj1d2 - Jr)r = Z (—q) i )$iwkj1xiw(k—1)j2 e T

weSy

which is a quantum minor of A,-1(n)°P.

Lemma 3.6 (Laplace’s expansion [9]). 1. Forji <jo < ...<ji < jiz1 <
... < Jk we have

(ivdz - ig|jija - - - Je)i
= (=) (ir - irlgur - GG - ikl - k)
where the summation is over allw € Sy, such that wl < w2 < ... < wl

andw(l+1) <w(l+2) <...<wk.
2. Fori) <1y < ... <1 we have

(i102 .. igljig2 - - - Je)r

= (=)' Gt - dwtldy - Gy - - dukliies - e

the summation again over all w € &y, such that wl < w2 < ... < wl
and w(l+1) <w(l+2) <...<wk.
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4. Ay(nsr,s)

A basis of Endz(V®" @ V*®?) is given by matrix units Ejjjxp such that
EijjiUsie = Oksitil- Suppose ¢ = > ¢jknFijrn € Endg(VE @ V*°)

i7j7 gl
commutes with the action of B} (¢) or equivalently with a set of generators
of B7 (q). Since coefficient spaces are multiplicative, we can write

* X X
Ci1k1Cigks - - ‘Cirkrcj1l1cj212 e 'stls

for the coefficient ¢;jip. It is easy to see from the description of A4(n,m)
that ¢ commutes with the generators without non-propagating edges if and

only if the ¢;; satisfy the relations of A,(n) and the cj; satisfy the relations
of Aj-1(n).
Now suppose that ¢ in addition commutes with the action of the generator

e=pig Rt
We assume that r = s = 1 (the general case being similar) and ¢ =

n

> CikC B kpi- Let v =v; ® v; be a basis element of V ® V*. We have
ijkl=1
(the indices in the sums always run from 1 to n)

plv)e = Z CsiChi (Vs @ V) )e = Z " egich; (vk @ vy)

s,t sk

p(ve) = 65" Y ek @) = 05" Y cancivs @ 0]
k

k,s,t

Comparing coefficients, we get the following conditions:

Zcikc;k =0fori#j
k=1

Z qzkckic,’;j =0fori#j

k=1
n n
2]{3—22 * E3
E q Ckick‘i - E Cjk;cjk..
k=1 k=1
This, combined with Lemma 2.3 shows that
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Lemma 4.1.
Ay(n;r,s) = (F(n,r) @g Fi(n,s))/Y

where F(n,r) resp. Fi(n,s) is the R-submodule of the free algebra on gener-
ators x;; resp. x7; generated by monomials of degree r resp. s and Y is the
R-submodule of F(n,r) g Fi(n,s) generated by elements of the form hihghg
where hy is one of the elements

TikTjk — qTkTik for i < j (4.1.1)
Ti%pj — qTh;Th; for i < j (4.1.2)
TijTg — Ty fori < k,j >1 (4.1.3)
TijT — TpZi; — (¢ — q_l)xﬂzvkj fori<k,j<l (4.1.4)
whah, — q  aa, fori < (4.1.5)
Tt — q_lz,’;jz,’;i fori <y (4.1.6)
xiy — apa fori <k,j>1 (4.1.7)
w — ol (a— g Vet fori<kj <l (418)
Z:Emz;‘k fori#j (4.1.9)
k=1
Z q%xkixzj fori#j (4.1.10)
k=1
¢y, — Y gy (4.1.11)
k=1 k=1

and hy, hs are monomials of appropriate degree.

2k—21

Remark 4.2. The map given by z;;, — ¢ T and zf, — 7}, induces an

R-linear automorphism of A,(n;r, s).

*

7;- In this case

Bideterminants can also be formed using the variables x
let

()" = (G|t ([t)r . - (t]t,);
where the quantum minors (i . ..4x|71 - - .jk)j/l are defined as above with ¢
replaced by ¢~
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5. The map ¢ : A,(n;7,s) — Ay(n,r + (n — 1)s)
For any 1 <i,j < n let ¢(z;;) = x;; and

~

Wzh) = (—q)(12...0...n[12...5...n) € Ay(n,n — 1),

]
then there is a unique R-linear map

L F(n,r) Qg Fi(n,s) — Ag(n,r+ (n —1)s)
such that t(zij, ... 255,25, - 25 .) = U(Tiyg,) - (@ig,)e(@h,y,) - e(Tg,))
Lemma 5.1. ¢ factors through Y and thus induces an R-linear map
Ay (nyr,s) — Ag(nyr + (n—1)s)
which we will then also denote by .

Proof. We have to show that the generators of Y lie in the kernel of ¢. Gen-
erators of Y involving the elements (A.I1]) up to (£1.4) are obviously in the
kernel of ¢. [6, Theorem 7.3] shows that generators involving elements (4.1.5])
up to ([ALS)) are also in the kernel. Laplace’s Expansion shows that

n

L (Z Izk%%) = Z(—q)(k_l)_(j_l)xik (1.7 nl k. n),
k=1

k=1
= (—¢)*(i1...5...n|1...n); = 6 - det, and

L (Z q%_%:rkixzj) = ¢ ¥ttt Z(—q)k_lzki (1. k.ol n),
k=1 k=1

= (—q)/#(1...nil...j...n), = d;; - det,,

thus the generators involving the elements (EI1.9) up to (LIII) are in the
kernel of ¢. O

Now, we have maps
o Ay(nyr+(n—1)s)" — A (n;r,s)" and 1 Sy(n,r+(n—1)s) — Sy(n;r,s).

By definition A,(n,r + (n — 1)s)* = Sy(n,r + (n — 1)s) and A,(n;r,s)" =
Sq(n;r,s). Under these identifications we have
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Lemma 5.2. * = 7.

Proof. We will write

Tiyoiy gy = Tiy gy -+ - Tigj, and

*

f— . . . . *
xil...i1|ll...lm ]l]1|k1km - x’ll,jl LR xll,]1$l17k1 LR xlm,km'

Suppose that ¢ € A,(n,r+(n—1)s)*. The corresponding element of S, (n, r+
(n—1)s)is ¢ = > @(z35) Eyj. Since o*(@) = ¢ o ¢, we have
iLjel(n,r+(n—1)s)

C(e) =D @ o Ui By
ij.k,1

In other words: The coeflicient of Ejj;i in ¢*(¢) can be computed by sub-
stituting each zg¢ in t(x55x1) by @(7s¢). On the other hand, to compute the
coefficient of Ejji in 7(p), one has to consider the action of ¢ on a basis
element v = k(vi) of T°. For a multi index 1 € I(n, s) let I € I(n, (n —1)s)
be defined by

Then
v = K(vkp) = (—q)i et Z (—q)"™ v ® (0-T,)
wEGiil
and thus we have

p(0) = (=9)=" D (=)™ @(wst) Est (v @ (01-T))

s,t,w

= Z(_Q)l(w)—irzlk@(xs Klw)Us-

S, w

Since ¢ leaves T™° invariant, ¢(v) is a linear combination of the ba-
sis elements k(vy;) of T™°. Distinct (vy;) involve distinct basis vectors of
verte=ls - Thus if p(v) = 3555 Mk(vig) = 2o A (=) oy,
then (—g)>7*\;;j is equal to the coefficient of vjj- when ((v) is written as a
linear combination of basis vectors of V& +(=1s  The coefficient of Ui+ in
(v) is, by the formula above,

(—q)>=" Z(—Q)l(w)@(fb’iy Kl ) -

w

18



Thus '
Aifj = (—q) =" Z(—Q)l(w)¢($ij* kisw) = @ © L(Tijj pn)-

w

But )y; is also the coefficient of Ejj;i; in 7(p) which shows the result.

Theorem 5.3 (Jacobi’s Ratio Theorem). Suppose n > 1> 0, and iy < iz
o<gandji < gJo<...<gi. Letii <iy<...<i _,andj; <jgh<...
Jr_; be the unique numbers such that {1,....,n} = {i1,... 0,4, ...,%,_;}
{jla s >jl>ji> ce ’j;’L—l}' Then

A A O

. .- N l i—i 1/ . . .
(i iglgy o)) = (—g) == U t)deté SO/ N A )
Proof. We argue by induction on [. For [ = 0 we have
l)y=1= det;1(1 .n|l...n).

For [ = 1 the theorem is true by the definition of «(z};). Now assume the
theorem is true for [ — 1. Apply Laplace’s expansion and use induction to
get

k=1

l
c((iy il ) = (Z(_q)—@—l)x;ﬁ (iy -t j:)*)

! .
.y >
= E (=) F (=g (1. ip...n|l.. gy ...n) - (—q)F 7 detf]_2
k=1

A~ ~ ~ ~ ~ ~ ~

(L ity AR R T 1 D S MU Ji...n)

(wnl...dp...... i...n|l. g ... Ji...m) (5.3.1)

where the summation is over all w € &,, such that wl < w2 < ... < w(n—1).
If wn is not one of the i;’s, then the summand in (5.30]) vanishes, since wn
appears twice in the row on the left side of the second minor. Thus the
summation is over all w as above with wn = 17, for some k. Note that
l(w) =n — i and

~ ~

(il .. .iy...... i = (=) F (L i ey gt 0,
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the claim follows. Again apply Laplace’s expansion to the second minor in

(6.30) to get

(wnl...{l ...... 7,Aln|1j2 ...... jl...n)l

~ ~ ~ ~

= Z(—q)l(”)anvl(l...il ...... i ...njv203 .. vjy...... V... on),

the summation being over all v € &4 5 - 4 with v2 <03 < ... <
vn. After substituting this term in (5.3.1]), one can again apply Laplace’s
expansion, to get that (5.3.1)) is equal to

~

(—q)=0dety >y (=)™ (12, nll. . ji . nol),

N O R I i nv203 . Uy vjr...on)  (5.3.2)

The only summand in (5.3.2) that does not vanish, is the term for v1 = j;
with [(v) = j; — 1. Thus (5.3.2)) is equal to

()T det! =2 (=) (12 on[L . Gy ooy )p - (i)
= ()T dett = (i)

6. A basis for A (n;r, s)

Theorem enables us to construct elements of A,(n;r,s) that are
mapped to standard bideterminants under ¢. First, we will introduce the
notion of rational tableaux, although we will slightly differ from the defini-
tion of rational tableaux in [15]. Recall that AT (k) is the set of partitions of
k.

Definition 6.1. A rational (p,o)-tableau is a pair (t,s) such that v is a p-
tableau and s is a o-tableau for some k > 0, p € AT (r—k) and o € AT (s—k)
with p; + 01 < n.

Let first;(v,s) be the number of entries of the first row of v which are <74
plus the number of entries of the first row of § which are < 7. A rational
tableau is called standard if v and s are standard tableaux and the following
condition holds:

first;(v,s) <iforalli=1,....n (6.1.1)
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A pair [(t,s), (v/,s")] of rational (p, o)-tableaux is called a rational bita-
bleau, and it is called a standard rational bitableau if both (t,s) and (v/,s’)
are standard rational tableaux.

Remark 6.2. In [15], condition (GI.T]) is already part of the definition of
rational tableaux. The condition p;+0; < n is equivalent to condition (6.1.1])
for © = n. The reason for the difference will be apparent in the proof of the
next lemma.

Lemma 6.3. There is a bijection between the set consisting of all standard
rational (p, o)-tableaux for p € AT (r — k), o € At (s — k), as k runs from 0
to min(r, s) and the set of all standard \-tableauzx for X € AT (r + (n — 1)s)
satisfying > ;_; Ni > (n — 1)s.

Proof. Given a rational (p,o)-tableau (r,s) we construct a A-tableau t as
follows: Draw a rectangular diagram with s rows and n columns. Rotate
the tableau s by 180 degrees and place it in the bottom right corner of the
rectangle. Place the tableau t on the left side below the rectangle. Fill the
empty boxes of the rectangle with numbers, such that in each row, the entries
that do not appear in t appear in the empty boxes in increasing order. Let
t be the tableau consisting of the formerly empty boxes and the boxes of t.
We illustrate this procedure with an example. Let n =5,r =4,s =5k =1

and let |
(111311314
Then
112131415 112131415
112131415 112131415
112131415 112131415
(v,5) ~ 513~ 1(112/4]5(|3|~t=|1|24
413 112151413 11215
113 13 113
2] 2] 2]

It is now easy to give an inverse: Just draw the rectangle into the tableau ¢,
fill the empty boxes of the rectangle in a similar way as before, rotate these
back to obtain s. t is the part of the tableau t, that lies outside the rectangle.
We have to show, that these bijections provide standard tableaux of the right
shape.
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Suppose (t,s) is a rational (p,o)-tableau, then t is a A-tableau, with
Ai=mn—0gi1; fori <sand \; = p;_s for e > s. Thus \; > A\;yq fore < s
is equivalent to o,,1_; < 04_;, and for ¢ > s it is equivalent to p;_s > pis1_s.
Now p; + 01 = As11 — (As — n). This shows that A is a partition if and only
if p and o are partitions with p; + o1 < n. We still have to show that (t,s)
is standard if and only if t is standard.

By definition, all standard tableaux have increasing rows. A tableau has
nondecreasing columns if and only if for all i = 1,...,n and all rows (except
for the last row) the number of entries < 7 in this row is greater or equal
than the number of entries < 7 in the next row. Now, it follows from the
construction that t has nondecreasing columns inside the rectangle if and
only if s has nondecreasing columns, t has nondecreasing columns outside
the rectangle if and only if v has nondecreasing columns, and the columns
in t do not decrease from row s to row s + 1 if and only if condition (6.1.1])
holds. O

Deﬁmtlon 6.4. For k > 1 let et € A (nik, k:) be recursively defined by

vetl) = S wyat, and vet) = S :cllbet,(l Jay, for k> 1,
Let a (rational) bideterminant ((v,s)|(t',s’)) € A,(n;r, s) be defined by

(v, 9)|(,8) = (x]t') vetf? (s]s)"

whenever [(t,s), (v, s')] is a rational (p, o)-bitableau such that p € AT (r —k),
o€ A (s—k), for some k=0,1,... , min(r,s).

Note that the proof of Lemma [5.1] shows that L(Detq ) = detk Further-
more, if p; or o7 > n, then the bideterminant of a (p, o)- bltableau vanishes.
As a direct consequence of Theorem we get

Lemma 6.5. Let (v,s) and (v/,s") be two standard rational tableaur, and
let t and t' be the (standard) tableaux obtained from the correspondence of
LemmalG.3. Then we have

((x,9)|(¢,8)) = (=) (YY)

for some integer c(t,t'). In particular, the bideterminants of standard rational
bitableaux are linearly independent.

Proof. This follows directly from Theorem [5.3] the construction of the bijec-
tion and L(Detgk)) = det’; . The second statement follows from the fact that
the (t|t')’s are linearly independent. O
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Lemma 6.6. We have

> wgvet®Pas, =0 fori # j (6.6.1)
I=1
Z qzlxlibetgk)x}kj =0 fori#j (6.6.2)
=1
Z qzl_zixlibetgk)xz = Z lebeték)x;l (6.6.3)
=1 I=1

Proof. Without loss of generality, we may assume that k = 1. Suppose that
1,7 # 1. Then

n n

1) * * % * % —2 * %
E xilbetg )le = E l'ikl'lll’lll'jk = E l'lll’ikl’jkl’ll +q E l'lkl'ikl'jkl'lk
=1 k,l=1 k<l k

+ Z (l'lll’ikl’;kl’il + (q_l - q)(l’lkl’ill’ill’;k + l'lll’ikl’ikl';-l))
k>1

* * —2 * *
= E TUTikT Ty + (-1 E qT15kTikT1T jk
k,l k

—1 *x ok * *
+(¢ —q) E (T1kTazy Ty, + TuTikT ;)
k>l

= 52‘]'0“((;2) + (q_l —q) lekxux’ﬁx;k = 5Z-jbet[(12).
k.l

For j # 1 we have

n n

1) % k% * * -1 * *
g xllbetg )ZL’jl = g T1kTUTY T = g qruT1El; Ty + ¢ g T1kT16T L1,
I=1 kl=1 k<l k

—1 * ok -1 * %
+ ) (¢ ruruaiay + (71 = @iz,
k>1

—1 * ok
= E q TuT1T; T = 0.
k.l
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Similarly, one can show that
Zzilbetg”x”{l = Ofori#1
=1

> HagvetVay; = 0y ¢ Pandetaf; fori,j £ 1

=1 =1
Z q2l_2xllbetgl)x7j = 0forj#1
=

Z q2l_2ixli0etgl)x71 = 0Ofori#1.
=1

Finally,

n

20—2 1),.% 2[—2 * % 20—2 * K
E q xllbetg )36’11: E Q" TTnT1pTiTy = E q " TixInTpqg
=1 Lk 1k#1

20—4 * ok 2 * ok * %
+ E q TnTnx Ty + E q T1T11T11 27, T T11211271 214

1#1 k#1
= vetl? + Z (1 = @P)rnenaiay, + Z(q2 — Dayprnay; 7
1#1 k#1
= et + (1 - ¢?) (Z Pt rpapan ey, — ¢ anxmffkffl)
1#1 k#1
— det?
= oet,”.
The proof is complete. O

Lemma 6.7. Suppose v = (r1,...,7r%),8 = (81,...,5k) € I(n, k) are fized.
Let 5 € {1,...,n} and k > 1. Then we have, modulo oet,(f’,

> (r|jk - - g271)r(Sl71d2 - - - Ji)r

j<i1<j2<..<jk
k71 ; . . . . . . *
= (—DFgZ=0" 3" (rlge . gadi)e(Slide k)
Nn<je<...<jk<j
Proof. (s|jijz...jx)f and (s|jija...Jk); differ only on a power of —g not
depending on ji, ja, . .., jr. Thus we can show the lemma with (-, -)* replaced
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by (-, -);. Similarly, we can assume that 1 <y < ... <7, and s3 > s9 >

. > 5. Note that modulo Detgl) we have the relations ZZ:1 xlkxjk = 0.
It follows that the lemma is true for £ = 1. Assume that the lemma holds
for k — 1. If M is an ordered set, let M*< be the set of k-tuples in M with

increasing entries. For a subset M C {1,...,n} we have
S (lje - dagi)re(slgage - - )i
JjeMFk:<

- Z (_q>_l(W)(r|jk . 'j2j1)rx:1jw1 e 'x:kjwk

jeMP < w
. . * *
= Z (T|Juwk - - Jw1)r ey - Ty
jeMP < w
= S (el el o,
jeMk

Applying Laplace’s Expansion, we can write a quantum minor (r|j;j2), as a
linear combination of products of quantum minors, say

(rlivge)r = Y cax]li)(xf liz).-

l

Then with e, := (—1)*¢?Z0%, j = (ji,...,5) and j' = (ju, ..., jr_1), D =
{j+1...n}and C ={1...5}, we have
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Dl Gogi)e(sliig )i = D (Cljk el -,
jeDk:< jeDk
= Z (k) e (] [kt - 1)y - T i T
jeDk 1
€k—1 Z Cl(r”jk>T(r;/|jk—1 . 'jl)rlejl e 'x:kfljk—lx:kjk

jleck=11
Jk>7

= €k—1 E : (r|~]kjk—1 . 'jl)szljl SRR S
j’ECk71
Jk>7
_ k—1 . * *
= €p—1 E (_q) (r‘jk—l jljk> Sk]kxsljl SRR T
j’ECk71
Jk>7
—¢ (_ )k—lc(r/|~ ~)x”_x* * r*
= €p_1 q Ly Jk=1---J1)r LIk spie's191 0 T Y Sk—1Jk—1

jleck=11
Jk>7

* *

k—1 /| - . *
—€5_1 E (—q)" (vl ge—1 - - -Jl)rxrf’jkxskjkxsljl T ey
jeck 1

* *

= “%-1 2 : r|jk L- ]1]k) Sk]kxﬁ]l"‘zskqjkq
jeck

=—er1 Y (=) T (wldk - g)e(sks1 - Skaldi i)
jeck.<

=—a-1 Y (- (Cljk - )r(s1 - sklgn .- de)

jeCk:<

= €k Z I'Uk J2J1 (|jlj2---jk)7
Jeck<

and the proof is complete. O

Lemma 6.8. Let v’ and s’ be strictly increasing multi indices, considered as
tableaux with one row. Let 1 be the maximal entry appearing and suppose
that i is minimal such that i violates condition (€I1.1l). Let I be the set of
entries appearing in both ¥’ and s', then we havei € I. Let Ly = {ky,..., Kk, }
(resp. Lo = {ky,...,k;,}) be the set of entries of ¥’ (resp. s') not appearing
in s (resp. v'), and let iy < iy < ... < iy = i be the entries of I. Let
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D = {iy,...,ig, i+ Lig +2,...,n} and C = {1,....n}\(D U Ly U Ly).
Furthermore, for ji,...,5: € {1,...,n} let

m(j1, .. J0) = {({,e) € {1,...,t} x C: j; < c}|.

Letk = (ki,..., k), K = (k,...,k,) and let v and s be multi indices of the
same length as v’ resp. ', then we have

> @ V(e a8l Gik); = 0 modulo vet().
JeDk<

Proof. Note that ¢ € [ and ¢ = 2k +1; + 13 — 1, otherwise ¢ — 1 would violate
condition (6.I.1). Thus |C| = k — 1. Let ¢pqe be the maximal element of C,
D = {Cnas + LiCmas +2,...,n} CDUL ULy, C ={1,....cnu}, D =
A{dED:d<cmax} and Dy ={d € D :d> ¢pas}. With j= (j1,...,7) and

J= (z1,---,Jk) we have

Z ¢ (vl ... 51)e(sld1 . . kK
jeDk,<

k
=> N (el -GSl Rk} (6.8.1)

1=0 3¢ ph< jephb<

Without loss of generality we may assume that the entries in s are increasing.
We apply Laplace’s Expansion and Lemma to get for fixed [ and j

> (kg g)e(slin gk = > (kg g)e(sl kK]

jepkb= jeDk—1,<
= D> (ki guge - Gien)e (Sl - - 3K
jeﬁkfl,<
2A(k~1)

> (ki guge - Gie)e (Sl - g - 3K
jeékfl,<

= Ek_lq2l(k_l) Z (I‘|kjl .. jljk .. -jl+1)r(s|jl+1 .. ]k]l .. jlk/):
je(Cup_)k-t,<

= €x—1q

This expression can be substituted into (6.81]). Each nonzero summand
belongs to a disjoint union S;US; = S C C U D_ such that |S| = k&,
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St ={J1,---, 5} and S = {ji1, ..., Jk}. We will show that the summands
belonging to some fixed set S cancel out.

Therefore, we claim that for each subset S C C'U D_ with k elements
there exists some d € DN.S such that m(d) = [{s € S : s > d}|. Suppose not.
S contains at least one element of D since |C| = k—1. Let 51 < s9 < ... < 8y,
be the elements of DNS. We show by downward induction that m(s;) > |{s €
S:s> s} for 1 <1 <m:m(sy)is the cardinality of {s,,+1,..., ez} NC.
Since all s € S with s > s, are elements of C' we have {s,,+1, ..., Cpaz }NS C
{Sm+1,. .., Cnaa }NC, and thus m(s,,) > [{s € S : s > s,,}|. By assumption
we have > instead of >. Suppose now, that m(s;) > [{s € S :s > s;}|. We
have {s € S : 511 <s< s} ={se€ SNC:s_1 < s < s}U{s}, thus
S contains at most m(s;_1) — m(s;) elements between s;_; and s;, and thus
at most m(s;—1) —m(s;) + 1+ m(s;)) —1 = m(s;—1) elements > s,_;. By
assumption we have m(s;_1) > |{s € S : s > s;_1}|. We have shown that S
contains less than m(s;) elements greater than sy, thus S contains less than
|C'| + 1 = k elements which is a contradiction. This shows the claim.

Let S € C'U D_ be fixed subset of cardinality k. By the previous con-
sideration there is an element d € D N S with m(d) = |[{s € S : s > d}|.
We claim that the summand for Sy, .S, with d € S; cancels the summand for
S1\{d}, Se U {d}. Note that

A~ ~

(r‘k,]ld,]ljkdjl+1>r(s|,]l+1 d,]k]l djlk/):
e Ll O T 1Y T ) WY 1 1 TR 1 "<

Comparing coefficients, we see that both summands cancel. O

Theorem 6.9 (Rational Straightening Algorithm). The set of bidetermi-
nants of standard rational bitableaux forms an R-basis of A,(n;r,s).

Proof. We have to show that the bideterminants of standard rational bita-
bleaux generate A,(n;r,s). Clearly, the bideterminants ((v,s)|(t',s’)) with
t,v, s, 8 standard tableaux generate A,(n;r,s). Let cont(t) resp. cont(s) be
the content of t resp. s defined in Definition [3.4]

Let t,t/, 5, 8' be standard tableaux and suppose that the rational bitableau
[(v,s), (v,8")] is not standard. It suffices to show that the bideterminant
((t,s)[(¥/,8")) is a linear combination of bideterminants ((t,8)|(t’,§')) such
that t has fewer boxes than t or cont(t) > cont(t) or cont(s) > cont(s) in
the lexicographical order. Without loss of generality we make the following
assumptions:
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e In the nonstandard rational bitableau [(t,s), (v, §')] the rational tableau
(v/,s’) is nonstandard. Note that the automorphism of Remark
maps a bideterminant ((v,s)|(t’,s’)) to the bideterminant ((v/,s")|(t,s)).

e Suppose that (t,s) and (v, s) are (p, o)-tableaux. In view of Lemma[6.6]
we can assume that p € AT(r) and o € AT (s).

e t.v/ 5 6 are tableaux with only one row (each bideterminant has a
factor of this type, and we can use Theorem to write nonstandard
bideterminants as a linear combination of standard ones of the same
content.

e Let i be minimal such that condition (6.1.1]) of Definition [6.1]is violated
for 7. Applying Laplace’s Expansion, we may assume that there is no
greater entry than ¢ in v/ and in §'.

Note that all elements of A,(n;r,s) having a factor Det,(ll) can be written
as a linear combination of bideterminants of rational (p, o)-bitableaux with

p € At(r — k),k > 0. Thus, it suffices to show that ((v,s)|(t,s’)) is ,

modulo Detgl), a linear combination of bideterminants of "lower content’. The

summand of highest content in Lemma is that one for j = (i1, 42, ..., ),
and this summand is a scalar multiple (a power of —g, which is invertible)
of ((v,8)[(¥,8)). O

The following is an immediate consequence of the preceding theorem and
Lemma [6.3]

Corollary 6.10. There exists an R-linear map ¢ : Ay(n,7 + (n — 1)s) —
Ay(n;r, 8) given on a basis by ¢(t|t) = (—q)~“Y)((x,5)|(¥',8")) if the shape
A of t satisfies Y ;_; Ay > (n— 1)s and (v,s), where (¥',8') are the rational
tableaux respectively corresponding to t and t under the correspondence of
LemmalG.3, and ¢(Ht') := 0 otherwise. We have

¢ oL = iqu(n;r,s)
and thus m = (* is surjective.

As noted in Section 2] we now have the main result.
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Theorem 6.11 (Schur-Weyl duality for the mixed tensor space, II).
Sq(na Tv ‘9) = End%r,s(q)(v(g)r ® V*®s) = med(U) = pmxd(U/)

Furthermore, S,(n;r,s) is R-free with a basis indexed by standard rational
bitableau.

Proof. The first assertion follows from the surjectivity of 7, the second as-

sertion is obtained by dualizing the basis of A,(n;r, s). O
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