Quantized mixed tensor space and Schur–Weyl duality II

R. Dipper^a, S. Doty^b, F. Stoll^a

^a Institut für Algebra und Zahlentheorie, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany

^b Department of Mathematics and Statistics, Loyola University Chicago, 6525 North Sheridan Road, Chicago IL 60626 USA

Abstract

In this paper, we show the second part of Schur-Weyl duality for mixed tensor space. The quantum group $\mathbf{U} = U(\mathfrak{gl}_n)$ of the general linear group and a q-deformation $\mathfrak{B}_{r,s}^n(q)$ of the walled Brauer algebra act on $V^{\otimes r} \otimes V^{*\otimes s}$ where $V = R^n$ is the natural **U**-module. We show that $\operatorname{End}_{\mathfrak{B}_{r,s}^n(q)}(V^{\otimes r} \otimes V^{*\otimes s})$ is the image of the representation of \mathbf{U} , which we call the rational q-Schur algebra. As a byproduct, we obtain a basis for the rational q-Schur algebra. This result holds whenever the base ring R is a commutative ring with one and q an invertible element of R.

Key words: Schur-Weyl duality, walled Brauer algebra, mixed tensor space, rational *q*-Schur algebra *2000 MSC:* 33D80, 16D20, 16S30, 17B37, 20C08

Introduction

Schur-Weyl duality plays an important role in representation theory since it relates the representations of the general linear group with the representations of the symmetric group. The classical Schur-Weyl duality due to Schur ([14]) states that the actions of the general linear group $G = GL_n$ and the symmetric group \mathfrak{S}_m on tensor space $V^{\otimes m}$ with $V = \mathbb{C}^n$ satisfy the bicentralizer property, that is $\operatorname{End}_{\mathfrak{S}_m}(V^{\otimes m})$ is generated by the action of G and correpondingly, $\operatorname{End}_G(V^{\otimes m})$ is generated by the action of \mathfrak{S}_m . This duality

Email addresses: rdipper@mathematik.uni-stuttgart.de (R. Dipper),

doty@math.luc.edu (S. Doty), stoll@mathematik.uni-stuttgart.de (F. Stoll)

has been generalized to subgroups and groups related with G (e. g. orthogonal, symplectic groups, Levi subgroups) and corresponding algebras related with the group algebra of the symmetric group (e. g. Brauer algebras, Ariki-Koike algebras), as well as deformations of these algebras. In general, the phrase 'Schur-Weyl duality' has come to indicate such a bicentralizer property for two algebras acting on some module.

One such generalization is the mixed tensor space $V^{\otimes r} \otimes V^{*\otimes s}$ where Vis the natural G- or equivalently $\mathbb{C}G$ -module and V^* its dual, thus $V^{\otimes r} \otimes V^{*\otimes s}$ has a $\mathbb{C}G$ -module structure as the tensor product of $\mathbb{C}G$ -modules. The centralizer algebra is known to be the walled Brauer algebra $\mathfrak{B}_{r,s}^n$ ([1]), and $\mathbb{C}G$ and $\mathfrak{B}_{r,s}^n$ satisfy the bicentralizer property on mixed tensor space. For s = 0, one recovers the classical Schur-Weyl duality. In that case, the walled Brauer algebra $\mathfrak{B}_{r,0}^n$ coincides with the group algebra of the symmetric group \mathfrak{S}_r . A q-deformation of these results also exist ([11, 12]), but only for cases when the centralizer algebra is semisimple.

In this paper, we generalize the results of [1, 11, 12] for a very general setting. Let R be a commutative ring with 1 and $q \in R$ invertible. Let U be (an integral version of) the quantum group over R, which replaces the general linear group in the quantized case. Let $\mathfrak{B}_{r,s}^n(q)$ be a certain q-deformation of the walled Brauer algebra defined by Leduc [12]. In [4], we gave an alternative, combinatorial description of this algebra in terms of knot diagrams. This algebra acts on mixed tensor space $V^{\otimes r} \otimes V^{*\otimes s}$ where $V = \mathbb{R}^n$ is the natural U-module. Let $S_q(n; r, s) = \operatorname{End}_{\mathfrak{B}^n_{r,s}(q)}(V^{\otimes r} \otimes V^{*\otimes s})$ be the centralizer algebra of the action of $\mathfrak{B}_{r,s}^n(q)$. We call $S_q(n;r,s)$ the rational q-Schur algebra. The main result of this paper states that $S_q(n; r, s)$ is the image of the representation of **U** on $V^{\otimes r} \otimes V^{*\otimes s}$. So far, this was only known for $R = \mathbb{C}$, q = 1 and $R = \mathbb{C}(q)$. In these cases, the algebras act semisimply on the mixed tensor space, so it suffices to decompose this module into irreducible modules. We show that the rational q-Schur algebra is free over R and determine an explicit combinatorial basis. This generalizes the result of [3], which gives a basis for infinite fields with q = 1.

The other part of Schur-Weyl duality for mixed tensor space is also true, and was shown in [4]: the centralizer algebra of the U-action on mixed tensor space is generated by $\mathfrak{B}_{r,s}^n(q)$. To show that result, we used the well-known duality between the Hecke algebra $\mathcal{H}_{r+s}(q) \cong \mathfrak{B}_{r+s,0}^n(q)$ and the quantum group U on tensor space $V^{\otimes r+s}$. This paper now completes the proof of Schur-Weyl duality for mixed tensors.

The main problem to show this part of Schur-Weyl duality is that it is

a priori not clear that the centralizer algebra of $\mathfrak{B}_{r,s}^n(q)$ is *R*-free of rank independent of the ground ring *R*.

In order to prove Schur-Weyl duality in the general case we make use of the following fact: the mixed tensor space $V^{\otimes r} \otimes V^{*\otimes s}$ can be embedded into a tensor space $V^{\otimes r+(n-1)s}$. Although this embedding κ is not a homomorphism of **U**-modules, it is a homomorphism of **U'**-modules where **U'** is the subalgebra of **U** corresponding to the special linear group. We will see that replacing **U** by **U'** is not significant. Associated with this embedding is an algebra homomorphism $\pi : S_q(n, r + (n-1)s) \to S_q(n; r, s)$ where $S_q(n, r + (n-1)s)$ is the image of the representation of **U'** on $V^{\otimes r+(n-1)s}$, the (ordinary) q-Schur algebra. This homomorphism was motivated by [3] and is given by restriction to the **U'**-submodule $V^{\otimes r} \otimes V^{*\otimes s}$ of $V^{\otimes r+(n-1)s}$.

Let $\rho_{\text{ord}} : \mathbf{U}' \to S_q(n, r + (n-1)s)$ be the representation of \mathbf{U}' on $V^{\otimes r+(n-1)s}$. Similarly, let $\rho_{\text{mxd}} : \mathbf{U}' \to S_q(n; r, s)$ be the representation of \mathbf{U}' on $V^{\otimes r} \otimes V^{*\otimes s}$. Since $\rho_{\text{mxd}} = \pi \circ \rho_{\text{ord}}$ and ρ_{ord} is surjective, ρ_{mxd} is surjective (i.e. Schur-Weyl duality for the mixed tensor space holds) if π is surjective. It remains to show that π is surjective or equivalently, that π has a right inverse. We show a stronger statement, namely that the right inverse can be chosen to be a homomorphism of R-modules.

At this point, we switch over to the coefficient spaces: $S_q(n, r + (n-1)s)$ and $S_q(n; r, s)$ are dual algebras of coalgebras $A_q(n, r+(n-1)s)$ and $A_q(n; r, s)$ respectively. We define a map $\iota : A_q(n; r, s) \to A_q(n, r + (n-1)s)$ such that $\pi = \iota^*$. Thus π has a right inverse if ι has a left inverse, namely the dual of this left inverse. So the problem is reduced to find a left inverse of ι .

For this purpose, we give suitable bases for $A_q(n, r + (n - 1)s)$ and $A_q(n; r, s)$, such that the matrix of ι with respect to this bases has a nice form. The description of $A_q(n, r + (n - 1)s)$ and a basis thereof is well known (see [2, 9]). The basis is indexed by standard bitableaux. We develop a basis for $A_q(n; r, s)$ and thus for $S_q(n; r, s)$ which is indexed by pairs of so-called rational standard bitableaux. To show that the basis elements generate $A_q(n; r, s)$, we develop the *Rational Straightening Algorithm*, which is applied together with the well known straightening algorithm for bideterminants. Note that the resulting basis of $S_q(n; r, s)$ does not coincide with the basis for q = 1 in [3] which arises by mapping a cellular basis with the surjection π .

Using q-versions of determinantal identities such as the Laplace Expansion and Jacobi's Ratio Theorem, we show that a basis element of $A_q(n; r, s)$ maps under ι to a multiple of a basis element of $A_q(n, r + (n-1)s)$, thus a left inverse is easy to find, which proves the main results.

1. Preliminaries

Let *n* be a given positive integer. In this section, we introduce the quantized enveloping algebra of the general linear Lie algebra \mathfrak{gl}_n over a commutative ring *R* with parameter *q* and summarize some well known results; see for example [8, 10, 13]. We will start by recalling the definition of the quantized enveloping algebra over $\mathbb{Q}(q)$ where *q* is an indeterminate.

Let P^{\vee} be the free \mathbb{Z} -module with basis h_1, \ldots, h_n and let $\varepsilon_1, \ldots, \varepsilon_n \in P^{\vee *}$ be the corresponding dual basis: ε_i is given by $\varepsilon_i(h_j) := \delta_{i,j}$ for $j = 1, \ldots, n$, where δ is the usual Kronecker symbol. For $i = 1, \ldots, n - 1$ let $\alpha_i \in P^{\vee *}$ be defined by $\alpha_i := \varepsilon_i - \varepsilon_{i+1}$.

Definition 1.1. The quantum general linear algebra $U_q(\mathfrak{gl}_n)$ is the associative $\mathbb{Q}(q)$ -algebra with 1 generated by the elements $e_i, f_i \ (i = 1, \ldots, n-1)$ and $q^h \ (h \in P^{\vee})$ with the defining relations

$$\begin{split} q^{0} &= 1, \quad q^{h}q^{h'} = q^{h+h'} \\ q^{h}e_{i}q^{-h} &= q^{\alpha_{i}(h)}e_{i}, \quad q^{h}f_{i}q^{-h} = q^{-\alpha_{i}(h)}f_{i}, \\ e_{i}f_{j} - f_{j}e_{i} &= \delta_{i,j}\frac{K_{i} - K_{i}^{-1}}{q - q^{-1}}, \quad \text{where } K_{i} := q^{h_{i} - h_{i+1}}, \\ e_{i}^{2}e_{j} - (q + q^{-1})e_{i}e_{j}e_{i} + e_{j}e_{i}^{2} = 0 \quad \text{for } |i - j| = 1, \\ f_{i}^{2}f_{j} - (q + q^{-1})f_{i}f_{j}f_{i} + f_{j}f_{i}^{2} = 0 \quad \text{for } |i - j| = 1, \\ e_{i}e_{j} = e_{j}e_{i}, \quad f_{i}f_{j} = f_{j}f_{i} \quad \text{for } |i - j| > 1. \end{split}$$

We note that the subalgebra generated by the K_i, e_i, f_i (i = 1, ..., n - 1) is isomorphic with $U_q(\mathfrak{sl}_n)$. $U_q(\mathfrak{gl}_n)$ is a Hopf algebra with comultiplication Δ , counit ε and antipode S defined by

$$\begin{aligned} \Delta(q^h) &= q^h \otimes q^h, \\ \Delta(e_i) &= e_i \otimes K_i^{-1} + 1 \otimes e_i, \quad \Delta(f_i) = f_i \otimes 1 + K_i \otimes f_i, \\ \varepsilon(q^h) &= 1, \quad \varepsilon(e_i) = \varepsilon(f_i) = 0, \\ S(q^h) &= q^{-h}, \quad S(e_i) = -e_i K_i, \quad S(f_i) = -K_i^{-1} f_i. \end{aligned}$$

Note that Δ and ε are homomorphisms of algebras and S is an invertible anti-homomorphism of algebras. Let $V_{\mathbb{Q}(q)}$ be a free $\mathbb{Q}(q)$ -vector space with basis $\{v_1, \ldots, v_n\}$. We make $V_{\mathbb{Q}(q)}$ into a $U_q(\mathfrak{gl}_n)$ -module via

$$\begin{aligned} q^{h}v_{j} &= q^{\varepsilon_{j}(h)}v_{j} \text{ for } h \in P^{\vee}, \ j = 1, \dots, n \\ e_{i}v_{j} &= \begin{cases} v_{i} & \text{if } j = i+1 \\ 0 & \text{otherwise} \end{cases} \qquad f_{i}v_{j} = \begin{cases} v_{i+1} & \text{if } j = i \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

We call $V_{\mathbb{Q}(q)}$ the vector representation of $U_q(\mathfrak{gl}_n)$. This is also a $U_q(\mathfrak{sl}_n)$ -module, by restriction of the action.

Let $[l]_q$ (in $\mathbb{Z}[q, q^{-1}]$ resp. in R) be defined by $[l]_q := \sum_{i=0}^{l-1} q^{2i-l+1}, [l]_q! := [l]_q[l-1]_q \dots [1]_q$ and let $e_i^{(l)} := \frac{e_i^l}{[l]_q!}, f_i^{(l)} := \frac{f_i^l}{[l]_q!}$. Let $\mathbf{U}_{\mathbb{Z}[q,q^{-1}]}$ (resp., $\mathbf{U}'_{\mathbb{Z}[q,q^{-1}]}$) be the $\mathbb{Z}[q, q^{-1}]$ -subalgebra of $U_q(\mathfrak{gl}_n)$ generated by the q^h (resp., K_i) and the divided powers $e_i^{(l)}$ and $f_i^{(l)}$ for $l \geq 0$. $\mathbf{U}_{\mathbb{Z}[q,q^{-1}]}$ is a Hopf algebra and we have

$$\begin{split} \Delta(e_i^{(l)}) &= \sum_{k=0}^{l} q^{k(l-k)} e_i^{(l-k)} \otimes K_i^{k-l} e_i^{(k)} \\ \Delta(f_i^{(l)}) &= \sum_{k=0}^{l} q^{-k(l-k)} f_i^{(l-k)} K_i^k \otimes f_i^{(k)} \\ S(e_i^{(l)}) &= (-1)^l q^{l(l-1)} e_i^{(l)} K_i^l \\ S(f_i^{(l)}) &= (-1)^l q^{-l(l-1)} K_i^{-l} f_i^{(l)} \\ \varepsilon(e_i^{(l)}) &= \varepsilon(f_i^{(l)}) = 0. \end{split}$$

Furthermore, the $\mathbb{Z}[q,q^{-1}]$ -lattice $V_{\mathbb{Z}[q,q^{-1}]}$ in $V_{\mathbb{Q}(q)}$ generated by the v_i is invariant under the action of $\mathbf{U}_{\mathbb{Z}[q,q^{-1}]}$ and of $\mathbf{U}'_{\mathbb{Z}[q,q^{-1}]}$. Now, make the transition from $\mathbb{Z}[q,q^{-1}]$ to an arbitrary commutative ring R with 1: Let $q \in R$ be invertible and consider R as a $\mathbb{Z}[q,q^{-1}]$ -module via specializing $q \in \mathbb{Z}[q,q^{-1}] \mapsto q \in R$. Then, let $\mathbf{U}_R := R \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbf{U}_{\mathbb{Z}[q,q^{-1}]}$ and $\mathbf{U}'_R := R \otimes_{\mathbb{Z}[q,q^{-1}]} \mathbf{U}'_{\mathbb{Z}[q,q^{-1}]}$. \mathbf{U}_R inherits a Hopf algebra structure from $\mathbf{U}_{\mathbb{Z}[q,q^{-1}]}$ and $V_R := R \otimes_{\mathbb{Z}[q,q^{-1}]} V_{\mathbb{Z}[q,q^{-1}]}$ is a \mathbf{U}_R -module and by restriction also a \mathbf{U}'_R module.

If no ambiguity arises, we will henceforth omit the index R and write \mathbf{U} , \mathbf{U}'_i instead of \mathbf{U}_R , \mathbf{U}'_R and V instead of V_R . Furthermore, we will write $e_i^{(l)}$ as shorthand for $1 \otimes e_i^{(l)} \in \mathbf{U}_R$, similarly for the $f_i^{(l)}$, K_i short for $1 \otimes K_i$, and q^h short for $1 \otimes q^h$.

Suppose W, W_1 and W_2 are U-modules, then one can define U-module structures on $W_1 \otimes W_2 = W_1 \otimes_R W_2$ and $W^* = \operatorname{Hom}_R(W, R)$ using the comultiplication and the antipode by setting $x(w_1 \otimes w_2) = \Delta(x)(w_1 \otimes w_2)$ and (xf)(w) = f(S(x)w).

Definition 1.2. Let r, s be nonnegative integers. The U-module $V^{\otimes r} \otimes V^{* \otimes s}$ is called mixed tensor space.

Let I(n, r) be the set of r-tuples with entries in $\{1, \ldots, n\}$ and let I(n, s)be defined similarly. The elements of I(n, r) (and I(n, s)) are called *multi indices*. Note that the symmetric groups \mathfrak{S}_r and \mathfrak{S}_s act on I(n, r) and I(n, s) respectively from the right by place permutation, that is if s_j is a Coxeter generator and $\mathbf{i} = (i_1, i_2, \ldots)$ is a multi index, then let $\mathbf{i}.s_j =$ $(i_1, \ldots, i_{j-1}, i_{j+1}, i_j, i_{j+2}, \ldots)$. Then a basis of the mixed tensor space $V^{\otimes r} \otimes$ $V^{*\otimes s}$ can be indexed by $I(n, r) \times I(n, s)$. For $\mathbf{i} = (i_1, \ldots, i_r) \in I(n, r)$ and $\mathbf{j} = (j_1, \ldots, j_s) \in I(n, s)$ let

$$v_{\mathbf{i}|\mathbf{j}} = v_{i_1} \otimes \ldots \otimes v_{i_r} \otimes v_{j_1}^* \otimes \ldots \otimes v_{j_s}^* \in V^{\otimes r} \otimes V^{* \otimes s}$$

where $\{v_1^*, \ldots, v_n^*\}$ is the basis of V^* dual to $\{v_1, \ldots, v_n\}$. Then $\{v_{\mathbf{i}|\mathbf{j}} \mid \mathbf{i} \in I(n, r), \mathbf{j} \in I(n, s)\}$ is a basis of $V^{\otimes r} \otimes V^{*\otimes s}$.

We have another algebra acting on $V^{\otimes r} \otimes V^{*\otimes s}$, namely the quantized walled Brauer algebra $\mathfrak{B}_{r,s}^n(q)$ introduced in [4]. This algebra is defined as a diagram algebra, in terms of Kauffman's tangles. A presentation by generators and relations can be found in [4]. Note that this algebra and its action coincides with Leduc's algebra ([12], see the remarks in [4]).

Here, all we need is the action of generators given in the following diagrams. $\mathfrak{B}_{r,s}^n(q)$ is generated by the elements

where the non-propagating edges in E connect vertices in columns r, r+1while the crossings in S_i and \hat{S}_j connect vertices in columns i, i+1 and columns r+j, r+j+1 respectively. If $v_{\mathbf{i}|\mathbf{j}} = v \otimes v_{i_r} \otimes v_{j_1}^* \otimes v'$, then the action of the generators on $V^{\otimes r} \otimes V^{\otimes s}$ is given by

$$\begin{split} v_{\mathbf{i}|\mathbf{j}} E &= \delta_{i_r,j_1} \sum_{s=1}^n q^{2i_r - n - 1} v \otimes v_s \otimes v_s^* \otimes v' \\ v_{\mathbf{i}|\mathbf{j}} S_i &= \begin{cases} q^{-1} v_{\mathbf{i}|\mathbf{j}} & \text{if } i_i = i_{i+1} \\ v_{\mathbf{i}.s_i|\mathbf{j}} & \text{if } i_i < i_{i+1} \\ v_{\mathbf{i}.s_i|\mathbf{j}} + (q^{-1} - q) v_{\mathbf{i}|\mathbf{j}} & \text{if } i_i > i_{i+1} \\ \end{cases} \\ v_{\mathbf{i}|\mathbf{j}} \hat{S}_j &= \begin{cases} q^{-1} v_{\mathbf{i}|\mathbf{j}} & \text{if } j_j = j_{j+1} \\ v_{\mathbf{i}|\mathbf{j}.s_j} & \text{if } j_j > j_{j+1} \\ v_{\mathbf{i}|\mathbf{j}.s_j} + (q^{-1} - q) v_{\mathbf{i}|\mathbf{j}} & \text{if } j_j < j_{j+1}. \end{cases} \end{split}$$

The action of $\mathfrak{B}_{r,s}^n(q)$ on $V^{\otimes r} \otimes V^{*\otimes s}$ commutes with the action of **U**.

Theorem 1.3 ([4]). Let $\sigma : \mathfrak{B}^n_{r,s}(q) \to \operatorname{End}_{\mathbf{U}}(V^{\otimes r} \otimes V^{*\otimes s})$ be the representation of the quantized walled Brauer algebra on the mixed tensor space. Then σ is surjective, that is

$$\operatorname{End}_{\mathbf{U}}(V^{\otimes r} \otimes V^{*\otimes s}) \cong \mathfrak{B}^{n}_{r,s}(q)/_{\operatorname{ann}_{\mathfrak{B}^{n}_{r,s}(q)}(V^{\otimes r} \otimes V^{*\otimes s})}.$$

The main result of this paper is the other half of the preceding theorem:

Theorem 1.4. Let $\rho_{mxd} : \mathbf{U} \to \operatorname{End}_{\mathfrak{B}^n_{r,s}(q)}(V^{\otimes r} \otimes V^{*\otimes s})$ be the representation of the quantum group. Then ρ_{mxd} is surjective, that is

$$\operatorname{End}_{\mathfrak{B}^n_{r,s}(q)}(V^{\otimes r} \otimes V^{*\otimes s}) \cong \mathbf{U}/_{\operatorname{ann}_{\mathbf{U}}(V^{\otimes r} \otimes V^{*\otimes s})}.$$

Theorems 1.3 and 1.4 together state that the mixed tensor space is a $(\mathbf{U}, \mathfrak{B}^n_{r,s}(q))$ -bimodule with the double centralizer property. In the literature, this is also called *Schur–Weyl Duality*. Theorem 1.4 will be proved at the end of this paper.

For s = 0, this is well known. $\mathfrak{B}_{m,0}^n(q)$ is the Hecke algebra \mathcal{H}_m , and $V^{\otimes m}$ is the (ordinary) tensor space.

Definition 1.5. If m is a positive integer, let \mathcal{H}_m be the associative R-algebra with one generated by elements T_1, \ldots, T_{m-1} with respect to the relations

$$(T_i + q)(T_i - q^{-1}) = 0$$
 for $i = 1, ..., m - 1$
 $T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$ for $i = 1, ..., m - 2$
 $T_i T_j = T_j T_i$ for $|i - j| \ge 2$.

If $w \in \mathfrak{S}_m$ is an element of the symmetric group on m letters, and $w = s_{i_1}s_{i_2}\ldots s_{i_l}$ is a reduced expression as a product of Coxeter generators, let $T_w = T_{i_1}T_{i_2}\ldots T_{i_l}$. Then the set $\{T_w \mid w \in \mathfrak{S}_m\}$ is a basis of \mathcal{H}_m .

Note that \mathcal{H}_m acts on $V^{\otimes m}$, since $\mathcal{H}_m \cong \mathfrak{B}^n_{m,0}(q)$, the isomorphism given by $T_i \mapsto S_i$.

Theorem 1.6 ([5, 7]). Let $\rho_{\text{ord}} : \mathbf{U} \to \text{End}_R(V^{\otimes m})$ be the representation of \mathbf{U} on $V^{\otimes m}$. Then im $\rho_{\text{ord}} = \text{End}_{\mathcal{H}_m}(V^{\otimes m})$. This algebra is called the q-Schur algebra and denoted by $S_q(n, m)$.

We will refer to $V^{\otimes m}$ as ordinary tensor space.

2. Mixed tensor space as a submodule

Recall that \mathbf{U}' is the subalgebra of \mathbf{U} corresponding to the Lie algebra \mathfrak{sl}_n .

Theorem 2.1. If m is a nonnegative integer, let $\rho_{\text{ord}} : \mathbf{U} \to \text{End}_R(V^{\otimes m})$ be the representation of \mathbf{U} on $V^{\otimes m}$. Then

$$\rho_{\mathrm{ord}}(\mathbf{U}) = \rho_{\mathrm{ord}}(\mathbf{U}').$$

Proof. Define the weight of $\mathbf{i} \in I(n, m)$ to be $\operatorname{wt}(\mathbf{i}) = \lambda = (\lambda_1, \ldots, \lambda_n)$, such that λ_i is the number of entries in \mathbf{i} , that are equal to i. If $\lambda = (\lambda_1, \ldots, \lambda_n)$ is a composition of m into n parts, i. e. $\lambda_1 + \ldots + \lambda_n = m$, let $V_{\lambda}^{\otimes m}$ be the R-submodule of $V^{\otimes m}$ generated by all $v_{\mathbf{i}}$ with $\operatorname{wt}(\mathbf{i}) = \lambda$. Then $V^{\otimes m}$ is the direct sum of all $V_{\lambda}^{\otimes m}$, where λ runs through the set of compositions of m into n parts. Let φ_{λ} be the projection onto $V_{\lambda}^{\otimes m}$. [7] shows, that the restriction of $\rho_{\operatorname{ord}} : \mathbf{U} \to S_q(n, m)$ to any subalgebra $\mathbf{U}' \subseteq \mathbf{U}$ is surjective, if the subalgebra \mathbf{U}' contains the divided powers $e_i^{(l)}, f_i^{(l)}$ and preimages of the projections φ_{λ} .

Therefore, we define a partial order on the set of compositions of m into n parts by $\lambda \leq \mu$ if and only if $(\lambda_1 - \lambda_2, \lambda_2 - \lambda_3, \dots, \lambda_{n-1} - \lambda_n) \leq (\mu_1 - \mu_2, \mu_2 - \mu_3, \dots, \mu_{n-1} - \mu_n)$ in the lexicographical order. It suffices to show, that for each composition λ , there exists an element $u \in \mathbf{U}'$ such that $uv_{\mathbf{i}} = 0$ whenever wt(\mathbf{i}) $\prec \lambda$ (i. e. wt(\mathbf{i}) $\leq \lambda$ and wt(\mathbf{i}) $\neq \lambda$) and $uv_{\mathbf{i}} = v_{\mathbf{i}}$ whenever wt(\mathbf{i}) = λ . In Theorem 4.5 of [13], it is shown that certain elements

$$\begin{bmatrix} K_i; c \\ t \end{bmatrix} := \prod_{s=1}^t \frac{K_i q^{c-s+1} - K_i^{-1} q^{-c+s-1}}{q^s - q^{-s}}$$

are elements of \mathbf{U}' for $i = 1, \ldots, n-1, c \in \mathbb{Z}$ and $t \in \mathbb{N}$. Let

$$u := \prod_{i=1}^{n-1} \begin{bmatrix} K_i; m+1\\ \lambda_i - \lambda_{i+1} + m + 1 \end{bmatrix},$$

which is an element of \mathbf{U}' since $\lambda_i - \lambda_{i+1} + m + 1 > 0$. Then u has the desired properties.

The next lemma is motivated by $[3, \S 6.3]$.

Lemma 2.2. There is a well defined U'-monomorphism $\kappa : V^* \to V^{\otimes n-1}$ given by

$$v_i^* \mapsto (-q)^i \sum_{w \in \mathfrak{S}_{n-1}} (-q)^{l(w)} v_{(12\dots\hat{i}\dots n).w}$$

$$= (-q)^i \sum_{w \in \mathfrak{S}_{n-1}} (-q)^{l(w)} v_{(12\dots\hat{i}\dots n)} T_w = (-q)^i v_{(12\dots\hat{i}\dots n)} \sum_{w \in \mathfrak{S}_{n-1}} (-q)^{l(w)} T_w$$

where \hat{i} means leaving out *i*.

Proof. It is clear, that κ is a monomorphism of R-modules. By definition, $K_i v_j^* = q^{\delta_{i+1,j} - \delta_{i,j}} v_j^*$ and $K_i v_{(1\dots\hat{j}\dots n)} = q^{1-\delta_{i,j}} q^{\delta_{i+1,j}-1} v_{(1\dots\hat{j}\dots n)}$. Thus κ commutes with K_i . Now $e_i v_j^* = -\delta_{i,j} q^{-1} v_{j+1}^*$. If $j \neq i, i+1$ then

$$e_{i}\kappa(v_{j}^{*}) = (-q)^{j}e_{i}\sum_{w}(-q)^{l(w)}v_{(1\dots ii+1\dots \hat{j}\dots n)}T_{w}$$
$$= -(-q)^{j}\sum_{w}(-q)^{l(w)}v_{(1\dots ii\dots \hat{j}\dots n)}T_{w} = 0 = \kappa(e_{i}v_{j}^{*})$$

For j = i resp. i + 1 we get

$$e_{i}\kappa(v_{i+1}^{*}) = (-q)^{i+1} \sum_{w} (-q)^{l(w)} (e_{i}v_{(1...\hat{i}+1...n)}) T_{w} = 0$$

$$e_{i}\kappa(v_{i}^{*}) = (-q)^{i} \sum_{w} (-q)^{l(w)} (e_{i}v_{(1...\hat{i}i+1...n)}) T_{w}$$

$$= (-q)^{i} \sum_{w} (-q)^{l(w)} v_{(1...\hat{i}+1...n)} T_{w} = -q^{-1}\kappa(v_{i+1}^{*})$$

Furthermore, for $l \geq 2$ we clearly have $e_i^{(l)}v_j^* = 0$ and $e_i^{(l)}\kappa(v_j^*) = 0$. The argument for f_i works similarly.

Lemma 2.2 enables us to consider the mixed tensor space $V^{\otimes r} \otimes V^{*\otimes s}$ as a U'-submodule $T^{r,s}$ of $V^{\otimes r+(n-1)s}$ via an embedding which we will also denote by κ . Thus $\mathfrak{B}^n_{r,s}(q)$ acts on $T^{r,s}$.

If we restrict the action of an element of \mathbf{U}' on $V^{\otimes r+(n-1)s}$ or equivalently of the q-Schur algebra $S_q(n, r + (n-1)s)$ to $T^{r,s}$, then we get an element of $\operatorname{End}_R(T^{r,s})$. Since the actions of \mathbf{U}' and $\mathfrak{B}_{r,s}^n(q)$ commute, this is also an element of $\operatorname{End}_{\mathfrak{B}_{r,s}^n(q)}(T^{r,s})$. Let $S_q(n;r,s) := \operatorname{End}_{\mathfrak{B}_{r,s}^n(q)}(V^{\otimes r} \otimes V^{*\otimes s})$, thus we have an algebra homomorphism $\pi : S_q(n, r + (n-1)s) \to S_q(n;r,s)$ by restriction of the action to $T^{r,s} \cong V^{\otimes r} \otimes V^{*\otimes s}$. Our aim is to show that π is surjective, for then each element of $\operatorname{End}_{\mathfrak{B}_{r,s}^n(q)}(V^{\otimes r} \otimes V^{*\otimes s})$ is given by the action of an element of \mathbf{U}' .

Lemma 2.3. Let M be a free R-module with basis $\mathcal{B} = \{b_1, \ldots, b_l\}$ and let U be a submodule of M given by a set of linear equations on the coefficients with respect to the basis \mathcal{B} , i. e. there are elements $a_{ij} \in R$ such that $U = \{\sum c_i b_i \in M : \sum_j a_{ij} c_j = 0 \text{ for all } i\}$. Let $\{b_1^*, \ldots, b_l^*\}$ be the basis of $M^* = \text{Hom}_R(M, R)$ dual to \mathcal{B} and let X be the submodule generated by all $\sum_j a_{ij} b_j^*$. Then $U \cong (M^*/X)^*$.

Proof. $(M^*/X)^*$ is isomorphic to the submodule of M^{**} given by linear forms on M^* that vanish on X. Via the natural isomorphism $M^{**} \cong M$, this is isomorphic to the set of elements of M that are annihilated by X. An element $m = \sum_k c_k b_k$ is annihilated by X if and only if $0 = \sum_{j,k} a_{ij} b_j^*(c_k b_k) =$ $\sum_k a_{ik} c_k$ for all i and this is true if and only if $m \in U$.

Note that an element $\tilde{\varphi} \in (M^*/X)^*$ corresponds to the element $\varphi = \sum_i \tilde{\varphi}(b_i^* + X)b_i$ of U. In our case $S_q(n,m)$ and $S_q(n;r,s)$ are R-submodules of R-free algebras, namely $\operatorname{End}_R(V^{\otimes m})$ and $\operatorname{End}_R(V^{\otimes r} \otimes V^{*\otimes s})$ resp., given by a set of linear equations, which we will determine more precisely in Sections 3 and 4.

Definition 2.4. Let $M = \operatorname{End}_R(V^{\otimes m})$ and $U = S_q(n, m)$. Then U is defined as the algebra of endomorphisms commuting with a certain set of endomorphisms and thus is given by a system of linear equations on the coefficients. Let $A_q(n,m) = M^*/X$ as in Lemma 2.3. Similarly let $A_q(n;r,s) = M^*/X$ with $M = \operatorname{End}_R(V^{\otimes r} \otimes V^{*\otimes s})$ and $U = S_q(n;r,s)$.

By Lemma 2.3 we have $A_q(n,m)^* = S_q(n,m)$ and $A_q(n;r,s)^* = S_q(n;r,s)$.

We will proceed as follows: We will take m = r + (n-1)s and define an *R*-homomorphism $\iota : A_q(n; r, s) \to A_q(n, r + (n-1)s)$ such that $\iota^* = \pi :$ $S_q(n, r + (n-1)s) \to S_q(n; r, s)$. Then we will define an *R*-homomorphism $\phi : A_q(n, r + (n-1)s) \to A_q(n; r, s)$ such that $\phi \circ \iota = \operatorname{id}_{A_q(n; r, s)}$ by giving suitable bases for $A_q(n, r + (n-1)s)$ and $A_q(n; r, s)$. Dualizing this equation, we get $\pi \circ \phi^* = \iota^* \circ \phi^* = \operatorname{id}_{S_q(n; r, s)}$, and this shows that π is surjective. Actually $A_q(n, r + (n-1)s)$ and $A_q(n; r, s)$ are coalgebras and ι is a morphism of coalgebras, but we do not need this for our results.

3. $A_q(n,m)$

The description of $A_q(n, m)$ is well known, see e. g. [2]. Let $A_q(n)$ be the free *R*-algebra on generators x_{ij} $(1 \le i, j \le n)$ subject to the relations

$$\begin{aligned} x_{ik}x_{jk} &= qx_{jk}x_{ik} & \text{if } i < j \\ x_{ki}x_{kj} &= qx_{kj}x_{ki} & \text{if } i < j \\ x_{ij}x_{kl} &= x_{kl}x_{ij} & \text{if } i < k \text{ and } j > l \\ x_{ij}x_{kl} &= x_{kl}x_{ij} + (q - q^{-1})x_{il}x_{kj} & \text{if } i < k \text{ and } j < l. \end{aligned}$$

Note that these relations define the commutative algebra in n^2 commuting intederminates x_{ij} in case q = 1. The free algebra on the generators x_{ij} is obviously graded (with all the generators in degree 1), and since the relations are homogeneous, this induces a grading on $A_q(n)$. Then

Lemma 3.1 ([2]). $A_q(n,m)$ is the *R*-submodule of $A_q(n)$ of elements of homogeneous degree *m*.

Proof. Since our relations of the Hecke algebra differ from those in [2] $((T_i - q)(T_i + 1) = 0$ is replaced by $(T_i + q)(T_i - q^{-1}) = 0$), and thus $A_q(n, m)$ differs as well, we include a proof here.

Suppose that φ is an endomorphism commuting with the action of a generator S_i . For convenience, we assume that m = 2 and $S = S_1$. φ can be written as a linear combination of the basis elements $E_{(ij),(kl)}$ mapping $v_k \otimes v_l$ to $v_i \otimes v_j$, and all other basis elements to 0. For the coefficient of $E_{(ij),(kl)}$,

we write $c_{ik}c_{jl}$, such that $\varphi = \sum_{i,j,k,l} c_{ik}c_{jl}E_{(ij),(kl)}$. On the one side we have

$$S(\varphi(v_k \otimes v_l)) = S\left(\sum_{i,j} c_{ik} c_{jl} v_i \otimes v_j\right)$$

= $\sum_{i < j} c_{ik} c_{jl} v_j \otimes v_i + q^{-1} \sum_i c_{ik} c_{il} v_i \otimes v_i$
+ $\sum_{i > j} c_{ik} c_{jl} (v_j \otimes v_i + (q^{-1} - q) v_i \otimes v_j)$
= $\sum_{i \neq j} c_{ik} c_{jl} v_j \otimes v_i + q^{-1} \sum_i c_{ik} c_{il} v_i \otimes v_i + (q^{-1} - q) \sum_{i < j} c_{jk} c_{il} v_j \otimes v_i$

Now, suppose that k > l. Then

$$\varphi(S(v_k \otimes v_l)) = \varphi(v_l \otimes v_k + (q^{-1} - q)v_k \otimes v_l)$$

=
$$\sum_{i,j} (c_{jl}c_{ik} + (q^{-1} - q)c_{jk}c_{il}) v_j \otimes v_i$$

Similar formulas hold for k = l and k < l. Comparing coefficients leads to the relations given above.

 $A_q(n,m)$ has a basis consisting of monomials, but it will turn out to be more convenient for our purposes to work with a basis of standard bideterminants (see [9]). Note that the supersymmetric quantum letterplace algebra in [9] for $L^- = P^- = \{1, \ldots, n\}, L^+ = P^+ = \emptyset$ is isomorphic to $A_{q^{-1}}(n) \cong A_q(n)^{\text{opp}}$, and we will adjust the results to our situation.

A partition λ of m is a sequence $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$ of nonnegative integers such that $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_k$ and $\sum_{i=1}^k \lambda_i = m$. Denote the set of partitions of m by $\Lambda^+(m)$. The Young diagram $[\lambda]$ of a partition λ is $\{(i, j) \in \mathbb{N} \times \mathbb{N} : 1 \leq i \leq k, 1 \leq j \leq \lambda_i\}$. It can be represented by an array of boxes, λ_1 boxes in the first row, λ_2 boxes in the second row, etc.

A λ -tableau \mathfrak{t} is a map $f : [\lambda] \to \{1, \ldots, n\}$. A tableau can be represented by writing the entry f(i, j) into the (i, j)-th box. A tableau \mathfrak{t} is called *standard*, if the entries in each row are strictly increasing from left to right, and the entries in each column are nondecreasing downward. In the literature, this property is also called semi-standard, and the role of rows and columns may be interchanged. A pair $[\mathfrak{t}, \mathfrak{t}']$ of λ -tableaux is called a *bitableau*. It is standard if both \mathfrak{t} and \mathfrak{t}' are standard λ -tableaux. Note that the next definition differs from the definition in [9] by a sign.

Definition 3.2. Let $i_1, \ldots, i_k, j_1, \ldots, j_k$ be elements of $\{1, \ldots, n\}$, For $i_1 < i_2 < \ldots < i_k$ let the *right quantum minor* be defined by

$$(i_1i_2...i_k|j_1j_2...j_k)_r := \sum_{w \in \mathfrak{S}_k} (-q)^{l(w)} x_{i_w1j_1} x_{i_w2j_2}...x_{i_{wk}j_k}$$

For arbitrary i_1, \ldots, i_k , the right quantum minor is then defined by the rule

$$(i_1 \dots i_l i_{l+1} \dots i_k | j_1 j_2 \dots j_k)_r := -q^{-1} (i_1 \dots i_{l-1} i_{l+1} i_l i_{l+2} \dots i_k | j_1 j_2 \dots j_k)_r$$

for $i_l > i_{l+1}$. Similarly, let the *left quantum minor* be defined by

$$(i_1 \dots i_k | j_1 \dots j_k)_l := \sum_{w \in \mathfrak{S}_k} (-q)^{l(w)} x_{i_1, j_{w_1}} x_{i_2 j_{w_2}} \dots x_{i_k j_{w_k}} \text{ if } j_1 < \dots < j_k,$$

$$(i_1 \dots i_k | j_1 \dots j_k)_l := -q^{-1} (i_1 \dots i_k | j_1 \dots j_{l+1} j_l \dots j_k)_l \text{ if } j_l > j_{l+1}.$$

Finally let the *quantum determinant* be defined by

$$\det_q := (12\dots n|12\dots n)_r = (12\dots n|12\dots n)_l.$$

If $[\mathfrak{t}, \mathfrak{t}']$ is a bitableau, and $\mathfrak{t}_1, \mathfrak{t}_2, \ldots, \mathfrak{t}_k$ resp. $\mathfrak{t}'_1, \mathfrak{t}'_2, \ldots, \mathfrak{t}'_k$ are the rows of \mathfrak{t} resp. \mathfrak{t}' , then let

$$(\mathfrak{t}|\mathfrak{t}') := (\mathfrak{t}_k|\mathfrak{t}'_k)_r \dots (\mathfrak{t}_2|\mathfrak{t}'_2)_r (\mathfrak{t}_1|\mathfrak{t}'_1)_r.$$

 $(\mathfrak{t}|\mathfrak{t}')$ is called a *bideterminant*.

Remark 3.3. We note the following properties of quantum minors:

1.

$$(i_1 \dots i_k | j_1 \dots j_k)_r = -q(i_1 \dots i_k | j_1 \dots j_{l+1} j_l \dots j_k)_r \text{ for } j_l > j_{l+1} (i_1 \dots i_k | j_1 \dots j_k)_l = -q(i_1 \dots i_{l+1} i_l \dots i_k | j_1 \dots j_k)_l \text{ for } i_l > i_{l+1}.$$

- 2. If $i_1 < i_2 < \ldots < i_k$ and $j_1 < j_2 < \ldots < j_k$, then right and left quantum minors coincide, and we simply write $(i_1 \ldots i_k | j_1 \ldots j_k)$. This notation thus indicates that the sequences of numbers are increasing. In general, right and left quantum minors differ by a power of -q.
- 3. If two i_l 's or j_l 's coincide, then the quantum minors vanish.
- 4. The quantum determinant \det_q is an element of the center of $A_q(n)$.

Definition 3.4. Let the *content* of a monomial $x_{i_1j_1} \ldots x_{i_mj_m}$ be defined as the tuple $(\alpha, \beta) = ((\alpha_1, \ldots, \alpha_n), (\beta_1, \ldots, \beta_n))$ where α_i is the number of indices i_t such that $i_t = i$, and β_j is the number of indices j_t such that $j_t = j$. Note that $\sum \alpha_i = \sum \beta_j = m$ for each monomial of homogeneous degree m. For such a tuple (α, β) , let $P(\alpha, \beta)$ be the subspace of $A_q(n, m)$ generated by the monomials of content (α, β) . Furthermore, let the *content* of a bitableau $[\mathfrak{t}, \mathfrak{t}']$ be defined similarly as the tuple (α, β) , such that α_i is the number of entries in \mathfrak{t} equal to i and β_j is the number of entries in \mathfrak{t}' equal to j.

Theorem 3.5 ([9]). The bideterminants $(\mathbf{t}|\mathbf{t}')$ of the standard λ -tableaux with λ a partition of m form a basis of $A_q(n,m)$, such that the bideterminants of standard λ -tableaux of content (α, β) form a basis of $P(\alpha, \beta)$.

The proof in [9] works over a field, but the arguments are valid if the field is replaced by a commutative ring with 1. The reversed order of the minors is due to the opposite algebra. Note that for $i_1 < i_2 < \ldots < i_k$ and $j_1 < j_2 < \ldots < j_k$ we have

$$q^{\frac{k(k-1)}{2}}(i_1i_2\ldots i_k|j_1j_2\ldots j_k)_r = \sum_{w\in\mathfrak{S}_k} (-q)^{-l(w)} x_{i_{wk}j_1}x_{i_{w(k-1)}j_2}\ldots x_{i_{w1}j_k},$$

which is a quantum minor of $A_{q^{-1}}(n)^{\text{opp}}$.

Lemma 3.6 (Laplace's expansion [9]). 1. For $j_1 < j_2 < \ldots < j_l < j_{l+1} < \ldots < j_k$ we have

$$(i_{1}i_{2}\dots i_{k}|j_{1}j_{2}\dots j_{k})_{l} = \sum_{w} (-q)^{l(w)} (i_{1}\dots i_{l}|j_{w1}\dots j_{wl})_{l} (i_{l+1}\dots i_{k}|j_{w(l+1)}\dots j_{wk})_{l}$$

where the summation is over all $w \in \mathfrak{S}_k$, such that $w1 < w2 < \ldots < wl$ and $w(l+1) < w(l+2) < \ldots < wk$.

2. For $i_1 < i_2 < \ldots < i_k$ we have

$$(i_{1}i_{2}\dots i_{k}|j_{1}j_{2}\dots j_{k})_{r} = \sum_{w} (-q)^{l(w)} (i_{w1}\dots i_{wl}|j_{1}\dots j_{l})_{r} (i_{w(l+1)}\dots i_{wk}|j_{l+1}\dots j_{k})_{r}$$

the summation again over all $w \in \mathfrak{S}_k$, such that $w1 < w2 < \ldots < wl$ and $w(l+1) < w(l+2) < \ldots < wk$.

4. $A_q(n; r, s)$

A basis of $\operatorname{End}_R(V^{\otimes r} \otimes V^{*\otimes s})$ is given by matrix units $E_{\mathbf{i}|\mathbf{j}|\mathbf{k}|\mathbf{l}}$ such that $E_{\mathbf{i}|\mathbf{j}|\mathbf{k}|\mathbf{l}}v_{\mathbf{s}|\mathbf{t}} = \delta_{\mathbf{k}|\mathbf{l},\mathbf{s}|\mathbf{t}}v_{\mathbf{i}|\mathbf{j}}$. Suppose $\varphi = \sum_{\mathbf{i},\mathbf{j},\mathbf{k},\mathbf{l}} c_{\mathbf{i}|\mathbf{j}|\mathbf{k}|\mathbf{l}}E_{\mathbf{i}|\mathbf{j}|\mathbf{k}|\mathbf{l}} \in \operatorname{End}_R(V^{\otimes r} \otimes V^{*\otimes s})$ commutes with the action of $\mathfrak{B}_{r,s}^n(q)$ or equivalently with a set of generators of $\mathfrak{B}_{r,s}^n(q)$. Since coefficient spaces are multiplicative, we can write

$$c_{i_1k_1}c_{i_2k_2}\ldots c_{i_rk_r}c_{j_1l_1}^*c_{j_2l_2}^*\ldots c_{j_sl_s}^*$$

for the coefficient $c_{\mathbf{i}|\mathbf{j}|\mathbf{k}|\mathbf{l}}$. It is easy to see from the description of $A_q(n,m)$ that φ commutes with the generators without non-propagating edges if and only if the c_{ij} satisfy the relations of $A_q(n)$ and the c_{ij}^* satisfy the relations of $A_{q^{-1}}(n)$.

Now suppose that φ in addition commutes with the action of the generator

$$e = \downarrow \cdots \downarrow \qquad \swarrow \quad \uparrow \cdots \uparrow.$$

We assume that r = s = 1 (the general case being similar) and $\varphi = \sum_{i,j,k,l=1}^{n} c_{ik} c_{jl}^* E_{i|j|k|l}$. Let $v = v_i \otimes v_j^*$ be a basis element of $V \otimes V^*$. We have (the indices in the sums always run from 1 to n)

$$\varphi(v)e = \sum_{s,t} c_{si}c_{tj}^*(v_s \otimes v_t^*)e = \sum_{s,k} q^{2s-n-1}c_{si}c_{sj}^*(v_k \otimes v_k^*)$$
$$\varphi(ve) = \delta_{ij}q^{2i-n-1}\sum_k \varphi(v_k \otimes v_k^*) = \delta_{ij}q^{2i-n-1}\sum_{k,s,t} c_{sk}c_{tk}^*v_s \otimes v_t^*$$

Comparing coefficients, we get the following conditions:

$$\sum_{k=1}^{n} c_{ik} c_{jk}^{*} = 0 \text{ for } i \neq j$$
$$\sum_{k=1}^{n} q^{2k} c_{ki} c_{kj}^{*} = 0 \text{ for } i \neq j$$
$$\sum_{k=1}^{n} q^{2k-2i} c_{ki} c_{ki}^{*} = \sum_{k=1}^{n} c_{jk} c_{jk}^{*}.$$

This, combined with Lemma 2.3 shows that

Lemma 4.1.

$$A_q(n;r,s) \cong (F(n,r) \otimes_R F_*(n,s))/Y$$

where F(n,r) resp. $F_*(n,s)$ is the R-submodule of the free algebra on generators x_{ij} resp. x_{ij}^* generated by monomials of degree r resp. s and Y is the R-submodule of $F(n,r) \otimes_R F_*(n,s)$ generated by elements of the form $h_1h_2h_3$ where h_2 is one of the elements

$$x_{ik}x_{jk} - qx_{jk}x_{ik} \text{ for } i < j \tag{4.1.1}$$

$$x_{ki}x_{kj} - qx_{kj}x_{ki} \text{ for } i < j \tag{4.1.2}$$

$$x_{ij}x_{kl} - x_{kl}x_{ij} \text{ for } i < k, j > l$$
(4.1.3)

$$x_{ij}x_{kl} - x_{kl}x_{ij} - (q - q^{-1})x_{il}x_{kj} \text{ for } i < k, j < l$$
(4.1.4)

$$x_{ik}^* x_{jk}^* - q^{-1} x_{jk}^* x_{ik}^* \text{ for } i < j$$
(4.1.5)

$$x_{ki}^* x_{kj}^* - q^{-1} x_{kj}^* x_{ki}^* \text{ for } i < j$$
(4.1.6)

$$x_{ij}^* x_{kl}^* - x_{kl}^* x_{ij}^* \text{ for } i < k, j > l$$
(4.1.7)

$$x_{ij}^* x_{kl}^* - x_{kl}^* x_{ij}^* + (q - q^{-1}) x_{il}^* x_{kj}^* \text{ for } i < k, j < l$$
(4.1.8)

$$\sum_{k=1} x_{ik} x_{jk}^* \text{ for } i \neq j \tag{4.1.9}$$

$$\sum_{k=1}^{n} q^{2k} x_{ki} x_{kj}^* \text{ for } i \neq j$$
(4.1.10)

$$\sum_{k=1}^{n} q^{2k-2i} x_{ki} x_{ki}^* - \sum_{k=1}^{n} x_{jk} x_{jk}^*$$
(4.1.11)

and h_1, h_3 are monomials of appropriate degree.

Remark 4.2. The map given by $x_{ik} \mapsto q^{2k-2i}x_{ki}$ and $x_{ik}^* \mapsto x_{ki}^*$ induces an R-linear automorphism of $A_q(n; r, s)$.

Bideterminants can also be formed using the variables x_{ij}^* . In this case let

$$(\mathfrak{t}|\mathfrak{t}')^* := (\mathfrak{t}_1|\mathfrak{t}_1')_r^*(\mathfrak{t}_2|\mathfrak{t}_2')_r^* \dots (\mathfrak{t}_k|\mathfrak{t}_k')_r^*$$

where the quantum minors $(i_1 \dots i_k | j_1 \dots j_k)_{r/l}^*$ are defined as above with q replaced by q^{-1} .

5. The map $\iota: A_q(n; r, s) \to A_q(n, r + (n-1)s)$

For any $1 \leq i, j \leq n$ let $\iota(x_{ij}) = x_{ij}$ and

$$\iota(x_{ij}^*) = (-q)^{j-i}(12\dots\hat{i}\dots n|12\dots\hat{j}\dots n) \in A_q(n,n-1),$$

then there is a unique R-linear map

$$\iota: F(n,r) \otimes_R F_*(n,s) \to A_q(n,r+(n-1)s)$$

such that $\iota(x_{i_1j_1} \dots x_{i_rj_r} x_{k_1l_1}^* \dots x_{k_sl_s}^*) = \iota(x_{i_1j_1}) \dots \iota(x_{i_rj_r})\iota(x_{k_1l_1}^*) \dots \iota(x_{k_sl_s}^*).$

Lemma 5.1. ι factors through Y and thus induces an R-linear map

$$A_q(n;r,s) \to A_q(n,r+(n-1)s)$$

which we will then also denote by ι .

Proof. We have to show that the generators of Y lie in the kernel of ι . Generators of Y involving the elements (4.1.1) up to (4.1.4) are obviously in the kernel of ι . [6, Theorem 7.3] shows that generators involving elements (4.1.5) up to (4.1.8) are also in the kernel. Laplace's Expansion shows that

$$\iota\left(\sum_{k=1}^{n} x_{ik} x_{jk}^{*}\right) = \sum_{k=1}^{n} (-q)^{(k-1)-(j-1)} x_{ik} \cdot (1 \dots \hat{j} \dots n | 1 \dots \hat{k} \dots n)_{l}$$

$$= (-q)^{1-j} (i1 \dots \hat{j} \dots n | 1 \dots n)_{l} = \delta_{i,j} \cdot \det_{q} \text{ and}$$

$$\iota\left(\sum_{k=1}^{n} q^{2k-2i} x_{ki} x_{kj}^{*}\right) = q^{-2i+j+1} \sum_{k=1}^{n} (-q)^{k-1} x_{ki} \cdot (1 \dots \hat{k} \dots n | 1 \dots \hat{j} \dots n)_{r}$$

$$= (-q)^{j-2i+1} (1 \dots n | i1 \dots \hat{j} \dots n)_{r} = \delta_{i,j} \cdot \det_{q},$$

thus the generators involving the elements (4.1.9) up to (4.1.11) are in the kernel of ι .

Now, we have maps

$$\iota^* : A_q(n, r+(n-1)s)^* \to A_q(n; r, s)^* \text{ and } \pi : S_q(n, r+(n-1)s) \to S_q(n; r, s)$$

By definition $A_q(n, r + (n-1)s)^* \cong S_q(n, r + (n-1)s)$ and $A_q(n; r, s)^* \cong S_q(n; r, s)$. Under these identifications we have

Lemma 5.2. $\iota^* = \pi$.

Proof. We will write

$$\begin{array}{lll} x_{i_1\dots i_l \ j_1\dots j_l} &=& x_{i_1,j_1}\dots x_{i_l,j_l} \ \text{and} \\ x_{i_l\dots i_1|l_1\dots l_m \ j_1\dots j_1|k_1\dots k_m} &=& x_{i_l,j_l}\dots x_{i_1,j_1} x_{l_1,k_1}^*\dots x_{l_m,k_m}^*. \end{array}$$

Suppose that $\tilde{\varphi} \in A_q(n, r+(n-1)s)^*$. The corresponding element of $S_q(n, r+(n-1)s)$ is $\varphi = \sum_{\mathbf{i}, \mathbf{j} \in \mathbf{I}(n, r+(n-1)s)} \tilde{\varphi}(x_{\mathbf{ij}}) E_{\mathbf{ij}}$. Since $\iota^*(\tilde{\varphi}) = \tilde{\varphi} \circ \iota$, we have

$$\iota^*(\varphi) = \sum_{\mathbf{i},\mathbf{j},\mathbf{k},\mathbf{l}} \tilde{\varphi} \circ \iota(x_{\mathbf{i}|\mathbf{j}\,\mathbf{k}|\mathbf{l}}) E_{\mathbf{i}|\mathbf{j}\,\mathbf{k}|\mathbf{l}}$$

In other words: The coefficient of $E_{\mathbf{i}|\mathbf{j}\mathbf{k}|\mathbf{l}}$ in $\iota^*(\varphi)$ can be computed by substituting each $x_{\mathbf{st}}$ in $\iota(x_{\mathbf{i}|\mathbf{j}\mathbf{k}|\mathbf{l}})$ by $\tilde{\varphi}(x_{\mathbf{st}})$. On the other hand, to compute the coefficient of $E_{\mathbf{i}|\mathbf{j}\mathbf{k}|\mathbf{l}}$ in $\pi(\varphi)$, one has to consider the action of φ on a basis element $v = \kappa(v_{\mathbf{k}|\mathbf{l}})$ of $T^{r,s}$. For a multi index $\mathbf{l} \in \mathbf{I}(n,s)$ let $\mathbf{l}^* \in \mathbf{I}(n,(n-1)s)$ be defined by

$$\mathbf{l}^* = (1 \dots \hat{l_1} \dots n 1 \dots \hat{l_2} \dots n \dots 1 \dots \hat{l_s} \dots n).$$

Then

$$v = \kappa(v_{\mathbf{k}|\mathbf{l}}) = (-q)^{l_1 + l_2 + \dots + l_s} \sum_{w \in \mathfrak{S}_{n-1}^{\times s}} (-q)^{l(w)} v_{\mathbf{k}} \otimes (v_{\mathbf{l}^*} T_w)$$

and thus we have

$$\begin{split} \varphi(v) &= (-q)^{\sum l_k} \sum_{\mathbf{s}, \mathbf{t}, w} (-q)^{l(w)} \tilde{\varphi}(x_{\mathbf{s}\mathbf{t}}) E_{\mathbf{s}\mathbf{t}} \left(v_{\mathbf{k}} \otimes (v_{\mathbf{l}^*} T_w) \right) \\ &= \sum_{\mathbf{s}, w} (-q)^{l(w) + \sum l_k} \tilde{\varphi}(x_{\mathbf{s} \mathbf{k} \mathbf{l}^* w}) v_{\mathbf{s}}. \end{split}$$

Since φ leaves $T^{r,s}$ invariant, $\varphi(v)$ is a linear combination of the basis elements $\kappa(v_{\mathbf{i}|\mathbf{j}})$ of $T^{r,s}$. Distinct $\kappa(v_{\mathbf{i}|\mathbf{j}})$ involve distinct basis vectors of $V^{\otimes r+(n-1)s}$. Thus if $\varphi(v) = \sum_{\mathbf{i}|\mathbf{j}} \lambda_{\mathbf{i}|\mathbf{j}} \kappa(v_{\mathbf{i}|\mathbf{j}}) = \sum_{\mathbf{i}|\mathbf{j},w} \lambda_{\mathbf{i}|\mathbf{j}}(-q)^{l(w)+j_1+\ldots+j_s} v_{\mathbf{i}|\mathbf{j}^*,w}$ then $(-q)^{\sum j_k} \lambda_{\mathbf{i}|\mathbf{j}}$ is equal to the coefficient of $v_{\mathbf{i}\mathbf{j}^*}$ when $\varphi(v)$ is written as a linear combination of basis vectors of $V^{\otimes r+(n-1)s}$. The coefficient of $v_{\mathbf{i}\mathbf{j}^*}$ in $\varphi(v)$ is, by the formula above,

$$(-q)^{\sum l_k} \sum_{w} (-q)^{l(w)} \tilde{\varphi}(x_{\mathbf{ij}^* \mathbf{kl}^* w}).$$

Thus

$$\lambda_{\mathbf{i}|\mathbf{j}} = (-q)^{\sum l_k - j_k} \sum_{w} (-q)^{l(w)} \tilde{\varphi}(x_{\mathbf{i}\mathbf{j}^* \mathbf{k}\mathbf{l}^*w}) = \tilde{\varphi} \circ \iota(x_{\mathbf{i}|\mathbf{j} \mathbf{k}|\mathbf{l}}).$$

But $\lambda_{\mathbf{i}|\mathbf{j}}$ is also the coefficient of $E_{\mathbf{i}|\mathbf{j}|\mathbf{k}|\mathbf{l}}$ in $\pi(\varphi)$ which shows the result. \Box

Theorem 5.3 (Jacobi's Ratio Theorem). Suppose $n \ge l \ge 0$, and $i_1 < i_2 < \ldots < i_l$ and $j_1 < j_2 < \ldots < j_l$. Let $i'_1 < i'_2 < \ldots < i'_{n-l}$ and $j'_1 < j'_2 < \ldots < j'_{n-l}$ be the unique numbers such that $\{1, \ldots, n\} = \{i_1, \ldots, i_l, i'_1, \ldots, i'_{n-l}\} = \{j_1, \ldots, j_l, j'_1, \ldots, j'_{n-l}\}$. Then

$$\iota\left((i_1 \dots i_l | j_1 \dots j_l)^*\right) = (-q)^{\sum_{t=1}^l (j_t - i_t)} \det_q^{l-1} (i'_1 \dots i'_{n-l} | j'_1 \dots j'_{n-l}).$$

Proof. We argue by induction on l. For l = 0 we have

$$\iota(1) = 1 = \det_q^{-1}(1 \dots n | 1 \dots n).$$

For l = 1 the theorem is true by the definition of $\iota(x_{ij}^*)$. Now assume the theorem is true for l - 1. Apply Laplace's expansion and use induction to get

$$\iota\left((i_{1}\dots i_{l}|j_{1}\dots j_{l})^{*}\right) = \iota\left(\sum_{k=1}^{l}(-q)^{-(k-1)}x_{i_{k}j_{1}}^{*}(i_{1}\dots \hat{i_{k}}\dots i_{l}|j_{2}\dots j_{l})^{*}\right)$$
$$= \sum_{k=1}^{l}(-q)^{1-k}(-q)^{j_{1}-i_{k}}(1\dots \hat{i_{k}}\dots n|1\dots \hat{j_{1}}\dots n) \cdot (-q)^{\sum_{k\neq 1}j_{k}-\sum_{t\neq k}i_{t}}\det_{q}^{l-2}$$
$$\cdot (1\dots \hat{i_{1}}\dots \hat{i_{2}}\dots \dots \hat{i_{k-1}}\dots \hat{i_{k+1}}\dots \hat{i_{l}}\dots n|1\dots \hat{j_{2}}\dots \hat{j_{3}}\dots \hat{j_{l}}\dots n)$$

We claim that this is equal to

$$(-q)^{\sum_{t=1}^{l} (j_t - i_t)} \det_q^{l-2} \sum_w (-q)^{l(w) + 1 - n} (w 1 w 2 \dots w (n-1) | 1 \dots \hat{j_1} \dots n) \cdot (w n 1 \dots \hat{i_1} \dots \dots \hat{i_l} \dots n | 1 \dots \hat{j_2} \dots \dots \hat{j_l} \dots n)_l$$
(5.3.1)

where the summation is over all $w \in \mathfrak{S}_n$ such that $w1 < w2 < \ldots < w(n-1)$. If wn is not one of the i_k 's, then the summand in (5.3.1) vanishes, since wn appears twice in the row on the left side of the second minor. Thus the summation is over all w as above with $wn = i_k$ for some k. Note that $l(w) = n - i_k$ and

$$(i_k 1 \dots \hat{i_1} \dots \hat{i_l} \dots n | \mathfrak{t})_l = (-q)^{i_k - k} (1 \dots \hat{i_1} \dots \hat{i_{k-1}} \dots \hat{i_{k+1}} \dots \hat{i_l} \dots n | \mathfrak{t}),$$

the claim follows. Again apply Laplace's expansion to the second minor in (5.3.1) to get

$$(wn \ 1 \dots \hat{i_1} \dots \dots \hat{i_l} \dots n | 1 \dots \hat{j_2} \dots \dots \hat{j_l} \dots n)_l$$

= $\sum_{v} (-q)^{l(v)} x_{wn \ v1} (1 \dots \hat{i_1} \dots \dots \hat{i_l} \dots n | v2v3 \dots v\hat{j_2} \dots \dots v\hat{j_l} \dots vn),$

the summation being over all $v \in \mathfrak{S}_{\{1,\ldots,\hat{j}_2,\ldots,\hat{j}_l,\ldots,n\}}$ with $v2 < v3 < \ldots < vn$. After substituting this term in (5.3.1), one can again apply Laplace's expansion, to get that (5.3.1) is equal to

$$(-q)^{\sum (j_t - i_t)} \det_q^{l-2} \sum_{v} (-q)^{l(v) + 1 - n} (12 \dots n | 1 \dots \hat{j_1} \dots n v 1)_r \cdot (1 \dots \hat{i_1} \dots \dots \hat{i_l} \dots n | v 2 v 3 \dots \hat{v_{j_2}} \dots \dots \hat{v_{j_l}} \dots v n)$$
(5.3.2)

The only summand in (5.3.2) that does not vanish, is the term for $v1 = j_1$ with $l(v) = j_1 - 1$. Thus (5.3.2) is equal to

$$(-q)^{\sum (j_t - i_t)} \det_q^{l-2} (-q)^{j_1 - n} (12 \dots n | 1 \dots \hat{j_1} \dots n j_1)_r \cdot (i'_1 \dots i'_{n-l} | j'_1 \dots j'_{n-l}) = (-q)^{\sum_{t=1}^l (j_t - i_t)} \det_q^{l-1} (i'_1 \dots i'_{n-l} | j'_1 \dots j'_{n-l}).$$

_	_	_	

6. A basis for $A_q(n; r, s)$

Theorem 5.3 enables us to construct elements of $A_q(n; r, s)$ that are mapped to standard bideterminants under ι . First, we will introduce the notion of rational tableaux, although we will slightly differ from the definition of rational tableaux in [15]. Recall that $\Lambda^+(k)$ is the set of partitions of k.

Definition 6.1. A rational (ρ, σ) -tableau is a pair $(\mathfrak{r}, \mathfrak{s})$ such that \mathfrak{r} is a ρ -tableau and \mathfrak{s} is a σ -tableau for some $k \ge 0$, $\rho \in \Lambda^+(r-k)$ and $\sigma \in \Lambda^+(s-k)$ with $\rho_1 + \sigma_1 \le n$.

Let $\operatorname{first}_i(\mathfrak{r}, \mathfrak{s})$ be the number of entries of the first row of \mathfrak{r} which are $\leq i$ plus the number of entries of the first row of \mathfrak{s} which are $\leq i$. A rational tableau is called *standard* if \mathfrak{r} and \mathfrak{s} are standard tableaux and the following condition holds:

$$\operatorname{first}_i(\mathfrak{r},\mathfrak{s}) \le i \text{ for all } i = 1, \dots, n$$

$$(6.1.1)$$

A pair $[(\mathfrak{r},\mathfrak{s}),(\mathfrak{r}',\mathfrak{s}')]$ of rational (ρ,σ) -tableaux is called a *rational bita-bleau*, and it is called a standard rational bitableau if both $(\mathfrak{r},\mathfrak{s})$ and $(\mathfrak{r}',\mathfrak{s}')$ are standard rational tableaux.

Remark 6.2. In [15], condition (6.1.1) is already part of the definition of rational tableaux. The condition $\rho_1 + \sigma_1 \leq n$ is equivalent to condition (6.1.1) for i = n. The reason for the difference will be apparent in the proof of the next lemma.

Lemma 6.3. There is a bijection between the set consisting of all standard rational (ρ, σ) -tableaux for $\rho \in \Lambda^+(r-k)$, $\sigma \in \Lambda^+(s-k)$, as k runs from 0 to $\min(r, s)$ and the set of all standard λ -tableaux for $\lambda \in \Lambda^+(r+(n-1)s)$ satisfying $\sum_{i=1}^s \lambda_i \ge (n-1)s$.

Proof. Given a rational (ρ, σ) -tableau $(\mathfrak{r}, \mathfrak{s})$ we construct a λ -tableau \mathfrak{t} as follows: Draw a rectangular diagram with s rows and n columns. Rotate the tableau \mathfrak{s} by 180 degrees and place it in the bottom right corner of the rectangle. Place the tableau \mathfrak{r} on the left side below the rectangle. Fill the empty boxes of the rectangle with numbers, such that in each row, the entries that do not appear in \mathfrak{t} appear in the empty boxes in increasing order. Let \mathfrak{t} be the tableau consisting of the formerly empty boxes and the boxes of \mathfrak{r} . We illustrate this procedure with an example. Let n = 5, r = 4, s = 5, k = 1 and let

$$(\mathfrak{r},\mathfrak{s}) = \left(\begin{array}{c} 1 & 3 \\ \hline 2 & 3 & 5 \end{array} \right).$$

Then

It is now easy to give an inverse: Just draw the rectangle into the tableau \mathfrak{t} , fill the empty boxes of the rectangle in a similar way as before, rotate these back to obtain \mathfrak{s} . \mathfrak{r} is the part of the tableau \mathfrak{t} , that lies outside the rectangle. We have to show, that these bijections provide standard tableaux of the right shape.

Suppose $(\mathfrak{r},\mathfrak{s})$ is a rational (ρ,σ) -tableau, then \mathfrak{t} is a λ -tableau, with $\lambda_i = n - \sigma_{s+1-i}$ for $i \leq s$ and $\lambda_i = \rho_{i-s}$ for i > s. Thus $\lambda_i \geq \lambda_{i+1}$ for i < sis equivalent to $\sigma_{s+1-i} \leq \sigma_{s-i}$, and for i > s it is equivalent to $\rho_{i-s} \geq \rho_{i+1-s}$. Now $\rho_1 + \sigma_1 = \lambda_{s+1} - (\lambda_s - n)$. This shows that λ is a partition if and only if ρ and σ are partitions with $\rho_1 + \sigma_1 \leq n$. We still have to show that $(\mathfrak{r}, \mathfrak{s})$ is standard if and only if \mathfrak{t} is standard.

By definition, all standard tableaux have increasing rows. A tableau has nondecreasing columns if and only if for all $i = 1, \ldots, n$ and all rows (except for the last row) the number of entries $\leq i$ in this row is greater or equal than the number of entries $\leq i$ in the next row. Now, it follows from the construction that \mathfrak{t} has nondecreasing columns inside the rectangle if and only if \mathfrak{s} has nondecreasing columns, \mathfrak{t} has nondecreasing columns outside the rectangle if and only if \mathfrak{r} has nondecreasing columns, and the columns in t do not decrease from row s to row s + 1 if and only if condition (6.1.1) holds.

Definition 6.4. For $k \ge 1$ let $\mathfrak{det}_q^{(k)} \in A_q(n; k, k)$ be recursively defined by $\mathfrak{det}_q^{(1)} := \sum_{l=1}^n x_{1l} x_{1l}^*$ and $\mathfrak{det}_q^{(k)} := \sum_{l=1}^n x_{1l} \mathfrak{det}_q^{(k-1)} x_{1l}^*$ for k > 1. Let a (rational) bideterminant $((\mathfrak{r}, \mathfrak{s})|(\mathfrak{r}', \mathfrak{s}')) \in A_q(n; r, s)$ be defined by

$$((\mathfrak{r},\mathfrak{s})|(\mathfrak{r}',\mathfrak{s}')):=(\mathfrak{r}|\mathfrak{r}')\ \mathfrak{det}_q^{(k)}\ (\mathfrak{s}|\mathfrak{s}')^{k}$$

whenever $[(\mathfrak{r},\mathfrak{s}),(\mathfrak{r}',\mathfrak{s}')]$ is a rational (ρ,σ) -bitableau such that $\rho \in \Lambda^+(r-k)$, $\sigma \in \Lambda^+(s-k)$, for some $k = 0, 1, \dots, \min(r, s)$.

Note that the proof of Lemma 5.1 shows that $\iota(\mathfrak{det}_q^{(k)}) = \det_q^k$. Furthermore, if ρ_1 or $\sigma_1 > n$, then the bideterminant of a (ρ, σ) -bitableau vanishes. As a direct consequence of Theorem 5.3 we get

Lemma 6.5. Let $(\mathfrak{r},\mathfrak{s})$ and $(\mathfrak{r}',\mathfrak{s}')$ be two standard rational tableaux, and let \mathfrak{t} and \mathfrak{t}' be the (standard) tableaux obtained from the correspondence of Lemma 6.3. Then we have

$$\iota((\mathfrak{r},\mathfrak{s})|(\mathfrak{r}',\mathfrak{s}')) = (-q)^{c(\mathfrak{t},\mathfrak{t}')}(\mathfrak{t}|\mathfrak{t}')$$

for some integer c(t, t'). In particular, the bideterminants of standard rational bitableaux are linearly independent.

Proof. This follows directly from Theorem 5.3, the construction of the bijection and $\iota(\mathfrak{det}_q^{(k)}) = \det_q^k$. The second statement follows from the fact that the $(\mathfrak{t}|\mathfrak{t}')$'s are linearly independent. Lemma 6.6. We have

$$\sum_{l=1}^{n} x_{il} \mathfrak{det}_{q}^{(k)} x_{jl}^{*} = 0 \text{ for } i \neq j$$
(6.6.1)

$$\sum_{l=1}^{n} q^{2l} x_{li} \mathfrak{det}_{q}^{(k)} x_{lj}^{*} = 0 \text{ for } i \neq j$$
(6.6.2)

$$\sum_{l=1}^{n} q^{2l-2i} x_{li} \mathfrak{det}_{q}^{(k)} x_{li}^{*} = \sum_{l=1}^{n} x_{jl} \mathfrak{det}_{q}^{(k)} x_{jl}^{*}$$
(6.6.3)

Proof. Without loss of generality, we may assume that k = 1. Suppose that $i, j \neq 1$. Then

$$\begin{split} \sum_{l=1}^{n} x_{il} \mathfrak{det}_{q}^{(1)} x_{jl}^{*} &= \sum_{k,l=1}^{n} x_{ik} x_{1l} x_{1l}^{*} x_{jk}^{*} = \sum_{k < l} x_{1l} x_{ik} x_{jk}^{*} x_{1l}^{*} + q^{-2} \sum_{k} x_{1k} x_{ik} x_{jk}^{*} x_{1k}^{*} \\ &+ \sum_{k > l} \left(x_{1l} x_{ik} x_{jk}^{*} x_{1l}^{*} + (q^{-1} - q) (x_{1k} x_{il} x_{1l}^{*} x_{jk}^{*} + x_{1l} x_{ik} x_{1k}^{*} x_{jl}^{*}) \right) \\ &= \sum_{k,l} x_{1l} x_{ik} x_{jk}^{*} x_{1l}^{*} + (q^{-2} - 1) \sum_{k} q x_{1k} x_{ik} x_{1k}^{*} x_{jk}^{*} \\ &+ (q^{-1} - q) \sum_{k > l} (x_{1k} x_{il} x_{1l}^{*} x_{jk}^{*} + x_{1l} x_{ik} x_{1k}^{*} x_{jl}^{*}) \\ &= \delta_{ij} \mathfrak{det}_{q}^{(2)} + (q^{-1} - q) \sum_{k,l} x_{1k} x_{il} x_{1l}^{*} x_{jk}^{*} = \delta_{ij} \mathfrak{det}_{q}^{(2)}. \end{split}$$

For $j \neq 1$ we have

$$\begin{split} \sum_{l=1}^{n} & x_{1l} \mathfrak{det}_{q}^{(1)} x_{jl}^{*} = \sum_{k,l=1}^{n} x_{1k} x_{1l} x_{1l}^{*} x_{jk}^{*} = \sum_{k < l} q x_{1l} x_{1k} x_{jk}^{*} x_{1l}^{*} + q^{-1} \sum_{k} x_{1k} x_{1k} x_{jk}^{*} x_{1k}^{*} \\ &+ \sum_{k > l} \left(q^{-1} x_{1l} x_{1k} x_{jk}^{*} x_{1l}^{*} + (q^{-1} - q) x_{1k} x_{1l} x_{jl}^{*} x_{1k}^{*} \right) \\ &= \sum_{k,l} q^{-1} x_{1l} x_{1k} x_{jk}^{*} x_{1l}^{*} = 0. \end{split}$$

Similarly, one can show that

$$\begin{split} \sum_{l=1}^{n} x_{il} \mathfrak{det}_{q}^{(1)} x_{1l}^{*} &= 0 \text{ for } i \neq 1 \\ \sum_{l=1}^{n} q^{2l-2i} x_{li} \mathfrak{det}_{q}^{(1)} x_{lj}^{*} &= \delta_{ij} \sum_{l=1}^{n} q^{2l-2} x_{l1} \mathfrak{det}_{q}^{(1)} x_{l1}^{*} \text{ for } i, j \neq 1 \\ \sum_{l=1}^{n} q^{2l-2} x_{l1} \mathfrak{det}_{q}^{(1)} x_{lj}^{*} &= 0 \text{ for } j \neq 1 \\ \sum_{l=1}^{n} q^{2l-2i} x_{li} \mathfrak{det}_{q}^{(1)} x_{l1}^{*} &= 0 \text{ for } i \neq 1. \end{split}$$

Finally,

$$\begin{split} \sum_{l=1}^{n} q^{2l-2} x_{l1} \mathfrak{det}_{q}^{(1)} x_{l1}^{*} &= \sum_{l,k} q^{2l-2} x_{l1} x_{1k} x_{1k}^{*} x_{l1}^{*} = \sum_{l,k \neq 1} q^{2l-2} x_{1k} x_{l1} x_{l1}^{*} x_{1k}^{*} \\ &+ \sum_{l \neq 1} q^{2l-4} x_{11} x_{l1} x_{l1}^{*} x_{11}^{*} + \sum_{k \neq 1} q^{2} x_{1k} x_{11} x_{11}^{*} x_{1k}^{*} + x_{11} x_{11} x_{11}^{*} x_{11}^{*} \\ &= \mathfrak{det}_{q}^{(2)} + \sum_{l \neq 1} q^{2l-4} (1-q^{2}) x_{11} x_{l1} x_{l1}^{*} x_{11}^{*} + \sum_{k \neq 1} (q^{2}-1) x_{1k} x_{11} x_{11}^{*} x_{1k}^{*} \\ &= \mathfrak{det}_{q}^{(2)} + (1-q^{2}) \left(\sum_{l \neq 1} q^{2l-4} x_{11} x_{l1} x_{l1}^{*} x_{11}^{*} - q^{-2} \sum_{k \neq 1} x_{11} x_{1k} x_{1k}^{*} x_{11}^{*} \right) \\ &= \mathfrak{det}_{q}^{(2)}. \end{split}$$

The proof is complete.

Lemma 6.7. Suppose $\mathbf{r} = (r_1, \ldots, r_k), \mathbf{s} = (s_1, \ldots, s_k) \in I(n, k)$ are fixed. Let $j \in \{1, \ldots, n\}$ and $k \ge 1$. Then we have, modulo $\mathfrak{det}_q^{(1)}$,

$$\sum_{\substack{j < j_1 < j_2 < \dots < j_k \\ \equiv (-1)^k q^{2\sum_{i=0}^{k-1} i} \sum_{j_1 < j_2 < \dots < j_k \le j} (\mathbf{r} | j_k \dots j_2 j_1)_r (\mathbf{s} | j_1 j_2 \dots j_k)_r^*}$$

Proof. $(\mathbf{s}|j_1j_2...j_k)_r^*$ and $(\mathbf{s}|j_1j_2...j_k)_l^*$ differ only on a power of -q not depending on $j_1, j_2, ..., j_k$. Thus we can show the lemma with $(_, _)_r^*$ replaced

by $(_,_)_l^*$. Similarly, we can assume that $r_1 < r_2 < \ldots < r_k$ and $s_1 > s_2 > \ldots > s_k$. Note that modulo $\mathfrak{det}_q^{(1)}$ we have the relations $\sum_{k=1}^n x_{ik} x_{jk}^* \equiv 0$. It follows that the lemma is true for k = 1. Assume that the lemma holds for k - 1. If M is an ordered set, let $M^{k,<}$ be the set of k-tuples in M with increasing entries. For a subset $M \subset \{1, \ldots, n\}$ we have

$$\sum_{\mathbf{j}\in M^{k,<}} (\mathbf{r}|j_k\dots j_2 j_1)_r (\mathbf{s}|j_1 j_2 \dots j_k)_l^*$$

=
$$\sum_{\mathbf{j}\in M^{k,<},w} (-q)^{-l(w)} (\mathbf{r}|j_k\dots j_2 j_1)_r x_{s_1 j_{w1}}^* \dots x_{s_k j_{wk}}^*$$

=
$$\sum_{\mathbf{j}\in M^{k,<},w} (\mathbf{r}|j_{wk}\dots j_{w1})_r x_{s_1 j_{w1}}^* \dots x_{s_k j_{wk}}^*$$

=
$$\sum_{\mathbf{j}\in M^k} (\mathbf{r}|j_k\dots j_1)_r x_{s_1 j_1}^* \dots x_{s_k j_k}^*$$

Applying Laplace's Expansion, we can write a quantum minor $(\mathbf{r}|\mathbf{j}_1\mathbf{j}_2)_r$ as a linear combination of products of quantum minors, say

$$(\mathbf{r}|\mathbf{j}_1\mathbf{j}_2)_r = \sum_l c_l(\mathbf{r}_l'|\mathbf{j}_1)_r(\mathbf{r}_l''|\mathbf{j}_2)_r.$$

Then with $\epsilon_k := (-1)^k q^{2\sum_{i=0}^{k-1} i}$, $\mathbf{j} = (j_1, \dots, j_k)$ and $\mathbf{j}' = (j_1, \dots, j_{k-1})$, $D = \{j+1\dots n\}$ and $C = \{1\dots j\}$, we have

$$\begin{split} &\sum_{\mathbf{j}\in D^{k,<}} (\mathbf{r}|j_k\dots j_2 j_1)_r (\mathbf{s}|j_1 j_2\dots j_k)_l^* = \sum_{\mathbf{j}\in D^k} (\mathbf{r}|j_k\dots j_1)_r x_{s_1 j_1}^*\dots x_{s_k j_k}^* \\ &= \sum_{\mathbf{j}\in D^{k,l}} c_l (\mathbf{r}_l'|j_k)_r (\mathbf{r}_l''|j_{k-1}\dots j_1)_r x_{s_1 j_1}^*\dots x_{s_{k-1} j_{k-1}}^* x_{s_k j_k}^* \\ &\equiv \epsilon_{k-1} \sum_{\substack{\mathbf{j}'\in C^{k-1}, l \\ j_k \geq j}} c_l (\mathbf{r}_l'|j_k)_r (\mathbf{r}_l''|j_{k-1}\dots j_1)_r x_{s_1 j_1}^*\dots x_{s_{k-1} j_{k-1}}^* x_{s_k j_k}^* \\ &= \epsilon_{k-1} \sum_{\substack{\mathbf{j}'\in C^{k-1}, l \\ j_k \geq j}} (\mathbf{r}|j_k j_{k-1}\dots j_1)_r x_{s_1 j_1}^*\dots x_{s_{k-1} j_{k-1}}^* x_{s_k j_k}^* \\ &= \epsilon_{k-1} \sum_{\substack{\mathbf{j}'\in C^{k-1}, l \\ j_k \geq j}} (-q)^{k-1} (\mathbf{r}|j_{k-1}\dots j_1 j_k)_r x_{s_k j_k}^* x_{s_1 j_1}^*\dots x_{s_{k-1} j_{k-1}}^* \\ &= \epsilon_{k-1} \sum_{\substack{\mathbf{j}'\in C^{k-1}, l \\ \mathbf{j}_k \geq j}} (-q)^{k-1} c_l (\mathbf{r}_l'|j_{k-1}\dots j_1)_r x_{\mathbf{r}_l' j_k}^* x_{s_k j_k}^* x_{s_1 j_1}^*\dots x_{s_{k-1} j_{k-1}}^* \\ &= \epsilon_{k-1} \sum_{\substack{\mathbf{j}\in C^{k,l}, l \\ \mathbf{j}\in C^{k,l}}} (-q)^{k-1} c_l (\mathbf{r}_l'|j_{k-1}\dots j_1)_r x_{\mathbf{r}_l' j_k}^* x_{s_k j_k}^* x_{s_1 j_1}^*\dots x_{s_{k-1} j_{k-1}}^* \\ &= -\epsilon_{k-1} \sum_{\substack{\mathbf{j}\in C^{k,l}}} (-q)^{k-1} (\mathbf{r}|j_{k-1}\dots j_1 j_k)_r x_{s_k j_k}^* x_{s_1 j_1}^*\dots x_{s_{k-1} j_{k-1}}^* \\ &= -\epsilon_{k-1} \sum_{\substack{\mathbf{j}\in C^{k,l}}} (-q)^{k-1} (\mathbf{r}|j_k\dots j_1)_r (s_k s_1\dots s_{k-1}|j_1\dots j_k)_l^* \\ &= -\epsilon_{k-1} \sum_{\substack{\mathbf{j}\in C^{k,l}}} (-q)^{k-1} (\mathbf{r}|j_k\dots j_1)_r (s_k s_1\dots s_{k-1}|j_1\dots j_k)_l^* \\ &= \epsilon_k \sum_{\substack{\mathbf{j}\in C^{k,l}}} (\mathbf{r}|j_k\dots j_2 j_1)_r (\mathbf{s}|j_1 j_2\dots j_k)_l^* \end{split}$$

and the proof is complete.

Lemma 6.8. Let \mathbf{r}' and \mathbf{s}' be strictly increasing multi indices, considered as tableaux with one row. Let *i* be the maximal entry appearing and suppose that *i* is minimal such that *i* violates condition (6.1.1). Let *I* be the set of entries appearing in both \mathbf{r}' and \mathbf{s}' , then we have $i \in I$. Let $L_1 = \{k_1, \ldots, k_{l_1}\}$ (resp. $L_2 = \{k'_1, \ldots, k'_{l_2}\}$) be the set of entries of \mathbf{r}' (resp. \mathbf{s}') not appearing in \mathbf{s}' (resp. \mathbf{r}'), and let $i_1 < i_2 < \ldots < i_k = i$ be the entries of *I*. Let

 $D = \{i_1, \dots, i_k, i_k + 1, i_k + 2, \dots, n\} \text{ and } C = \{1, \dots, n\} \setminus (D \cup L_1 \cup L_2).$ Furthermore, for $j_1, \dots, j_t \in \{1, \dots, n\}$ let

$$m(j_1, \dots, j_t) = |\{(l, c) \in \{1, \dots, t\} \times C : j_l < c\}|.$$

Let $\mathbf{k} = (k_1, \ldots, k_{l_1}), \mathbf{k}' = (k'_1, \ldots, k'_{l_2})$ and let \mathbf{r} and \mathbf{s} be multi-indices of the same length as \mathbf{r}' resp. \mathbf{s}' , then we have

$$\sum_{\mathbf{j}\in D^{k,<}} q^{2m(\mathbf{j})} (\mathbf{r}|\mathbf{k}j_k\dots j_1)_r (\mathbf{s}|j_1\dots j_k\mathbf{k}')_r^* \equiv 0 \ modulo \ \mathfrak{det}_q^{(1)}.$$

Proof. Note that $i \in I$ and $i = 2k + l_1 + l_2 - 1$, otherwise i - 1 would violate condition (6.1.1). Thus |C| = k - 1. Let c_{max} be the maximal element of C, $\tilde{D} = \{c_{max} + 1, c_{max} + 2, \ldots, n\} \subset D \cup L_1 \cup L_2$, $\tilde{C} = \{1, \ldots, c_{max}\}, D_- = \{d \in D : d < c_{max}\}$ and $D_+ = \{d \in D : d > c_{max}\}$. With $\tilde{\mathbf{j}} = (j_1, \ldots, j_l)$ and $\tilde{\mathbf{j}} = (j_{l+1}, \ldots, j_k)$ we have

$$\sum_{\mathbf{j}\in D^{k,<}} q^{2m(\mathbf{j})} (\mathbf{r}|\mathbf{k}j_k\dots j_1)_r (\mathbf{s}|j_1\dots j_k\mathbf{k}')_r^*$$

= $\sum_{l=0}^k \sum_{\mathbf{\tilde{j}}\in D_-^{l,<}} q^{2m(\mathbf{\tilde{j}})} \sum_{\mathbf{\tilde{j}}\in D_+^{k-l,<}} (\mathbf{r}|\mathbf{k}j_k\dots j_1)_r (\mathbf{s}|j_1\dots j_k\mathbf{k}')_r^*.$ (6.8.1)

Without loss of generality we may assume that the entries in **s** are increasing. We apply Laplace's Expansion and Lemma 6.7 to get for fixed l and \tilde{j}

$$\sum_{\hat{\mathbf{j}}\in D_{+}^{k-l,<}} (\mathbf{r}|\mathbf{k}j_{k}\dots j_{1})_{r} (\mathbf{s}|j_{1}\dots j_{k}\mathbf{k}')_{r}^{*} = \sum_{\hat{\mathbf{j}}\in\tilde{D}^{k-l,<}} (\mathbf{r}|\mathbf{k}j_{k}\dots j_{1})_{r} (\mathbf{s}|j_{1}\dots j_{k}\mathbf{k}')_{r}^{*}$$

$$= q^{2l(k-l)} \sum_{\hat{\mathbf{j}}\in\tilde{D}^{k-l,<}} (\mathbf{r}|\mathbf{k}j_{l}\dots j_{1}j_{k}\dots j_{l+1})_{r} (\mathbf{s}|j_{l+1}\dots j_{k}j_{1}\dots j_{l}\mathbf{k}')_{r}^{*}$$

$$\equiv \epsilon_{k-l} q^{2l(k-l)} \sum_{\hat{\mathbf{j}}\in\tilde{C}^{k-l,<}} (\mathbf{r}|\mathbf{k}j_{l}\dots j_{1}j_{k}\dots j_{l+1})_{r} (\mathbf{s}|j_{l+1}\dots j_{k}j_{1}\dots j_{l}\mathbf{k}')_{r}^{*}$$

$$= \epsilon_{k-l} q^{2l(k-l)} \sum_{\hat{\mathbf{j}}\in(C\cup D_{-})^{k-l,<}} (\mathbf{r}|\mathbf{k}j_{l}\dots j_{1}j_{k}\dots j_{l+1})_{r} (\mathbf{s}|j_{l+1}\dots j_{k}j_{1}\dots j_{l}\mathbf{k}')_{r}^{*}.$$

This expression can be substituted into (6.8.1). Each nonzero summand belongs to a disjoint union $S_1 \cup S_2 = S \subset C \cup D_-$ such that |S| = k,

 $S_1 = \{j_1, \ldots, j_l\}$ and $S_2 = \{j_{l+1}, \ldots, j_k\}$. We will show that the summands belonging to some fixed set S cancel out.

Therefore, we claim that for each subset $S \subset C \cup D_-$ with k elements there exists some $d \in D \cap S$ such that $m(d) = |\{s \in S : s > d\}|$. Suppose not. S contains at least one element of D since |C| = k-1. Let $s_1 < s_2 < \ldots < s_m$ be the elements of $D \cap S$. We show by downward induction that $m(s_l) > |\{s \in S : s > s_l\}|$ for $1 \leq l \leq m$: $m(s_m)$ is the cardinality of $\{s_m + 1, \ldots, c_{max}\} \cap C$. Since all $s \in S$ with $s > s_m$ are elements of C we have $\{s_m + 1, \ldots, c_{max}\} \cap S \subset \{s_m + 1, \ldots, c_{max}\} \cap C$, and thus $m(s_m) \geq |\{s \in S : s > s_m\}|$. By assumption we have > instead of \geq . Suppose now, that $m(s_l) > |\{s \in S : s > s_l\}|$. We have $\{s \in S : s_{l-1} < s \leq s_l\} = \{s \in S \cap C : s_{l-1} < s < s_l\} \cup \{s_l\}$, thus S contains at most $m(s_{l-1}) - m(s_l)$ elements between s_{l-1} and s_l , and thus at most $m(s_{l-1}) - m(s_l) + 1 + m(s_l) - 1 = m(s_{l-1})$ elements $> s_{l-1}$. By assumption we have $m(s_{l-1}) > |\{s \in S : s > s_{l-1}\}|$. We have shown that S contains less than $m(s_1)$ elements greater than s_1 , thus S contains less than |C| + 1 = k elements which is a contradiction. This shows the claim.

Let $S \subset C \cup D_{-}$ be fixed subset of cardinality k. By the previous consideration there is an element $d \in D \cap S$ with $m(d) = |\{s \in S : s > d\}|$. We claim that the summand for S_1, S_2 with $d \in S_1$ cancels the summand for $S_1 \setminus \{d\}, S_2 \cup \{d\}$. Note that

$$(\mathbf{r}|\mathbf{k}j_{l}\dots\hat{d}\dots j_{1}j_{k}\dots d\dots j_{l+1})_{r}(\mathbf{s}|j_{l+1}\dots d\dots j_{k}j_{1}\dots\hat{d}\dots j_{l}\mathbf{k}')_{r}^{*}$$

= $q^{2|\{s\in S:s>d\}|-2(l-1)}(\mathbf{r}|\mathbf{k}j_{l}\dots j_{1}j_{k}\dots j_{l+1})_{r}(\mathbf{s}|j_{l+1}\dots j_{k}j_{1}\dots j_{l}\mathbf{k}')_{r}^{*}.$

Comparing coefficients, we see that both summands cancel.

Theorem 6.9 (Rational Straightening Algorithm). The set of bideterminants of standard rational bitableaux forms an R-basis of $A_a(n; r, s)$.

Proof. We have to show that the bideterminants of standard rational bitableaux generate $A_q(n; r, s)$. Clearly, the bideterminants $((\mathfrak{r}, \mathfrak{s})|(\mathfrak{r}', \mathfrak{s}'))$ with $\mathfrak{r}, \mathfrak{r}', \mathfrak{s}, \mathfrak{s}'$ standard tableaux generate $A_q(n; r, s)$. Let $\operatorname{cont}(\mathfrak{r})$ resp. $\operatorname{cont}(\mathfrak{s})$ be the content of \mathfrak{r} resp. \mathfrak{s} defined in Definition 3.4.

Let $\mathfrak{r}, \mathfrak{r}', \mathfrak{s}, \mathfrak{s}'$ be standard tableaux and suppose that the rational bitableau $[(\mathfrak{r}, \mathfrak{s}), (\mathfrak{r}', \mathfrak{s}')]$ is not standard. It suffices to show that the bideterminant $((\mathfrak{r}, \mathfrak{s})|(\mathfrak{r}', \mathfrak{s}'))$ is a linear combination of bideterminants $((\hat{\mathfrak{r}}, \hat{\mathfrak{s}})|(\hat{\mathfrak{r}}', \hat{\mathfrak{s}}'))$ such that $\hat{\mathfrak{r}}$ has fewer boxes than \mathfrak{r} or $\operatorname{cont}(\mathfrak{r}) > \operatorname{cont}(\hat{\mathfrak{r}}) > \operatorname{cont}(\hat{\mathfrak{s}}) > \operatorname{cont}(\hat{\mathfrak{s}})$ in the lexicographical order. Without loss of generality we make the following assumptions:

- In the nonstandard rational bitableau [(r, s), (r', s')] the rational tableau (r', s') is nonstandard. Note that the automorphism of Remark 4.2 maps a bideterminant ((r, s)|(r', s')) to the bideterminant ((r', s')|(r, s)).
- Suppose that $(\mathfrak{r}, \mathfrak{s})$ and $(\mathfrak{r}', \mathfrak{s}')$ are (ρ, σ) -tableaux. In view of Lemma 6.6 we can assume that $\rho \in \Lambda^+(r)$ and $\sigma \in \Lambda^+(s)$.
- $\mathfrak{r}, \mathfrak{r}', \mathfrak{s}, \mathfrak{s}'$ are tableaux with only one row (each bideterminant has a factor of this type, and we can use Theorem 3.5 to write nonstandard bideterminants as a linear combination of standard ones of the same content.
- Let *i* be minimal such that condition (6.1.1) of Definition 6.1 is violated for *i*. Applying Laplace's Expansion, we may assume that there is no greater entry than *i* in \mathfrak{r}' and in \mathfrak{s}' .

Note that all elements of $A_q(n; r, s)$ having a factor $\mathfrak{det}_q^{(1)}$ can be written as a linear combination of bideterminants of rational (ρ, σ) -bitableaux with $\rho \in \Lambda^+(r-k), k > 0$. Thus, it suffices to show that $((\mathfrak{r}, \mathfrak{s})|(\mathfrak{r}', \mathfrak{s}'))$ is, modulo $\mathfrak{det}_q^{(1)}$, a linear combination of bideterminants of 'lower content'. The summand of highest content in Lemma 6.8 is that one for $\mathbf{j} = (i_1, i_2, \ldots, i_k)$, and this summand is a scalar multiple (a power of -q, which is invertible) of $((\mathfrak{r}, \mathfrak{s})|(\mathfrak{r}', \mathfrak{s}'))$.

The following is an immediate consequence of the preceding theorem and Lemma 6.3.

Corollary 6.10. There exists an R-linear map $\phi : A_q(n, r + (n-1)s) \rightarrow A_q(n; r, s)$ given on a basis by $\phi(\mathfrak{t}|\mathfrak{t}') := (-q)^{-c(\mathfrak{t},\mathfrak{t}')}((\mathfrak{r},\mathfrak{s})|(\mathfrak{r}',\mathfrak{s}'))$ if the shape λ of \mathfrak{t} satisfies $\sum_{i=1}^s \lambda_i \geq (n-1)s$ and $(\mathfrak{r},\mathfrak{s})$, where $(\mathfrak{r}',\mathfrak{s}')$ are the rational tableaux respectively corresponding to \mathfrak{t} and \mathfrak{t}' under the correspondence of Lemma 6.3, and $\phi(\mathfrak{t}|\mathfrak{t}') := 0$ otherwise. We have

$$\phi \circ \iota = \mathrm{id}_{A_q(n;r,s)}$$

and thus $\pi = \iota^*$ is surjective.

As noted in Section 2 we now have the main result.

Theorem 6.11 (Schur-Weyl duality for the mixed tensor space, II).

$$S_q(n;r,s) = \operatorname{End}_{\mathfrak{B}_{r,s}(q)}(V^{\otimes r} \otimes V^{\otimes s}) = \rho_{\mathrm{mxd}}(\mathbf{U}) = \rho_{\mathrm{mxd}}(\mathbf{U}')$$

Furthermore, $S_q(n; r, s)$ is R-free with a basis indexed by standard rational bitableau.

Proof. The first assertion follows from the surjectivity of π , the second assertion is obtained by dualizing the basis of $A_q(n; r, s)$.

References

- G. Benkart, M. Chakrabarti, T. Halverson, R. Leduc, C. Lee, J. Stroomer, Tensor product representations of general linear groups and their connections with Brauer algebras, J. Alg. 166 (1994) 529-567
- [2] R. Dipper, S. Donkin, Quantum GL_n , Proc. London Math. Soc. (3) 63 (1991) 165-211
- [3] R. Dipper, S. Doty, The rational Schur algebra, Represent. Theory 12 (2008) 58-82.
- [4] R. Dipper, S. Doty, F. Stoll, Quantized mixed tensor space and Schur-Weyl duality I, preprint available on http://arxiv.org/abs/0806.0264v2
- [5] R. Dipper, G. James, The q-Schur algebra, Proc. London Math. Soc. 59 (1989) 23-50
- [6] K. R. Goodearl, Commutation Relations for Arbitrary Quantum Minors, Pacific J. Math. 228 (1) (2006) 63-102
- [7] R. M. Green, q-Schur algebras as quotients of quantized enveloping algebras, J. Alg. 185 (1996) 660-687
- [8] J. Hong, S. Kang, Introduction to quantum groups and crystal bases, American Math. Soc. (2002)
- [9] R. Q. Huang, J. J. Zhang, Standard Basis Theorem for Quantum Linear Groups, Adv. Math. 102 (1993) 202-229
- [10] J. C. Jantzen, Lectures on quantum groups, American Math. Soc. (1995)

- [11] M. Kosuda, J. Murakami, Centralizer algebras of the mixed tensor representations of the quantum algebra $U_q(gl(n, \mathbb{C}))$, Osaka J. Math. 30 (1993) 475-507
- [12] R. Leduc, A two-parameter version of the centralizer algebra of the mixed tensor representation of the general linear group and quantum general linear group, thesis, University of Wisconsin-Madison, 1994
- [13] G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Am. Math. Soc. 3 (1990) 257-296
- [14] I. Schur, "Uber die rationalen Darstellungen der allgemeinen linearen Gruppe, (1927) reprinted in: I. Schur, Gesammelte Abhandlungen III, Springer, Berlin (1973) 68-85
- [15] J. R. Stembridge, Rational Tableaux and the Tensor Algebra of $\mathrm{gl}_n,$ J. Comb. Theory, Ser. A 46 (1987) 79-120