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Abstract. Using the variety of infinitesimal one-parameter subgroups introduced in [55, 56] by
Suslin-Friedlander-Bendel, we define a numerical invariant for representations of an infinitesimal
group scheme G. For an indecomposable G-module M of complexity 1, this number, which may also
interpreted as the height of a “vertex” UM ⊆ G, is related to the period of M . In the context of the
Frobenius category of GrT -modules associated to a smooth reductive group G and a maximal torus
T ⊆ G, our methods give control over the behavior of the Heller operator of such modules, as well
as precise values for the periodicity of their restrictions to Gr. Applications include the structure
of stable Auslander-Reiten components of GrT -modules as well as the distribution of baby Verma
modules.

0. Introduction

This paper is concerned with representations of finite group schemes that are defined over an
algebraically closed field k of positive characteristic p > 0. Given such a group scheme G and a
finite-dimensional G-module M , Friedlander and Suslin showed in their groundbreaking paper [32]
that the cohomology space H∗(G,M) is a finite module over the finitely generated commutative
k-algebra H•(G, k) :=

⊕
n≥0 H2n(G, k). This result has seen a number of applications which have

provided deep insight into the representation theory of G.
By work of Alperin-Evens [1], Carlson [9] and Suslin-Friedlander-Bendel [55, 56], the notions of

complexity, periodicity and infinitesimal one-parameter subgroups are closely related to properties
of the even cohomology ring H•(G, k). In this paper, we employ the algebro-geometric techniques
expounded in [32] and [55, 56] in order to obtain information on the period of periodic modules,
and the structure of the stable Auslander-Reiten quivers of algebraic groups. Our methods are
most effective when covering techniques related to GrT -modules can be brought to bear. By way
of illustration, we summarize some of our results in the following:

Theorem. Let G be a smooth, reductive group scheme with maximal torus T ⊆ G. Suppose that
M is an indecomposable GrT -module of complexity cxGrT (M) = 1. Then the following statements
hold:

(1) There exists a unipotent subgroup UM ⊆ Gr of height hM and a root α of G such that
Ω2pr−hM

GrT (M) ∼= M⊗kkprα.
(2) The restriction M |Gr is periodic with period 2pr−hM .

Here cxGrT (M) refers to the polynomial rate of growth of a minimal projective resolution of M
and ΩGrT is the Heller operator of the Frobenius category of GrT -modules.

Our article can roughly be divided into two parts. Sections 1-6 are mainly concerned with the
category modG of finite-dimensional modules of a finite group scheme G. The Frobenius category
modGrT of compatibly graded Gr-modules is dealt with in the remaining two sections.
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In Section 1 we exploit the detailed information provided by the Friedlander-Suslin Theorem [32]
in order to provide an upper bound for the complexity of a G-module in terms of the dimension
of certain Ext-groups. Section 2 lays the foundation for the later developments by collecting basic
results concerning the cohomology rings of the Frobenius kernels Ga(r) of the additive group Ga.

The period of a periodic module is known to be closely related to the degrees of homogeneous
generators of the ring H•(G, k). The Friedlander-Suslin Theorem thus implies that, for any infin-
itesimal group G of height ht(G), the number 2pht(G)−1 is a multiple of the period of any periodic
G-module. In Section 3, we analyze this feature more closely, showing how the period may be
bounded by employing infinitesimal one-parameter subgroups of G. The relevant notion is that
of the projective height of a module, which, for an indecomposable G-module M of complexity 1,
coincides with the height of a certain unipotent subgroup UM ⊆ G.

Sections 4 and 5 are concerned with the Auslander-Reiten theory of finite group schemes. Fol-
lowing a discussion of components of Euclidean tree class, we determine in Section 5 those AR-
components of the Frobenius kernels SL(2)r, that contain a simple module. Applications concerning
blocks and AR-components of Frobenius kernels of reductive groups are given in Section 6. In par-
ticular, we attach to every representation-finite block B ⊆ kG a unipotent “defect group” UB ⊆ G,
whose height is linked to the structure of B.

By providing an explicit formula for the Nakayama functor of the Frobenius category of graded
modules over certain Hopf algebras, Section 7 initiates our study of GrT -modules. In Section
8 we come to the second central topic of our paper, the Auslander-Reiten theory of the groups
Gr and GrT , defined by the r-th Frobenius kernel of a smooth group G, and a maximal torus
T ⊆ G. Our first main result, Theorem 8.1.1, links the projective height of a GrT -module of
complexity 1 to the behavior of powers of the Heller operator ΩGrT . In particular, the Frobenius
category modGrT of a reductive group G is shown to afford no ΩGrT -periodic modules, and the
ΩGr -periods of GrT -modules of complexity 1 are determined by their projective height (cf. the
Theorem above). It is interesting to compare this fact with the periods of periodic modules over
finite groups, which are given by the minimal ranks of maximal elementary abelian p-groups, see
[7, (2.2)]. The aforementioned results provide insight into the structure of the components of the
stable Auslander-Reiten quiver of modGrT and the distribution of baby Verma modules:

Theorem. Suppose that G is defined over the Galois field Fp with p ≥ 7. Let T ⊆ G be a maximal
torus.

(1) If Θ is a component of the stable Auslander-Reiten quiver of modGrT , then Θ ∼= Z[A∞],
Z[A∞

∞], Z[D∞].
(2) If Θ contains two baby Verma modules Ẑr(λ) 6∼= Ẑr(µ), then cxGrT (Ẑr(λ)) = 1, and there

exists a simple root α of G such that {Ẑr(λ+nprα) ; n ∈ Z} is the set of baby Verma modules
belonging to Θ.

(3) A stable Auslander-Reiten component of modGr contains at most one baby Verma module.

By part (2) above, a stable AR-component Θ of modGrT whose rank variety Vr(G)Θ has dimension
≥ 2 contains at most one baby Verma module, while for dim Vr(G)Θ = 1 the presence of such a
module implies that the baby Verma modules of Θ form the Ω2

GrT -orbit of quasi-simple modules.

Given a finite group scheme G with coordinate ring k[G], we let kG := k[G]∗ be its algebra of
measures. By general theory, the representations of this algebra coincide with those of the group
scheme G, and we denote by mod G the category of finite-dimensional G-modules. For a G-module
M , we let cxG(M) denote the complexity of M . By definition, cxG(M) = gr(P •) coincides with the
polynomial rate of growth of a minimal projective resolution P • of M . Recall that the growth of a



COMPLEXITY, PERIODICITY AND ONE-PARAMETER SUBGROUPS 3

sequence V := (Vn)n≥0 of finite-dimensional k-vector spaces is defined via

gr(V) := min{c ∈ N0 ∪ {∞} ; ∃λ > 0 such that dimk Vn ≤ λnc−1 ∀ n ≥ 0}.
If M is a G-module, then

cxG(M) = gr((Ωn
G(M))n≥0),

where ΩG denotes the Heller operator of the self-injective algebra kG. In particular, a G-module M
is projective if and only if cxG(M) = 0.

Recall that ΩG induces an auto-equivalence on the stable category modG, whose objects are those
of modG and whose morphisms spaces HomG(M,N) = HomG(M,N)/P (M,N) are the factor groups
of HomG(M,N) by the subspace P (M,N) of those morphisms that factor through a projective
module.

Thanks to the Friedlander-Suslin Theorem [32], we can associate to every finite-dimensional G-
module M its cohomological support variety VG(M). By definition, VG(M) is the variety Z(ker ΦM ),
associated to the kernel of the canonical homomorphism

ΦM : H•(G, k) −→ Ext∗G(M,M) ; [f ] 7→ [f⊗idM ].

It is well-known that VG(M) is a conical variety such that

dim VG(M) = cxG(M).

The reader is referred to [6] for basic properties of support varieties. We shall use [45] and [4, 3] as
general references for representations of algebraic groups and associative algebras, respectively.

1. An Upper Bound for the Complexity

Throughout this section, we let G denote an infinitesimal group, defined over an algebraically
closed field k of characteristic p > 0. For such a group, the associated Hopf algebra kG coincides
with the algebra Dist(G) of distributions on G.

In the sequel, all G-modules are assumed to be finite-dimensional. Given r ≥ 0, we let Gr be
the r-th Frobenius kernel of G and define the height of G via ht(G) := min{r ∈ N0 ; Gr = G}. The
following result establishes an upper bound for cxG(M) in terms of self-extensions.

Theorem 1.1. Suppose that G has height r. If M is a G-module, then

cxG(M) ≤ dimk Ext2npr−1

G (M,M)

for every n ≥ 1.

Proof. We fix a natural number n ∈ N. According to [32, (1.5)], there exists a commutative, graded
subalgebra S ⊆ Ext∗G(M,M) of the Yoneda algebra Ext∗G(M,M) of M such that

(a) S is generated by
⊕r−1

i=0 S2pi , and
(b) Ext∗G(M,M) is a finitely generated S-module.

Thus, S is finitely generated, and an integral extension of the subalgebra T(n) := k[S2npr−1 ], gener-
ated by the subspace S2npr−1 of homogeneous elements of degree 2npr−1, cf. [48, (9.1)]. Owing to
[16, (4.5)], S is a finitely generated T(n)-module, so that Ext∗G(M,M) also enjoys this property. In
view of [6, (5.3.5)], passage to growths now yields

cxG(M) = gr(Ext∗G(M,M)) = gr(T(n)) ≤ dimk S2npr−1 ≤ dimk Ext2npr−1

G (M,M),

as desired. �
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Examples. Suppose that p ≥ 3.
(1) For r > 0, we consider the infinitesimal group G := SL(2)1Tr, whose factors are the first and

r-th Frobenius kernels of SL(2) and its standard maximal torus T ⊆ SL(2) of diagonal matrices,
respectively. We denote by α the positive root of SL(2) (relative to the Borel subgroup of upper
triangular matrices) and recall that Z −→ X(T ) ; n 7→ n

2 α is an isomorphism between Z and the
character group X(T ) of T . The character group of Tr may thus be identified with Z/(pr). Let
λ ∈ X(Tr) \ {ip− 1 ; 1 ≤ i ≤ pr−1} be a weight. Then the baby Verma module

Ẑ1(λ) := Dist(SL(2)1)⊗Dist(B1)kλ

is a G-module of complexity cxG(Ẑ1(λ)) = 1. According to [23, (4.5)] and its proof, we have

Ω2
G(Ẑ1(λ)) ∼= Ẑ1(λ)⊗kkpᾱ

∼= Ẑ1(λ + pᾱ),

where ᾱ ∈ X(Tr) ∼= X(T )/prX(T ) denotes the restriction of the positive root α ∈ X(T ) to
Tr. Thus, ᾱ corresponds to 2 ∈ Z/(pr). Since each Verma module Ẑ1(λ) has length 2 with
composition factors L̂1(λ) and L̂1(2p−2−λ), the choice of λ yields HomG(Ẑ(λ+npᾱ), Ẑ(λ)) = (0)
for 1 ≤ n ≤ pr−1 − 1. Consequently, we have

Ext2n
G (Ẑ1(λ), Ẑ1(λ)) ∼= HomG(Ω2n

G (Ẑ1(λ)), Ẑ1(λ)) ∼= HomG(Ẑ1(λ + npᾱ)), Ẑ1(λ)) = (0)

for each of these n, so that none of the Ext-groups Ext2n
G (Ẑ1(λ), Ẑ1(λ)) of degree < 2pr−1 provides

an upper bound for the complexity of the G-module Ẑ1(λ).
(2) Let G = Ga(2) be the second Frobenius kernel of the additive group Ga. It is well-known (cf.

[18, (3.5)]) that
Ext∗Ga(2)

(k, k) ∼= H∗(Ga(2), k) ∼= k[X1, X2]⊗kΛ(Y1, Y2),

where the generators X1, X2 of the polynomial ring and Y1, Y2 of the exterior algebra have degrees
2 and 1, respectively. Consequently,

dimk Ext2p
Ga(2)

(k, k) = dimk k[X1, X2]2p + 2 dimk k[X1, X2]2p−1 + dimk k[X1, X2]2p−2 = 2p + 1,

while cxGa(2)
(k) = 2.

Recall that a group scheme G is referred to as representation-finite if and only if mod G has only
finitely many isoclasses of indecomposable objects. An indecomposable G-module is said to be
periodic if there exists n ≥ 1 such that Ωn

G(M) ∼= M . The first part of the following result refines
[56, (7.6.1)].

Corollary 1.2. Let G be an infinitesimal group of height r. Then the following statements hold:
(1) A G-module M is projective if and only if Ext2npr−1

G (M,M) = (0) for some n ≥ 1.
(2) The group G is diagonalizable if and only if H2npr−1

(G, k) = (0) for some n ≥ 1.
(3) The group G is representation-finite if and only if dimk H2npr−1

(G, k) ≤ 1 for some n ≥ 1.

Proof. (1) According to (1.1) we have cxG(M) = 0, so that M is projective.
(2) By part (1), the trivial G-module is projective, so that the algebra of measures kG of G is

semi-simple. Our assertion now follows from Nagata’s theorem [14, (IV,§3,(3.6))].
(3) If G is representation-finite and not diagonalizable, then the trivial G-module k is periodic.

By the Friedlander-Suslin Theorem [32, (1.5)], the even cohomology ring H•(G, k) is generated in
degrees 2pi, with i ∈ {0, . . . , r−1}. In view of [6, (5.10.6)], the period of k divides 2pr−1, so that
Ω2pr−1

G (k) ∼= k. This readily yields dimk H2pr−1
(G, k) = 1.

Let n ∈ N be such that dimk H2npr−1
(G, k) ≤ 1. Then Theorem 1.1 implies cxG(k) ≤ 1 and our

assertion is a consequence of [27, (1.1),(2.7)]. �
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Corollary 1.3. Let M be a G-module. Then the following statements hold:
(1) If M is simple and such that Top(Ω2npr−1

G (M)) is simple for some n ≥ 1, then Ω2npr−1

G (M) ∼=
M .

(2) If M is indecomposable of length `(M) = 2 and `(Ω2npr−1

G (M)) ≤ 2 for some n ≥ 1, then M
is projective or periodic.

Proof. By general theory, we have

Ext2npr−1

G (M,M) ∼= HomG(Ω2npr−1

G (M),M).

(1) By assumption, the modules M and S := Top(Ω2npr−1

G (M)) are simple, so that Schur’s Lemma
implies

dimk Ext2npr−1

G (M,M) ∼= dimk HomG(S, M) = δ[S],[M ],

where the brackets indicate isomorphism classes. If S 6∼= M , then Corollary 1.2 yields that M is
projective, whence S = (0), a contradiction. Consequently, S ∼= M , as desired.

(2) If M is indecomposable of length 2, then either Ω2npr−1

G (M) ∼= M and M is periodic,

or HomG(Ω2npr−1

G (M),M) ∼= HomG(Ω2npr−1

G (M),Soc(M)) ∼= HomG(Top(Ω2npr−1

G (M)),Soc(M)).
Schur’s Lemma in conjunction with (1.1) then implies cxG(M) ≤ 1, so that M is periodic or
projective (cf. [6, (5.10.4)]). �

2. Varieties for Ga(r)-Modules

In Section 3 we shall study questions concerning the periodicity of G-modules by considering their
rank varieties of infinitesimal one-paramenter subgroups of G. These are defined via the groups

Ga(r) := Speck(k[T ]/(T pr
)) (r ≥ 1).

We denote the canonical generator of the coordinate ring by t. The algebra of measures kGa(r) of
Ga(r) is isomorphic to

k[U0, . . . , Ur−1]/(Up
0 , . . . , Up

r−1),

with Ui + (Up
0 , . . . , Up

r−1) corresponding to the linear form ui on k[Ga(r)] that sends tj onto δpi,j .
Throughout, we assume that p ≥ 3. We write H∗(k[ui], k) = k[xi+1]⊗kΛ(yi) with deg(xi+1) = 2

and deg(yi) = 1. The Künneth formula then provides an isomorphism

k[x1, . . . , xr]⊗kΛ(y0, . . . , yr−1) ∼= H∗(Ga(r), k) ∼=
r−1⊗
i=0

H∗(k[ui], k)

of graded k-algebras, where Λ(y0, . . . , yr−1) denotes the exterior algebra in the variables y0, . . . , yr−1.
In this identification,

H∗(k[ui], k) ∼= k⊗k · · · ⊗kk⊗kH∗(k[ui], k)⊗k · · · ⊗kk

corresponds to the image of the map H∗(k[ui], k) −→ H∗(Ga(r), k), defined by the algebra homo-
morphism kGa(r) −→ k[ui] ; uj 7→ δi,jui.

The above notation derives from the grading associated to the action of a torus T on Ga(r). If T

operates via a character α : T −→ k×, i.e.,

t.x = α(t)x ∀ t ∈ T, x ∈ Ga(r),

then, thanks to [45, (I.4.27)] (see also [12, (4.1)]), the induced action of T on H∗(Ga(r), k) can be
computed as follows:
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Lemma 2.1. The following statements hold:
(1) xi ∈ H•(Ga(r), k)−piα for 1 ≤ i ≤ r.
(2) yi ∈ H∗(Ga(r), k)−piα for 0 ≤ i ≤ r−1. �

Given s ≤ r, we consider the standard embedding Ga(s) ↪→ Ga(r), whose comorphism is the projec-
tion

π : k[T ]/(T pr
) −→ k[T ]/(T ps

) ; f + (T pr
) 7→ f + (T ps

).
The resulting embedding of algebras of measures is thus given by

kGa(s) −→ kGa(r) ; ui 7→ ui 0 ≤ i ≤ s− 1.

Let F : Ga(r) −→ Ga(r−1) ; x 7→ xp be the Frobenius homomorphism. Setting u−1 := 0, we see
that the corresponding homomorphism of Hopf algebras is given by

F : kGa(r) −→ kGa(r−1) ; ui 7→ ui−1 0 ≤ i ≤ r − 1.

We recall the notion of a p-point, introduced by Friedlander-Pevtsova [31]. Let Ap = k[X]/(Xp) be
the truncated polynomial ring with canonical generator u := X +(Xp). An algebra homomorphism
α : Ap −→ kG is a p-point of G if

(a) α is left flat, and
(b) there exists an abelian unipotent subgroup U ⊆ G such that im α ⊆ kU.

If α : Ap −→ kG is an algebra homomorphism, then α∗ : modG −→ modAp denotes the associated
pull-back functor. Two p-points α and β are equivalent if for every M ∈ modG the module α∗(M) is
projective precisely when β∗(M) is projective. We denote by P (G) the space of equivalence classes
of p-points.

The cohomological interpretation of p-points is based on the induced algebra homomorphisms
α• : H•(G, k) −→ H•(Ap, k). Following Friedlander-Pevtsova, we define for M ∈ modG the p-
support of M via

P (G)M := {[α] ∈ P (G) ; α∗(M) is not projective}.
According to [31, (3.10),(4.11)], the sets P (G)M are the closed sets of a noetherian topology on
P (G) and the map

ΨG : P (G) −→ Proj(VG(k)) ; [α] 7→ ker α•

is a homeomorphism with P (G)M = ΨG(Proj(VG(M)) for every M ∈ modG. Moreover, ΨG is
natural with respect to flat maps H −→ G of finite group schemes.

Given f ∈ H•(Ga(r), k), we let Z(f) be the zero locus of f , that is, the set of the maximal ideals
of H•(Ga(r), k) containing f .

Lemma 2.2. Let N be a Ga(r)-module such that VGa(r)
(N) 6= {0} = VGa(r−1)

(N). Then we have

Z(xr) ∩ VGa(r)
(N) ( VGa(r)

(N).

Proof. Let α : Ap −→ kGa(r) be a p-point such that [α] ∈ P (Ga(r))N . In view of [31, (2.2)], we may
assume that α sends the generator u ∈ Ap onto

α(u) = a0u0 + · · ·+ ar−1ur−1 (ai ∈ k).

Since P (Ga(r−1))N = ∅ (cf. [31, (4.11)]), we conclude that ar−1 6= 0. As noted in [55, (1.13(2))],
the iterated Frobenius homomorphism F r−1 : Ga(r) −→ Ga(1) induces a map

(F r−1)• : H•(Ga(1), k) −→ H•(Ga(r), k) ; x1 7→ xr.

Since F r−1(α(u)) = ar−1u0, the map F r−1 ◦ α is an isomorphism of k-algebras. Consequently,
α• ◦ (F r−1)• is bijective, and

α•(xr) = α•((F r−1)•(x1)) 6= 0.
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Since kerα• ∈ Proj(VGa(r)
(N)), it follows that the radical ideal IN ⊆ H•(Ga(r), k) defining VGa(r)

(N)
is contained in ker α•. By the above, the image of xr in the coordinate ring k[VGa(r)

(N)] is not
zero, and Hilbert’s Nullstellensatz provides a maximal ideal M � H•(Ga(r), k) such that M ⊇ IN

and xr 6∈ M. Consequently,

M ∈ VGa(r)
(N) \ (Z(xr) ∩ VGa(r)

(N)),

as desired. �

Let G be an algebraic k-group. In [55, §1] the authors introduce the affine algebraic scheme Vr(G)
of infinitesimal one-parameter subgroups. By definition,

Vr(G) = HOM(Ga(r),G)

is the homomorphism scheme, cf. [58, p.18]. Owing to [55, (1.14)], there exists a homomorphism

Ψr
G : H•(G, k) −→ k[Vr(G)]

of commutative k-algebras which multiplies degrees by pr

2 . Moreover, the map Ψr
G is natural in G.

Let s ≤ r. We conclude this section with a basic observation concerning the map

Ψr
Ga(s)

: H•(Ga(s), k) −→ k[Vr(Ga(s))].

In view of [55, (1.10)] (and its proof), the coordinate ring

k[Vr(Ga(s))] ∼= k[Tr−s, . . . , Tr−1]

is reduced with Z-grading given by deg(Ti) = pi (see also [55, (1.12)]).

Lemma 2.3. We have Ψr
Ga(s)

(xi) = T pi

r−i for 1 ≤ i ≤ s.

Proof. This is a direct consequence of the proof of [56, (6.5)]. �

3. Projective Height and Periodicity

Let k be an algebraically closed field of characteristic char(k) = p ≥ 3. Throughout this section,
we let G be an infinitesimal k-group of height ht(G) = r. To each non-projective G-module M ∈
modG we associate its projective height ph(M). This numerical invariant, which will later be seen
to be constant on the components of the stable Auslander-Reiten quiver of G, provides information
on the period of periodic modules.

Definition. A subgroup U ⊆ G is called elementary abelian if there exists s ∈ N such that U ∼= Ga(s).
We let E(G) be the set of elementary abelian subgroups of G.

Definition. Let M be a G-module, H ⊆ G be a closed subgroup. Then

phH(M) :=
{

min{1 ≤ t ≤ r ; M |Ht is not projective} if M |H is not projective,
0 otherwise

is called the projective height of M relative to H.

Let M be a non-projective G-module. According to [56, (7.6)], there exists an elementary abelian
subgroup U ∈ E(G) such that M |U is not projective. This motivates the following definition:
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Definition. Let M be a non-projective G-module. Then

ph(M) := max
U∈E(G)

phU(M)

is referred to as the projective height of M .

Let M be a G-module of projective height ph(M) = t > 0. Then there exists a subgroup U ⊆ G with
U ∼= Ga(t−1) and M |U being projective. Consequently, M is a free module of the pt−1-dimensional
algebra kU, so that pt−1 |dimk M .

Example. Let G be a reductive group. We consider the Steinberg module Std, which view as a
Gr-module. For dimension reasons, Std|Gs is not projective for d < s ≤ r, while [45, (II.11.8)]
shows that Std|Gd

is projective. Let d < r. In view of [56, (7.6)] we thus have ph(Std) = d+1.

Given a commutative k-algebra A, we denote by Ared the associated reduced algebra. A homomor-
phism f : A −→ B of commutative k-algebras induces a homomorphism fred : Ared −→ Bred of
reduced k-algebras. The commutative algebras relevant for our purposes are the even cohomology
rings H•(G, k) and H•(U, k), where U ∼= Ga(s) is an elementary abelian subgroup of G. We let

res : H•(G, k) −→ H•(U, k)

be the canonical restriction map, and recall that the canonical inclusion k[x1, . . . , xs] −→ H•(U, k)
induces an isomorphism k[x1, . . . , xs] ∼= H•(U, k)red, see [12].

Let H ⊆ G be a closed subgroup. By virtue of [56, (5.4.1)], the canonical restriction map
res : H•(G, k) −→ H•(H, k) induces a morphism res∗ : VH(k) −→ VG(k) which maps VH(k)
homeomorphically onto its image. Bearing this in mind, we shall often identify VH(k) topologically
with a closed subvariety of VG(k).

Proposition 3.1. Let M be a G-module, U ∼= Ga(s) be an elementary abelian subgroup of G.

(1) If M |U is not projective, then there exists ζ ∈ H2pr−phU(M)
(G, k)red such that

Z(ζ) ∩ VG(M) ( VG(M).

(2) If VU(k) ⊆ VG(M), then there exists ζ ∈ H2pr−s
(G, k)red such that

Z(ζ) ∩ VG(M) ( VG(M).

Proof. Let 1 ≤ t ≤ s. Owing to [55, (1.14)] we have a commutative diagram

H•(G, k)
Ψr

G−−−−→ k[Vr(G)]

res

y π

y
H•(Ut, k)

Ψr
Ut−−−−→ k[Vr(Ut)],

of homomorphisms of graded, commutative k-algebras, where the horizontal arrows multiply degrees
by pr

2 . Thanks to [55, (1.5)], the map π is surjective, and [55, (1.12)] shows that it respects degrees.
Since Ut

∼= Ga(t) we may consider the element Tr−t ∈ k[Vr(Ut)]pr−t . As π is surjective, we can
find vr−t ∈ k[Vr(G)]pr−t with π(vr−t) = Tr−t. According to [56, (5.2)], we have vpr

r−t ∈ im Ψr
G, so

that there exists w ∈ H2pr−t
(G, k) with Ψr

G(w) = vpr

r−t. In light of (2.3), we thus obtain

Ψr
Ut

(res(w)) = π(Ψr
G(w)) = π(vpr

r−t) = T pr

r−t = Ψr
Ut

(xpr−t

t ).
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Thanks to [56, (5.2)], we conclude that the residue class ζt := w̄ ∈ H2pr−t
(G, k)red satisfies

(∗) resred(ζt) = x̄pr−t

t .

If we identify VUt(k) with its image under the morphism res∗ : VUt(k) −→ VG(k), whose comorphism
is the restriction map resred : H•(G, k)red −→ H•(Ut, k)red, then (∗) implies

Z(ζt) ∩ VUt(k) = Z(xt).

Let t := phU(M). In view of [56, (7.1)], the assumption Z(ζt) ∩ VG(M) = VG(M) yields

VUt(M) = VG(M) ∩ VUt(k) = Z(ζt) ∩ VUt(k) ∩ VUt(M) = Z(xt) ∩ VUt(M),

which, by choice of t, contradicts (2.2). This concludes the proof of (1).
For the proof of (2), we set t := s, so that Ut = U ∼= Ga(s). Consider the homomorphism

ΦM : H•(G, k) −→ Ext∗G(M,M) ; [f ] 7→ [f⊗idM ].

We let A := H•(G, k)/
√

ker ΦM be the coordinate ring of the support variety VG(M) and denote by

ι∗ : H•(G, k)red −→ A

the canonical projection map. According to our convention, the inclusion VU(k) ⊆ VG(M) means
that the image of the morphism res∗ : VU(k) −→ VG(k) is contained in VG(M). Thus, the map
res∗ factors through the inclusion ι : VG(M) ↪→ VG(k), so that there exists a homomorphism
γ∗ : A −→ H•(U, k)red with

resred = γ∗ ◦ ι∗.

By (∗), we can find ζ := ζs ∈ H2pr−s
(G, k)red such that resred(ζ) 6= 0. Consequently, ι∗(ζ) 6= 0, and

Hilbert’s Nullstellensatz provides a maximal ideal M ⊇
√

ker ΦM which does not contain ζ. This
implies

Z(ζ) ∩ VG(M) ( VG(M),
as desired. �

We record a consequence concerning modules of complexity 1, which generalizes [19, (2.5)]. The
proof employs a method of Carlson (cf. [10]), which is based on the following construction: By gen-
eral theory, a cohomology class ζ ∈ H2n(G, k)\{0} corresponds to an element ζ̂ ∈ HomG(Ω2n

G (k), k)\
{0}. We let

Lζ := ker ζ̂

be the Carlson module of ζ.

Corollary 3.2. Let M be an indecomposable G-module of complexity cxG(M) = 1. Then we have

Ω2pr−ph(M)

G (M) ∼= M.

Proof. Let t := ph(M) = phU(M) for some U ∈ E(G). Owing to (3.1(1)), we can find an element
ζ ∈ H2pr−t

(G, k) \ {0} such that
Z(ζ) ∩ VG(M) ( VG(M).

Since M is indecomposable, the variety VG(M) is a line (see [56, (7.7)]). Thanks to [56, p.755] we
have VG(Lζ) = Z(ζ), so that an application of [56, (7.2)] gives

{0} = Z(ζ) ∩ VG(M) = VG(Lζ⊗kM).

Consequently, the module Lζ⊗kM is projective and the exact sequence

(0) −→ Lζ⊗kM −→ Ω2pr−t

G (M)⊕ (proj.) −→ M −→ (0),
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obtained by tensoring the sequence defined by ζ̂ with M , splits. By comparing projective-free
summands of Ω2pr−t

G (M)⊕ (proj.) ∼= (Lζ⊗kM)⊕M , we arrive at Ω2pr−t

G (M) ∼= M . �

A G-module M is called periodic, provided there exists n ∈ N such that Ωn
G(M) ∼= M . In that case,

per(M) := min{n ∈ N ; Ωn
G(M) ∼= M}

is called the period of M . By Corollary 3.2, the number per(M) divides 2pr−ph(M). The following
examples show that the latter number may only provide a rough estimate for per(M).

Examples. (1) Consider the infinitesimal group G = SL(2)1Tr, where r ≥ 2. Then ht(G) = r while
any unipotent subgroup U of G has height ≤ 1. Consequently, every non-projective G-module has
projective height 1, so that (3.2) yields 2pr−1 as an estimate for the period per(M) of a periodic
module M . According to [28, (5.6)] and [23, (4.5)] “most” periodic modules (namely those, whose
rank varieties are not T -stable) have period 2, while those with a T -stable rank variety satisfy
per(M) = 2pr−1.

(2) Let U be a unipotent infinitesimal group of complexity cxU(k) = 1. Owing to the main
theorem of [26] such groups can have arbitrarily large height. The corresponding algebras kU are
truncated polynomial rings k[X]/(Xpn

), so that every indecomposable U-module M is periodic with
per(M) = 2. If U has height r ≥ 2, then only for those non-projective indecomposable modules M
with dimk M = `dimk kUr−1 does Corollary 3.2 provide the correct formula for per(M).

Remark. We shall see in Section 8 below that 2pr−ph(M) coincides with the period for graded
modules of Frobenius kernels of reductive algebraic algebraic groups (see Theorem 8.1.3).

Let M be a G-module. By general theory, a homomorphism ϕ : Ga(r) −→ G corresponds to a
homomorphism ϕ : kGa(r) −→ kG. If M is a G-module, then we denote by M |k[ur−1] the pull-back
of M along the map ϕ|k[ur−1]. Following Suslin-Friedlander-Bendel [56, §6], we let

Vr(G)M := {ϕ ∈ Hom(Ga(r),G) ; M |k[ur−1] is not projective}
be the rank variety of M .

Theorem 3.3. Let M be an indecomposable G-module such that cxG(M) = 1. Then

UM :=
⋃

ϕ∈Vr(G)M

im ϕ

is an elementary abelian subgroup of G such that ph(M) = ht(UM ) = phUM
(M).

Proof. Since cxG(M) = 1, an application of [56, (6.8)] yields

dim Vr(G)M = dim VG(M) = 1.

According to [56, (6.1)], the canonical action of k× on Ga(r) endows the variety Vr(G)M with the
structure of a conical variety:

(α.ϕ)(x) := ϕ(α.x) ∀ α ∈ k×, x ∈ kGa(r).

In view of α.ur−1 = αpr−1
ur−1, the group k× acts simply on Vr(G)M \ {0}. Since M is indecompos-

able, Carlson’s Theorem (see [56, (7.7)]) ensures that the variety (Vr(G)M \ {0})/k× is connected.
Hence there exists ϕ ∈ Vr(G)M such that

Vr(G)M = {α.ϕ ; α ∈ k×} ∪ {0}.
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As a result, UM = im ϕ is a subgroup of G. Being isomorphic to the factor group Ga(r)/ ker ϕ, the
group UM is elementary abelian.

Let s := phUM
(M). We propose to show that s = ph(M) = ht(UM ). Let U be an elementary

abelian subgroup of G such that M |U is not projective. Owing to [56, (6.6)], Vr(U)M |U is a one-
dimensional subvariety of the one-dimensional irreducible variety Vr(G)M , whence Vr(U)M |U =
Vr(G)M . It readily follows that UM ⊆ U.

By applying this observation to the Frobenius kernels of UM , we conclude that s = ht(UM ).
Thus, if U is elementary abelian and r′ ∈ N is a natural number such that the restriction M |Ur′

of M to the elementary abelian subgroup Ur′ is not projective, then UM ⊆ Ur′ , whence r′ ≥ s.
Consequently, ` := phU(M) ≥ s and UM ⊆ U`. If ` > s, then ht(UM ) = s implies that UM ⊆ U`−1,
while M |U`−1

is projective. This, however, contradicts M |UM
being non-projective, so that ` = s.

As a result, we have
ht(UM ) = s = ph(M),

as desired. �

We now specialize to the case, where G = Gr is a Frobenius kernel of a smooth group scheme G.
Then G acts on Gr via the adjoint representation, and we obtain an action of G on Vr(G). If M is
a Gr-module and g ∈ G, then M (g) denotes the Gr-module with underlying k-space M and action

x.m := Ad(g)−1(x)m ∀ x ∈ Gr,m ∈ M.

One readily verrifies that
Vr(G)M(g) = g.Vr(G)M ∀ g ∈ G.

We refer to a Gr-module as G-stable if M (g) ∼= M for every g ∈ G. Clearly, the restriction M |Gr of
a G-module M is a G-stable Gr-module. Moreover, if G is connected, then every simple Gr-module
is G-stable.

Corollary 3.4. Let G be a smooth group scheme, M be an indecomposable, G-stable Gr-module of
complexity cxGr(M) = 1. Then UM � Gr is a normal subgroup of Gr.

Proof. This follows directly from Theorem 3.3 and the definition of the G-action on Vr(G)M . �

We fix a maximal torus T ⊆ G and denote by X(T ) its character group. Since T acts diagonally
on the Lie algebra g := Lie(G), there exists a finite subset Ψ ⊆ X(T ) \ {0} such that

g = g0 ⊕
⊕
α∈Ψ

gα,

with gα := {x ∈ g ; t.x = α(t)x ∀ t ∈ T} for α ∈ Ψ ∪ {0}. The elements of Ψ are the roots of G.
Suppose that U ⊆ Gr is a T -invariant elementary abelian subgroup. The maximal torus T acts

canonically on H•(Gr, k)red and H•(U, k)red. In light of (2.1), the weights of this action on the latter
space are of the form −nα for n ≥ 0. We thus have the following refinement of Proposition 3.1:

Proposition 3.5. Let G be a smooth group scheme, U ⊆ Gr be a T -invariant elementary abelian
subgroup, M be a Gr-module. Then there exists α ∈ Ψ ∪ {0} with the following properties:

(1) If M |U is not projective, then there exists ζ ∈ (H2pr−phU(M)
(Gr, k)red)−prα such that

Z(ζ) ∩ VGr(M) ( VGr(M).

(2) If VU(k) ⊆ VGr(M), then there exists ζ ∈ (H2pr−ht(U)
(Gr, k)red)−prα such that

Z(ζ) ∩ VGr(M) ( VGr(M).
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Proof. Since U ∼= Ga(s) is T -invariant, the diagonalizable group T acts on U via a character α ∈
X(T ):

t.u = α(t)u ∀ u ∈ U.

Hence T also acts on Lie(U) ⊆ g via α, so that α ∈ Ψ ∪ {0}.
We return to the proof of Proposition 3.1. For t ≤ r we found elements ζ ′t ∈ H2pr−t

(Gr, k)red
satisfying

resred(ζ ′t) = x̄pr−t

t .

Owing to (2.1), the element x̄pr−t

t belongs to (H2pr−t
(U, k)red)−prα. Since the map resred is T -

equivarant, we may replace ζ ′t by its homogeneous component ζt of degree −prα, so that

resred(ζt) = x̄pr−t

t for some ζt ∈ (H2pr−t
(Gr, k)red)−prα.

We may now adopt the arguments of the proof of (3.1) verbatim to obtain our result. �

Now assume G to be reductive, with Borel subgroup B = UT and sets Ψ+ and Σ of positive roots
and simple roots, respectively. As usual, ρ denotes the half-sum of the positive roots. Given d ≥ 0,
we recall that

Std := L((pd−1)ρ)

denotes the d-th Steinberg module. By definition, Std is a simple G-module with St0 ∼= k, the trivial
G-module. In view of [45, (3.18(4))] and [45, (II.10.2)]

Std
∼= Ld((pd−1)ρ) ∼= Zd((pd−1)ρ)

is a simple, projective Gd-module.
Let M be a Gr-module. If α ∈ Ψ is a root, we define

p̂hα(M) :=
{

ph(Uα)r
(M) if M |(Uα)r

is not projective,
∞ otherwise,

where Uα ⊆ G is the root subgroup of α. Moreover, for a subset Φ ⊆ Ψ, we put

p̂hΦ(M) := min
α∈Φ

p̂hα(M).

Let Y (T ) be the set of co-characters of T and denote by 〈 , 〉 : X(T ) × Y (T ) −→ Z the canonical
pairing. For s ∈ N0, we put

Ψs
λ := {α ∈ Ψ ; 〈λ+ρ, α∨〉 ∈ psZ}.

Here α∨ ∈ Y (T ) denotes the root dual to α. Owing to [43, (2.7)], the set Ψs
λ is a subsystem of Ψ

whenever the prime number p is good for G.
Given λ ∈ X(T ) with 〈λ + ρ, α∨〉 6= 0 for some α ∈ Ψ, we define the depth of λ via

dp(λ) := min{s ∈ N0 ; Ψs
λ 6= Ψ},

and put dp(λ) = ∞ otherwise, see [25]. The following result links the depth of a weight to the
projective height p̂hΣ(Zr(λ)) of the baby Verma module

Zr(λ) := kGr⊗kBr kλ.

Suppose that G is a smooth group scheme that is defined over the Galois field Fp. Let M be a
G-module. Given d ∈ N, we let M [d] be the G-module with underlying k-space M and action
defined via pull-back along the iterated Frobenius endomorphism F d : G −→ G.
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Proposition 3.6. Suppose that G is semi-simple, simply connected, defined over Fp and that p is
good for G. Let λ ∈ X(T ) be a weight such that dp(λ) ≤ r. Then the following statements hold:

(1) We have V(Uα)r
(Stdp(λ)−1) ⊆ VGr(Zr(λ)) for every α ∈ Σ \Ψdp(λ)

λ .
(2) We have dp(λ) = p̂hΣ(Zr(λ)).

Proof. Let dp(λ) = d + 1 with d ≥ 0. Owing to [25, (6.2)], there exists a weight µ of depth 1 and
an isomorphism

Zr(λ) ∼= Zr−d(µ)[d]⊗kStd

of Gr-modules. Moreover, we have λ = pdµ + (pd − 1)ρ. According to [25, (5.2)], the inclusion

V(Uα)r−d
(k) ⊆ VGr−d

(Zr−d(µ))

holds for every α ∈ Σ \Ψ1
µ.

Consider the iterate F d : Gr −→ Gr−d of the Frobenius endomorphism. There results a commu-
tative diagram

V(Uα)d+1
(Std)

F d

−−−−→ V(Uα)1(k)

res∗
y res∗

y
V(Uα)r

(Std)
F d

−−−−→ V(Uα)r−d
(k)

res∗
y res∗

y
VGr(Std)

F d

−−−−→ VGr−d
(k),

where the vertical arrows are the canonical inclusions induced by the restriction maps. Thanks to
[25, (6.2(b))], the lower horizontal map is an isomorphism sending VGr(Zr(λ)) onto VGr−d

(Zr−d(µ)).
(1) Let α ∈ Σ \Ψd+1

λ . Then we have

pd〈µ + ρ, α∨〉 = 〈λ + ρ, α∨〉 6∈ pd+1Z,

so that 〈µ+ρ, α∨〉 6∈ pZ, whence α ∈ Σ\Ψ1
µ. In view of the identification discussed at the beginning

of this section, the inclusion V(Uα)r−d
(k) ⊆ VGr−d

(Zr−d(µ)) in conjunction with the above diagram
now implies V(Uα)r

(Std) ⊆ VGr(Zr(λ)).
(2) Given α ∈ Σ \ Ψd+1

λ , part (1) yields V(Uα)r
(Std) ⊆ VGr(Zr(λ)). The diagram above then

implies

V(Uα)d+1
(Std) = V(Uα)r

(Std) ∩ V(Uα)d+1
(k) ⊆ VGr(Zr(λ)) ∩ V(Uα)d+1

(k)

⊆ VGr(Zr(λ)) ∩ VGd+1
(k) = VGd+1

(Zr(λ)).

Let L be the Levi subgroup of G associated to the simple root α and let StL
d be the d-th Steinberg

module of L. Thanks to [49, (4.2.1)], there is an inclusion VLd+1
(StL

d ) ⊆ VGd+1
(Std). The rank

varieties of the former module were essentially computed in [56, (7.9)] (The quoted result deals
with Frobenius kernels of SL(2)). This result implies in particular that V(Uα)d+1

(StL
d ) 6= {0}, so

that V(Uα)d+1
(Std) 6= {0}. Consequently,

{0} 6= V(Uα)d+1
(Std) ∩ V(Uα)d+1

(k) ⊆ VGd+1
(Zr(λ)) ∩ V(Uα)d+1

(k) = V(Uα)d+1
(Zr(λ)).

As a result, the module Zr(λ)|(Uα)d+1
is not projective, so that p̂hα(Zr(λ)) ≤ d + 1.

Since Ψd
λ = Ψ, [25, (5.6)] shows that Zr(λ)|Gd

is projective, so that module Zr(λ)|(Uα)d
is

projective for every α ∈ Σ. It follows that p̂hα(Zr(λ)) = d + 1 for all α ∈ Σ \Ψd+1. Since p is good
for G, [43, (2.7)] ensures that the latter set is not empty.
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For α ∈ Σ∩Ψd+1
λ we consider the Levi subgroup L ⊆ G defined by α, as well as the corresponding

baby Verma module ZL
r (λ) of Lr. According to [25, (5.6)], the module ZL

r (λ)|Ld+1
is projective, and

[49, (4.2.1)] now implies the projectivity of Zr(λ)|(Uα)d+1
. We conclude that p̂hα(Zr(λ)) ≥ d + 2.

Consequently,

p̂hΣ(Zr(λ)) = min
α∈Σ

p̂hα(Zr(λ)) = d + 1 = dp(λ),

as desired. �

4. Euclidean Components of finite group Schemes

This section is concerned with the Auslander-Reiten theory of a finite group scheme G. Given a
self-injective algebra Λ, we denote by Γs(Λ) the stable Auslander–Reiten quiver of Λ. By definition,
the directed graph Γs(Λ) has as vertices the isomorphism classes of the non-projective indecom-
posable Λ-modules and its arrows are defined via the so-called irreducible morphisms. We refer the
interested reader to [4, Chap. VII] for further details. The AR-quiver is fitted with an automor-
phism τΛ, the so-called Auslander–Reiten translation. Since Λ is self-injective, τΛ coincides with
the composite Ω2

Λ ◦ νΛ of the square of the Heller translate ΩΛ and the Nakayama functor νΛ, cf.
[4, (IV.3.7)].

The connected components of Γs(Λ) are connected stable translation quivers. By work of Riedt-
mann [51, Struktursatz], the structure of such a quiver Θ is determined by a directed tree TΘ, and
an admissible group Π ⊆ Autk(Z[TΘ]), giving rise to an isomorphism

Θ ∼= Z[TΘ]/Π

of stable translation quivers. The underlying undirected tree T̄Θ, the so-called tree class of Θ
is uniquely determined by Θ. We refer the reader to [5, (4.15.6)] for further details. For group
algebras of finite groups, the possible tree classes and admissible groups were first determined by
Webb [59].

Following Ringel [52], an indecomposable Λ-module M is called quasi-simple, provided it lies at
the end of a component of tree class A∞ of the stable AR-quiver Γs(Λ).

Throughout this section, G is assumed to be a finite algebraic group, defined over an algebraically
closed field k of characteristic p > 0. By general theory (see [30, (1.5)]), the algebra kG affords a
Nakayama automorphism ν = νG of finite order `. For each n ∈ N0, the automorphism νn induces,
via pull-back, an auto-equivalence of modG and hence an automorphism on the stable AR-quiver
Γs(G) of kG. In view of [4, Chap.X], the Heller operator ΩG also gives rise to an automorphism of
Γs(G). Given an AR-component Θ ⊆ Γs(G), we denote by Θ(n) the image of Θ under νn and put
ΥΘ :=

⋃`−1
n=0(Θ ∪ ΩG(Θ))(n).

We say that a component Θ ⊆ Γs(G) has Euclidean tree class if the graph T̄Θ is one of the
Euclidean diagrams Ã12, D̃n (n ≥ 4) or Ẽn (6 ≤ n ≤ 8).

Proposition 4.1. Suppose that Θ ⊆ Γs(G) is a component of Euclidean tree class. Let M be a
G-module such that

(a) M possesses a filtration (Mi)0≤i≤r such that each filtration factor is indecomposable with
Mi/Mi−1 6∈ ΥΘ for 1 ≤ i ≤ r, and

(b) M possesses a filtration (M ′
i)0≤j≤s such that M ′

j/M
′
j−1 ∈ ΥΘ for 1 ≤ j ≤ s.

Then cxG(M) ≤ 1.
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Proof. Let Zi := Mi/Mi−1 for 1 ≤ i ≤ r. According to [17, (I.8.8)], the map

di : ΥΘ −→ N0 ; X 7→ dimk Ext1G(Zi, X)

is additive on Θ(j) and ΩG(Θ)(j) for 0 ≤ j ≤ `− 1. Hence [59, (2.4)] provides a natural number bi

such that
dimk Extn

G(Zi, X) = dimk Ext1G(Zi,Ω1−n
G (X)) ≤ bi

for every n ≥ 1 and every X ∈ ΥΘ. From the exactness of the sequence

Extn
G(Zi, X) −→ Extn

G(Mi, X) −→ Extn
G(Mi−1, X)

we obtain

dimk Extn
G(M,X) ≤

r∑
i=1

bi =: b ∀ X ∈ ΥΘ, n ≥ 1.

In view of (b), the same reasoning now implies

dimk Extn
G(M,M) ≤ sb ∀ n ≥ 1,

so that general theory (cf. [6, (5.3.5)]) yields cxG(M) ≤ 1. �

Corollary 4.2. Suppose that Θ ⊆ Γs(G) is a component of Euclidean tree class. Then every M ∈ Θ
possesses a composition factor S such that S ∈ ΥΘ.

Proof. If the composition factors of M do not belong to ΥΘ, then M satisfies (a) and (b) of
Proposition 4.1. Hence M has complexity 1, and is therefore periodic, [6, (5.10.4)]. As ν has finite
order, there thus exists n ≥ 1 with τn

G (M) ∼= M . In view of [36, Theorem], the tree class T̄Θ is
either a finite Dynkin diagram or A∞, contradicting our hypothesis on Θ. �

5. Representations of SL(2)r

Throughout, we consider the infinitesimal group scheme SL(2)r, defined over the algebraically
closed field k of characteristic p ≥ 3. Recall that the algebra Dist(SL(2)r) = k SL(2)r is symmetric
(cf. [25, (2.1)]), so that ΥΘ = Θ ∪ ΩSL(2)r

(Θ) for every component Θ ⊆ Γs(SL(2)r).
The blocks of Dist(SL(2)r) are well understood (cf. [50]). In the following, we identify the

character group X(T ) of the standard maximal torus T of diagonal matrices of SL(2) with Z, by
letting n ∈ Z correspond to nρ ∈ X(T ). Accordingly, the modules Lr(0), . . . , Lr(pr−1) constitute
a full set of representatives for the isomorphism classes of the simple SL(2)r-modules (cf. [45,
(II.3.15)]). A block of Dist(SL(2)r) is given by a subset of Xr(T ) := {0, . . . , pr−1}; the resulting
partition was determined by Pfautsch, see [50, §4.2]: We present elements of Xr(T ) by expanding
them p-adically: λ =

∑r−1
i=0 λip

i. For 0 ≤ i ≤ p−3
2 and 0 ≤ s ≤ r−1 we put

B
(r)
i,s := {

r−1∑
i=0

λip
i ; λ0 = λ1 = · · · = λs−1 = p−1 , λs ∈ {i, p−2−i}} as well as B(r)

r = {pr−1},

so that the corresponding block consists of those modules, whose composition factors are of the
form Lr(λ) with λ ∈ B

(r)
i,s . For future reference we record the following result (cf. [50, Satz 5]):

Lemma 5.1. The functor M 7→ Sts⊗kM [s] induces a Morita equivalence B
(r−s)
i,0 ∼M B

(r)
i,s , sending

Lr−s(n) onto Lr(nps+(ps−1)).

Proof. This follows directly from [45, (II.10.5)] in conjunction with Steinberg’s tensor product
theorem [45, (II.3.17)] and [45, (II.3.15)]. �
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Thus, for the purposes of Auslander-Reiten theory, it suffices to consider the blocks B
(r)
i,0 for r ≥ 1.

Lemma 5.2. The simple B
(r)
i,0 -modules of complexity 2 are given by the highest weights pr−p+i

and pr−2−i.

Proof. Let N(sl(2)) be the nullcone of the Lie algebra sl(2), that is,

N(sl(2)) := {x ∈ sl(2) ; x[p] = 0}.

Suppose that Lr(λ) is a simple B
(r)
i,0 -module. Thanks to [56, (7.8)], we have

Vr(SL(2))Lr(λ)
∼= {(x0, . . . , xr−1) ∈ N(sl(2))r ; [xi, xj ] = 0 ∀ i, j , xr−i−1 = 0 for λi = p−1}.

Direct computation (see [21, p.112f]) shows that dim Vr(SL(2))Lr(λ) = 2 if and only if there exists

exactly one coefficient λi 6= p−1. As Lr(λ) belongs to B
(r)
i,0 , we conclude that cxSL(2)r

(Lr(λ)) = 2
if and only if λ0 ∈ {i, p−2−i} is the only coefficient 6= p−1, as desired. �

We record some structural features of the corresponding principal indecomposable SL(2)r-modules.
Given λ ∈ {0, . . . , pr−1}, we let Pr(λ) be the projective cover of Lr(λ). If λ 6= pr−1, then Pr(λ) is
not simple, and we consider the heart

Htr(λ) = Rad(Pr(λ))/ Soc(Pr(λ))

of Pr(λ). By work of Jeyakumar [46], each principal indecomposable SL(2)1-module P1(λ) has the
structure of an SL(2)-module, which extends the given SL(2)1-structure. Since p ≥ 3, this structure
is unique, cf. [45, (II.11.11)].

Lemma 5.3. Let λ = λ0 +
∑r−1

i=1 (p−1)pi, where 0 ≤ λ0 ≤ p−2. Then the following statements
hold:

(1) If r ≥ 2, then Htr(λ) is indecomposable, with Soc(Htr(λ)) being simple.
(2) The composition factors of Htr(λ) are of the form Lr(µ), with

µ ∈ {p−2−λ0 + (p−2)p −̀1 +
r−1∑
i=`

(p−1)pi ; 1 < ` ≤ r} ∪ {p−2−λ0}.

Proof. (1) Thanks to [42, (1.1)], the principal indecomposable SL(2)r-module with highest weight
λ has the form

Pr(λ) = P1(λ0)⊗kL1(p−1)[1]⊗k · · · ⊗kL1(p−1)[r−1].

As shown in [39, Thm.3], the SL(2)-module P1(λ0) has composition factors (from top to bottom)
L(λ0), L(2p−2−λ0), L(λ0), where L(γ) denotes the simple SL(2)-module with highest weight γ ∈ N0.
From the isomorphism L(λ0)|SL(2)1

∼= L1(λ0) (cf. [45, (II.3.15)]), we obtain

Htr(λ) ∼= L(2p−2−λ0)|SL(2)r
⊗kL1(p−1)[1]⊗k · · · ⊗kL1(p−1)[r−1].

Steinberg’s tensor product theorem in conjunction with [45, (II.3.15)], [2, (3.1)] and r ≥ 2 now
yields

Htr(λ) ∼= L1(p−2−λ0)⊗kL1(1)[1]⊗kL1(p−1)[1]⊗k · · · ⊗kL1(p−1)[r−1]

∼= L1(p−2−λ0)⊗kP1(p−2)[1]⊗kL1(p−1)[2]⊗k · · · ⊗kL1(p−1)[r−1].

Since the latter module is contained in the principal indecomposable SL(2)r-module

P1(p−2−λ0)⊗kP1(p−2)[1]⊗kL1(p−1)[2]⊗k · · · ⊗kL1(p−1)[r−1]

(see [42, (1.1)]), we conclude that Htr(λ) is indecomposable with simple socle.
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(2) This is a direct consequence of [2, (3.4)], [45, (II.3.15)] and Steinberg’s tensor product theo-
rem. �

We turn to the Auslander-Reiten theory of SL(2)r and begin by determining the stable AR-
components of Euclidean tree class. We recall that the standard almost split sequence

(0) −→ Rad(Pr(λ)) −→ Htr(λ)⊕ Pr(λ) −→ Pr(λ)/ Soc(Pr(λ)) −→ (0)

is the only almost split sequence involving the principal indecomposable module Pr(λ) (cf. [4,
(V.5.5)]).

Proposition 5.4. Let Θ ⊆ Γs(SL(2)r) be a component of Euclidean tree class. Then Θ ∼= Z[Ã12].

Proof. In view of Lemma 5.1, we may assume that Θ ⊆ Γs(B
(r)
i,0 ). According to [59, (2.4)], the

component Θ is attached to a principal indecomposable module, so by passing to the isomorphic
component Ω−1

SL(2)r
(Θ) we may assume without loss of generality that Θ contains a simple module

Lr(λ).
Another application of [59, (2.4)] implies cxSL(2)r

(M) = 2 for every M ∈ ΥΘ, so that Lemma 5.2
yields

λ = λ0 + (p−1)p + · · ·+ (p−1)pr−1 ; λ0 ∈ {i, p−2−i}.
Suppose that r ≥ 2. By virtue of Lemma 5.3(1), the module Htr(λ) is indecomposable and
Htr(λ) ∈ ΩSL(2)r

(Θ) ⊆ ΥΘ.
Owing to Lemma 5.3(2) and Lemma 5.2 the composition factors of Htr(λ) have complexity 6= 2.

Accordingly, they do not belong to ΥΘ, and Corollary 4.2 yields a contradiction. Consequently, r =
1, and the assertion follows from the well-known path algebra presentation of B

(1)
i,0 (see [15, 29, 53]),

which establishes a Morita equivalence between B
(1)
i,0 and the trivial extension of the Kronecker

algebra k[• ⇒ •]. �

Remark. The proof of the foregoing result also shows that Θ belongs to a block of k SL(2)r of tame
representation type (see also Theorem 6.3.3 below).

Recall that a non-projective indecomposable SL(2)r-module M is referred to as quasi-simple, pro-
vided

(a) the module M belongs to a component of tree class A∞, and
(b) M has exactly one predecessor in Γs(SL(2)r).

Proposition 5.5. Let S be a simple SL(2)r-module of complexity cxSL(2)r
(S) = 2, Θ ⊆ Γs(SL(2)r)

be the component containing S. Then Θ ∼= Z[A∞], Z[Ã12]. If Θ ∼= Z[A∞], then S is quasi-simple.

Proof. Since Morita equivalence preserves the complexity of a module, Lemma 5.1 allows us to
assume that Θ ⊆ Γs(B

(r)
i,0 ). As cxSL(2)r

(S) = 2, the component Θ is not finite and its tree class is
not a finite Dynkin diagram (cf. [21, (2.1)]). If the tree class T̄Θ is Euclidean, then Proposition 5.4
implies Θ ∼= Z[Ã12]. Alternatively, T̄Θ

∼= A∞, A∞
∞ or D∞ (see [21, (1.3)]).

In view of Lemma 5.2, we have S ∼= Lr(λ), where

λ = λ0 + (p−1)p + · · ·+ (p−1)pr−1 ; λ0 ∈ {i, p−2−i}.
If r = 1, then Θ ∼= Z[Ã12], a contradiction. Alternatively, Lemma 5.3 shows that Htr(λ) is
indecomposable with simple socle. From the standard almost split sequence involving Pr(λ) we
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conclude that Pr(λ)/ Soc(Pr(λ)) ∼= Ω−1
SL(2)r

(Lr(λ)) has exactly one predecessor in Γs(SL(2)r). Since
ΩSL(2)r

defines an automorphism of Γs(SL(2)r), the simple module S = Lr(λ) enjoys the same
property. Thus, T̄Θ 6∼= A∞

∞, and if T̄Θ
∼= A∞, then S is quasi-simple.

It thus remains to rule out the case, where T̄Θ
∼= D∞. Assuming this isomorphism to hold, we

infer from the above that Htr(λ) has 3 successors in Ψ := Ω−1
SL(2)r

(Θ). Accordingly, there exists an
almost split sequence

(0) −→ X −→ Htr(λ)⊕Q −→ Y −→ (0),
with Y 6∼= Pr(λ)/Lr(λ), and with Q 6∼= Pr(λ) being indecomposable projective, or zero. If Q 6= (0),
then Q = Pr(λ′) belongs to the block of Lr(λ) and the standard sequence yields Htr(λ) ∼= Htr(λ′).
Since T̄Θ

∼= D∞, [21, (2.2)] implies cxSL(2)r
(Lr(λ′)) = 2, and Lemma 5.2 yields

λ′ = p− 2− λ0 + (p−1)p + · · ·+ (p−1)pr−1.

This, however, contradicts (2) of Lemma 5.3.
We thus have an almost split sequence

(0) −→ X −→ Htr(λ) −→ Y −→ (0).

Since Soc(Htr(λ)) is simple, we may apply [4, (V.3.2)] to conclude that Y is simple. As cxSL(2)r
(Y ) =

2 (cf. [21, (2.2)]), Lemma 5.2 implies Y ∈ {Lr(λ), Lr(λ′)}, so that Lemma 5.3(2) again leads to a
contradiction.

Consequently, T̄Θ = A∞, which, in view of cxSL(2)r
(Lr(λ)) = 2, implies Θ ∼= Z[A∞] (see [21,

(2.1)]). �

6. Blocks and AR-Components

In this section we illustrate our results by considering blocks and Auslander-Reiten components
of infinitesimal group schemes.

6.1. Invariants of AR-Components. We begin by showing that the notion of projective height
gives rise to invariants of stable Auslander-Reiten components. Let E ⊆ E(G) be a collection of
elementary abelian subgroups of G, and define

phE(M) := max
U∈E

phU(M).

Proposition 6.1.1. Let G be an infinitesimal group, Θ ⊆ Γs(G) be a connected component of its
stable Auslander-Reiten quiver. Given E ⊆ E(G), we have

phE(M) = phE(N)

for all M,N ∈ Θ.

Proof. Let U ∈ E be an elementary abelian subgroup and consider M ∈ Θ. We write t := phU(M).
According to [30, (1.5)], the Nakayama functor νG is induced by the automorphism idG ∗ζ`, which
is the convolution of idG with the left modular function ζ` : kG −→ k. As Us is unipotent, the
restriction ζ`|kUs of ζ` coincides with with the co-unit, so that (idG ∗ζ`)|kUs = idkUs . It follows that
νG(M)|Us = M |Us for all s.

Since τG = Ω2
G ◦ νG, we therefore obtain

τG(M)|Us
∼= Ω2

Us
(M |Us)⊕ (proj.) ∀ s ∈ N.

Thus, τG(M)|Us is projective if and only if M |Us is projective. This implies t = phU(τG(M)).
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Now let

EM : (0) −→ τG(M) −→
n⊕

i=1

Ei −→ M −→ (0)

be the almost split sequence terminating in M . If s ≤ t − 1, then M |Us is projective and EM |Us

splits, so that each Ei|Us is a direct summand of the projective module M |Us ⊕ τG(M)|Us . Hence
Ei|Us is projective and phU(Ei) ≥ t for 1 ≤ i ≤ n.

Let M,N ∈ Θ. By the above, we have phU(N) ≥ phU(M), whenever N is a predecessor of M .
In that case, there also exists an arrow τG(M) → N , so that phU(M) = phU(τG(M)) ≥ phU(N),
whence phU(M) = phU(N).

Since Θ is connected, it follows that phU(M) = phU(N) for all M,N ∈ Θ. This readily implies
our assertion. �

Corollary 6.1.2. Suppose that Θ ⊆ Γs(G) is a component containing a module of complexity 1.
Then there exists an elementary abelian subgroup UΘ ⊆ G such that ph(M) = ht(UΘ) for every
M ∈ Θ.

Proof. Let M,N ∈ Θ. As observed in [21, (1.1)], we have

Vr(G)M = Vr(G)N ,

so that the subgroups UM and UN , defined in (3.3), coincide. Setting UΘ := UM for some M ∈ Θ,
we obtain the desired result directly from Theorem 3.3. �

6.2. Blocks of finite representation type. Throughout, we consider an infinitesimal group G of
height r and denote by νG : modG −→ modG the Nakayama functor of modG. By general theory
[30, (1.5)], νG is an auto-equivalence of order a power of p.

Corollary 6.2.1. Let G be an infinitesimal group, B ⊆ kG be a block of finite representation type.
(1) If U ∈ E(G) is an elementary abelian subgroup, then we have phU(M) = phU(N) for any

two non-projective indecomposable B-modules M and N .
(2) There exists an elementary abelian subgroup UB ⊆ G such that ph(M) = ht(UB) for every

non-projective indecomposable B-module M .

Proof. Auslander’s Theorem [4, (VI.1.4)] implies that Γs(B) is a connected component of Γs(G).
Hence the assertions follow directly from Proposition 6.1.1 and Corollary 6.1.2. �

The group UB may be thought of as a “defect group” of the block B. Recall that a finite-dimensional
k-algebra Λ is called a Nakayama algebra if all of its indecomposable projective left modules and
indecomposable injective left modules are uniserial (i.e., they only possess one composition series).

The following result provides a first link between properties of UB and B:

Proposition 6.2.2. Let S be a simple G-module such that cxG(S) = 1 and ph(S) = r. Then the
block B ⊆ kG containing S is a Nakayama algebra with simple modules {νi

G(S) ; i ∈ N0}.

Proof. Since S has complexity 1 with ph(S) = r, Corollary 3.2 implies Ω2
G(S) ∼= S. The arguments

employed in the proof of [19, (3.2)] now yield the assertion. �



20 R. FARNSTEINER

Example. Consider the subgroup G := SL(2)1Ga(2) ⊆ SL(2), given by

G(R) = {
(

a b
c d

)
∈ SL(2)(R) ; ap = 1 = dp , cp = 0 , bp2

= 0}

for every commutative k-algebra R. The first Steinberg module St1 is a simple G-module, whose
restriction to G1 = SL(2)1 is simple and projective, whence ph(St1) = 2. Since G/G1

∼= Ga(1), [45,
(I.6.6)] implies

Extn
G(St1,St1) ∼= Hn(Ga(1),HomG1(St1,St1)) ∼= Hn(Ga(1), k),

so that cxG(St1) = 1, cf. [8, §2]. Thus, the block B ⊆ kG containing St1 is a Nakayama algebra,
with St1 being the only simple B-module.

6.3. Frobenius kernels of reductive groups. In this section we consider a smooth reductive
group G of characteristic p ≥ 3. Our objective is to apply the foregoing results in order to correct
the proof of [21, (4.1)]. Given r ≥ 1, we are interested in the algebra Dist(Gr) = kGr of distributions
of Gr.

The following Lemma, which follows directly from the arguments of [20, (7.2)], reduces a number
of issues to the special case G = SL(2):

Lemma 6.3.1. Let B ⊆ Dist(Gr) be a block. If B has a simple module of complexity 2, then B is
Morita equvalent to a block of Dist(SL(2)r). �

The proof of the following result corrects the false reference to SL(2)-theory on page 113 of [21].
Theorem 4.1 of [21] is correct as stated.

Theorem 6.3.2. A non-projective simple Gr-module Lr(λ) of complexity 2 belongs to a component
Θ ∼= Z[A∞], Z[Ã12].

Proof. This follows from a consecutive application of Lemma 6.3.1 and Proposition 5.5. �

A finite-dimensional k-algebra Λ is called tame if it is not of finite representation type and if for
every d > 0 the d-dimensional indecomposable Λ-modules can by parametrized by a one-dimensional
variety. The reader is referred to [17, (I.4)] for the precise definition.

The structure of the representation-finite and tame blocks of the Frobenius kernels of smooth
groups is well understood, see [22, Theorem]. The following result shows that, for smooth reductive
groups, such blocks may be characterized via the complexities of their simple modules.

Theorem 6.3.3. Suppose that G is reductive, and let B ⊆ Dist(Gr) be a block. Then the following
statements are equivalent:

(1) B is tame.
(2) Every simple B-module has complexity 2.
(3) Γs(B) possesses a component isomorphic to Z[Ã12].

Proof. (1) ⇒ (2) Passing to the connected component of G if necessary, we may assume that G is
connected. Let S be a simple B-module. Since B is tame, [24, (3.2)] implies cxGr(S) ≤ 2. Since B

is not representation finite, the simple B-module S is not projective, so that cxGr(S) ≥ 1. Suppose
that cxGr(S) = 1. Since S is G-stable, Corollary 3.4 shows that UB � Gr is a unipotent, normal
subgroup of Gr. Passage to the first Frobenius kernels yields the existence of a non-zero unipotent
p-ideal u�g. Since G is reductive, [38, (11.8)] rules out the existence of such ideals, a contradiction.
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(2) ⇒ (3) By Lemma 6.3.1, the block B is Morita equivalent to a block B′ ⊆ Dist(SL(2)r), all
whose simple modules have complexity 2. A consecutive application of Lemma 5.2 and Lemma 5.3
implies r = 1. Consequently, B′ is tame and so is B.

(3) ⇒ (1) Suppose that Γs(B) possesses a component of type Z[Ã12]. By [25, (2.1)], the block
B is symmetric, and we may invoke [17, (IV.3.8.3),(IV.3.9)] to see that the algebra B/ Soc(B) is
special biserial. Thus, B/ Soc(B) is tame or representation-finite (cf. [17, (II.3.1)]) and, having the
same non-projective indecomposables, B enjoys the same property. Since B possesses modules of
complexity 2, it is not of finite representation type, cf. [37]. �

Remark. Let G be a smooth algebraic group scheme. According to [22, (4.6)], the presence of a
tame block B ⊆ Dist(Gr) implies that G is reductive.

7. The Nakayama Functor of modgr Λ

In preparation for our analysis of GrT -modules we study in this section the category of graded
modules of an associative algebra. Let k be a field,

Λ =
⊕
i∈Zn

Λi

be a finite-dimensional, Zn-graded k-algebra. We denote by mod grΛ the category of finite-
dimensional Zn-graded Λ-modules and degree zero homomorphisms. Given i ∈ Zn, the i-th shift
functor [i] : mod gr Λ −→ modgr Λ sends M onto M [i], where

M [i]j := Mj−i ∀ j ∈ Z

and leaves the morphisms unchanged. The Λop-module HomΛ(M,Λ)∗ has a natural Zn-grading.
There results a functor

N : mod grΛ −→ modgr Λ ; M 7→ HomΛ(M,Λ)∗,

the Nakayama functor of mod grΛ. The purpose of this section is to determine this functor for
certain Hopf algebras Λ. We begin with a few general observations.

7.1. Graded Frobenius Algebras. Suppose that Λ is a Frobenius algebra with Frobenius homo-
morphism π : Λ −→ k and associated non-degenerate bilinear form

( , )π : Λ× Λ −→ k ; (x, y) 7→ π(xy).

The uniquely determined automorphism µ : Λ −→ Λ given by

(y, x)π = (µ(x), y)π

is called the Nakayama automorphism of the form ( , )π. For an arbitrary automorphism α ∈
Autk(Λ) and a Λ-module M , we denote by M (α) the Λ-module with underlying k-space M and
action

a.m := α−1(a)m ∀ a ∈ Λ, m ∈ M.

Given M ∈ modgr Λ, we define the support of M via

supp(M) := {i ∈ Zn ; Mi 6= (0)}.
Then we have supp(M [d]) = d + supp(M), as well as supp(M∗) = − supp(M). If α ∈ Autk(Λ) is
an automorphism of degree 0 and M ∈ modgr Λ is graded, then M (α) is graded via

M
(α)
i := Mi ∀ i ∈ Zn.
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In particular, supp(M) = supp(M (α)). Recall that the enveloping algebra Λe := Λ⊗kΛop inherits a
Zn-grading from Λ via

Λe
i :=

⊕
`+j=i

Λ`⊗kΛj ∀ i ∈ Zn.

The algebra Λ obtains the structure of a graded Λe-module by means of

(a⊗ b).c := acb ∀ a, b, c ∈ Λ.

Our first result extends the classical formula for the Nakayama functor of Frobenius algebras to the
graded case.

Lemma 7.1.1. Suppose that Λ is a Frobenius algebra with Frobenius homomorphism π : Λ −→ k
of degree dΛ. Then the following statements hold:

(1) The Nakayama automorphism µ : Λ −→ Λ of the form ( , )π has degree 0.
(2) There are natural isomorphisms

N(M) ∼= M (µ−1)[dΛ]

for all M ∈ modgr Λ.
(3) Every homogeneous Frobenius homomorphism of Λ has degree dΛ.

Proof. (1) Since π has degree dΛ, we have π(Λi) = (0) for i 6= −dΛ, whence

(Λi,Λj)π = (0) for i + j 6= −dΛ.

Let a ∈ Λi and write µ(a) =
∑

j∈Zn xj . Assuming j 6= i, we consider b ∈ Λ`. Then we have
(xj , b)π = 0 for j + ` 6= −dΛ. If j + ` = −dΛ, we obtain, observing i + ` 6= −dΛ,

(xj , b)π = (µ(a), b)π = (b, a)π = 0.

As a result, xj = 0 whenever j 6= i, so that µ(a) = xi ∈ Λi.
(2) Let γ := µ ⊗ idΛ be the induced automorphism of the enveloping algebra Λe. Since π has

degree dΛ, the map
Ψ : Λ(γ−1) −→ Λ∗ ; Ψ(x)(y) := (x, y)π

is an isomorphism of Λe-modules of degree dΛ. There results an isomorphism

Λ(γ−1)[dΛ] ∼= Λ∗

of graded Λe-modules. The adjoint isomorphism theorem yields natural isomorphisms

N(M) ∼= Λ∗⊗ΛM ∼= Λ(γ−1)[dΛ]⊗ΛM ∼= M (µ−1)[dΛ],

for every M ∈ modgr Λ, cf. [3, (III.2.9)].
(3) If Λ has a Frobenius homomorphism of degree d′, then (2) provides an isomorphism Λ(δ−1)[d′]

∼= Λ∗, where δ = ν⊗ idΛ for some Nakayama automorphism ν of Λ of degree 0. We therefore obtain

supp(Λ) + dΛ = supp(Λ(γ−1)) + dΛ = supp(Λ(γ−1)[dΛ]) = − supp(Λ) = supp(Λ) + d′,

so that x 7→ x+(dΛ−d′) leaves supp(Λ) invariant. Since supp(Λ) is finite, it follows that d′ = dΛ. �

Lemma 7.1.2. Let Λ =
⊕

i∈Zn Λi be a graded k-algebra, B ⊆ Λ be a block of Λ. Then the following
statements hold:

(1) Any central idempotent of Λ is homogeneous of degree 0.
(2) The block B ⊆ Λ is a homogeneous subspace.
(3) Suppose that Λ is a Frobenius algebra with homogeneous Frobenius homomorphism of degree

dΛ. Then B is a Frobenius algebra, and every homogeneous Frobenius homomorphism of B has
degree dΛ.
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Proof. (1) General theory provides a torus T , which acts on Λ via automorphisms such that the
given grading coincides with the weight space decomposition Λ =

⊕
λ∈X(T ) Λλ of Λ relative to T .

Let I ⊆ Λ be the set of central primitive idempotents of Λ. Then I is a finite, T -invariant set, so
that the connected algebraic group T acts trivially on I. Hence I ⊆ Λ0, and our assertion follows
from the fact that every central idempotent is a sum of elements of I.

(2) There exists a central primitive idempotent e such that B = Λe. Thanks to (1), we have
e ∈ Λ0, whence

B =
⊕
i∈Zn

Λie =
⊕
i∈Zn

(B ∩ Λi),

as desired.
(3) Let π : Λ −→ k be a Frobenius homomorphism of degree dΛ. If I ⊆ B is a left ideal of B which

is contained in ker π|B, then I is also a left ideal of Λ, so that I = (0). In view of (2), the block B

is a homogeneous subspace. We conclude that π|B is a homogeneous Frobenius homomorphism of
B of degree dΛ. Our assertion now follows from Lemma 7.1.1. �

A k-algebra Λ is called connected if its Ext-quiver is connected. This is equivalent to Λ having
exactly one block. The following result in conjunction with the observations above shows when
graded Frobenius algebras afford homogeneous Frobenius homomorphisms.

Theorem 7.1.3. Let Λ =
⊕

i∈Zn Λi be a connected graded Frobenius algebra. Then there exists a
homogeneous Frobenius homomorphism π : Λ −→ k.

Proof. (1) Let Λe = Λ⊗k Λop be the enveloping algebra of Λ. As Λ is connected, the canonical
Λe-module Λ is indecomposable. Let π : Λ −→ k be a Frobenius homomorphism. As argued above,
there exists a degree 0 automorphism γ ∈ Autk(Λe) such that the map

Ψ : Λ(γ−1) −→ Λ∗ ; Ψ(x)(y) := (x, y)π

is an isomorphism of Λe-modules. As all modules involved are indecomposable, [34, (4.1)] ensures
the existence of an element d ∈ Zn and an isomorphism

Φ : Λ(γ−1)[d] −→ Λ∗

of graded Λe-modules. Consequently, the map

ρ : Λ −→ k ; ρ(x) := Φ(1)(x)

is a Frobenius homomorphism of degree d. �

Remark. Let Λ and Γ be two connected Zn-graded Frobenius algebras with homogeneous Frobenius
homomorphisms of degrees dΛ and dΓ, respectively. If dΛ 6= dΓ, then Lemmas 7.1.1 and 7.1.2
imply that Λ ⊕ Γ is a graded Frobenius algebra, which does not afford a homogeneous Frobenius
homomorphism. We shall see in the next section that such phenomena do not arise within the
context of graded Hopf algebras.

Suppose that Λ is a Frobenius algebra. Then mod grΛ is a Frobenius category, and [35, (3.5)] en-
sures that mod grΛ has almost split sequences. In view of [35, §1], the Auslander-Reiten translation
τgrΛ is given by

τgrΛ = N ◦ Ω2
grΛ,

where ΩgrΛ denotes the Heller operator of the Frobenius category mod gr Λ. We denote by Γs(grΛ)
the stable Auslander-Reiten quiver of mod grΛ.
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Corollary 7.1.4. Let Θ ⊆ Γs(grΛ) be a component. Then there exists an automorphism µ of Λ
of degree 0 and dΘ ∈ Z such that

τgrΛ(M) = Ω2
grΛ(M (µ))[dΘ]

for every M ∈ Θ.

Proof. Let
Λ = B1 ⊕B2 ⊕ · · · ⊕Bs

be the block decomposition of Λ. In view of Lemma 7.1.2, this is a decomposition of graded
Frobenius algebras which gives rise to a decomposition

mod gr Λ =
s⊕

i=1

modgr Bi

of the graded module category.
Suppose that M ∈ Θ. Since M is indecomposable, there exists a block B` ⊆ Λ such that

M ∈ modgr B`. This readily implies that Θ ⊆ modgr B`, whence Θ ⊆ Γs(grB`). Our assertion
now follows from Theorem 7.1.3. �

7.2. Graded Hopf Algebras. Suppose that H is a finite-dimensional Hopf algebra. We say that
H is graded if H =

⊕
i∈Zn Hi is a graded k-algebra such that the comultiplication ∆ : H −→ H⊗kH

is homogeneous of degree 0. In that case, the counit ε : H −→ k and the antipode η : H −→ H are
also maps of degree 0. The subspace∫ `

H
:= {x ∈ H ; hx = ε(h)x ∀ h ∈ H}

is called the space of left integrals of H. This space is known to be one-dimensional, cf. [57].

Lemma 7.2.1. Let H be a graded Hopf algebra. Then the following statements hold:
(1) There exists i ∈ Zn such that

∫ `
H ⊆ Hi.

(2) H is a Frobenius algebra with a homogeneous Frobenius homomorphism π : H −→ k.

Proof. (1) Let x =
∑

j∈Zn xj be a non-zero left integral of H. Given h ∈ Hd, we have ε(h)x = hx =∑
j∈Zn hxj , so that

hxj = ε(h)xj+d ∀ j ∈ Zn.

Since deg ε = 0, we obtain hxj = 0 for d 6= 0, and hxj = ε(h)xj for d = 0. Consequently, xj ∈
∫ `
H

for every j ∈ Zn. Since dimk

∫ `
H = 1, it follows that

∫ `
H ⊆ Hi for some i ∈ Zn.

(2) Note that the dual Hopf algebra H∗ is graded. Let π ∈ H∗ be a non-zero left integral.
A result due to Larson and Sweedler [47] ensures that H is a Frobenius algebra with Frobenius
homomorphism π : H −→ k. In view of (1), the linear map π is homogeneous. �

Example. Suppose that char(k) = p > 0, and let (g, [p]) be a finite-dimensional restricted Lie
algebra with restricted enveloping algebra U0(g). Assume that g =

⊕
i∈Zn gi is restricted graded,

that is, g
[p]
i ⊆ gip, so that U0(g) is also Zn-graded. Given a homogeneous basis {e1, . . . , em} of g, we

write ea := ea1
1 · · · eam

m for every a ∈ Nm
0 and put τ := (p−1, . . . , p−1) as well as a ≤ τ :⇔ ai ≤ p−1

for 1 ≤ i ≤ m. Then the set {ea ; 0 ≤ a ≤ τ} is a homogeneous basis of U0(g), and

π : U0(g) −→ k ;
∑

0≤a≤τ

αae
a 7→ ατ
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is a homogeneous Frobenius homomorphism of degree dg := −(p−1)
∑

i∈Zn(dimk gi)i. Moreover,
by [45, (I.9.7)], the unique automorphism µ : U0(g) −→ U0(g), given by µ(x) = x+tr(adx)1 for all
x ∈ g, is the Nakayama automorphism corresponding to π. By Lemma 7.1.1, we have

N(M) ∼= M (µ−1)[dg]

for every M ∈ modgr U0(g). Let P (S) be the projective cover of the graded simple module S.
General theory implies that

Soc(P (S)) ∼= N−1(S) ∼= S(µ)[−dg],

which retrieves [44, (1.9)].

We are going to apply the foregoing result in the context of Frobenius kernels. Suppose that
char(k) = p > 0, and let G be a reduced algebraic k-group scheme with maximal torus T . We
denote the adjoint representation of G on Lie(G) by Ad. For r > 0, the algebra kGr obtains a
grading via the adjoint action of T on kGr:

kGr =
⊕

λ∈X(T )

(kGr)λ.

We shall identify characters of G, T and Gr with the corresponding elements of the coordinate
rings or the duals of the algebras of measures. Let λG ∈ X(G) be the character given by λG(g) =
det(Ad(g)) for all g ∈ G. If g =

⊕
α∈Ψ∪{0} gα is the root space decomposition of g := Lie(G)

relative to T , then

det(Ad(t)) =
∏
α∈Ψ

α(t)dimk gα

for every t ∈ T , so that

λG|T =
∑
α∈Ψ

(dimk gα)α.

Given r > 0, we denote by modGrT the category of finite-dimensional modules of the group scheme
GrT ⊆ G. In view of [23, (2.1)], which also hols for r > 1, this category is a direct sum of blocks
of the category mod(Gr oT ) of finite-dimensional (Gr oT )-modules. The latter category is just
the category of X(T )-graded kGr-modules. It now follows from work by Gordon-Green [35, (3.5)],
[33] that the Frobenius category modGrT affords almost split sequences. By the same token, the
Auslander-Reiten translation τGrT of modGrT is given by

τGrT = N ◦ Ω2
GrT .

The following result provides a formula for the Nakayama functor of modGrT .

Proposition 7.2.2. Let G be a reduced algebraic k-group scheme with maximal torus T ⊆ G.
(1) The X(T )-graded algebra kGr possesses a Frobenius homomorphism π : kGr −→ k of degree

−(pr−1)λG|T .
(2) We have N(M) ∼= (M⊗kkλG|GrT

)[−prλG|T ] for every M ∈ modGrT .

Proof. (1) Let π ∈ k[Gr] = kG∗
r be a non-zero (left) integral of the commutative Hopf algebra k[Gr].

By the proof of [45, (I.9.7)], the group G acts on the subspace kπ via the character λGr : G −→
k ; g 7→ det(Ad(g))−(pr−1). Consequently, π is homogeneous of degree λGr |T = −(pr−1)λG|T ∈
X(T ).
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(2) Let ζ` be the left modular function of kGr. By definition, ζ` : kGr −→ k is given by
xh = ζ`(h)x for every h ∈ kGr and x ∈

∫ `
kGr

. Owing to [30, (1.5)], the automorphism idkGr ∗ζ` is
the Nakayama automorphism associated to ( , )π. It now follows from [45, (I.9.7)] that

ζ`(g) = λG(g)

for all g ∈ Gr. Let M be a graded kGr-module. In view of Lemma 7.1.1, the Nakayama functor N

of mod gr kGr satisfies

N(M) ∼= M (idkGr ∗ζ
−1
` )[−(pr−1)λG|T ].

For λ ∈ X(T ), we denote by kλ the one-dimensional (GroT )-module on which T and Gr act via λ
and 1, respectively. Then we have

M [λ] ∼= M⊗kkλ ∀ λ ∈ X(T ), M ∈ modGroT.

For a character γ ∈ X(G), we define characters γ̂, γ̃ ∈ X(GroT ) via

γ̂(g, t) = γ(g)γ(t) and γ̃(g, t) = γ(g),

respectively. Given M ∈ modGroT , we now obtain

M (idkGr ∗ζ
−1
` )[−(pr−1)λG|T ] ∼= (M⊗kkλ̃G

)⊗kk−(pr−1)λG|T
∼= (M⊗kkλ̂G

)⊗kk−prλG|T
∼= (M⊗kkλ̂G

)[−prλG|T ].

Let ω : Gr oT −→ GrT be the canonical quotient map. Since λ̂G(t−1, t) = 1 for every t ∈ Tr, we
have

(λG|GrT ) ◦ ω = λ̂G.

As modGrT is a sum of blocks of modGroT , it follows that

N(M) ∼= (M⊗kkλG|GrT
)[−prλG|T ]

for every M ∈ modGrT . �

For future reference, we record the following result:

Corollary 7.2.3. Suppose that G is a reduced group scheme with maximal torus T ⊆ G and Lie
algebra g =

⊕
α∈Ψ∪{0} gα.

(1) If dimk gα = dimk g−α for every α ∈ Ψ, then τGrT = Ω2
GrT .

(2) If G is reductive, then τGrT = Ω2
GrT .

Proof. (1) By assumption, we have λG|T ≡ 1, so that T ⊆ ker λG. Let ZG(T ) be the Cartan
subgroup of G defined by T . According to [54, (7.2.10)], the group ZG(T ) is connected and nilpotent,
and [54, (6.8)] implies that ZG(T ) ⊆ ker λG. As all Cartan subgroups of G are conjugate, their
union U is also contained in ker λG. By virtue of [54, (7.3.3)], the set U lies dense in G, so that
λG ≡ 1. Our assertion now follows from Proposition 7.2.2.

(2) This is a direct consequence of (1) and [45, (II.1)]. �
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8. Complexity and the Auslander-Reiten Quiver Γs(GrT )

As before, we fix a smooth group scheme G as well as a maximal torus T ⊆ G. The set of roots
of G relative to T will be denoted Ψ. Recall that the category modGrT of finite-dimensional GrT -
modules is a Frobenius category, whose Heller operator is denoted ΩGrT . By work of Gordon and
Green [34], the forgetful functor F : modGrT −→ modGr preserves and reflects projectives and
indecomposables, respectively. Moreover, we have Ωn

Gr
◦ F = F ◦ Ωn

GrT for all n ∈ Z, and the fiber
F−1(F(M)), defined by an indecomposable GrT -module M , consists of the shifts {M⊗kkprλ ; λ ∈
X(T )}, with different shifts giving non-isomorphic modules (see [23, 25] for more details). Barring
possible ambiguities, we will often suppress the functor F.

8.1. Modules of complexity 1. Modules of complexity 1 play an important rôle in the determi-
nation of the Auslander-Reiten quiver of a finite group scheme. Our study of the stable AR-quiver
of mod GrT also necessitates some knowledge concerning such modules. Since modGrT has pro-
jective covers, we have the concept of a minimal projective resolution, so that we can speak of
the complexity cxGrT (M) of a GrT -module M . Note that cxGr(F(M)) = cxGrT (M) for every
M ∈ modGrT .

Recall that the conjugation action of T on Gr induces an operation of T on the variety Vr(G).
Standard arguments then show that the rank varieties of GrT -modules are T -invariant subvarieties
of Vr(G).

Theorem 8.1.1. Let M be an indecomposable GrT -module such that cxGrT (M) = 1. Then there
exists a unique α ∈ Ψ ∪ {0} such that

Ω2pr−ph(M)

GrT (M) ∼= M⊗kkprα.

Proof. In view of [34, (3.2)], the module M |Gr is indecomposable, and we have cxGr(M) =
cxGrT (M) = 1. Since M is a GrT -module, the variety Vr(G)M ⊆ Vr(G) is T -invariant. As a
result, the subgroup UM ⊆ Gr, provided by Theorem 3.3, is also T -invariant. Thanks to Theorem
3.3, we have s := ph(M) = phUM

(M).
According to Proposition 3.5, there exist α ∈ Ψ ∪ {0} and ζ ∈ (H2pr−s

(Gr, k)red)−prα such that
Z(ζ)∩VGr(M) ( VGr(M). Since the module M |Gr is indecomposable, the one-dimensional variety
VGr(M) is a line (cf. [56, (7.7)]). Consequently, Z(ζ) ∩ VGr(M) = {0}.

In analogy with §3, the cohomology class ζ can be interpreted as an element of the weight space
HomGr(Ω

2pr−s

GrT (k), k)−prα, or equivalently, as a non-zero GrT -linear map ζ̂ : Ω2pr−s

GrT (k)⊗kk−prα −→ k,
see [45, (I.6.9(5))]. There results an exact sequence

(0) −→ L̂ζ −→ Ω2pr−s

GrT (k)⊗kk−prα
ζ̂−→ k −→ (0)

of GrT -modules. Since F(L̂ζ) = Lζ , we have VGr(L̂ζ⊗k M) = Z(ζ) ∩ VGr(M) = {0}, so that the
GrT -module L̂ζ⊗kM is projective. The arguments of (3.2) now yield

Ω2pr−s

GrT (M)⊗kk−prα
∼= M,

as desired.
If we also have an isomorphism

Ω2pr−ph(M)

GrT (M) ∼= M⊗kkprβ

for some β ∈ Ψ ∪ {0}, then the shifts M [prα] and M [prβ] of the indecomposable X(T )-graded
module M coincide, and [34, (4.1)] in conjunction with X(T ) being torsion-free yields α = β. �
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Remark. For r = 1 our result specializes to [23, (2.4(2))].

Suppose that G is reductive. For every root α ∈ Ψ, there exists a subgroup Uα ⊆ G on which T
acts via α. The group Uα is isomorphic to the additive group Ga and it is customarily referred to
as the root subgroup of α.

An indecomposable GrT -module M is called periodic, provided there is an isomorphism Ωm
GrT (M)

∼= M for some m ∈ N.

Corollary 8.1.2. Suppose that G is reductive. Let M be an indecomposable GrT -module. Then
the following statements hold:

(1) If cxGrT (M) = 1, then there exists a unique root α ∈ Ψ such that Ω2pr−ph(M)

GrT (M) ∼= M⊗kkprα.
(2) The module M is not periodic.

Proof. (1) Since M is not projective, the Main Theorem of [11] provides a root α ∈ Ψ such that
M |(Uα)r

is not projective. Hence we have UM = (Uα)s in the proof of Theorem 8.1.1.
(2) Assume to the contrary that there exists a natural number m > 0 such that

Ωm
GrT (M) ∼= M.

Then we have cxGrT (M) = 1 and part (1) provides a root α ∈ Ψ and a non-negative integer ` ≥ 0
such that

Ω2p`

GrT (M) ∼= M⊗kkprα.

This implies
M ∼= Ω2mp`

GrT (M) ∼= M⊗kkmprα,

which, by our above remarks, is only possible for m = 0. �

As noted in Section 3, the number 2pr−ph(M) is in general only an upper bound for the period of a
periodic module. In the classical context of reductive groups, however, the periods of restrictions
of GrT -modules of complexity 1 are completely determined by their projective heights.

Let G be reductive. Given a root α ∈ Ψ, we denote by α∨ the corresponding coroot, see [45,
(II.1.3)]. As usual, ρ denotes the half-sum of the positive roots.

Theorem 8.1.3. Suppose that G is reductive. Let M ∈ modGrT be indecomposable of complexity
cxGrT (M) = 1. Then M |Gr is periodic with period per(M) = 2pr−ph(M).

Proof. Let s be the period of the indecomposable module M |Gr . By Theorem 8.1.1, we have

Ω2pr−ph(M)

Gr
(M) ∼= M,

so that there exists ` ∈ N with s` = 2pr−ph(M). On the other hand, M and Ωs
GrT (M) are indecom-

posable GrT -modules such that

F(Ωs
GrT (M)) ∼= Ωs

Gr
(F(M)) ∼= F(M),

and [34, (4.1)] provides λ ∈ X(T ) such that

Ωs
GrT (M) ∼= M⊗kkλ.

Since M and M⊗kλ both belong to modGrT , there exists γ ∈ X(T ) such that λ = prγ. Applying
Theorem 8.1.1 again, we obtain

M⊗kkprα
∼= Ω2pr−ph(M)

GrT (M) ∼= M⊗kk`prγ ,
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so that [34, (4.1)] implies α = `γ. Let W be the Weyl group of the root system Ψ. General theory
(cf. [40, (1.5)]) provides an element w ∈ W such that αi := w(α) is simple. If Ψ is not a union of
copies of A1, then there exists a simple root αj such that αi(α∨j ) = −1. Thus, −1 = w(γ)(α∨j )`,
proving that ` = 1. Consequently, s = 2pr−ph(M), as desired.

It remains to consider the case, where the connected components of the root system all have
type A1. In that case, we have

2 = α(α∨) = γ(α∨)`,
so that ` ∈ {1, 2}.

If ` = 2, then γ = 1
2α 6∈ ZΨ. Since the GrT -modules M and N := Ωpr−ph(M)

GrT (M) are indecompos-
able, they belong to the same block of modGrT , see [45, (7.1)]. Consequently, all their composition
factors belong to the same linkage class. Let Wp be the affine Weyl group and denote by

w.λ := w(λ+ρ)− ρ ∀ w ∈ Wp, λ ∈ X(T )

the dot action of Wp on X(T ), cf. [45, (II.6.1)]. Suppose that L̂r(µ) is a composition factor of
M . According to [45, (II.9.6)], the module L̂r(µ+prγ) ∼= L̂r(µ)⊗kprγ is a composition factor
of N ∼= M ⊗k kprγ . The linkage principle [45, (II.9.19)] implies that µ + prγ ∈ Wp.µ. Since
w.λ ≡ λ mod(ZΨ) for all w ∈ Wp and λ ∈ X(T ), we conclude that prγ = pr

2 α ∈ ZΨ. As p ≥ 3,
we have reached a contradiction.

As a result, ` = 1, so that we have s = 2pr−ph(M) in this case as well. �

We turn to the question, which periods can actually occur. Our approach necessitates the following
realizability criterion.

Proposition 8.1.4. Suppose that V ⊆ Vr(G) is a T -invariant conical closed subvariety. Then
there exists a GrT -module M such that V = Vr(G)M .

Proof. Thanks to [56, (6.8)], it suffices to establish the corresponding result for support varieties.
Since Tr acts trivially on H•(Gr, k) (cf. [45, (I.6.7)]), the T -action on H•(Gr, k) gives rise to the
following decomposition

H•(Gr, k) =
⊕
n≥0

H2n(Gr, k) =
⊕
n≥0

⊕
λ∈X(T )

H2n(Gr, k)prλ.

If V ⊆ VGr(k) is a conical, T -invariant closed subvariety, then there exists a homogeneous T -
invariant ideal IV � H•(Gr, k) such that

V = Z(IV ).

We let ζ1, . . . , ζr be homogeneous generators of IV , that is, ζi ∈ H2ni(Gr, k)prλi
for suitable ni ≥ 0

and λi ∈ X(T ). As noted earlier, each ζi corresponds to a map ζ̂i : Ω2ni
GrT (k)⊗kk−prλi

−→ k, whose
kernel L̂ζi

:= ker ζ̂i ∈ modGrT has support

VGr(L̂ζi
) = Z(ζi),

see [56, (7.5)]. The result now follows from the tensor product theorem [56, (7.2)]. �

Corollary 8.1.5. Let G be reductive. Then the following statements hold:
(1) Given s ∈ {0, . . . , r−1}, there exists an indecomposable, periodic Gr-module M , whose period

equals 2ps.
(2) The stable AR-components Θ ⊆ Γs(Gr) containing a module of complexity 1 are precisely of

the form Z[A∞]/〈τps〉, where s ∈ {0, . . . , r−1}.
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Proof. (1) Let α ∈ Ψ be a root, Uα ⊆ G be the corresponding root subgroup. We consider the
subgroup

U := (Uα)r−s ⊆ Gr

and note that U ∼= Ga(r−s) is a T -invariant elementary abelian subgroup of height ht(U) = r−s.
Let ϕ : Ga(r) −→ U be the map such that im ϕ = U. Since T acts on U via the character α, the
one-dimensional closed subvariety

V := {γ.ϕ ; γ ∈ k×} ∪ {0}
of Vr(G) is T -invariant. Proposition 8.1.4 now provides N ∈ modGrT such that Vr(G)N = V .
Since V is irreducible, we have Vr(G)M = V for a suitable indecomposable constituent M of N .
According to Theorem 8.1.3, the module M |Gr is periodic, with period 2pr−ht(U) = 2ps.

(2) Since kGr is symmetric, we have τGr
∼= Ω2

Gr
. A consecutive application of [21, (2.1)], [21,

(4.1)] and [23, (4.4)] shows that Θ is of the form Z[A∞]/〈τps〉. Part (1) implies that for every
s ∈ {0, . . . , r−1} there exists an infinite tube of rank ps. �

Remark. The example of the groups SL(2)1Tr with r ≥ 3 shows that for infinitesimal groups that
are not Frobenius kernels of smooth groups, the ranks of tubes may be more restricted, see [28,
(5.6)].

8.2. Webb’s Theorem. Results by Happel-Preiser-Ringel [36] show that the presence of so-called
subadditive functions imposes constraints on the structure of the tree class of a connected stable
representation quiver. This approach was first effectively employed by Webb [59] in his determina-
tion of the tree classes for AR-components of group algebras of finite groups. We shall establish an
analogue for mod GrT , with a refinement for the case, where G is reductive.

Let G be a smooth algebraic group scheme. In the sequel, we let Γs(GrT ) be the stable Auslander-
Reiten quiver of the Frobenius category modGrT . For a component Θ ⊆ Γs(GrT ), we have

Vr(G)F(M) = Vr(G)F(N) for all M,N ∈ Θ.

Accordingly, we can attach a variety Vr(G)Θ to the component Θ. By combining this fact with
results by Happel-Preiser-Ringel [36] one obtains:

Proposition 8.2.1 (cf. [23]). Let Θ ⊆ Γs(GrT ) be a component. Then the tree class T̄Θ is a simply
laced finite or infinite Dynkin diagram, a simply laced Euclidean diagram, or Ã12. �

Proposition 8.2.2. Suppose that G is reductive, and let Θ ⊆ Γs(GrT ) be a component such that
dim Vr(G)Θ 6= 2. Then Θ ∼= Z[A∞].

Proof. A consecutive application of Corollary 7.2.3 and Corollary 8.1.2 shows that modGrT has
no τGrT -periodic modules. We may thus adopt the arguments of [23, (3.2)]. �

In case the underlying group is reductive, only three types of components can occur:

Theorem 8.2.3. Let G be reductive of characteristic char(k) = p ≥ 3. Suppose that Θ ⊆ Γs(GrT )
is a component.

(1) If Θ contains a simple module S of complexity cxGrT (S) = 2, then Θ ∼= Z[A∞], Z[A∞
∞].

(2) We have Θ ∼= Z[A∞], Z[A∞
∞], or Z[D∞].
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Proof. (1) In view of [34, (1.3)], the module S|Gr is simple and of complexity cxGr(S) = 2. In this
situation [20, (7.1)] provides a decomposition G = HK of G into an almost direct product such
that

(a) g = Lie(H)⊕ Lie(K) with Lie(H) = sl(2), and
(b) Vr(G)M = Vr(H)M and M |Kr is projective for every M ∈ Θ.

Since H is an almost simple group of rank 1, it follows that the central subgroup H ∩ K ⊆ H is
either trivial or isomorphic to µ(2) (cf. [54, (8.2.4)]). Hence, if H ∩ K 6= ek, then there exists a
character λ ∈ X(H ∩K) ∼= Z/(2) such that H ∩K acts on every vertex M ∈ Θ via λ. As H ∩K
is contained in the maximal torus T , we can find γ ∈ X(T ) with γ|H∩K = λ. In view of p being
odd, we also have prγ|H∩K = λ. Consequently, H ∩K acts trivially on every vertex of the shifted
component Θ[−prγ] ∼= Θ.

Let G′ := G/(H ∩ K), and consider its maximal torus T ′ := T/(H ∩ K) (cf. [54, (7.2.7)]).
According to [45, (II.9.7)], there results an exact sequence

ek −→ H ∩K −→ GrT −→ G′
rT

′ −→ ek,

with modG′
rT

′ being a sum of blocks of modGrT . By the above observation, a suitable shift of Θ
belongs to mod(G′

rT
′). Setting H ′ := H/(H ∩K) and K ′ := K/(H ∩K), we have G′ = H ′ ×K ′,

while (a) and (b) continue to hold for H ′ and K ′. As a result, we may assume in addition that
(c) G = H ×K.

By general theory, there exist maximal tori TH ⊆ H and TK ⊆ K such that T = TH × TK .
Consequently, the isomorphism

kGr
∼= kHr⊗kkKr

induced by (c) is compatible with the T -action. Thus, the outer tensor product defines a functor

modHrTH ×modKrTK −→ modGrT ; (M,N) 7→ M⊗kN.

Let B ⊆ kGr be the block containing the simple Gr-module S, so that Θ ⊆ Γs(BT ). Owing to
[13, Section 10.E], the Gr-module S is an outer tensor product

S ∼= S1⊗kS2

with a simple projective Kr-module S2. In view of [45, (II.9.6)], we may assume that S1 ∈ modHrT
and S2 ∈ modKrT . It now follows from [34, (4.1)] that

S[γ] ∼= S1⊗kS2

for a suitable γ ∈ X(T ). (Since the right-hand module lies in modGrT , we actually have γ ∈
prX(T ).)

Letting B1 ⊆ kHr be the block containing S1, we obtain inverse equivalences

modB1 −→ modB ; X 7→ X⊗kS2

and
modB −→ modB1 ; Y 7→ HomkKr(S2, Y ),

so that the first functor induces an equivalence

modB1TH −→ modBT ; X 7→ X⊗kS2.

Thus, Θ is isomorphic to a component Θ1 ⊆ Γs(HrTH), which, by (b), has a two-dimensional rank
variety.

Since H has rank 1, we have H ∼= SL(2),PSL(2). Since modPSL(2)r−sT
′ is a sum of blocks of

modSL(2)r−sT , it suffices to address the case, where H = SL(2). We shall write T := TH . As
noted in Section 5, the block B1 is of the form B

(r)
i,s and Lemma 5.1 provides a Morita equivalence

modB
(r−s)
i,0 −→ modB

(r)
i,s ; M 7→ Sts⊗kM [s].
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Thanks to [45, (II.10.4)], this functor and its inverse take SL(2)r−sT -modules to SL(2)rT -modules,
so that Θ1 is isomorphic to a component Θ2 of Γs(SL(2)r−sT ), whose modules have complexity 2.

If r−s = 1, then standard SL(2)1-theory (see [23, §3, Example]) implies Θ2
∼= Z[A∞

∞]. Now
assume that r−s ≥ 2 and let L̂r−s(λ) be the simple module belonging to Θ2 which corresponds
to S. According to [25, (3.3)], the forgetful functor F : mod SL(2)r−sT −→ modSL(2)r−s takes
our component Θ2 to the component Ψ2 := F(Θ2) ⊆ Γs(SL(2)r−s) containing the simple module
Lr−s(λ). Since r − s ≥ 2, Lemma 5.3 shows that Htr−s(λ) is indecomposable. From the standard
almost split sequence

(0) −→ Rad(Pr−s(λ)) −→ Htr−s(λ)⊕ Pr−s(λ) −→ Pr−s(λ)/ Soc(Pr−s(λ)) −→ (0)

we see that Pr−s(λ)/ Soc(Pr−s(λ)) has exactly one predecessor. Consequently, the module Lr−s(λ)
∼= ΩSL(2)r−s

(Pr−s(λ)/ Soc(Pr−s(λ))) enjoys the same property and Proposition 5.5 guarantees that
Ψ2

∼= Z[A∞]. It follows that Θ2
∼= Z[A∞], Z[A∞

∞], Z[D∞]. Let ϕ ∈ Vr−s(G)Θ2 and consider the
module Mϕ := k SL(2)r−s⊗k[ur−1] k. As argued in [23, (3.2)],

δ : Ψ2 −→ N ; X 7→ dimk Ext1SL(2)r−s
(Mϕ, X)

is a τSL(2)r−s
-invariant subadditive function such that δ ◦ F is a τSL(2)r−sT -invariant subadditive

function on Θ2. If T̄Θ2 ∈ {A∞
∞, D∞}, then [4, (VII.3.4)] and [4, (VII.3.5)] show that δ ◦ F, and

thereby δ, is bounded and additive. Since Z[A∞] does not afford such a function, it follows that
Θ2

∼= Z[A∞], as desired.
(2) In view of Proposition 8.2.2, we may assume that dim Vr(G)Θ = 2. By Proposition 8.2.1,

it remains to rule out the case, where Θ ∼= Z[Ãpq] or where T̄Θ is Euclidean. In these cases, the
component Θ has only finitely many τGrT -orbits, so that the component Ψ := F(Θ) also enjoys this
property. It now follows from [21, (4.1)] that Ψ ∼= Z[Ã12]. Thanks to [59, Thm.A], we may assume
that Θ contains a simple module, and (1) shows that the abovementioned cases cannot occur. �

Remark. It is not known whether components of tree class D∞ actually occur. According to [25,
(4.5)], components containing baby Verma modules have tree class A∞.

8.3. Components containing Verma modules. Throughout, G denotes a smooth reductive
group scheme with maximal torus T ⊆ G and root system Ψ. By picking a Borel subgroup
B ⊆ G containing T we obtain the sets Ψ+ and Σ of positive and simple roots, respectively. Given
λ ∈ X(T ), we denote by kλ the corresponding one-dimensional T -module. Since B = UT is a
product of T and the unipotent radical U ⊆ B, this module is also a B-module. Given r ∈ N, the
adjoint representation endows the induced Dist(Gr)-module

Zr(λ) := Dist(Gr)⊗Dist(Br)kλ

with the structure of a GrT -module. We denote this module by Ẑr(λ) and refer to Zr(λ) and
Ẑr(λ) as baby Verma modules defined by λ. Given λ ∈ X(T ), the modules Zr(λ) and Ẑr(λ) have
simple tops Lr(λ) and L̂r(λ), and all simple objects of modGr and modGrT arise in this fashion.
Moreover, every simple GrT -module L̂r(λ) has a projective cover P̂r(λ), see [45, §II.3, §II.9, §II.11]
for more details. In what follows, B− denotes the Borel subgroup opposite to B.

The main result of this section, Theorem 8.3.3, employs support varieties to study the Heller
translates of the baby Verma modules Ẑr(λ). This is motivated by the Auslander-Reiten the-
ory of the Frobenius categories modGrT and modGr, where non-projective Verma modules are
quasi-simple (cf. [25, (4.4),(4.5)]). Our result implies that the connected components of the stable
Auslander-Reiten quiver Γs(Gr) contain at most one baby Verma module Zr(λ).
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We let F(∆) ⊆ modGrT be the subcategory of ∆-good modules. By definition, every object
M ∈ F(∆) possesses a filtration, a so-called Ẑr-filtration, whose factors are baby Verma modules
Ẑr(λ). The filtration multiplicities [M : Ẑr(λ)] do not depend on the choice of the filtration, and
each projective indecomposable module P̂r(λ) belongs to F(∆), with its filtration multiplicities
being linked to the Jordan-Hölder multiplicities by BGG reciprocity:

[P̂r(λ) : Ẑr(µ)] = [Ẑr(µ) : L̂r(λ)],

see [45, §II.11]. Since [Ẑr(λ) : L̂r(λ)] = 1, this readily implies the following:

Lemma 8.3.1. Let m > 0. Then Ωm
GrT (Ẑr(λ)) ∈ F(∆) with filtration factors Ẑr(µ) for µ > λ. �

We require the following subsidiary result concerning the subset wt(M) ⊆ X(T ) of weights of a
GrT -module M .

Lemma 8.3.2. Let M be a GrT -module such that wt(M) ⊆ λ + ZΨ for some λ ∈ X(T ). Then
wt(ΩGrT (M)) ⊆ λ + ZΨ.

Proof. We let T act on Dist(Gr) via the adjoint representation and put A := Dist(U−
r ) Dist(Ur).

Then A is a T -submodule of Dist(Gr) with wt(A) ⊆ ZΨ (cf. [45, (II.1.19)]).
Given γ ∈ X(T ), we consider the Gr-module

Pγ := Dist(Gr)⊗Dist(Tr)kγ .

In view of [45, (II.1.12)], the adjoint action of T endows Pγ with the structure of a GrT -module
such that

Pγ |T ∼= A⊗kkγ .

Frobenius reciprocity yields Ext1Gr
(Pγ ,−) ∼= Ext1Tr

(kγ ,−) = 0, so that each Pγ is a projective GrT -
module with wt(Pγ) ⊆ γ + ZΨ, see [45, (II.9.4)]. The canonical surjection Pγ −→ Ẑr(γ) induces
a surjective map Pγ −→ L̂r(γ). Consequently, the projective cover P̂r(γ) of L̂r(γ) has weights
wt(P̂r(γ)) ⊆ γ + ZΨ.

Let P̂ (M) be the projective cover of the GrT -module M . By the above, we have wt(P̂ (M)) ⊆
λ + ZΨ, whence

wt(ΩGrT (M)) ⊆ wt(P̂ (M)) ⊆ λ + ZΨ,

as desired. �

Theorem 8.3.3. Suppose that G is defined over Fp and that p is good for G. Let λ, µ ∈ X(T ) be
characters such that there exists m > 0 with

Ω2m
GrT (Ẑr(λ)) ∼= Ẑr(µ).

Then the following statements hold:
(1) We have dp(λ) = dp(µ) = r, and there exists a simple root α ∈ Σ\Ψr

λ such that µ = λ+mprα.
(2) Ω2n

GrT (Ẑr(λ)) ∼= Ẑr(λ+nprα) for all n ∈ Z.
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Proof. (1) We first assume that dp(λ) = 1. According to [25, (5.2)], there exists a simple root
α ∈ Σ \Ψ1

λ with V(Uα)r
(k) ⊆ VGr(Ẑr(λ)).

Proposition 3.5(2) provides an element ζ ∈ (H2(Gr, k)red)−prα such that Z(ζ) ∩ VGr(Ẑr(λ)) (
VGr(Ẑr(λ)). Then η := ζm ∈ (H2m(Gr, k)red)−mprα also has this property, and there results a short
exact sequence

(0) −→ L̂η −→ Ω2m
GrT (k)⊗kk−mprα

η̂−→ k −→ (0).

By tensoring this sequence with Ẑr(λ) while observing [45, (II.9.2)], we obtain a short exact sequence

(∗) (0) −→ L̂η⊗k Ẑr(λ)
(g1

g2
)

−→ Ẑr(µ−mprα)⊕ (proj.)
(f1,f2)−→ Ẑr(λ) −→ (0)

of GrT -modules. In particular, we have

Ẑr(λ) = f1(Ẑr(µ−mprα)) + f2((proj.)).

Since the baby Verma module Ẑr(λ) has a simple top, at least one summand has to coincide with
Ẑr(λ).

(a) If f2((proj.)) 6= Ẑr(λ), then r = 1 and µ = λ + mpα.

In this case, we have f1(Ẑr(µ−mprα)) = Ẑr(λ), so that equality of dimensions implies

Ẑr(µ−mprα) ∼= Ẑr(λ),

whence µ = λ+mprα. In view of [45, (II.3.7(9))], we thus have Zr(µ) ∼= Zr(λ), while our assumption
implies

Zr(λ) ∼= Zr(µ) ∼= Ω2m
Gr

(Zr(λ)).
Consequently, cxGr(Zr(λ)) = 1 and the inequality

r = dim V(Uα)r
(k) ≤ dim VGr(Zr(λ)) = 1

gives r = 1 and µ = λ+mpα. 3

In view of (a) we henceforth assume that f2((proj.)) = Ẑr(λ).

(b) We have λ− 2(pr − 1)ρ ≤ µ−mprα ≤ λ.
If f1 = 0, then our exact sequence (∗) yields

L̂η⊗k Ẑr(λ) ∼= ker(0, f2) ∼= Ẑr(µ−mprα)⊕ ΩGrT (Ẑr(λ))⊕ (proj.),

whence

Z(η) ∩ VGr(Ẑr(λ)) = VGr(Ẑr(µ−mprα)) ∪ VGr(ΩGrT (Ẑr(λ)))

= VGr(Ẑr(µ)) ∪ VGr(ΩGrT (Ẑr(λ)))

= VGr(Ẑr(λ)),

a contradiction. Thus, f1 6= 0 and Ẑr(λ)µ−mprα 6= (0), so that [45, (II.9.2(6))] implies λ−2(pr−1)ρ ≤
µ−mprα ≤ λ. 3

(c) There exists 0 < n ≤ mpr such that µ = λ + nα.
Since m > 0, it readily follows from Lemma 8.3.1 that µ > λ. In view of (b), we therefore have

µ−mprα ≤ λ < µ

so that there exist non-negative integers nβ, mβ with

µ = λ +
∑
β∈Σ

nββ and λ = µ−mprα +
∑
β∈Σ

mββ.
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Consequently, nα + mα = mpr while nβ + mβ = 0 for every simple root β 6= α. 3

We let L be the Levi subgroup of G that is defined by the simple root α. The baby Verma module
of LrT , associated to the weight λ ∈ X(T ) will be denoted ẐL

r (λ).

(d) We have Ω2m
LrT (ẐL

r (λ)) ∼= ẐL
r (µ).

Assuming L 6= G, we consider the triangular decomposition Gr = N−
r LrNr of Gr, see [45, (II.3.2)].

For γ ∈ X(T ), we have an isomorphism

Ẑr(γ)|LrT
∼= Dist(N−

r )ad⊗k ẐL
r (γ) ∼= ẐL

r (γ)⊕W (γ),

with W (γ) := Dist(N−
r )†ad⊗k ẐL

r (γ) being defined via the augmentation ideal of Dist(N−
r ). The

subscript indicates that LrT acts via the adjoint representation (cf. [45, (II.3.6(2))]). Consequently,
(c) yields

wt(W (µ)) ⊆
⋃

γ∈X(T )\(µ+Zα)

γ + Zα =
⋃

γ∈X(T )\(λ+Zα)

γ + Zα.

General properties of the Heller operator give rise to

ẐL
r (µ)⊕W (µ) ∼= Ẑr(µ)|LrT

∼= Ω2m
LrT (ẐL

r (λ))⊕ Ω2m
LrT (W (λ))⊕ (proj.).

According to [49, (4.2.1)], we obtain

VLr(Ẑ
L
r (λ)) = VLr(Ẑr(λ)) = VGr(Ẑr(λ)) ∩ VLr(k) ⊇ V(Uα)r

(k),

so that ẐL
r (λ) is not projective and Ω2m

LrT (ẐL
r (λ)) is indecomposable. Since wt(ẐL

r (λ)) ⊆ λ+Zα,
Lemma 8.3.2 ensures that wt(Ω2m

LrT (ẐL
r (λ))) ⊆ λ+Zα. As a result, the indecomposable LrT -module

Ω2m
LrT (ẐL

r (λ)) is not a direct summand of W (µ). The Theorem of Krull-Remak-Schmidt thus yields
Ω2m

LrT (ẐL
r (λ)) ∼= ẐL

r (µ). 3

(e) Let γ ∈ X(T ). If ẐL
r (γ) is not projective, then ẐL

r (γ)|L1T has no non-zero projective
summands.
The semi-simple part of L has rank 1 and is therefore isomorphic to SL(2) or PSL(2), see [54,
(8.2.4)]. (Since parabolic subgroups are connected (cf. [54, (7.3.8)]), so are Levi subgroups.) In
view of [45, (II.9.7)], the category modPSL(2)rT is a sum of blocks of modSL(2)rT (see also [25,
(3.5)]). We may therefore assume without loss of generality that LrT ∼= SL(2)rT .

Let P̂ be a projective indecomposable L1T -module, which is a direct summand of ẐL
r (γ)|L1T . If

P̂ is not simple, then standard SL(2)1T -theory (cf. [41, (12.2)]) shows that P̂ possesses weights of
multiplicity ≥ 2. Since every weight of ẐL

r (γ)|L1T has multiplicity 1, we conclude that P̂ is simple,
and hence is of the form ẐL

1 (ω) with 〈ω + ρ, α∨〉 ∈ pZ, see [45, (II.11.8)]. Writing γ = γ0 + pγ1

with γ0 ∈ X1(T ), it follows from [25, (5.4)] that ẐL
r (γ)|L1 belongs to the block B1(ω) ⊆ Dist(L1),

defined by ω. Since B1(ω) is simple, another application of [25, (5.4)] implies the projectivity of
ẐL

r (γ)|L1 , which, by [45, (II.9.4)] and [45, (II.11.8)], yields a contradiction. 3

(f) We have µ = λ + pmα.

Owing to (d), the module ẐL
r (µ) is not projective. Standard properties of the Heller operator in

conjunction with (e) thus yield

ẐL
r (µ)|L1T

∼= Ω2m
LrT (ẐL

r (λ))|L1T
∼= Ω2m

L1T (ẐL
r (λ)|L1T ).

By the same token, every indecomposable summand of ẐL
r (λ)|L1T is non-projective and hence of

complexity 1. Thanks to [23, (2.4)], we thus have

Ω2m
L1T (ẐL

r (λ)|L1T ) ∼= ẐL
r (λ)|L1T⊗kkpmα,
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whence
ẐL

r (µ)|L1T
∼= ẐL

r (λ)|L1T⊗kkpmα.

Since the weights of the former module are bounded above by µ, while those of the latter are
≤ λ+pmα, our assertion follows. 3

(g) We have dp(µ) = 1.
In light of (f), we have

〈µ + ρ, α∨〉 = 〈λ + ρ, α∨〉+ pm〈α, α∨〉 ≡ 〈λ + ρ, α∨〉 mod pZ.

Since 〈λ + ρ, α∨〉 6∈ pZ, it follows that dp(µ) = 1. 3

(h) If r > 1, then m = 1.
Let dpL(λ) denote the depth of λ, viewed as a weight of L. Since α is a simple root, we have

〈ρL, α∨〉 = 1 = 〈ρ, α∨〉,
so that the choice of α implies dpL(λ) = dp(λ) = 1. Thanks to (d), it suffices to verify the result
for L, so that ρ = 1

2α. By (a), (b) and (f) it follows that

λ− (pr−1)α ≤ µ−mprα = λ + mpα−mprα,

whence
1 ≤ p(m− (m−1)pr−1).

As r ≥ 2, this only holds for m = 1. 3

(i) We have r = 1.
Suppose that r ≥ 2. Then (h) implies m = 1. As before, we will be working with the Levi
subgroup L, defined by the simple root α ∈ Σ. Identifying weights with integers, we may assume
that λ ∈ {0, . . . , pr−1}. Note that ρL and α correspond to 1 and 2, respectively. As r ≥ 2, a
consecutive application of (a), (d) and (f) implies

Ω2
LrT (ẐL

r (λ)) ∼= ẐL
r (λ+2p).

Let γ := 2(pr−1) − λ − 2p and write γ = γ0 + prγ1, where γ0 ∈ {0, . . . , pr−1}. Thanks to [45,
(II.9.6(5))] and [45, (II.9.7(1))], we have

SocLrT (ẐL
r (λ+2p)) ∼= L̂r(γ−2prγ1),

so that the above leads to a short exact sequence

(∗∗) (0) −→ ẐL
r (λ+2p) −→ P̂r(γ−2prγ1) −→ P̂r(λ) −→ ẐL

r (λ) −→ (0)

of LrT -modules. Two cases arise:
(ia) λ + 2p ≤ pr − 2.

Then we have γ0 = pr − 2 − λ − 2p and γ1 = 1, so that γ − 2pr = −(λ + 2p + 2). It follows from
our sequence (∗∗) that ẐL

r (−(λ + 2p + 2)) is a filtration factor of P̂r(λ), so that BGG reciprocity
[45, (II.11.4)] implies

−(λ + 2p + 2) > λ,

relative to the partial ordering given by the positive root, a contradiction.
(ib) λ + 2p ≥ pr − 1.

Since r ≥ 2, we obtain γ1 = 0, so that

SocLrT (ẐL
r (λ+2p)) ∼= L̂r(γ).

BGG reciprocity yields γ > λ, whence

(†) λ < pr − p− 1
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relative to the ordering of the natural numbers. As ẐL
r (λ+2p) is not projective, we actually have

λ + 2p ≥ pr, whence
pr − 2p ≤ λ < pr − p.

Standard SL(2)1-theory in conjunction with [42, (1.1)] then yields

dimk P̂r(λ) = 4pr.

On the other hand, the inequality (†) yields

γ = 2pr − 2− λ− 2p > 2pr − 2− 2p− pr + p + 1 = pr − p− 1,

so that another application of [42, (1.1)] implies

dimk P̂r(γ) = 2pr.

The exact sequence (∗∗), however, yields dimk P̂r(λ) = dimk P̂r(γ), a contradiction. 3

As an upshot of the above, our result holds for weights of depth dp(λ) = 1, and we now suppose
that 2 ≤ d + 1 = dp(λ) ≤ r.

We consider the case, where G is semi-simple and simply connected. Since Ẑr(µ) ∼= Ω2m
GrT (Ẑr(λ)),

we may apply Proposition 3.6 to see that

dp(µ) = phΣ(Zr(µ)) = phΣ(Zr(λ)) = dp(λ).

According to [25, (6.2),(6.6)], the functor

Φ : modGrT −→ modGr−dT ; M 7→ HomGd
(Std,M)[−d]

sends Ẑr(λ) and Ẑr(µ) to the modules Ẑr−d(λ′) and Ẑr−d(µ′), defined by weights of depth 1,
respectively. Moreover, we have

Ẑr−d(µ′) = Φ(Ẑr(µ)) ∼= Φ(Ω2m
GrT (Ẑr(λ))) ∼= Ω2m

Gr−dT (Φ(Ẑr(λ))) ∼= Ω2m
Gr−dT (Ẑr−d(λ′)).

The first part of the proof now implies r−d = 1 and provides a simple root α ∈ Σ \Ψ1
λ′ such that

µ′ = λ′ + mpα. The identities λ = pdλ′ + (pd−1)ρ and µ = pdµ′ + (pd−1)ρ thus yield

µ = pdλ′ + mpd+1α + (pd−1)ρ = λ + mprα

as well as
〈λ + ρ, α〉 = pd〈λ′ + ρ, α〉 6∈ pd+1Z = prZ,

so that α ∈ Σ \Ψr
λ.

Suppose the result holds for a covering group G̃ of G with maximal torus T̃ such that the
canonical morphism sending G̃ to G maps T̃ onto T . Owing to [25, (3.5)], modGrT is the sum of
those blocks of mod G̃rT̃ , whose characters belong to X(T ) ⊆ X(T̃ ). Consequently, our result then
also holds for G and T . The proof may now be completed by repeated application of this argument
(cf. [25, (6.6)]).

(2) In view of (1), an application of [45, (II.9.2)] gives Ω2m
GrT (Ẑr(λ)) ∼= Ẑr(λ)⊗k kmprα. Thus,

Zr(λ) is periodic, and cxGrT (Ẑr(λ)) = cxGr(Zr(λ)) = 1. Hence Theorem 8.1.1 and Theorem 8.1.3
provide an element β ∈ Ψ ∪ {0} and s ∈ {0, . . . , r−1} such that

(a) m = `ps for some ` > 0, and
(b) Ω2ps

GrT (Ẑr(λ)) ∼= Ẑr(λ)⊗kkprβ.
Consequently,

Ẑr(λ+`prβ) ∼= Ẑr(λ)⊗kk`prβ
∼= Ω2m(Ẑr(λ) ∼= Ẑr(λ+mprα),

so that `prβ = mprα, whence β = psα 6= 0. Since α and β are roots, we conclude that s = 0 and
β = α. As a result, (b) gives Ω2

GrT (Ẑr(λ)) ∼= Ẑr(λ)⊗kkprα, and our assertion follows. �
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Given λ ∈ X(T ), we recall that Pr(λ) denotes the projective cover of the simple Gr-module Lr(λ).
If Lr(λ) is not projective, we let Htr(λ) = Rad(Pr(λ))/ Soc(Pr(λ)) be its heart. Recall that Γs(Gr)
denotes the stable Auslander-Reiten quiver of the self-injective algebra kGr = Dist(Gr).

We record an immediate consequence of Theorem 8.3.3, which generalizes and corrects [23, (4.3)].

Corollary 8.3.4. Suppose that G is defined over Fp and that p is good for G. Let λ ∈ X(T ) be
a weight of depth dp(λ) ≤ r. If Zr(λ) and Zr(µ) belong to the same component of Γs(Gr), then
Zr(µ) ∼= Zr(λ).

Proof. According to [25, (4.4)], the baby Verma modules Zr(λ) and Zr(µ) are quasi-simple. Since
kGr is symmetric, this implies the existence of m ∈ Z \ {0} with

Ω2m
Gr

(Zr(λ)) ∼= Zr(µ).

Consequently,
F(Ẑr(µ)) ∼= Zr(µ) ∼= Ω2m

Gr
(F(Ẑr(λ))) ∼= F(Ω2m

GrT (Ẑr(λ))),

and [34, (4.1)] provides γ ∈ X(T ) such that

Ẑr(µ+prγ) ∼= Ω2m
GrT (Ẑr(λ)).

Theorem 8.3.3 gives µ + prγ − λ ∈ prX(T ), so that [45, (II.3.7(9)] implies Zr(µ) ∼= Zr(µ+prγ) ∼=
Zr(λ). �

The analogue of Corollary 8.3.4 for Γs(GrT ) does not hold. The following example falsifies [23,
(4.3(1))], whose proof is based on an incorrect citation of [45, (II.11.7)]).

Example. Let G = SL(2) and consider a non-projective SL(2)1T -module Ẑ1(λ). Then Ẑ1(λ) has
complexity cxSL(2)1T (Ẑ1(λ)) = 1, and Theorem 8.1.1 implies

Ω2
SL(2)1T (Ẑ1(λ)) ∼= Ẑ1(λ)⊗kkpα

∼= Ẑ1(λ+pα),

where α denotes the positive root of SL(2). As a result, the component of Γs(SL(2)1T ) containing
Ẑ1(λ) contains infinitely many baby Verma modules.

Theorem 8.3.3 actually shows that µ = λ+mprα for every α ∈ Σ\Ψr
λ, so that Σ\Ψr

λ is a singleton.
This means that the foregoing example is essentially the only exception.

Corollary 8.3.5. Suppose that G defined over Fp with p ≥ 7. Let λ ∈ X(T ) be a weight of depth
dp(λ) ≤ r such that there exist µ ∈ X(T ) and m ∈ N with Ω2m

GrT (Ẑr(λ)) ∼= Ẑr(µ). Then the
following statements hold:

(1) Gr
∼= Sr ×Hr, with S ∼= SL(2) and H being reductive.

(2) There is a functor G : modSrT
′ −→ modGrT and a weight λ′ ∈ X(T ′) that G sends Ẑr(λ′)

onto Ẑr(λ) and induces an isomorphism Θr(λ′) ∼= Θr(λ) between the AR-components containing
Ẑr(λ′) and Ẑr(λ), respectively.

(3) There exists a simple root α ∈ Ψ such that {Ẑr(λ+nprα ; n ∈ Z} is the set of those baby
Verma modules that belong to Θ(λ).
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Proof. (1) Thanks to Theorem 8.3.3, we have dp(λ) = r as well as µ = λ + mprα for some simple
root α ∈ Σ. The proof of Proposition 3.6 now yields ph(Uα)r

(Ẑr(λ)) = r.
In view of [45, (II.3.7)], our assumption implies

Zr(λ) ∼= Zr(µ) ∼= F(Ẑr(µ)) ∼= F(Ω2m
GrT (Ẑr(λ))) ∼= Ω2m

Gr
(F(Ẑr(λ))) ∼= Ω2m

Gr
(Zr(λ)),

so that Zr(λ) is a periodic module. In particular, the module Ẑr(λ) has complexity cxGrT (Ẑr(λ)) =
1. Consequently, Vr(G) bZr(λ)

is a one-dimensional, irreducible variety and

Vr(G) bZr(λ)
= Vr(Uα) bZr(λ)

.

In view of Theorem 3.3, the group U bZr(λ)
is a subgroup of (Uα)r of height r, whence UM = (Uα)r.

The Borel subgroup B acts on kGr via the adjoint representation. Since the twist Zr(λ)(b) of a
baby Verma module Zr(λ) by b ∈ B is isomorphic to Zr(λ), it follows that the variety Vr(G) bZr(λ)

is B-invariant. This readily implies B.(Uα)r = B.U bZr(λ)
⊆ U bZr(λ)

= (Uα)r, and the arguments of
[25, (7.3)] yield a decomposition G = SH as a semidirect product, with S being simple of rank 1.
It follows that Gr

∼= Sr ×Hr.
(2) Let T = T ′T ′′ be the corresponding decomposition of the chosen maximal torus T of G. The

arguments of [25, (7.3)] also provide a decomposition

Ẑr(λ) ∼= Ẑr(λ′)⊗kP

as an outer tensor product of the SrT
′-module Ẑr(λ′) and the simple projective HrT

′′-module P .
We now consider

G : modSrT
′ −→ modGrT ; M 7→ M⊗kP.

As observed in the proof of Theorem 8.2.3, this functor identifies modSrT
′ with a sum of blocks

of modGrT and in particular induces an isomorphism Θ(λ′) ∼= Θ(λ).
(3) Let A := {Ẑr(λ+nprα) ; n ∈ Z}. According to Theorem 8.3.3(2), A = {Ω2n

GrT (Ẑr(λ)) ; n ∈ Z}
is contained in Θ(λ).

Suppose that Ẑr(ν) belongs to Θ(λ). By virtue of [25, (4.5)], the modules Ẑr(λ) and Ẑr(ν) are
quasi-simple. Thanks to Corollary 7.2.3, there thus exists n ∈ Z such that Ω2n

GrT (Ẑr(λ)) ∼= Ẑr(ν).
If n > 0, then Theorem 8.3.3 provides a simple root β ∈ Ψ such that

(a) ν = λ + nprβ, and
(b) Ẑr(λ+prα) ∼= Ω2

GrT (Ẑr(λ)) ∼= Ẑr(λ+prβ).
Thus, β = α and Ẑr(ν) belongs to A.

Alternatively, Ω−2n
GrT (Ẑr(ν)) ∼= Ẑr(λ) and the foregoing arguments yield λ = ν − nprα. �
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