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Abstract. For a finite group scheme G over an algebraically closed field k of characteristic p > 0
we study G-modules M , which are defined in terms of properties of their pull-backs α∗

K(MK) along
π-points αK of G. We show that the corresponding subcategories strongly depend on the structure of
G. The second part of the paper discusses recent work by Carlson-Friedlander-Suslin [7] concerning
the subcategory of equal images modules from the vantage point of Auslander-Reiten theory.

Introduction

Let G be a finite group scheme with coordinate ring k[G], defined over an algebraically closed field
k of characteristic char(k) = p > 0. In general, the category modG of finite-dimensional G-modules
is of wild representation type, rendering the complete understanding of its objects a rather hopeless
task. One is thus led to considering subcategories of modG which can be better controlled.

In recent work [6, 7, 26], the authors have introduced new classes of G-modules, whose definition
employs nilpotent operators given by π-points of representation theoretic support spaces, [24, 25].
The objects of the corresponding full subcategories of modG are those having the equal images
property, being of constant Jordan type, and of constant j-rank. We denote these categories by
EIP(G), CJT(G) and CRj(G) (j ∈ {1, . . . , p−1}), respectively. There are obvious inclusions EIP(G) ⊆
CJT(G) ⊆ CRj(G), while CJT(G) =

∩p−1
j=1 CRj(G).

In [7], the important example of the category EIP(Z/(p)×Z/(p)) was investigated. Whereas
the indecomposable objects of EIP(Z/(p)×Z/(p)) correspond to the pre-injective modules of the
Kronecker quiver for p = 2, the authors provide large families of equal images modules for p ≥ 3.
Building on these findings, one purpose of the present paper is the analysis of these categories
for other types of finite group schemes. It turns out that their nature his highly sensitive to the
structure of the underlying finite algebraic group. While we verify in Section 4 that, for p ≥ 3,
the indecomposable objects of EIP(Z/(p) ×Z/(p)) cannot be described by finitely many algebraic
parameters, the categories of equal images modules over Frobenius kernels of reductive groups are
semi-simple.

Theorem A. Let Gr be the r-th Frobenius kernel of a connected reductive algebraic group G.
(1) Every M ∈ EIP(Gr) is a direct sum of one-dimensional modules.
(2) We have CRj(G1) = CJT(G1) for all j ∈ {1, . . . , p−1} and every M ∈ CJT(G1) is isomor-

phic to its twists by the adjoint action of G on G1.

In the second part, we shall study the aforementioned categories from a different point of view,
namely by considering the stable Auslander-Reiten quiver Γs(G) of the self-injective algebra kG :=
k[G]∗. By definition, the vertices of Γs(G) are the non-projective indecomposable G-modules. Arrows
reflect the presence of so-called irreducible morphisms. The quiver Γs(G) is fitted with an automor-
phism, the Auslander-Reiten translation, which is closely related to the second Heller shift. Earlier
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work implies that components of Γs(G) containing modules of constant Jordan type are usually of
isomorphism type Z[A∞] and thus have the following shape, where the dotted arrow indicates the
AR-translation:
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The modules belonging to the bottom row are called quasi-simple. This notion derives from the fact
that the G-modules of such components usually afford a filtration whose factors are quasi-simple.

Given a component Θ ⊆ Γs(G), it was shown in [6, 26] that Θ is contained in CJT(G) or CRj(G),
whenever Θ meets the corresponding subcategory. By contrast, equal images modules usually
intersect AR-components only in small subsets. When specialized to the case G = Z/(p)×Z/(p),
Theorem B below shows that, for p ≥ 3, an arbitrary component Θ of Γs(Z/(p)×Z/(p)) containing
an equal images module of Loewy length ≤ p−2 only has a finite intersection with EIP(Z/(p)×Z/(p)).
Moreover, each object of Θ ∩ EIP(Z/(p)×Z/(p)) is quasi-simple. The precise statement involves
the Jordan type of a module, that is, the isomorphism class of its restriction to suitable subalgebras
of type k[T ]/(T p). The latter only has one i-dimensional indecomposable module [i] for each i ∈
{1, . . . , p}.

Theorem B. Let G be a finite group scheme containing an abelian unipotent subgroup scheme of
complexity ≥ 2. Suppose that Θ ⊆ Γs(G) is a regular component of tree class A∞. Then the following
statements hold:

(1) If M ∈ Θ ∩ EIP(G) has Jordan type Jt(M) =
⊕p−1

i=1 ai[i], then M is quasi-simple and Θ
contains only finitely many such modules.

(2) If there exists M ∈ Θ ∩ EIP(G) of Jordan type Jt(M) =
⊕p−2

i=1 ai[i], then Θ ∩ EIP(G) is a
finite set consisting of quasi-simple modules.

In order to describe the contents of our paper in more detail, we recall basic notions of support
spaces, as expounded by Friedlander and Pevtsova, cf. [24, 25]. We fix an indeterminate T over k
and consider Ap := k[T ]/(T p), the p-truncated polynomial ring over k. If K is an extension field of
k, we write Ap,K := Ap⊗kK and denote the canonical generator by t. Given a finite group scheme G

over k, we let GK be the extended K-group scheme associated to G and put KG := KGK
∼= kG⊗kK,

where kG := k[G]∗ is the algebra of measures of G.
Following Friedlander-Pevtsova [25], an algebra homomorphism αK : Ap,K −→ KG is called a

π-point, provided
(a) αK is left flat, and
(b) there exists an abelian unipotent subgroup scheme U ⊆ GK such that imαK ⊆ KU.

We denote by Πt(G) the set of π-points of G.
Given a G-module M , we let MK := M⊗kK be the GK-module obtained via base change. In

view of (a), the pull-back functor

α∗
K : modG −→ modAp,K ; M 7→ α∗

K(MK)
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between the categories of finite-dimensional G-modules and finite-dimensional Ap,K-modules takes
projectives to projectives. Two π-points αK and βL are equivalent (αK ∼ βL) if for everyM ∈ modG
the Ap,K-module α∗

K(MK) is projective exactly when the Ap,L-module β∗L(ML) is projective. Thanks
to [25, (7.5)], the set Π(G) of equivalence classes of Π-points has the structure of a k-scheme of finite
type. It is referred to as the π-point scheme of G.

If H ⊆ G is a closed subgroup scheme, then the map

ι∗,H : Π(H) −→ Π(G) ; [αK ] 7→ [ιK ◦ αK ]

is well-defined and continuous, see [25, (2.7),(3.6)]. Here ιK : KH −→ KG denotes the embedding
induced by the canonical inclusion H ↪→ G.

Since the subcategories mentioned above are defined via properties given by π-points, we study
in Section 1 the subgroup scheme Gπ ⊆ G generated by all π-points. As we show in Theorem 1.3,
Gπ ⊆ G is the unique minimal G(k)-invariant subgroup scheme of G such that ι∗,Gπ(Π(Gπ)) = Π(G).
In preparation for Theorem A, we determine Gπ in case G = Gr is the r-th Frobenius kernel of a
smooth reductive group G. Our proof of Theorem A also rests on the stability results presented in
Section 2, which we formulate in a slightly wider context. Given a self-injective k-algebra Λ and a
connected subgroup G of its automorphism group, we show that the full subcategory modGΛ ⊆ modΛ
of the category of finitely generated Λ-modules, whose objects are isomorphic to all their twists by
elements of G, has almost split sequences. In Section 3 we study the category CRj(G1) of modules
of constant j-rank over the first Frobenius kernel G1 of a smooth reductive algebraic group G. This
class of modules, which was introduced by Friedlander-Pevtsova in [26], naturally generalizes the
earlier notion of modules of constant Jordan type, cf. [6]. By definition, the ranks of the linear maps

MK −→MK ; m 7→ αK(t)jm αK ∈ Πt(G),

associated to an object M ∈ CRj(G), are constant. In case G = G1, we show that such a module
already has constant Jordan type, a result which fails for higher Frobenius kernels.

The final two sections are devoted to the study of equal images modules and their Auslander-
Reiten theory. After recording a few straightforward consequences of [7], we show in Section 4
that equal images modules of Frobenius kernels of reductive groups are sums of one-dimensional
modules. Thus, the category EIP(G) reflects differences between the categories modSL(2)1 and
mod(Z/(2)×Z(2)), which, from the vantage point of abstract Auslander-Reiten theory, are rather
similar. The study of almost split sequences involving equal images modules necessitates results on
their Heller shifts. The key result in this context implies that Auslander-Reiten translates of equal
images modules do usually not belong to EIP(G). In Section 5 we exploit this fact and establish
a number of results concerning the structure of the intersection Θ ∩ EIP(G) of an AR-component
with the category of equal images modules.

As was shown in [7, (4.4)], certain equal images modules Wn,d are ubiquitous within the category
EIP(Z/(p)×Z/(p)) in the sense that every object is an image of a suitable Wn,d. Moreover, the
subcategory of CJT(Z/(p)×Z/(p)) generated by the Wn,d essentially exhausts all Jordan types
that can be realized by modules of constant Jordan type. In terms of AR-theory, Z/(p)×Z/(p)-
modules Wn,d are rather special: They are quasi-simple and a component containing Wn,d intersects
EIP(Z/(p)×Z/(p)) in either in one or infinitely many vertices, with the latter case occurring exactly
when Wn,d is a p-Koszul module in the sense of [31].

1. Subgroups with full supports

The results of this section are motivated by the question to what extent G-modules are determined
by their pull-backs α∗

K(MK) along π-points. To that end, we consider closed subgroups with the
following property:
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Definition. A closed subgroup scheme H ⊆ G is called Π-essential if ι∗,H(Π(H)) = Π(G).

Example. Let G be a finite group. Using Quillen stratification [25, (4.12)] one can show that a
subgroup H ⊆ G is Π-essential if and only if for every p-elementary abelian subgroup E ⊆ G there
exists g ∈ G such that the conjugate group Eg of E is contained in H, cf. Lemma 1.2 below.

Let N be the set of positive integers and set N0 := N ∪ {0}. Given r ∈ N0, we let Ga(r) :=

Speck(k[T ]/(T
pr)) be the r-th Frobenius kernel of the additive group Ga := Speck(k[T ]). If H ⊆

Ga(r) is a closed subgroup scheme, then H = Ga(s) for some s ≤ r.
A finite group scheme G is infinitesimal, provided its coordinate ring k[G] is local. In that case,

the least number r ∈ N0 such that xpr = 0 for every x belonging to the augmentation ideal k[G]† of
k[G] is called the height of G.

Lemma 1.1. Let H ⊆ G be a Π-essential subgroup of an infinitesimal group G. If G′ ⊆ G is a
subgroup, then H ∩ G′ is a Π-essential subgroup of G′.

Proof. Suppose that G has height r. Following [46], we let

Vr(G) := HOM(Ga(r),G)

be the affine scheme of infinitesimal one-parameter subgroups of G. Thanks to [47, (5.2)] and [25,
(3.6)], there exists a natural homeomorphism Proj(Vr(G))

∼−→ Π(G). Our assumption thus yields a
commutative diagram

Proj(Vr(H ∩ G′))
ι∗,H∩G′−−−−−→ Proj(Vr(G

′))

ι∗,H∩G′

y yι∗,G′

Proj(Vr(H))
ι∗,H−−−−→ Proj(Vr(G)),

where ι∗,H is surjective.
Let φ ∈ Vr(G

′). Then there exists ψ ∈ Vr(H) such that

[ιH ◦ ψ] = [ιG′ ◦ φ].
It follows from the proof of [47, (6.1)] that the images of φ and ψ coincide. In particular, φ factors
through H ∩ G′. Hence [φ] ∈ ι∗,H∩G′(Proj(Vr(H ∩ G′))), so that H ∩ G′ is a Π-essential subgroup of
G′. �

Recall that every finite group scheme G over a perfect field is a semi-direct product

G = G0 o Gred,

where G0 is an infinitesimal normal subgroup and Gred is reduced, cf. [49, (6.8)]. If G is a finite
group with group algebra kG, then G defines a reduced finite group scheme G̃ := Speck((kG)

∗)

satisfying G̃(k) = G and kG̃ ∼= kG. In particular, G̃ is completely determined by its group G of
k-rational points. To a subgroup G ⊆ G(k) of the finite group G(k) of k-rational points of a finite
group scheme G, there corresponds an embedding G̃ ↪→ Gred. It is customary to write G̃ = G.

If G1 and G2 are finite group schemes such that G1 is infinitesimal and G2 is reduced, then
Hom(G1,G2) contains only the trivial homomorphism. Thus, if H ⊆ G is a subgroup scheme, then
H0 ⊆ G0 and Hred ⊆ Gred.

Every element g ∈ G(k) defines an inner automorphism κg : G −→ G of the group scheme G. We
refer to a subgroup H ⊆ G as G(k)-invariant if κg induces an automorphism of H for every g ∈ G(k).
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Let E ⊆ Gred be a p-elementary abelian subgroup. Following [25, §4], we set

Π0(G, E) := ι∗,(G0)E×E(Π((G
0)E×E))r

∪
F(E

ι∗,(G0)F×F (Π((G0)F×F )).

For a closed subgroup H ⊆ G, we let E(H) be the set of p-elementary abelian subgroups of H(k).

Lemma 1.2. Suppose that H ⊆ G is a G(k)-invariant Π-essential subgroup. Then the following
statements hold:

(1) We have
Π(G) =

∪
E∈E(H)

Π0(G, E).

(2) If E ⊆ Gred is p-elementary abelian, then E ⊆ Hred.
(3) Hred is a Π-essential subgroup of Gred.
(4) H0 is a Π-essential subgroup of G0.

Proof. (1) Let x ∈ Π(G). By Quillen decomposition [25, (4.12)], there exists a p-elementary abelian
group E ⊆ Gred such that x ∈ Π0(G, E). By the same token, H ⊆ G being Π-essential yields a
p-elementary abelian subgroup F ⊆ Hred and y ∈ Π0(H, F ) such that x = ι∗,H(y). Let αK ∈
Πt((H0)F×F ) be a representative of y. Then the finite subset

{F ′ ⊆ F ; ∃ βL ∈ x factoring through (G0)F
′×F ′}

is not empty and hence possesses a minimal element F0 ⊆ F . This readily implies that x ∈ Π0(G, F0)
and [25, (4.11)] ensures that E and F0 are G(k)-conjugate. Since H is G(k)-invariant, it follows that
E ⊆ H.

(2) Let E ⊆ Gred be a p-elementary abelian subgroup of rank 1. If x ∈ kE is a nilpotent
generator, then the π-point αx : Ap −→ kE ; t 7→ x belongs to Π0(Gred, E). We claim that
ι∗,Gred

([αx]) ∈ Π0(G, E). Alternatively, there exists a π-point βL factoring through (G0)E
′×E′ for

some subgroup E′ ( E and such that ιGred
◦ αx ∼ βL. Since E has rank 1, we obtain E′ = (0).

Let π : kG −→ kGred be the canonical projection and denote by π∗ : modGred −→ modG the
corresponding pull-back functor. Then we have π ◦ ιGred

= idkGred
. Since ιGred

◦ αx ∼ βL and
(ιGred

◦αx)
∗(π∗(kGred)) = α∗

x(kGred) is projective, it follows that β∗L(π
∗
L(LGred)) = (πL ◦βL)∗(LGred)

is projective. As πL ◦ βL(t) = 0, we have reached a contradiction.
Consequently, ι∗,Gred

([αx]) ∈ Π0(G, E). On the other hand, (1) provides an elementary abelian
subgroup F ⊆ Hred such that ι∗,Gred

([αx]) ∈ Π0(G, F ). It now follows from [25, (4.11)] that E and
F are conjugate. Since H(k)� G(k) is a normal subgroup, we obtain E ⊆ H(k), whence E ⊆ Hred.
As every p-elementary abelian group is a direct product of cyclic groups, our assertion follows.

(3) Let x ∈ Π(Gred). Thanks to [25, (4.12)], there exists a p-elementary abelian subgroup E ⊆ Gred

such that x ∈ Π0(Gred, E). By (2), E ⊆ Hred, so that x ∈ ι∗,Hred
(Π(Hred)).

(4) Let x ∈ Π(G0) with φK : Ap,K −→ G0
K representing x. Quillen decomposition provides

a p-elementary abelian subgroup E ⊆ Hred and y ∈ Π0(H, E) such that ι∗,G0(x) = ι∗,H(y). In
particular, there exists a π-point αL ∈ Πt((H0)E×E) that represents y. A consecutive application
of [25, (2.6)] and [24, (4.1)] ensures the existence of π-points βQ ∈ Πt((H0)E) and γQ ∈ Πt(E) and
c, d ∈ {0, 1} such that [αL] ∈ Π((H0)E×E) is represented by βQ ⊗ c+ d⊗ γQ. Consequently,

ι∗,G0([φK ]) = ι∗,H([βQ ⊗ c+ d⊗ γQ]).

Let M := π∗(kGred). Then the pull-back φ∗
K(MK) of MK along φK is a trivial Ap,K-module, so that

ι∗,G0(x) ∈ Π(G)M . On the other hand, the Ap,Q-module (βQ ⊗ c+ d⊗ γQ)
∗(MQ) = (dγQ)

∗(MQ) is
projective, unless d = 0. Thus, d = 0, c = 1 and ι∗,G0([φK ]) = ι∗,H0([βQ]) = ι∗,G0(ιG

0

∗,H0([βQ])), where
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ιG
0

∗,H0 is induced by the inclusion H0 ↪→ G0. Thanks to [25, (4.12)], we conclude that [φK ] ∈ Π(G0)

is the conjugate π-point ιG
0

∗,H0([βQ])
g for some g ∈ G(k). Since H is G(k)-invariant, this yields

[φK ] ∈ ιG
0

∗,H0(Π(H0)). Consequently, H0 is a Π-essential subgroup of G0. �

Following Friedlander-Pevtsova [24], we call a subgroup E ⊆ G quasi-elementary if E is isomorphic
to a direct product Ga(r)×E of Ga(r) and a p-elementary abelian group E.

Since the intersection of closed subgroups of G is again a closed subgroup (cf. [37, (I.1.2)]), there
exists the smallest closed subgroup Gπ ⊆ G containing all quasi-elementary subgroups of G. Being
a characteristic subgroup of G, the group Gπ is G(k)-invariant.

Theorem 1.3. The group Gπ is the unique minimal G(k)-invariant Π-essential subgroup of G.

Proof. According to [25, (7.5)], the support space Π(G) has the structure of a projective scheme.
As a result, the morphism ι∗,Gπ : Π(Gπ) −→ Π(G) is closed.

Let x ∈ Π(G) be a closed point. In view of [25, (4.7)], there exists a π-point αk : Ap,k −→ kG
over k representing x. Thus, [24, (4.2)] ensures the existence of a quasi-elementary subgroup E ⊆ G

such that imαk ⊆ kE. Consequently, x ∈ ι∗,Gπ(Π(Gπ)). Since the set C of closed points of Π(G)
lies dense in Π(G) (see [29, (3.35)]) and is contained in the closed subset im ι∗,Gπ , we obtain Π(G) =
ι∗,Gπ(Π(Gπ)). Hence Gπ is a Π-essential subgroup of G.

Let H ⊆ G be a G(k)-invariant Π-essential subgroup of G. According to Lemma 1.2(4), the
connected component H0 is a Π-essential subgroup of G0. If E ⊆ G is a quasi-elementary subgroup,
then E0 ∼= Ga(r) is a subgroup of G0. By virtue of Lemma 1.1, the group H0 ∩ E0 is Π-essential in
E0. Since H0 ∩ E0 ∼= Ga(s) for some s ≤ r, it follows from [25, (5.8)] that

s = dimΠ(H0 ∩ E0)+1 ≥ dimΠ(E0)+1 = r.

Consequently, H0∩E0 = E0, so that E0 ⊆ H0. In view of Lemma 1.2(2), Ered is a subgroup of Hred.
As a result, E is contained in H. Consequently, Gπ ⊆ H, showing that Gπ is the unique minimal
Π-essential G(k)-invariant subgroup of G. �

A finite group scheme G over k is referred to as linearly reductive if kG is semi-simple. By Nagata’s
Theorem [9, (IV,§3,3.6)], this is equivalent to G0 being diagonalizable and p not dividing the order
of G(k). In particular, G contains no non-trivial quasi-elementary subgroups.

Lemma 1.4. Let G be a finite group scheme. If N � G is a normal subgroup such that G/N is
linearly reductive, then Gπ = Nπ.

Proof. Since every quasi-elementary subgroup E ⊆ N is contained in Gπ ∩ N, it follows that Nπ ⊆
Gπ ∩ N. Let E ⊆ G be quasi-elementary. As G/N is linearly reductive, Nagata’s Theorem yields
E ⊆ N, whence E ⊆ Nπ. As a result, Gπ ⊆ Nπ. �

We turn to the case where the underlying group scheme is a Frobenius kernel of a reduced group
scheme.

Lemma 1.5. Let G be a reduced algebraic group scheme. If N � G is a normal finite subgroup
scheme, then Nπ ⊆ N is a normal subgroup of G.
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Proof. Given g ∈ G(k), we consider the automorphism κg : G −→ G effected by g. Since N �G is
a normal subgroup of G, the restriction κg|N is an automorphism of N, whence κg(Nπ) = Nπ.

As a result, G(k) ⊆ NG(Nπ)(k), where NG(Nπ) ⊆ G denotes the normalizer of Nπ in G, see
[37, (I.2.6)]. Since Nπ is a locally free closed subfunctor of G, it follows from [37, (I.2.6(8))] that
NG(Nπ) is closed. As G(k) is dense in G (cf. [37, (I.6.16)]), we obtain NG(Nπ) = G, so that Nπ is
a normal subgroup of G. �

In the sequel, we let X(G) := Hom(G,Gm) be the character group of the group scheme G. Its
elements are homomorphisms λ : G −→ Gm taking values in the multiplicative group Gm = GL(1).

Theorem 1.6. Let G be a reduced reductive algebraic group scheme.
(1) (Gr)π is a normal subgroup of Gr such that (Gr)πTr = Gr for every maximal torus T ⊆ G.
(2) We have (Gr, Gr) ⊆ (Gr)π ⊆ (G,G)r. Moreover, the group Gr/(Gr)π is diagonalizable.

Proof. (1) Since Gr �G is a normal subgroup, Lemma 1.5 implies that (Gr)π is a normal subgroup
of G. Consequently, (Gr)π is also normal in Gr. Let T ⊆ G be a maximal torus with root system
Φ ⊆ X(T ). Given a root α ∈ Φ, we let Uα ⊆ G be the corresponding root subgroup, see [37, (II.1.2)].
Then there exists an isomorphism φ : Ga(r) −→ (Uα)r, so that (Uα)r ⊆ Gr is quasi-elementary and
(Uα)r ⊆ (Gr)π.

According to [37, (II.3.2)], the multiplication map induces an isomorphism

m :
∏

α∈Φ+

(Uα)r × Tr ×
∏

α∈Φ−

(Uα)r
∼−→ Gr

of schemes. Here Φ+ and Φ− denote the sets of positive and negative roots, respectively. There
results a commutative diagram∏

α∈Φ+(Uα)r × Tr ×
∏

α∈Φ−(Uα)r
m−−−−→ Gry xµ

(Gr)π × Tr × (Gr)π
ω−−−−→ (Gr)π o Tr,

where ω(a, t, b) = (atbt−1, t) and µ is again the multiplication. Since m is bijective, the comorphism
µ∗ : k[Gr] −→ k[(Gr)πoTr] is injective. Thus, µ is a quotient map, so that (Gr)πTr = Gr, cf. [49,
(15.1)], [37, (I.6.2)].

(2) In view of (1), we have an isomorphism Gr/(Gr)π ∼= Tr/((Gr)π∩Tr), showing that the former
group is diagonalizable, cf. [9, (IV,§1,1.7)]. As Tr is abelian, this also implies (Gr, Gr) ⊆ (Gr)π. By
general theory [34, §27], the group G/(G,G) is diagonalizable. Since the sequence

ek −→ (G,G)r −→ Gr −→ (G/(G,G))r

is exact, it follows that Gr/(G,G)r ↪→ (G/(G,G))r is a subgroup of a diagonalizable group scheme.
Hence Gr/(G,G)r is diagonalizable [9, (IV,§1,1.7)], and Lemma 1.4 yields (Gr)π ⊆ (G,G)r. �

2. The category of G-stable Modules

Let k be an algebraically closed field of characteristic p > 0. Throughout this section, we consider
a finite-dimensional k-algebra Λ and an algebraic group G that acts on Λ via automorphisms. Thus,

G× Λ −→ Λ ; (g, x) 7→ g.x

is a morphism of affine varieties and x 7→ g.x is an automorphism of Λ for every g ∈ G.
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We let modΛ be the category of finitely generated Λ-modules. The group G acts on modΛ via
auto-equivalences. For g ∈ G and M ∈ modΛ, we denote by M (g) the Λ-module with underlying
k-space M and action

x.m := (g−1.x)m ∀ x ∈ Λ, m ∈M.

A Λ-module M is referred to as G-stable if M (g) ∼= M for every g ∈ G. We denote by modGΛ the
full subcategory of modΛ, whose objects are the G-stable modules.

Example. Let k(Z/(p)r) be the group algebra of the p-elementary abelian group of rank r, so that
k(Z/(p)r) = k[X1, . . . , Xr]/(X

p
1 , . . . , X

p
r ). Accordingly, the natural action of GL(r) on kr induces

an operation
GL(r)×k(Z/(p)r) −→ k(Z/(p)r)

of GL(r) on k(Z/(p)r) via automorphisms. Since the group GL(r) acts transitively on the dense
subset P (Z/(p)r) ⊆ Π(Z/(p)r) of closed π-points of Z/(p)r, every GL(r)-stable k(Z/(p)r)-module
M has constant Jordan type.

If r = 2, then [7, (4.7)] implies that the k(Z/(p)2)-modules Wn,d of [7, §2] are GL(2)-stable.

Lemma 2.1. Let M be a Λ-module. Then

GM := {g ∈ G ; M (g) ∼=M}
is a closed subgroup of G.

Proof. Let d := dimkM . We consider the affine variety moddΛ of d-dimensional Λ-modules with
underlying k-space M . Thus, an element of moddΛ is an algebra homomorphism ϱ : Λ −→ Endk(M).
The algebraic groups G and GL(M) act on moddΛ via

(g.ϱ)(x) := ϱ(g−1.x) ∀ g ∈ G, ϱ ∈ moddΛ, x ∈ Λ

and
(ψ ∗ ϱ)(x) = ψ ◦ ϱ(x) ◦ ψ−1 ∀ ψ ∈ GL(M), ϱ ∈ moddΛ, x ∈ Λ.

Note that the GL(M)-orbits correspond to the isomorphism classes of d-dimensional Λ-modules.
Let ϱM ∈ moddΛ be the representation afforded by the Λ-module M . It follows that

GM = {g ∈ G ; g.ϱM ∈ GL(M)∗ϱM}.
Since g 7→ g.ϱM is a morphism of affine varieties and the orbit GL(M)∗ϱM is locally closed, the
subgroup GM ⊆ G is locally closed. Thus, GM is an open subgroup of the closed subgroup GM of
G. Consequently, GM is also closed in GM and hence closed in G. �

Given a non-projective indecomposable Λ-module M , we denote by

E(M) : (0) −→ τΛ(M) −→ EM −→M −→ (0)

the almost split sequence terminating in M . Similarly,

(0) −→ N −→ FN −→ τ−1
Λ (N) −→ (0)

denotes the almost split sequence originating in the non-injective indecomposable Λ-module N . We
have Eτ−1

Λ (M)
∼= FτΛ(M), see [1] for further details.

Lemma 2.2. Suppose that G is connected. Then the following statements hold:
(1) Every simple Λ-module belongs to modGΛ .
(2) The category modGΛ is closed under direct sums and direct summands.
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(3) If Λ is a Hopf algebra and G acts on Λ via automorphisms of Hopf algebras, then modGΛ is
closed under tensor products.

(4) If M ∈ modGΛ is a non-projective indecomposable Λ-module, then EM , τΛ(M) ∈ modGΛ .
(5) If N ∈ modGΛ is a non-injective indecomposable Λ-module, then Eτ−1

Λ (N), τ
−1
Λ (N) ∈ modGΛ .

Proof. (1) This is well-known.
(2) It is clear that modGΛ is closed under direct sums. Let M ∈ modGΛ and suppose that X is an

indecomposable direct summand of M . The theorem of Krull-Remak-Schmidt implies that GX is
a subgroup of G of finite index. Since G is connected, Lemma 2.1 yields GX = G. As a result, X
is G-stable. Since every direct summand of M is a direct sum of indecomposable direct summands
of M , our assertion follows.

(3) Let M,N ∈ modGΛ . Given g ∈ G, there exist isomorphisms φ : M −→ M (g) and ψ : N −→
N (g). Since G acts on Λ via automorphisms of Hopf algebras, we have

(φ⊗ψ)(u.(m⊗n)) =
∑
(u)

u(1).φ(m)⊗ u(2).ψ(n) =
∑
(u)

(g−1.u(1))φ(m)⊗ (g−1.u(2))ψ(n)

= (g−1.u)(φ⊗ ψ)(m⊗ n)

for m ∈M, n ∈ N, u ∈ Λ. Hence φ⊗ψ :M⊗kN −→ (M⊗kN)(g) is an isomorphism, showing that
M⊗kN is G-stable.

(4) Let M ∈ modGΛ be indecomposable and suppose that

(0) −→ N −→ E −→M −→ (0)

is the almost split sequence terminating in M . Given g ∈ G, the functor X 7→ X(g) is an auto-
equivalence of modΛ. Consequently,

(0) −→ N (g) −→ E(g) −→M −→ (0)

is another almost split sequence ending in M . According to [1, (V.1.16)], this implies E(g) ∼= E and
N (g) ∼= N . Thus, N,E ∈ modGΛ , as desired.

(5) This follows analogously. �

Suppose that Λ is self-injective. We denote by Γs(Λ) the stable Auslander-Reiten quiver of Λ. By
definition, Γs(Λ) is a directed graph, whose vertices are the isomorphism classes of the non-projective
indecomposable Λ-modules. There is an arrow X → M if and only if X is a direct summand of
EM . The Auslander-Reiten translation τΛ is an automorphism of Γs(Λ). For further details, we
refer to [1, VII].

Let C ⊆ modΛ be a full subcategory that is closed under isomorphisms. Abusing notation, we
shall write Θ∩C for the set of those vertices of the AR-component Θ ⊆ Γs(Λ), whose representatives
belong to C. The notation Θ ⊆ C indicates that Θ ∩ C = Θ. Thus, we often do not distinguish
between the directed graph and its underlying set of vertices. Given an algebraic group G, we
denote its connected component by G0.

Lemma 2.3. Suppose that Λ is self-injective and let Θ ⊆ Γs(Λ) be a component. Then the following
statements hold:

(1) If G is connected and Θ ∩modGΛ ̸= ∅, then Θ ⊆ modGΛ .
(2) We have G0

M = G0
N for all M,N ∈ Θ.

Proof. (1) Let M ∈ Θ be an indecomposable G-stable Λ-module. By (4),(5) and (2) of Lemma 2.2,
all successors and all predecessors of M belong to Θ∩modGΛ . By the same token, the set Θ∩modGΛ
is τΛ-invariant as well as τ−1

Λ -invariant. As Θ is connected, we obtain Θ ∩modGΛ = Θ, as desired.
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(2) Fix a Λ-module M ∈ Θ and consider the set

AM := {X ∈ Θ ; G0
X = G0

M}.
If X ∈ AM and Y ∈ Θ is a predecessor of X, then a twofold application of (1) yields G0

X = G0
Y .

By the same token, G0
τ±1
Λ (X)

= G0
X . As a result, the set AM is τ±1

Λ -invariant as well as closed under
taking successors and predecessors. Consequently, AM = Θ, as desired. �

3. Modules of constant rank for reductive Lie algebras

Throughout this section, the algebraically closed field k is assumed to have char(k) = p ≥ 3. Let
G be a finite group scheme over k. Recall that every π-point αK ∈ Πt(G) gives rise to a pull-back
functor

α∗
K : modGK −→ modAp,K

that sends projectives to projectives. Given M ∈ modG, we have

α∗
K(MK) ∼=

p⊕
i=1

ai[i],

where [i] denotes the unique indecomposable Ap,K-module of dimension i. Hence there exists an
Ap-module N with

NK
∼= α∗

K(MK),

whose isomorphism class is the Jordan type Jt(M,αK) of M relative to αK . If Jt(M,αK) =⊕p
i=1 ai[i], then

⊕p−1
i=1 ai[i] is referred to as the stable Jordan type of M relative to αK .

We let
Jt(M) := {Jt(M,αK) ; αK ∈ Πt(G)}

be the finite set of Jordan types of M . Following [6], the G-module M is said to have constant
Jordan type, provided | Jt(M)| = 1. In that case, Jt(M) denotes the unique Jordan type of M .

Given an extension field K of k and u ∈ KG, we denote by uMK
the left multiplication of MK

effected by u. Let j ∈ {0, . . . , p−1}. Following Friedlander-Pevtsova [26], we say that a G-module
M has constant j-rank rkj(M) = d, provided

rk(αK(t)jMK
) = d for all αK ∈ Πt(G).

Thus, a G-module M has constant Jordan type if and only if M has constant j-rank for every
j ∈ {1, . . . , p−1}.

In the sequel we shall often identify infinitesimal groups of height 1 with restricted Lie algebras.
By definition, a restricted Lie algebra (g, [p]) is a pair consisting of a Lie algebra g and a p-th power
operator [p] : g −→ g, sending x ∈ g to x[p], that satisfies the formal properties of an associative p-th
power. We refer the reader to [45, Chap.II] for the details. Let U(g) be the universal enveloping
algebra of g. Then I := ({xp−x[p] ; x ∈ g}) is a Hopf ideal of U(g) and

U0(g) := U(g)/I

is a finite-dimensional cocommutative Hopf algebra, whose Lie algebra of primitive elements coin-
cides with g. The algebra U0(g) is called the restricted enveloping algebra of g.

Let G be an algebraic group scheme. The first Frobenius kernel G1 of G corresponds to the Lie
algebra g := Lie(G) in the sense that there is an isomorphism kG1

∼= U0(g) of Hopf algebras, cf. [9,
(II,§7,no4)]. Thus, we may identify the set Π(G1) of π-points of G1 with the set of π-points Π(g) of
the Lie algebra g. The latter space is closely related to the nullcone

Vg := {x ∈ g ; x[p] = 0}
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of g. Since Vg ⊆ g is conical, there is the associated projective variety P(Vg) ⊆ P(g).
Let M be a G-module. According to [25], the Π-support

Π(G)M := {[αK ] ∈ Π(G) ; α∗
K(MK) is not projective}

of M is a closed subset of Π(G). If G has height 1, then there exists a homeomorphism between the
closed points of Π(G) and P(Vg) sending the closed points of Π(G)M onto P(Vg(M)), where

Vg(M) := {x ∈ Vg ; M |k[x] is not projective} ∪ {0}.
is the rank variety of the U0(g)-module M .

Let G be a smooth (reduced) algebraic group. Then G acts on g := Lie(G) and U0(g) via the
adjoint representation

Ad : G −→ Aut(U0(g)).

In fact, Ad(g) is an automorphism of Hopf algebras for every g ∈ G. We thus have the notion of a
G-stable U0(g)-module. Note that every rational G-module M gives rise to a G-stable U0(g)-module
via restriction to the first Frobenius kernel G1.

Lemma 3.1. Let M be a U0(sl(2))-module of constant j-rank for some j ∈ {1, . . . , p−1}. Then M
is an SL(2)-stable module of constant Jordan type.

Proof. We write
M =M0 ⊕M1 ⊕M2,

with Mi being a (possibly empty) direct sum of indecomposables, whose rank varieties have dimen-
sion i. According to [41, Thm.] and [21, (8.1.1)], the U0(sl(2))-modules M0 and M2 are restrictions
of rational SL(2)-modules and have constant Jordan type.

Since rk(αK(t)j(M1)K
) = rk(αK(t)jMK

)−rk(αK(t)j(M2)K
)−rk(αK(t)j(M0)K

) for every π-point αK ∈
Πt(sl(2)), it follows that M1 has constant j-rank. Consequently, we have Π(sl(2))M1 ∈ {Π(sl(2)), ∅}.
As dimΠ(sl(2))M1 ≤ 0, we conclude that M1 is projective, whence M1 = (0). As a result, M =
M0 ⊕M2 has the asserted properties. �

Given a reductive group G, the semi-simple rank rkss(G) of G is the dimension of a maximal torus
of the derived group (G,G).

Theorem 3.2. Let G be a connected reductive algebraic group with Lie algebra g = Lie(G). If M
is a U0(g)-module of constant j-rank for some j ∈ {1, . . . , p−1}, then the following statements hold:

(1) M is G-stable.
(2) M has constant Jordan type.

Proof. (1) It follows from [44, (6.15)] that the subgroup G′ := (G,G) is semi-simple. By Lemma
2.1, the stabilizer G′

M is a closed subgroup of G′.
Let α ∈ Φ be a root of G′ relative to some maximal torus T ⊆ G′, and consider the subgroup

G′
(α) := ZG′(kerα)0, the connected component of the centralizer of kerα in G′. Thanks to [44,

(9.3.5)], G′
(α) is a closed, reductive subgroup of G′ of semi-simple rank 1. Consequently, the derived

group H(α) := (G(α), G(α)) is semi-simple of rank 1, and [44, (8.2.4)] yields H(α)
∼= SL(2), PSL(2).

Owing to [44, (9.3.6)], the root subgroup Uα is contained inH(α). Note that h(α) := Lie(H(α)) ∼= sl(2)
is a p-subalgebra of g. Lemma 3.1 now implies that the module M |h(α)

is SL(2)-stable. Hence M is
also H(α)-stable, so that the root subgroup Uα is contained in G′

M . Thanks to [34, (27.5)], we thus
have G′ ⊆ G′

M ⊆ GM . General theory [44, (6.15)] yields G = Z(G)0G′. Since the connected center
Z(G)0 acts trivially on U0(g), we have Z(G)0 ⊆ GM . Hence GM = G, so that M is G-stable.
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(2) According to (1), the U0(g)-module M is G-stable. We consider the conical variety

V<
g (M) :=

p−1∪
i=1

Vi
g(M),

where Vi
g(M) := {x ∈ Vg ; rk(x

i
M ) < rki(M)} is the closed, conical set of operators of non-maximal

i-rank. In view of [25, (4.7)] and [24, (3.8)], the projective variety P(V<
g (M)) is homeomorphic to

the space of closed points of the scheme Γ(G1)M of π-points of non-maximal Jordan type for M .
According to [6, (3.6)], the module M has constant Jordan type if and only if Γ(G1)M = ∅. Since
the set of closed points of a scheme of finite type is dense [29, (3.35)], it follows that M has constant
Jordan type if and only if P(V<

g (M)) = ∅.
The adjoint representation ofG on g induces an action on Vg as well as on the associated projective

variety P(Vg). Since M is G-stable, the variety P(V<
g (M)) is a G-invariant subset of P(Vg). Suppose

that P(V<
g (M)) ̸= ∅ and let T ⊆ G′ be a maximal torus. Borel’s fixed point theorem [44, (7.2.5)]

ensures the existence of a root vector xα ∈ Vg such that [xα] ∈ P(V<
g (M)). Consequently, the

U0(h(α))-module M |U0(h(α)) does not have constant Jordan type. It now follows from Lemma 3.1
that M |U0(h(α)) does not have constant j-rank either, a contradiction. �

Remark. The foregoing result does not hold for higher Frobenius kernels. Consider the second
Frobenius kernel SL(2)2 of the reductive group scheme SL(2). Let L(λ) be the simple SL(2)2-
module with highest weight λ = λ1+pλ2, where 0 ≤ λi ≤ p−1. In view of [26, (4.12)], L(λ) has
constant j-rank whenever j > λ1+λ2. By the same token, the trivial module and the Steinberg
module are the only simple SL(2)2-modules of constant Jordan type.

Let G be an algebraic group with Lie algebra g := Lie(G). A p-subalgebra b ⊆ g is called a Borel
subalgebra, provided b = Lie(B) for some Borel subgroup B ⊆ G. We denote by Bor(g) and Car(g)
the sets of Borel subalgebras and Cartan subalgebras of g, respectively. We record the following
observation:

Lemma 3.3. Let G be an algebraic group. Then we have

g = G.b

for every b ∈ Bor(g).

Proof. Thanks to [33, (14.4)], the group G acts transitively on Bor(g). Let b ∈ Bor(g), B ⊆ G be a
Borel subgroup of G such that Lie(B) = b. Since b is B-invariant, it follows from [35, (0.15)] that∪

b′∈Bor(g) b
′ = G.b is a closed subset of g.

According to [18, (7.7)], the set
∪

h∈Car(g) h lies dense in g. Given h ∈ Car(g), a consecutive
application of [33, (15.5)] and [33, (12.1)] provides a closed, connected, solvable subgroup H ⊆ G
such that Lie(H) = h. Since H is contained in some Borel subgroup of G, it follows that h ⊆∪

b′∈Bor(g) b
′. As an upshot of the above discussion we conclude that

g =
∪

b′∈Bor(g)

b′ = G.b,

as desired. �

Corollary 3.4. Let G be a reductive group, b ⊆ g be a Borel subalgebra. For a U0(g)-module M
the following statements are equivalent:
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(1) M has constant j-rank.
(2) M is G-stable and M |U0(b) has constant j-rank.

Proof. (1) ⇒ (2). This is a direct consequence of Theorem 3.2.
(2) ⇒ (1). Let x be an element of Vg. Lemma 3.3 provides y ∈ Vb and g ∈ G such that x = g−1.y.

As M is G-stable, there exists an isomorphism ψ :M
∼−→M (g). We therefore obtain

imxjM = imAd(g−1)(y)jM = im yj
M(g) = imψ ◦ yjM ,

so that
rk(xjM ) = rk(yjM ).

Since M |U0(b) has constant j-rank, it follows that rk(xjM ) = rkj(M |U0(b)). As a result, the closed
subscheme Γj(G1)M of equivalence classes of π-points of non-maximal j-rank has an empty set of
closed points. Thus, Γj(G1)M = ∅, and [26, (4.5)] shows that M has constant j-rank. �

4. Equal Images Modules

Throughout this section, G denotes a finite group scheme, defined over an algebraically closed
field k of characteristic char(k) = p > 0. When dealing with equal images modules we shall mainly
use the notation introduced in [7].

4.1. Preliminaries. Given M ∈ modG and αK ∈ Πt(G), we consider the K-linear map

ℓαK :MK −→MK ; m 7→ αK(t)m.

Thus, ℓαK = αK(t)MK
, and we shall use the latter notation when an emphasis of the underlying

module is expedient. The following definition naturally extends the ones from [5] and [7].

Definition. A G-module M is said to have the equal images property, if ℓiαK
(MK)Q = ℓiβL

(ML)Q for
1 ≤ i ≤ p−1 and all αK , βL ∈ Πt(G) and for all common field extensions Q of K and L.

Recall that for every π-point αK ∈ Πt(G) and every field extension Q :K, there is the extended
π-point αQ, obtained from αK via base change, cf. [25, §2]. It readily follows that

ℓjαK
(MK)Q = ℓjαQ

(MQ)

for every and j ∈ {1, . . . , p−1}.
Note that a G-module M has the equal images property if and only if for every j ∈ {1, . . . , p−1}

there exists a subspace Vj ⊆M such that

ℓjαK
(MK) = Vj⊗kK

for every αK ∈ Πt(G).
Suppose αk ∈ Πt(C(G)) is a π-point of the center C(G) of G. Let M be a G-module such that

ℓβK
(MK) = ℓαK (MK) for all βK ∈ Πt(G). Then we have

ℓiβK
(MK) = ℓi−1

βK
(ℓαK (MK)) = ℓαK (ℓ

i−1
βK

(MK)),

so that induction on i implies that M has the equal images property. In particular, our definition
coincides with the one of [7] in case G is abelian.

In the sequel, we let EIP(G) be the full subcategory of modG consisting of those modules having
the equal images property. Note that every equal images module has constant Jordan type. Given
d ∈ {1, . . . , p}, we denote by EIP(G)d ⊆ EIP(G) the full subcategory of EIP(G), whose objects



14 R. FARNSTEINER

satisfy Jt(M) =
⊕d

i=1 ai[i] for some ai ∈ N0. There results a filtration EIP(G)1 ⊆ EIP(G)2 ⊆ · · · ⊆
EIP(G)p = EIP(G).

Let G = Z/(p)×Z/(p). In [7, §2] the authors introduce the equal images G-modules Wn,d. For
future reference, we recall the definition:

Definition. Let kG = k[X,Y ]/(Xp, Y p) and denote by x and y the residue classes of X and Y ,
respectively. Let 1 ≤ d ≤ p and n ≥ d. Then

Wn,d := (

n⊕
i=1

kGvi)/Nn,d,

where Nn,d := ⟨{x.v1, y.vn} ∪ {xd.vi ; 2 ≤ i ≤ n} ∪ {y.vi−x.vi+1 ; 1 ≤ i ≤ n−1}⟩.

Remark. Let G = Z/(p)×Z/(p). Each Wn,d belongs to EIP(G)d and has Loewy length ℓℓ(Wn,d) = d,
cf. [7, (1.6)].

We denote by k(• ⇒ •) the path algebra of the Kronecker quiver. There is a canonical functor
F : mod k(• ⇒ •) −→ mod k[X,Y ]/(Xp, Y p) which commutes with direct sums, while preserving
indecomposables, and whose essential image coincides with the full subcategory of modG consisting
of all modules M of Loewy length ℓℓ(M) ≤ 2, cf. [2, (4.3)]. The representations of the Kronecker
quiver are well-understood, see [1, (VIII.7)]. In particular, there are three classes of indecomposable
modules, namely the pre-projective modules of dimension vectors (n, n+1), the pre-injective modules
of dimension vectors (n+1, n), and the regular modules of dimension vectors (n, n). Moreover, the
modules belonging to the former two classes are uniquely determined by their dimension vectors.

Lemma 4.1.1. Let G = Z/(p)×Z/(p).
(1) If M ∈ mod k(• ⇒ •) is regular, then F (M) ∈

∩p−1
j=2 CRj(G)rCR1(G) does not have

constant Jordan type.
(2) If M ∈ mod k(• ⇒ •) is pre-projective of dimension 2n+1 ≥ 3, then F (M) has constant

Jordan type Jt(F (M)) = [1]⊕ n[2], but F (M) ̸∈ EIP(G).
(3) If M ∈ mod k(• ⇒ •) is pre-injective of dimension 2n+1, then F (M) ∈ EIP(G) has constant

Jordan type Jt(F (M)) = [1]⊕ n[2].

Proof. (1) If M is a regular module, then the assertion follows directly from [2, (4.3.2)].
(2) If M = (M1,M2) is a pre-projective module of the Kronecker quiver, then dimkM1 = n and

dimkM2 = n+1. Direct computation shows that F (M) is the kG-module Vn considered in [6, (2.6)].
This module has constant Jordan type, but does not belong to EIP(G). (In fact, these modules
have the equal kernels property, which we shall discuss below.)

(3) If M = (M1,M2) is a pre-injective module of the Kronecker quiver, then dimkM1 = n+1
and dimkM2 = n. Direct computation shows that F (M) is the kG-module Wn+1,2 considered in
[7, (2.3)]. �

For future reference we record the following basic fact, cf. [7, (1.10)].

Lemma 4.1.2. Let d ∈ {1, . . . , p}. The full subcategory EIP(G)d of modG is closed under finite
direct sums, images of G-linear maps and direct summands.
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Proof. It is clear that EIP(G)d is closed under finite direct sums. Let f : M −→M ′ be an epimor-
phism originating in M ∈ EIP(G)d. Given a π-point αK ∈ Πt(G), we have

ℓjαK
(M ′

K) = fK(ℓjαK
(MK)),

so that M ′ ∈ EIP(G). As M ∈ EIP(G)d, the above identity yields ℓdαK
(M ′

K) = (0), whence
M ′ ∈ EIP(G)d. If N is a direct summand of M ∈ EIP(G)d, then N is an image of M and thus
contained in EIP(G)d. �

As a result, the full subcategory of equal images modules of Loewy length ≤ 2 is also closed under
direct summands. Our above observations concerning G = Z/(p)×Z/(p) thus imply that such a
module is of the form

⊕r
i=1Wni,2. This was first observed in [7, (4.1)].

The following result is inspired by [7, §6].

Proposition 4.1.3. Let G be a finite group scheme, M be a G-module. For every d ∈ {1, . . . , p}
there exists a unique submodule Kd(M) ⊆M such that

(a) Kd(M) ∈ EIP(G)d, and
(b) if N ⊆M belongs to EIP(G)d, then N ⊆ Kd(M).

Proof. It is clear that Kd(M) is uniquely determined. Let Kd(M) ⊆M be a submodule of maximal
dimension subject to Kd(M) ∈ EIP(G)d. If N ⊆ M belongs to EIP(G)d, then Lemma 4.1.2 shows
that both, Kd(M)⊕N and its image Kd(M)+N ⊆ M , are contained in EIP(G)d. Consequently,
Kd(M)+N = Kd(M), so that N ⊆ Kd(M). �

Recall that X(G) = Hom(kG, k) is the character group of the finite group scheme G.

Corollary 4.1.4. Let G be a finite group scheme.
(1) If φ :M −→ N is a homomorphism of G-modules, then φ(Kd(M)) ⊆ Kd(N).
(2) If λ ∈ X(G), then M ∈ EIP(G)d if and only if M⊗kkλ ∈ EIP(G)d.
(3) The assignment Kd : modG −→ EIP(G)d is a functor, which is right adjoint to the inclusion

functor ιd : EIP(G)d −→ modG.
(4) The category EIP(G)d has enough injectives. Moreover, if M ∈ EIP(G)d and M ↪→ IM is

an injective hull of M in modG, then M ↪→ Kd(IM ) is an injective hull of M in EIP(G)d.

Proof. (1) In view of Lemma 4.1.2, we have φ(Kd(M)) ∈ EIP(G)d, whence φ(Kd(M)) ⊆ Kd(N).
(2) Let η be the antipode of the Hopf algebra kG. The functor

Tλ : modG −→ modG ; M 7→M⊗kkλ

is an auto-equivalence with inverse Tλ◦η. It thus suffices to show that M⊗kkλ ∈ EIP(G)d for every
M ∈ EIP(G)d. The G-module M⊗kkλ is canonically isomorphic to the module M (λ) with underlying
k-space M and action given by

a.m :=
∑
(a)

λ(a(2))a(1).m ∀ a ∈ kG, m ∈M.

Let αK ∈ Πt(G) be a π-point. Then there exists an abelian unipotent subgroup U ⊆ GK such
that imαK ⊆ KU. Since U is unipotent, λK |KU = εUK

coincides with the co-unit of KU, so that
αK(ti).m = αK(ti)m for every m ∈MK . Consequently, M (λ) ∼=M⊗kkλ ∈ EIP(G)d, as desired.

(3) In view of (1), Kd is a functor such that the inclusion Kd(X) ⊆ X gives rise to the identity

HomG(M,X) = HomG(M,Kd(X))
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for M ∈ EIP(G)d and X ∈ modG. Thus, Kd is right adjoint to the inclusion functor.
(4) Let E be an injective G-module. According to (3), an exact sequence (0) −→ M ′ −→ M of

equal images modules induces an exact sequence

HomG(M,Kd(E)) −→ HomG(M
′,Kd(E)) −→ (0),

showing that Kd(E) is an injective object in EIP(G)d. Similarly, if M ↪→ EM is an injective hull of
M ∈ EIP(G)d, then (1) shows that M ↪→ Kd(EM ) is an injective hull of M in EIP(G)d. �

Remark. Let G = Z/(p)×Z/(p). Being the category of trivial G-modules, EIP(G)1 is semi-simple
and thus has enough projectives. By contrast, (0) is the only projective object of EIP(G)d for d ≥ 2:
Suppose that P ∈ EIP(G)dr{(0)} is a projective object. Then ℓℓ(P ) ≤ d, and if ℓℓ(P ) ≥ 2, then
[7, (4.4)] provides a surjection Wn,ℓℓ(P ) � P , so that P is a direct summand of Wn,ℓℓ(P ). Since
ℓℓ(P ) ≥ 2, the module Wn,ℓℓ(P ) is indecomposable, implying the indecomposability of P ∼=Wn,ℓℓ(P ).
As direct sums of projectives are projective, and we conclude that P = (0). Hence ℓℓ(P ) =
1, so that P is a trivial G-module. The three-dimensional W -module W2,2 belongs to EIP(G)d.
Let f : P −→ Top(W2,2) be a nonzero homomorphism and consider the canonical projection
π : W2,2 −→ Top(W2,2). Since P is trivial, we have im ζ ⊆ Soc(W2,2) = Rad(W2,2) for every
ζ ∈ HomG(P,W2,2). It follows that f does not factor through π. Thus, P = (0), as desired.

Example. Let G = Z/(p)×Z/(p), d ∈ {1, . . . , p}. Every injective object E ∈ EIP(G)d is a direct
sum E =

⊕n
i=1Wd,d for some n ∈ N0.

Since direct summands of injectives are injective and EIP(G)d is closed under direct summands,
we may assume that E is indecomposable. It follows that E is the injective hull of the trivial
G-module. Consequently, Corollary 4.1.4 shows that E ∼= Kd(kG). Thanks to [7, (2.2)], there exists
an isomorphism

Wd,d
∼= Rad2p−d−1(kG),

so that Rad2p−d−1(kG) ⊆ Kd(kG). On the other hand, ℓℓ(Kd(kG)) ≤ d, whence Kd(kG) ⊆
Socd(kG). Direct computation shows that the latter space coincides with Rad2p−d−1(kG), implying
that

Kd(kG) = Rad2p−d−1(kG) ∼=Wd,d

is injective.

We shall write K(M) := Kp(M). In [7], the authors provide an explicit description of K(M) as the
“generic kernel" of operators in case G is a p-elementary abelian group of rank 2.

The full subcategory EIP(G) ⊆ modG is usually not closed under extensions. We consider the
reduced group G = Z/(p)×Z/(p) and write

kG = k[x, y],

where xp = 0 = yp. Let M := k[x, y]/(x, y2). Then there exists a short exact sequence

(0) −→ k −→M −→ k −→ (0),

whose extreme terms belong to EIP(G), while the middle term does not. We have

K(M) = Soc(M) ∼= k.

Given a module M over a finite group scheme G, we denote by cxG(M) the complexity of the kG-
module M , see [3, (5.1)] for further details. By general theory, the complexity coincides with the
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dimension of the cohomological support variety VG(M). If G is an infinitesimal group of height 1
with Lie algebra g, then Jantzen’s Theorem [36, Satz] implies cxG(k) = dimVg.

We define the abelian unipotent rank of G via

rkau(G) := max{cxU(k) ; U ⊆ G abelian unipotent}.

If G is a finite group, then rkau(G) = rkp(G) is the p-rank of G, that is, the maximal rank of a
p-elementary abelian subgroup of G. By Quillen’s Dimension Theorem [3, (5.3.8)], this number
coincides with the complexity cxG(k) of the trivial module. In general, we have cxG(k) ≥ rkau(G),
and the example of the first Frobenius kernel SL(2)1 of the reduced group SL(2) shows that this
inequality may be strict. In fact, the two numbers can be arbitrarily far apart:

Examples. (1) Suppose that p ≥ 3 and let hn be the (2n+1)-dimensional Heisenberg algebra with
trivial p-map. The maximal abelian unipotent subalgebras of hn correspond to the maximal totally
isotropic subspaces of hn/C(hn). Consequently, rkau(hn) = n+1, while cxhn(k) = dimVhn(k) = 2n+1.

(2) Let G be a connected algebraic group, that is, a connected reduced (smooth) algebraic group
scheme. If G is not a torus, general theory provides a non-trivial connected closed (reduced)
unipotent subgroup U ⊆ G. In view of [9, (IV,§2,2.10)], the group U contains a copy of the
additive group Ga. Consequently, the r-th Frobenius kernel Gr of G has abelian unipotent rank
rkau(Gr) ≥ rkau(Ga(r)) = r.

A G-module M is called projective-free if (0) is the only projective direct summand of M . Since kG
is self-injective, a projective-free G-module does not possess any non-zero projective submodules.
Let (Pn, ∂n)n≥0 be a minimal projective resolution of M . Given n ≥ 1, the n-th Heller shift
Ωn
G(M) := im ∂n = ker ∂n−1 is projective-free. Dually, a minimal injective resolution (En, ∂n)n≥0

gives rise to negative Heller shifts Ω−n
G (M) := En−1/ ker ∂n−1 (n ≥ 1).

Lemma 4.1.5. Let G be a finite group scheme, M be a G-module.
(1) If M ∈ EIP(G), then M |H ∈ EIP(H) for every subgroup scheme H ⊆ G.
(2) If H ⊆ G is a subgroup scheme, then K(M)|H ⊆ K(M |H).
(3) If rkau(G) ≥ 2, then every M ∈ EIP(G) is projective-free.
(4) Suppose that H ⊆ G is a subgroup scheme of abelian unipotent rank rkau(H) ≥ 2. If

Ωn
G(M) ∈ EIP(G) for some n ∈ Z, then Ωn

G(M)|H ∼= Ωn
H(M |H).

Proof. (1),(2) This is a direct consequence of the fact that the canonical inclusion ι : H ↪→ G defines
an inclusion ι∗,H : Πt(H) ↪→ Πt(G).

(3) Let P ⊆ M be a projective direct summand of M . Thanks to Lemma 4.1.2, we obtain
P ∈ EIP(G). By assumption, G contains an abelian unipotent subgroup U of abelian unipotent
rank rkau(U) ≥ 2 such that the projective module P |U belongs to EIP(U). As noted earlier, there
exists an isomorphism kU ∼= U0(u), where u is an abelian p-unipotent restricted Lie algebra. In
particular, the nullcone Vu is a p-subalgebra of u, so that P |Vu ∈ EIP(Vu). Jantzen’s Theorem [36,
Satz] implies dimk Vu = cxu(k) = rkau(u) ≥ 2, so that P |Vu = (0) and P = (0).

(4) General theory shows that Ωn
G(M)|H ∼= Ωn

H(M |H)⊕ (proj.). Since Ωn
G(M)|H ∈ EIP(H), part

(3) implies our assertion. �

Recall that every M ∈ EIP(G) has constant Jordan type. The following result elaborates on [7,
(4.2)].
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Proposition 4.1.6. Let G be a finite group scheme of abelian unipotent rank rkau(G) ≥ 2. If
(0) ̸=M ∈ EIP(G), then there exist d ∈ {1, . . . , p} and a1, . . . , ad ∈ N such that Jt(M) =

⊕d
i=1 ai[i].

Proof. Suppose first that G = U is abelian unipotent. Then there exists a restricted Lie algebra u
such that

(a) kU ∼= U0(u), and
(b) u is an abelian p-unipotent restricted Lie algebra.

We consider the p-subalgebra Vu ⊆ u. Since dimk Vu = rkau(U) ≥ 2, the algebra Vu contains a
two-dimensional p-subalgebra u2. As the restriction M |u2 has the equal images property, [7, (4.2)]
provides a1, . . . , ad ∈ N such that Jt(M |u2) =

⊕d
i=1 ai[i]. Consequently, M ∈ CJT(U) has constant

Jordan type Jt(M) =
⊕d

i=1 ai[i].
In the general case, G contains an abelian unipotent U subgroup of abelian unipotent rank ≥ 2.

Since M |U ∈ EIP(U) and M has constant Jordan type Jt(M) = Jt(M |U), our assertion follows from
the above. �

4.2. The representation type of EIP(Z/(p)×Z/(p)). Let C ⊆ modΛ be a full subcategory of the
category of finite-dimensional modules of a finite-dimensional associative k-algebra Λ such that C is
closed under direct sums, direct summands and images of isomorphisms. We say that C has finite
representation type, provided C affords only finitely many isoclasses of indecomposable objects. The
category C is referred to as tame, if for every d > 0 there exist finitely many (Λ, k[X])-bimodules
V1, . . . , Vnd

such that
(a) the right k[X]-module Vi is free for all i ∈ {1, . . . , nd}, and
(b) if M ∈ C is indecomposable of dimension d, then there exist i ∈ {1, . . . , nd} and an algebra

homomorphism λ : k[X] −→ k such that M ∼= Vi⊗k[X]kλ.
Let G = Z/(p)×Z/(p). If p = 2, then Lemma 4.1.1 shows that there exists exactly one indecom-
posable equal images module in each odd dimension (and none in any even dimension). Thus, the
category EIP(G) has tame representation type, with only finitely many indecomposable objects in
each dimension.

The purpose of this section is to show that the category EIP(G) is far from being tame whenever
p ≥ 3. More precisely, we shall prove that for every n ∈ N there exists a natural number dn ∈ N
such that the indecomposable equal images G-modules of dimension dn cannot be parametrized by
an n-dimensional variety.

Let V be a finite-dimensional k-vector space. We fix a decomposition V = W ⊕ Ω of V and a
subspace Γ ⊆ W . Let πΓ : W −→ W/Γ and πΩ : V −→ V/Ω be the canonical projections and
choose sections sΓ :W/Γ −→W and sΩ : V/Ω −→ V such that W = sΩ(V/Ω).

Given f ∈ Homk(W/Γ,Γ), the map f+sΓ is a section of πΓ and every section of πΓ arises in this
fashion. We put Uf := (f+sΓ)(W/Γ) and note that (f+sΓ) ◦ πΓ : U0 −→ Uf is an isomorphism of
k-vector spaces.

By construction, we have W = Uf ⊕ Γ and V = Uf ⊕ Γ ⊕ Ω for every f ∈ Homk(W/Γ,Γ).
Moreover, the map

ζf : U0 ⊕ Γ⊕ Ω −→ U0 ⊕ Γ⊕ Ω ; (u, γ, ω) 7→ (sΓ ◦ πΓ(u), f ◦ πΓ(u) + γ, ω)

is an automorphism of V .
We let prf : V −→ Γ⊕Ω be the projection associated to the decomposition V = Uf ⊕ Γ⊕Ω, so

that prf ◦λ|Γ⊕Ω ∈ Endk(Γ⊕ Ω) for every λ ∈ Endk(V ).

Lemma 4.2.1. Let λ ∈ Endk(V ). Then the map

τλ : Homk(W/Γ,Γ) −→ Endk(Γ⊕ Ω) ; f 7→ prf ◦λ|Γ⊕Ω
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is a morphism of affine varieties.

Proof. Note that the map

ζ : Homk(W/Γ,Γ) −→ Endk(V ) ; f 7→ ζf

is a morphism of affine varieties that factors through GL(V ). Consequently, f 7→ ζ−1
f defines a

morphism Homk(W/Γ,Γ) −→ GL(V ), so that

Homk(W/Γ,Γ) −→ Endk(Γ⊕ Ω) ; f 7→ pr0 ◦ζ−1
f ◦ λ|Γ⊕Ω

is also a morphism. Since prf ◦ζf = pr0, the latter map coincides with τλ. �

Let Λ be a finite-dimensional k-algebra. For d ∈ N, we shall interpret the affine variety moddΛ of
Λ-module structures on a given d-dimensional vector space M as follows: If {x1, . . . , xr} is a basis
of Λ, then each element of moddΛ corresponds to an r-tuple (f1, . . . , fr) ∈ Endk(M)r satisfying the
relations obtained when writing the identity and the products xixj of two basis vectors as a linear
combination of the xℓ. We let inddΛ ⊆ moddΛ be the constructible subset of indecomposable modules
of dimension d.

Suppose that Λ is local and let M ∈ modΛ. Then every subspace X ⊆ Soc(M) is a Λ-submodule.
We fix a subspace Γ ⊆ Soc(M) and put d := dimk Γ+dimkM/ Soc(M). Choose a section sΓ :
Soc(M)/Γ −→ Γ of the canonical projection πΓ : Soc(M) −→ Soc(M)/Γ. As before, every f ∈
Homk(Soc(M)/Γ,Γ) defines a Λ-submodule

Uf := (f+sΓ)(Soc(M)/Γ) ⊆ Soc(M)

such that Uf ⊕ Γ = Soc(M). In particular, we have dimkM/Uf = d.

Proposition 4.2.2. Let Γ ⊆ Soc(M) be a subspace, d := dimk Γ+dimkM/ Soc(M). Then

ρΓ : Homk(Soc(M)/Γ,Γ) −→ moddΛ ; f 7→M/Uf

is a morphism of affine varieties.

Proof. Let Ω ⊆ M be a subspace such that Soc(M) ⊕ Ω = M . Given f ∈ Homk(Soc(M)/Γ,Γ),
we let prf : M −→ Γ ⊕ Ω be the projection defined by M = Uf ⊕ Γ ⊕ Ω. Let λ ∈ Endk(M) be
such that Uf is λ-invariant. We denote by πf :M −→M/Uf and λ̄f ∈ Endk(M/Uf ) the canonical
projection and the unique Λ-linear map satisfying

λ̄f ◦ πf = πf ◦ λ,
respectively. Then πf |Γ⊕Ω : Γ⊕ Ω −→M/Uf is an isomorphism and we have

λ̄f ◦ (πf |Γ⊕Ω) = (πf |Γ⊕Ω) ◦ τλ(f),
whence

(∗) τλ(f) = (πf |Γ⊕Ω)
−1 ◦ λ̄f ◦ (πf |Γ⊕Ω).

Let λ1, . . . , λr ∈ Endk(M) be linear maps determining the Λ-module M . Then (λ̄1)f , . . . , (λ̄r)f ∈
Endk(M/Uf ) determine M/Uf , and (∗) implies that the τλi

(f) endow Γ⊕ Ω with the structure of
a Λ-module such that πf |Γ⊕Ω is an isomorphism of Λ-modules. Thanks to Lemma 4.2.1, the map

ρ̄Γ : Homk(Soc(M)/Γ,Γ) −→ Endk(Γ⊕ Ω)r ; f 7→ (τλ1(f), . . . , τλr(f))

is a morphism, which, by the above, factors through moddΛ. As a result, ρΓ is a morphism. �

We require the following well-known basic result concerning actions of algebraic groups.
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Lemma 4.2.3. Let G be an algebraic group acting on a variety V . Suppose that C1, C2 ⊆ V are
closed subsets of V such that there is a dense open subset O2 ⊆ C2 of C2 with

(a) O2 ⊆ G.C1, and
(b) |O2 ∩G.v| <∞ for every v ∈ V .

Then we have dimC2 ≤ dimC1.

Proof. Let X1, . . . , Xn be the irreducible components of C2. The assumption O2 ∩Xj = ∅ implies
O2 ⊆

∪
i̸=j Xi, whence C2 = Ō2 ⊆

∪
i̸=j Xi, a contradiction. As a result, O2 ∩Xi is a dense open

subset of Xi for every i ∈ {1, . . . , n}, and we may assume C2 to be irreducible.
Let X be the inverse image of C2 under the multiplication G × C1

µ−→ G.C1. By virtue of (a),
imµ ∩ C2 contains a dense open subset of C2, implying that the restriction φ : X −→ C2 of µ is a
dominant morphism. As C2 is irreducible, there exists an irreducible component Y ⊆ X such that
φ(Y ) = C2. We denote the induced dominant morphism by ψ : Y −→ C2.

The natural projection G × C1 −→ C1 induces a map Y −→ C1, whose image has closure W .
There results a dominant morphism λ : Y −→ W of irreducible varieties. A twofold application of
the generic fiber dimension theorem [39, (I,§8,Cor.1)] provides a dense open subset O1 ⊆ Y such
that

dimY −dimC2 = dimψ−1(ψ(x)) and dimY −dimW = dimλ−1(λ(x)) ∀ x ∈ O1.

By the same token, the fibers ψ−1(ψ(x)) and λ−1(λ(x)) are equidimensional for every x ∈ O1. Since
ψ is dominant, Õ := ψ−1(O2) is a dense, open subset of Y .

Let (g, a) ∈ Õ. For (h, b) ∈ λ−1(λ(g, a)) ∩ Õ we have a = b as well as g.a, h.a ∈ O2. Thus,
(h, b) ∈ ψ−1(O2 ∩G.a), so that

(∗) λ−1(λ(g, a)) ∩ Õ ⊆ ψ−1(O2 ∩G.a) ∀ (g, a) ∈ Õ.

Since Y is irreducible, O := Õ ∩O1 is a dense open subset of Y . Given x ∈ ψ−1(O2 ∩G.a)∩O, we
have x ∈ ψ−1(ψ(x)), along with ψ(x) ∈ ψ(O) ∩ O2 ∩ G.a. Thanks to property (b), there exists a
finite subset F ⊆ O such that

ψ−1(O2 ∩G.a) ∩O ⊆
∪
x∈F

ψ−1(ψ(x)).

Now let (g, a) ∈ O, and consider an irreducible component Z ⊆ λ−1(λ(g, a)) containing (g, a).
Observing equidimensionality as well as F ∪ {(g, a)} ⊆ O1, we obtain

dimλ−1(λ(g, a)) = dimZ = dimZ ∩O ≤ dimψ−1(O2 ∩G.a) ∩O
≤ max

x∈F
dimψ−1(ψ(x)) = dimψ−1(ψ(g, a)),

where the first inequality follows from (∗). There thus results the estimate

dimC2 = dimY −dimψ−1(ψ(g, a)) ≤ dimY −dimλ−1(λ(g, a)) ≤ dimW ≤ dimC1,

as desired. �

Let C ⊆ modΛ be a full subcategory such that
(a) C is closed under direct sums and direct summands, and
(b) C is closed under isomorphisms.

Thus, every object in C decomposes into its indecomposable constituents and the subset Cd ⊆ moddΛ,
consisting of the module structures yielding objects of C, is GLd(k)-invariant. For every d ∈ N, we
let Cd ⊆ moddΛ be a closed subset of minimal dimension subject to inddΛ ∩Cd ⊆ GLd(k).C

d. Given
n ∈ N, we say that C requires at least n parameters, provided dimCd ≥ n for some d ≥ 1. If the
sequence (dimCd)d≥1 is unbounded, then C is said to require infinitely many parameters.
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Lemma 4.2.4. If C is tame, then dimCd ≤ 1 for every d ∈ N.

Proof. This follows as in [10, (2.1)]. �

If C = modΛ, then Drozd’s tame-wild theorem [11, 8] ensures that C not being tame is equivalent to
C being wild, that is, C fulfills the usual condition involving (Λ, k⟨x, y⟩)-bimodules. This implies in
particular that a classification of the indecomposable objects of C is hopeless. In view of [13, Thm.
2], the tame-wild dichotomy also holds if C ⊆ modΛ is an open subcategory. For arbitrary C, the
presence of two-parameter families of indecomposables does not necessarily imply that there is no
reasonable classification of the indecomposable objects.

We are now in a position to prove a criterion for certain subcategories C ⊆ modΛ not be tame.
Let Λ be a finite-dimensional algebra. A full subcategory C ⊆ modΛ which is closed under direct
sums and images of all Λ-linear maps is called image-closed. Note that such a subcategory is also
closed under direct summands.

Proposition 4.2.5. Let Λ be local and suppose that C ⊆ modΛ is image-closed. Let M ∈ C be an
object such that

(a) there exists a submodule (0) ( Γ ( Soc(M) such that M/Uf is indecomposable for every
f ∈ Homk(Soc(M)/Γ,Γ), and

(b) if U, V ⊆ Soc(M) are submodules such that M/U ∼=M/V , then U = V .
Then C requires at least dimk Homk(Soc(M)/Γ,Γ) parameters.

Proof. We put d := dimk Γ+dimkM/ Soc(M). According to Proposition 4.2.2, the map

ρΓ : Homk(Soc(M)/Γ,Γ) −→ moddΛ ; f 7→M/Uf

is a morphism of affine varieties. Since C is image-closed and M ∈ C, condition (a) entails im ρΓ ⊆
Cd ∩ inddΛ. Let Cd ⊆ moddΛ be a closed subset of minimal dimension subject to Cd ∩ inddΛ ⊆
GLd(k).C

d. Setting C1 := Cd and C2 := im ρΓ, we obtain

C2 ⊆ GLd(k).C1.

By Chevalley’s theorem (cf. [29, (10.19)]), im ρΓ contains a dense open subset O2 of C2. As im ρΓ ⊆
C2 ∩GLd(k).C1, we have O2 ⊆ C2 ∩GLd(k).C1. It now readily follows from (b) and Lemma 4.2.3
that dimC2 ≤ dimC1. By (b), the assumption M/Uf = M/Ug implies Uf = Ug, whence f = g.
Consequently, (a) implies

dimC1 ≥ dimC2 ≥ dimk Homk(Soc(M)/Γ,Γ),

so that C requires the asserted number of parameters. �

Theorem 4.2.6. Suppose that p ≥ 3. Then the image-closed subcategory EIP(Z/(p)×Z/(p)) requires
infinitely many parameters. In particular, EIP(Z/(p)×Z/(p)) is not tame.

Proof. Let 3 ≤ d ≤ p and n ≥ d+2. According to [7, (4.8)], the equal images module M := Wn,d

meets condition (b) of Proposition 4.2.5. Moreover, Soc(M) = Radd−1(M) and M has constant
Jordan type Jt(M) =

⊕d−1
i=1 [i]⊕ (n−d+1)[d], while dimk Soc(M) = n−d+1 ≥ 3, see [7, (2.3)].

Let Γ ⊆ Soc(M) be a submodule of dimension dimk Γ = dimk Soc(M)−1, so that

dimk Homk(Soc(M)/Γ,Γ) = dimk Γ = n−d.
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We shall show that Γ satisfies condition (a) of (4.2.5). Given f ∈ Homk(Soc(M)/Γ,Γ), we write
Jt(M) =

⊕p
i=1 ai[i] and Jt(M/Uf ) =

⊕p
i=1 āi[i]. Let α : Ap,k −→ k(Z/(p)×Z/(p)) be a π-point of

Z/(p)×Z/(p). The coefficients ai are determined by

dimk imα(t)iM − dimk imα(t)i+1
M =

p∑
j=i+1

aj

for 0 ≤ i ≤ p−1. In view of Uf ⊆ Radd−1(M) = imα(t)d−1
M (cf. [7, (1.7)]), we have imα(t)iM/Uf

=

imα(t)iM/Uf for 0 ≤ i ≤ d−1, while imα(t)iM/Uf
= (0) = imα(t)iM for i ≥ d. This readily implies

āi = ai = 0 for i ≥ d+1, ād = ad−1, ād−1 = ad−1+1, as well as āi = ai for 1 ≤ i ≤ d−2.
Consequently,

Jt(M/Uf ) =

d−2⊕
i=1

[i]⊕ 2[d−1]⊕ (n−d)[d].

Suppose that M/Uf = X ⊕ Y . Then X,Y ∈ EIP(Z/(p)×Z/(p)), and we have Jt(M/Uf ) ∼=
Jt(X) ⊕ Jt(Y ). If X ̸= (0), then [7, (2.3)] provides 1 ≤ ℓ ≤ d and b1, . . . , bℓ ∈ N such that
Jt(X) =

⊕ℓ
i=1 bi[i]. Since d−2 ≥ 1, we obtain Jt(Y ) =

⊕d
i=2 ci[i], so that another application of

[7, (2.3)] gives Y = (0). As a result, the k(Z/(p)×Z/(p))-module M/Uf is indecomposable.
Let ℓ := dimkWn,d−1 and let Cℓ ⊆ modℓk(Z/(p)×Z/(p)) be a closed subset of minimal dimension

subject to indℓk(Z/p)×Z/(p)) ∩EIP(Z/(p)×Z/(p)) ⊆ GLℓ(k).C
ℓ. It now follows from Proposition 4.2.5

that dimCℓ ≥ n−d. As a result, EIP(Z/(p)×Z/(p)) requires infinitely many parameters. In view
of Lemma 4.2.4 this shows in particular that the category EIP(Z/(p)×Z/(p)) is not tame. �

Remark. Let d ≥ 3, U ⊆ Soc(Wn,d) be a submodule. The above arguments show that the equal
images module Wn,d/U is indecomposable of constant Jordan type

Jt(Wn,d/U) =
d−2⊕
i=1

[i]⊕ (dimk U+1)[d−1]⊕ (n−d+1−dimk U)[d].

4.3. Equal images modules for Frobenius kernels. Throughout this section, G denotes a finite
group scheme, defined over an algebraically closed field k of characteristic p > 0. Particular cases
of interest are given by the Frobenius kernels (Gr)r≥1 of a reduced (smooth) group scheme G.

Given a G-module M , we denote by ZG(M) the kernel (centralizer) of the representation ϱ :
G −→ GL(M), see [37, (I.2.12)]. Let N � G be a normal subgroup. In the sequel, we shall identify
mod(G/N) with the full subcategory of modG, whose objects satisfy N ⊆ ZG(M).

Recall that k[Ga(r)] = k[X]/(Xpr), and let u0, . . . , ur−1 ∈ kGa(r) be the elements such that
ui(x

j) = δpi,j , where x := X+(Xpr). Then we have kGa(r) = k[u0, . . . , ur−1].
Suppose that G is an infinitesimal group of height r. In [47, §6], the authors introduce the rank

variety Vr(G)M of a G-module M . By definition,

Vr(G)M = {φ ∈ Hom(Ga(r),G) ; M |k[ur−1] is not projective}.

Here, M |k[ur−1] denotes the restriction to k[ur−1] of the pull-back φ∗(M) ∈ mod kGa(r) of the Hopf
algebra homomorphism φ : kGa(r) −→ kG corresponding to φ.

Lemma 4.3.1. Let G be a finite group scheme, M be a G-module.
(1) The G-module M has constant Jordan type Jt(M) = (dimkM)[1] if and only if Gπ ⊆ ZG(M).
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(2) If the subgroup Gπ ⊆ G generated by all quasi-elementary subgroups is normal in G, then M
has constant Jordan type Jt(M) = (dimkM)[1] if and only if M ∈ mod(G/Gπ).

Proof. (1) We put N := ZG(M). Suppose that Gπ ⊆ N. Let αK ∈ Πt(G) be a π-point that is
maximal for M . Thus, if βL ∈ Πt(G) is a π-point such that rk(βL(t)

j
ML

) ≥ rk(αK(t)jMK
) for every

j ∈ {1, . . . , p−1}, then Jt(M,βL) = Jt(M,αK). According to Theorem 1.3, there exists a π-point
βL ∼ αK that factors through LN. Consequently, [27, (4.10)] implies Jt(M,αK) = Jt(M,βL) =
(dimkM)[1]. As a result, M has constant Jordan type Jt(M) = (dimkM)[1].

Suppose that Jt(M) = (dimkM)[1]. Let E ⊆ G be a quasi-elementary subgroup. Then N :=M |E
is an E-module of constant Jordan type Jt(N) = (dimkM)[1].

There exists an isomorphism φ : Ga(r) −→ E0. Given s ≤ r,

ψs : Ga(r) −→ E0 ; y 7→ φ(yp
r−s

)

is an infinitesimal one-parameter subgroup of E0, such that ψs(ur−1) = φ(us−1). Owing to [24,
(2.7)], ψs|k[ur−1] is a π-point of E0, so that 0 = ψ(ur−1)N = φ(us−1)N . Consequently, the annihilator
of N |E0 coincides with the augmentation ideal (kE0)† of kE0. As a result, E0 ⊆ N.

Now let Cp ⊆ Ered be a cyclic subgroup. Then there exists αk ∈ Πt(G) such that kCp = imαk.
Since α∗

k(M) = (dimkM)[1], it follows that Cp ⊆ Nred, whence Ered ⊆ N.
We conclude that E ⊆ N, implying Gπ ⊆ N.
(2) Suppose that M has constant Jordan type Jt(M) = (dimkM)[1]. In view of (1), we have

M ∈ mod(G/Gπ). �

Recall that a p-point of G is a π-point α : Ap,k −→ kG that is defined over k. We let Pt(G) be the
set of p-points and note that the equivalence classes of p-points define the closed points of Π(G), cf.
[25, (4.7)].

Proposition 4.3.2. Let G be a reduced group scheme such that Π(Gr) ̸= ∅, M be a rational G-
module. Then the following statements hold:

(1) K(M |Gr) ⊆M is a G-submodule of M .
(2) If M |Gr ∈ EIP(Gr), then ℓjα(M) is a G-submodule of M for every p-point α ∈ Pt(Gr) and

j ∈ {1, . . . , p−1}.
(3) If M is simple, then either K(M |Gr) = (0) or M |Gr ∈ EIP(Gr) and Jt(M |Gr) = (dimkM)[1].

Proof. The group G(k) acts on kGr via the adjoint representation and on the set Πt(Gr) of π-points
of Gr. As G is reduced, the group G(k) is dense in G and [37, (I.2.12(5)] implies that N ⊆M is a
G-submodule if and only if N is G(k)-invariant.

(1) Let g ∈ G(k) and suppose that N ⊆M |Gr belongs to EIP(Gr). If αK ∈ Πt(Gr) is a π-point,
then

ℓiαK
(gK .NK) = gK .(g

−1
K .ℓiαK

(gK .NK)) = gK .ℓ
i
g−1
K .αK

(g−1
K .(gK .NK)) = gK .ℓ

i
g−1
K .αK

(NK)

= gK .ℓ
i
αK

(NK)

for 1 ≤ i ≤ p−1. It follows that the Gr-submodule g.N ⊆ M |Gr also enjoys the equal images
property. Application to N := K(M |Gr) implies that K(M |Gr) is G(k)-invariant, so that (1) follows.

(2) Let α ∈ Pt(Gr) be a p-point. Given a G-submodule N ⊆M and g ∈ G(k), we obtain

(∗) g.ℓα(N) = ℓg.α(N).

We now proceed by induction on j. If j = 1, then, setting N =M in (∗), we obtain

g.ℓα(M) = ℓg.α(M) = ℓα(M).
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Since G(k) is dense in G, it follows that ℓα(M) is a G-submodule of M .
For j > 1, we assume that N := ℓj−1

α (M) is a G-submodule of M . Now (∗) in conjunction with
the equal images property yields

g.ℓjα(M) = g.ℓα(N) = ℓg.α(N) = ℓg.α(ℓ
j−1
α (M)) = ℓjg.α(M) = ℓjα(M).

As before, this implies that ℓjα(M) is a G-submodule of M .
(3) If M is simple, then (1) implies K(M |Gr) = (0) or K(M |Gr) =M . In the latter case, we have

M |Gr ∈ EIP(Gr). Let α ∈ Pt(Gr) be a p-point. As ℓα is nilpotent, (2) implies that ℓα(M) ( M
is a proper G-submodule of M , so that ℓα(M) = (0) by simplicity of M . Since M |Gr has constant
Jordan type and Π(Gr) ̸= ∅, this readily implies that Jt(M |Gr) = (dimkM)[1]. �

For M ∈ modG we denote by add(M) the full subcategory of modG, whose objects are direct sums
of direct summands of M . If M is semi-simple, then add(M) is a semi-simple category.

Corollary 4.3.3. Let G be a connected reduced algebraic group scheme such that Gr/(Gr)π is
diagonalizable. Suppose that M is a rational G-module such that M |Gr ∈ EIP(Gr).

(1) Given a p-point α ∈ Pt(Gr), the Gr-module M/ℓα(M) belongs to add(
⊕

λ∈X(Gr)
kλ).

(2) The Gr-module Top(M |Gr) belongs to add(
⊕

λ∈X(Gr)
kλ).

(3) If M |Gr is indecomposable, then there exists λ ∈ X(Gr) such that M |Gr⊗k kλ belongs to the
principal block B0(Gr) of kGr.

Proof. (1) Let α ∈ Pt(Gr) be a p-point. Thanks to Proposition 4.3.2 and Lemma 4.1.2, N := ℓα(M)
is a G-submodule ofM such thatX := (M/N)|Gr belongs to EIP(Gr). In particular, X has constant
Jordan type. As ℓα(X) = (0), we have Jt(X) = (dimkX)[1], and a consecutive application of
Lemma 1.5 and Lemma 4.3.1 shows that X ∈ mod(Gr/(Gr)π) ⊆ add(

⊕
λ∈X(Gr)

kλ).
(2) Let J be the Jacobson radical of kGr. Then J is G(k)-invariant, and Rad(M |Gr) = JM is

a G-submodule of M . Consequently, N := M/JM is a G-module such that N |Gr is semi-simple.
Given a simple Gr-module S, we let N(S) ⊆ N be the isotypic component of type S. Since G
is connected, Lemma 2.2 yields g.S ∼= S(g) ∼= S, showing that N(S) is a G-submodule of N with
N(S) ∈ EIP(Gr) and N(S) ∼= Sn for some n ∈ N.

If Π(Gr) = ∅, then Gr is diagonalizable and our assertion follows. Alternatively, let α ∈ Pt(Gr)
be a p-point. By (1), ℓα(N(S)) is a proper submodule of N(S) such that N(S)/ℓα(N(S)) ∈
add(

⊕
λ∈X(Gr)

kλ). Since N(S)/ℓα(N(S)) ∼= Sm for some m ∈ N, we have S ∼= kλ for some
λ ∈ X(Gr). As a result, N =

⊕
λ∈X(Gr)

N(kλ) ∈ add(
⊕

λ∈X(Gr)
kλ).

(3) Let η be the antipode of kGr. By (2), there exists a character λ ∈ X(Gr) such that kλ is a
composition factor of M |Gr . Thus, k ∼= kλ⊗k kλ◦η is a composition factor of the indecomposable
module M |Gr⊗kkλ◦η, so that this module belongs to B0(Gr). �

Let M be a G-module. If S is a simple G-module, then [M :S] denotes the Jordan-Hölder multiplicity
of S in M .

Theorem 4.3.4. Let G be a finite group scheme of characteristic p ≥ 3 such that
(a) SL(2)1 ⊆ G, and
(b) Gπ is a normal subgroup of G.

Then EIP(G) = mod(G/Gπ).
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Proof. We first show that EIP(SL(2)1) = add(k).
Let M ∈ EIP(SL(2)1) be an indecomposable equal images module. Then M is either projective

or has full support, and the classification of indecomposable SL(2)1-modules [41, Thm.] shows in
particular that M is the restriction of a rational SL(2)-module. Since the group scheme SL(2)1
is simple, Theorem 1.6 yields (SL(2)1)π = SL(2)1, so that Corollary 4.3.3(3) implies that M be-
longs to the principal block B0(SL(2)1) along with Top(M) ∼= kn. Thus, if M is projective, then
M ∼= P (0) is the projective cover of the trivial module. Consequently, the baby Verma module
Z(0) := k SL(2)1⊗kB1 k, which is induced from the trivial module of the first Frobenius kernel
of a Borel subgroup B ⊆ SL(2), is an image of P (0) ∈ EIP(SL(2)1), and Lemma 4.1.2 forces
Z(0) ∈ EIP(SL(2)1). Since Z(0) is neither projective nor of full support, we have reached a con-
tradiction. In virtue of [40, Theorem 2], we thus conclude that the module M has Loewy length
ℓℓ(M) ≤ 2.

If ℓℓ(M) = 2, then [40, Theorem 3] in conjunction with B0(SL(2)1) being Morita equivalent to
the trivial extension of the path algebra of the Kronecker quiver (cf. [12, 22, 43]) implies Soc(M) ∼=
L(p−2)m with m ≥ 1 and |m−n| = 1. Hence there exists a submodule N ⊆ Soc(M) such that the
equal images module M/N has composition factors k and L(p−2) with multiplicities [M/N :k] = n
and [M/N : L(p−2)] = 1 and L(p−2) ⊆ Soc(M/N). Since the simple SL(2)1-module L(p−2)
with highest weight p−2 does not have the equal images property, it follows that M/N has an
indecomposable constituentM0 ∈ EIP(SL(2)1) of Loewy length 2, and with socle Soc(M0) ∼= L(p−2)
and top Top(M0) ∼= k2. As before, M0 is the restriction of a rational SL(2)-module.

Let e, f, h be the canonical basis of the Lie algebra sl(2). Since e[p] = 0 = f [p], there exist p-
points αe, αf : Ap −→ U0(sl(2)) such that αx(t) = x for x = e, f . In view of Proposition 4.3.2, the
subspaces ℓje(M0) and ℓjf (M0) are SL(2)-submodules with ℓe(M0), ℓf (M0) ⊆ Soc(M0) ∼= L(p−2).
If ℓe(M0) = (0), then ℓf (M0) = ℓe(M0) = (0) and sl(2) acts trivially on M0, a contradiction.
Alternatively, we have ℓe(M0) = Soc(M0) = ℓf (M0). Since ℓe|Soc(M0) and ℓf |Soc(M0) are nilpotent
endomorphisms of the vector space Soc(M0), it follows that

ℓe(Soc(M0)) = ℓ2e(M0) = (0) = ℓ2f (M0) = ℓf (Soc(M0)).

This contradicts the fact that Soc(M0) ∼= L(p−2). Consequently, ℓℓ(M) = 1, so that M ∼= k ∈
add(k).

Let M ∈ EIP(SL(2)1). Being an image of M , each indecomposable constituent N |M of M has
the equal images property. By the above, N ∈ add(k), so that M ∈ add(k), as desired.

Now let M ∈ EIP(G). In view of (a),

M |SL(2)1 ∈ add(k)

so that M ∈ CJT(G) has Jordan type Jt(M) = (dimkM)[1]. Now (b) in conjunction with Lemma
4.3.1 yields M ∈ mod(G/Gπ).

The inclusion mod(G/Gπ) ⊆ EIP(G) follows directly from Lemma 4.3.1. �

We turn to restricted simple Lie algebras. According to the general classification, these are either
classical or of Cartan type. We refer the reader to [45, Chap.4] for a discussion of non-classical
simple Lie algebras.

Corollary 4.3.5. Let (g, [p]) be a restricted simple Lie algebra of Cartan type. If p ≥ 3, then
EIP(g) = add(k).

Proof. By assumption, the Lie algebra g contains a copy of sl(2) as a p-subalgebra, see [45].



26 R. FARNSTEINER

Let M ∈ EIP(g). Arguing as in the proof of Theorem 4.3.4, we show that Jt(M) = (dimkM)[1].
Thanks to Lemma 4.3.1(1), we have gπ ⊆ Zg(M) := {x ∈ g ; xM = 0}, and the simplicity of g
yields Zg(M) = g. Consequently, M ∈ add(k). �

When combined with Theorem 3.2, our next result completes the proof of Theorem A. It also shows
in particular, that classical simple Lie algebras possess no non-trivial modules having the equal
images property.

Corollary 4.3.6. Let G be a smooth reductive group. If char(k) = p ≥ 3, then EIP(Gr) =
add(

⊕
λ∈X(Gr)

kλ).

Proof. In view of Theorem 1.6, the infinitesimal group scheme Gr fulfills condition (b) of Theorem
4.3.4, with Gr/(Gr)π being diagonalizable. If G is a torus, then mod(Gr) = add(

⊕
λ∈X(Gr)

kλ).
Alternatively, [44, (8.2.4),(9.3.5)] shows that G contains a copy of SL(2) or PSL(2), so that SL(2)1 ⊆
G1 ⊆ Gr. As a result, condition (a) of Theorem 4.3.4 also holds, and EIP(Gr) = mod(Gr/(Gr)π) ⊆
add(

⊕
λ∈X(Gr)

kλ). The reverse inclusion follows from Corollary 4.1.4. �

Example. Let G = SL(2) and suppose that p ≥ 3. Then every simple G1-module has constant
Jordan type [6, (2.5)], whereas for r ≥ 2 the trivial module and the Steinberg module are the only
simple Gr-modules of constant Jordan type. For r = 2, this was observed in [26, (4.12)]. If r > 2,
then [37, (3.15)] and [37, (3.16)] imply that every simple Gr-module S is of the form

S ∼=M⊗kN,

where M |G2 is simple and G2 acts trivially on N . Thus, if S has constant Jordan type, then

S|G2
∼= (M |G2)

dimk N ,

has constant Jordan type and the case r = 2 yields Jt(S) = (dimk S)[1], or Jt(S) = dimk S
p [p]. In

the latter case, S is projective and thus isomorphic to the Steinberg module. In the former case,
S ∈ EIP(Gr), so that Corollary 4.3.6 yields the assertion.

4.4. Heller shifts of equal images modules. Suppose that G is a finite group scheme of abelian
unipotent rank rkau(G) ≥ 2. If M ∈ EIP(G)r{(0)} is an equal images module of constant Jordan
type Jt(M) =

⊕d
i=1 ai[i] for some d ≤ p−2 and n ∈ Z is odd, then Ωn

G(M) has constant Jordan type
Jt(Ωn

G(M)) =
⊕d

i=1 ai[p−i] ⊕m[p]. Consequently, Proposition 4.1.6 shows that Ωn
G(M) ̸∈ EIP(G).

In this section, we shall investigate the analogous property for even n ∈ Z.
In what follows, H•(G, k) :=

⊕
n≥0H

2n(G, k) denotes the even cohomology ring of G. Thanks to
the Friedlander-Suslin Theorem [28, (1.1)], H•(G, k) is a finitely generated commutative k-algebra.
By the same token, the canonical algebra homomorphism

ΦM : H•(G, k) −→ Ext∗G(M,M) ; [f ] 7→ [f⊗idM ]

is finite. We let IM �H•(G, k) be the kernel of ΦM . Then

VG(M) := Z(IM ) ⊆ Maxspec(H•(G, k))

is the cohomological support variety of M . By general theory [3, (5.3.5),(5.4.6)], the variety VG(M)
has dimension dimVG(M) = cxG(M).

Theorem 4.4.1. Let G be a finite group scheme of abelian unipotent rank rkau(G) ≥ 2. Then the
following statements hold:
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(1) If M ∈ EIP(G)p−1r{(0)}, then Ω2n
G (M) ̸∈ EIP(G)p−1 for every n ∈ Z with |n| ≥ (dimkM)2.

(2) If M ∈ EIP(G)p−2r{(0)}, then Ω2n
G (M) ̸∈ EIP(G) for every n ∈ Z with |n| ≥ (dimkM)2.

Proof. (1) Our assumption implies that

Jt(M) =

d⊕
i=1

ai[i]

for some d ∈ {1, . . . , p−1} and ai ∈ N.
We first assume that G is an abelian unipotent group scheme. Then [49, (14.4)] provides an

isomorphism
kG ∼= k[X1, . . . , Xr]/(X

pn1

1 , . . . , Xpnr

r ),

so that the algebra H•(G, k) is generated in degree 2, cf. [2, (3.2),(3.5)].
Since M ∈ EIP(G) is non-projective and of constant Jordan type, we have VG(M) = VG(k) and

[3, (5.3.5),(5.4.6)] yields

dimH•(G, k)/IM = dimVG(M) = dimVG(k) = cxG(k) ≥ rkau(G) ≥ 2.

We put AM := H•(G, k)/IM , and note that the graded algebra AM =
⊕

n≥0(AM )2n is generated in
degree 2. The Noether Normalization Lemma [38, (VI.3.1)] thus provides algebraically independent
elements x, y ∈ (AM )2. Consequently,

(∗) n+1 = dimk k[x, y]2n ≤ dimk(AM )2n ≤ dimk Ext
2n
G (M,M) ∀ n ≥ 0.

Suppose that Ω2n
G (M) ∈ EIP(G)p−1 for some n ∈ Zr{0}. By general theory, the stable Jordan

types of M and Ω2n
G (M) coincide, so that

Jt(Ω2n
G (M)) =

d⊕
i=1

ai[i]⊕m[p],

while Ω2n
G (M) ∈ EIP(G)p−1 forces m = 0. As a result, dimk Ω

2n
G (M) = dimkM .

Suppose that n > 0. Then we have

dimk Ext
2n
G (M,M) ≤ dimk HomG(Ω

2n
G (M),M) ≤ dimk Homk(Ω

2n
G (M),M) ≤ (dimkM)2.

In view of (∗), this implies n ≤ (dimkM)2−1.
If n < 0, we arrive at a similar estimate:

dimk Ext
−2n
G (M,M) ≤ dimk Homk(M,Ω2n

G (M)) ≤ (dimkM)2.

Thus, (∗) implies |n| = −n ≤ (dimkM)2−1.
In the general case, we let U ⊆ G be an abelian, unipotent subgroup scheme of abelian unipotent

rank rkau(U) ≥ 2. Then M |U ∈ EIP(U)p−1 is an equal images module. If Ω2n
G (M) ∈ EIP(G)p−1,

then Lemma 4.1.5 implies Ω2n
U (M |U) ∼= Ω2n

G (M)|U ∈ EIP(U)p−1, and the first part of the proof
yields |n| ≤ (dimkM)2−1, as desired.

(2) Suppose that M ∈ EIP(G)p−2 r {(0)}. Writing Jt(M) =
⊕d

i=1 ai[i] for some d ≤ p−2, we
obtain Jt(Ω2n

G (M)) =
⊕d

i=1 ai[i]⊕m[p]. If Ω2n
G (M) ∈ EIP(G), then Proposition 4.1.6 yields m = 0,

whence Ω2n
G (M) ∈ EIP(G)p−1. Our assertion thus follows from (1). �

Remarks. (1) Suppose that p = 2 and G = Z/(2)×Z/(2). Given n ∈ N, the Künneth Formula
implies dimk Ext

n
G(k, k) = n+1. By the same token

· · · −→ kGm −→ · · · −→ kG2 −→ kG −→ k −→ (0)
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is a minimal projective resolution of the G-module k. Consequently, Ωn
G(k) is an indecomposable

kG-module of Loewy length 2, whose top and socle have dimensions n+1 and n, respectively. As a
result, Ωn

G(k)
∼=Wn+1,2 has the equal images property, see Lemma 4.1.1.

(2) We shall show in Section 4.5 that the conclusions of Theorem 4.4.1 may fail for M ∈ EIP(G)r
EIP(G)p−2 and arbitrary p ≥ 3.

Suppose that p ≥ 3. By the above result, the non-trivial even Heller shifts of one-dimensional
G-modules do not possess the equal images property. Our next result provides a somewhat stronger
statement.

Proposition 4.4.2. Suppose that p ≥ 5 and let G be a finite group scheme such that rkau(G) ≥ 2.
If M ∈ EIP(G)2r{(0)}, then Ω2n

G (M) ̸∈ EIP(G) for every n ∈ Zr{0}.

Proof. We first assume that kG ∼= k(Z/(p)×Z/(p)). Since M ∈ EIP(G) has constant Jordan type
Jt(M) = a1[1] ⊕ a2[2], an application of [7, (1.7),(1.9)] shows that Rad2(M) = (0). Consequently,
[7, (4.1)] provides n1, . . . , nr ∈ N such that

M ∼=
r⊕

i=1

Wni,2,

and [1, (IV.3.6)] furnishes an isomorphism

Ω2n
G (M) ∼=

r⊕
i=1

Ω2n
G (Wni,2).

Suppose that Ω2n
G (M) ∈ EIP(G). In view of Lemma 4.1.2 and [7, (2.3)], the G-module Ω2n

G (Wni,2)

belongs to EIP(G) and has constant Jordan type Jt(Ω2n
G (Wni,2)) = [1] ⊕ (ni−1)[2] ⊕m[p]. Since

p ≥ 5, [7, (4.2)] implies m = 0. As Ω2n
G (Wni,2) is indecomposable (cf. [32]), the above arguments in

conjunction with [7, (4.1)] imply Ω2n
G (Wni,2)

∼=Wni,2. Since cxG(Wni,2) = 2, it follows that n = 0.
In the general case, we observe that G possesses an abelian unipotent subgroup U ⊆ G such

that rkau(U) ≥ 2. If Ω2n
G (M) ∈ EIP(G), then Lemma 4.1.5 shows that N := M |U and Ω2n

U (N) ∼=
Ω2n
G (M)|U belong to EIP(U), with N having constant Jordan type Jt(N) = a1[1]⊕ a2[2].
As before, we note that kU ∼= U0(u) is isomorphic to the restricted enveloping algebra of an

abelian, p-unipotent restricted Lie algebra u that contains a two-dimensional p-subalgebra u2 with
trivial p-map. By the above arguments, it suffices to prove the assertion for N ′ := N |u2 . Since
U0(u2) ∼= k(Z/(p)×Z/(p)), our result now follows from the first part of the proof. �

In preparation for our study of equal images modules via Auslander-Reiten theory we record prop-
erties of G-modules M ∈ EIP(G), whose Heller shifts Ω2

G(M) have the equal images property.
Following [7], we say that a G-module M has the equal kernels property, provided there exists for
every j ∈ {1, . . . , p−1} a k-subspace Vj ⊆M such that

ker ℓjαK
= Vj⊗kK

for every π-point αK ∈ Πt(G). If G is abelian, then it suffices to test this property for j = 1.

Lemma 4.4.3. Let G be a finite group scheme of abelian unipotent rank rkau(G) ≥ 2. If M ∈ EIP(G)
has the equal kernels property, then Jt(M) = (dimkM)[1].
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Proof. We assume M ̸= (0), so that M has constant Jordan type

Jt(M) =

d⊕
i=1

ai[i],

with 1 ≤ d ≤ p and ad ̸= 0. By assumption, G contains an abelian unipotent subgroup U ⊆ G with
rkau(U) ≥ 2. Since M |U ∈ EIP(U) has the equal kernels property, we may assume that U = G. Thus,
kU ∼= U0(u) is the restricted enveloping algebra of an abelian p-unipotent restricted Lie algebra u, so
that it suffices to consider this case. Since dimVu ≥ 2, there exists a two-dimensional p-subalgebra
u2 ⊆ Vu. By the above arguments, we may thus assume that u = u2. Since U0(u2) ∼= k(Z/(p)×Z/(p)),
this amounts to addressing the case where G = Z/(p)×Z/(p) =: G.

Suppose that d ≥ 2. Being a submodule of an equal kernels module, it follows that N :=
Radd−2(M) ∈ EIP(G)2 is an equal kernels module, cf. [7, (1.9)]. According to [7, (4.1)], there exists
a decomposition

N ∼=
ℓ⊕

i=1

Wni,2,

with all constituents having the equal kernels property. Since d ≥ 2, we can find i ∈ {1, . . . , ℓ}
such that ni ≥ 2. Writing kG = k[x, y] with xp = 0 = yp, we observe ker ℓx ̸= ker ℓy ⊆ Wni,2, a
contradiction. Thus, d = 1, whence Jt(M) = (dimkM)[1]. �

Theorem 4.4.4. Let G be a finite group scheme with rkau(G) ≥ 2, M ∈ EIP(G)r {(0)} be an equal
images module.

(1) If Jt(Ω2
G(M)) = Jt(M), then Ω2

G(M) ̸∈ EIP(G).
(2) If M ∈ EIP(G)p−2, then Ωj

G(M) ̸∈ EIP(G) for j ∈ {−2, 2}.

Proof. (1) We putN := Ω2
G(M), write Jt(N) =

⊕d
i=1 ai[i] with ai ∈ N and assume thatN ∈ EIP(G).

Let H ⊆ G be a closed subgroup scheme with rkau(H) ≥ 2. According to Lemma 4.1.5,

Ω2
H(M |H) ∼= Ω2

G(M)|H ∈ EIP(H).

We may therefore derive a contradiction by considering the case G = Z/(p)×Z/(p) =: G.
If α is a p-point for G, then [7, (1.7)] yields

Radj(M) = ℓjα(M) and Radj(N) = ℓjα(N) for j ≥ 0.

Since Jt(M) = Jt(N), we have dimk ℓ
j
α(M) = dimk ℓ

j
α(N), so that dimk Rad

j(M) = dimk Rad
j(N).

We thus obtain dimk Top(M) = dimk Top(N).
We consider a minimal projective presentation

(0) −→ N −→ P1 −→ P0 −→M −→ (0)

of M . Thus, P0 is a projective cover of M and P1 is an injective hull of N . By the above, we have
dimkM = dimkN , whence dimk P0 = dimk P1. Since kG is local, this implies P0

∼= P1, so that
there exists an exact sequence

(0) −→ N −→ P −→ P −→M −→ (0),

with N −→ P and P −→ M being injective hulls and projective covers, respectively. In view of
dimk Top(M) = dimk Top(N), this yields

(∗) dimk Soc(N) = dimk Soc(P ) = dimk Top(P ) = dimk Top(M) = dimk Top(N).
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Let α be a p-point. Then Soc(N) ⊆ ker ℓα. On the other hand, (∗) in conjunction with N having
the equal images property implies

dimk Soc(N) = dimk Top(N) = dimkN/ℓα(N) =

d∑
i=1

ai = dimk ker ℓα,

so that ker ℓα = Soc(N). Since k is algebraically closed, [7, (7.8)] ensures that the G-module N has
the equal kernels property. Lemma 4.4.3 now yields Jt(M) = Jt(N) = (dimkN)[1] = (dimkM)[1].
Thus, Rad(M) = (0) = Rad(N), so that G acts trivially on M and N . As M ̸= (0), it follows that
G acts trivially on the indecomposable direct summand Ω2

G(k) of N . Consequently, Ω2
G(k)

∼= k, so
that cxG(k) = 1, a contradiction.

(2) By assumption, there exist 1 ≤ d ≤ p−2 and ai ∈ N such that

Jt(M) =

d⊕
i=1

ai[i].

As the stable Jordan types of M and Ω2
G(M) coincide, the assumption Ω2

G(M) ∈ EIP(G) in con-
junction with Proposition 4.1.6 implies Jt(Ω2

G(M)) = Jt(M), so that (1) yields a contradiction. If
V := Ω−2

G (M) ∈ EIP(G), then Proposition 4.1.6 yields V ∈ EIP(G)p−2. Thanks to Lemma 4.1.5,
the G-module M is projective-free, so that Ω2

G(V ) ∼= M ∈ EIP(G). However, we just showed that
this cannot happen. �

4.5. Heller shifts of W -modules. In this section we turn to the example G = Z/(p)×Z/(p) and
consider Heller shifts of the W -modules Wn,d that were introduced in [7], see Section 4.1. This
is done by employing gradations, which amounts to working in the category modZG of Z-graded
modules and degree zero homomorphisms. We dispense with elaborating on the formalism and only
use those features that are needed in our context.

Note that kG = k[X,Y ]/(Xp, Y p) inherits the canonical Z-grading from the polynomial ring
k[X,Y ], with generators x := X+(Xp, Y p) and y := Y +(Xp, Y p) being homogeneous of degree 1.
In particular,

kG =

2p−2⊕
i=0

kGi and Rad(kG) =

2p−2⊕
i=1

kGi.

If M =
⊕

i∈ZMi is a Z-graded G-module and j ∈ Z, then M [j] is the graded G-module with
underlying G-space M and Z-grading defined via

M [j]i :=Mi−j for all i ∈ Z.

Note that each Wn,d is Z-graded

Wn,d =

d−1⊕
i=0

(Wn,d)i.

We first determine a minimal graded presentation of Wn,d.

Lemma 4.5.1. Let d ∈ {2, . . . , p} and n ≥ d. The following statements hold:
(1) Suppose that d ≤ p−1. Then there exists an exact sequence

(0) −→ Ω2
G(Wn,d) −→ kGn+1[1]⊕ kGn−d[d]

∂1−→ kGn ∂0−→Wn,d −→ (0),

with deg(∂j) = 0 for j ∈ {0, 1}. In particular, Ω2
G(Wn,d) is a Z-graded G-module.
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(2) There is an exact sequence

(0) −→ Ω2
G(Wn,p) −→ kGn+1[1]

∂1−→ kGn ∂0−→Wn,p −→ (0)

with deg(∂j) = 0 for j ∈ {0, 1}.

Proof. Let d ∈ {2, . . . , p} and recall that Nn,d is the kernel of the canonical surjection kGn �Wn,d.
We begin by proving two statements concerning the defining relations of Wn,d.

(a) The G-module Nn,d is generated by the k-subspace S1 ⊕ Td, where

S1 := ⟨{x.v1, y.vn} ∪ {y.vi−x.vi+1 ; 1 ≤ i ≤ n−1}⟩k ; Td := ⟨{xd.vi ; d+1 ≤ i ≤ n}⟩k.

Let N ′
n,d := ⟨{x.v1, y.vn} ∪ {y.vi−x.vi+1 ; 1 ≤ i ≤ d−1} ∪ {xd.vj ; d+1 ≤ j ≤ n}⟩kG ⊆ Nn,d and

suppose that xj .vj ∈ N ′
n,d for some j ∈ {1, . . . , d−1}. Then we have

xj+1.vj+1 = xj .(x.vj+1 − y.vj)+x
j .y.vj ∈ N ′

n,d,

so that induction implies xj .vj ∈ N ′
n,d for all j ∈ {1, . . . , d}. Consequently, Nn,d = N ′

n,d is generated
by S1 ⊕ Td. ⋄

(b) Td ∩ kGd−1.S1 = (0).
Observing Tp = (0), we assume that d ≤ p−1. Let v =

∑n
j=d+1 αjx

dvj be an element of kGd−1.S1.
There results an identity

v = f0x.v1+

n−1∑
i=1

fi(y.vi−x.vi+1)+fny.vn,

with fi ∈ kGd−1. Upon comparing coefficients of the vi, we arrive at

0 = f0x+ f1y ; 0 = fiy−fi−1x 2 ≤ i ≤ d ; αjx
d = fjy−fj−1x d+1 ≤ j ≤ n.

Since d ≤ p−1 and fi ∈ kGd−1, while (Xp, Y p) ⊆
⊕

i≥p k[X,Y ]i, the first d-equations may be
interpreted to hold in k[X,Y ]. We thus obtain

degX(fi) = degX(fiY ) = degX(fi−1X) ≥ degX(fi−1)+1

for 1 ≤ i ≤ d, whence
degX(fi) ≥ i ∀ i ∈ {0, . . . , d}.

(Here we set degX 0 = ∞.) Since fd ∈ k[X,Y ]d−1, we obtain fd = 0, implying fj = 0 for 0 ≤ j ≤ d.
Returning to the original system, we assume that f0 = f1 = · · · = fr−1 = 0 for some d < r ≤ n.

Then we have
αrx

d = fry,

so that 0 = fry
p = αrx

dyp−1. Thus, αr = 0 and fry = 0. Consequently, fr ∈ kGyp−1∩kGd−1 = (0).
Thus, all fj vanish and v = 0. ⋄

(1) Let d ≤ p−1. Recall that J :=
⊕

i≥1 kGi is the radical of kG. According to (a), we have
Nn,d = kG.(S1 ⊕ Td). Thus, (b) implies

(S1 ⊕ Td) ∩ J.Nn,d ⊆ (S1 ⊕ Td) ∩ (J.S1 + J.Td) = (S1 ⊕ Td) ∩ J.S1 = Td ∩ J.S1
= Td ∩ kGd−1.S1 = (0).

Let π : Nn,d −→ Top(Nn,d) be the canonical projection. The identity above implies that π induces
an injection S1⊕Td ↪→ Top(Nn,d). Moreover, property (a) shows that the kG/J-module Top(Nn,d)
is generated by π(S1 ⊕ Td). Since kG/J ∼= k, we obtain π(S1 ⊕ Td) = Top(Nn,d).

We let ∂0 :
⊕n

i=1 kGvi −→Wn,d be the canonical projection, so that ∂0 is homogeneous of degree
0. Since dimk Top(Wn,d) = n, the pair (kGn, ∂0) is a projective cover of Wn,d. Owing to (a),
Nn,d ⊆ kGn is a homogeneous submodule, whose generators belong to S1 ∪ Td and are linearly
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independent. By the above, we have dimk Top(Nn,d) = 2n−d+1. Writing kGn+1 =
⊕n+1

i=1 kGwi

and kGn−d =
⊕n−d

i=1 kGui, we define the map ∂1 : kGn+1[1]⊕ kGn−d[d] −→ kGn via

∂1(w1) := x.v1 ; ∂1(wj) = y.vj−1−x.vj (2 ≤ j ≤ n) ; ∂1(wn+1) = y.vn

as well as
∂1(ui) = xd.vi+d 1 ≤ i ≤ n−d.

Hence ∂1 is homogeneous of degree deg(∂1) = 0. Since ∂1 induces an isomorphism Top(kG2n−d+1) ∼=
Top(Nn,d), the pair (kGn+1, ∂1) is a projective cover of Nn,d. The resulting exact sequence

(0) −→ Ω2
G(Wn,d) −→ kGn+1[1]⊕ kGn−d[d]

∂1−→ kGn ∂0−→Wn,d −→ (0)

enjoys the requisite properties.
(2) Let d = p. Then Td = (0) and the arguments of (1) yield the desired result. �

Corollary 4.5.2. Let n ≥ d.
(1) Jt(Ω2

G(Wn,d)) =
⊕d−1

i=1 [i]⊕ (n−d+1)[d]⊕ (n−d+1)p[p] for d ≤ p−1.
(2) Jt(Ω2

G(Wn,p)) =
⊕p−1

i=1 [i]⊕ (n+1)[p].

Proof. We put M := Ω2
G(Wn,d). By general theory, the stable Jordan types of M and Wn,d coincide.

We thus formally write
Jt(M) = Jt(Wn,d)⊕ ℓ[p],

where ℓ ∈ Z. In particular, dimkM = ℓp+dimkWn,d.
(1) Let d ≤ p−1. Counting dimensions, we obtain from Lemma 4.5.1(1)

ℓp+dimkWn,d = (2n−d+1)p2−np2+ dimkWn,d,

so that ℓ = (n−d+1)p. The assertion thus follows from Jt(Wn,d) =
⊕d−1

i=1 [i]⊕ (n−d+1)[d].
(2) Using Lemma 4.5.1(2), we arrive at

ℓp+dimkWn,p = (n+1)p2−np2+ dimkWn,p,

so that ℓ = p. Observing Jt(Wn,p) =
⊕p−1

i=1 [i]⊕ (n−p+1)[p], we obtain the assertion. �

Given a G-module M of constant Jordan type, we will write

Jt(M) =

p⊕
i=1

ai(M)[i].

In order to identify some of the modules Ω2
G(Wn,d), we require the following auxiliary result:

Lemma 4.5.3. Let M ∈ EIP(G) be an equal images module.
(1) The G-module M/Rad2(M) is indecomposable if and only if a1(M) = 1.
(2) If M ∈ EIP(G)d and a1(M) = 1, then there exists a surjective homomorphism Wn,d � M ,

where n = dimk Top(M).

Proof. Since M is an equal images module, [7, (1.7)] implies Rad2(M) = ℓ2α(M) for every p-point
α ∈ Pt(G). Consequently, M/Rad2(M) is an equal images module of constant Jordan type

Jt(M/Rad2(M)) = (

p∑
i=2

ai(M))[2]⊕ a1(M)[1],

whence a2(M/Rad2(M)) =
∑p

i=2 ai(M) and a1(M/Rad2(M)) = a1(M).
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(1) Suppose that a1(M) = 1. If X and Y are submodules of M/Rad2(M) such that M/Rad2(M)
= X ⊕ Y , then X and Y are equal images modules with Jt(M/Rad2(M)) = Jt(X)⊕ Jt(Y ). Thus
a1(X) = 0 or a1(Y ) = 0, so that [7, (4.2)] forces X = (0) or Y = (0). As a result, M/Rad2(M) is
indecomposable.

Conversely, if M/Rad2(M) is indecomposable, then [7, (4.1)] yields M/Rad2(M) ∼= Wn,2 for
some n ∈ N, so that a1(M) = a1(M/Rad2(M)) = a1(Wn,2) = 1.

(2) In view of (1), the G-module M/Rad2(M) is indecomposable and [7, (4.6)] provides a surjec-
tion λ :Wn,p −→M . Since M ∈ EIP(G)d, we have λ(Radd(Wn,p)) = Radd(M) = (0). According to
[7, (2.4)], there is an isomorphism Wn,p/Rad

d(Wn,p) ∼=Wn,d, so that λ induces the desired map. �

The following result shows that Theorems 4.4.1(2) and 4.4.4(2) may fail for equal images modules
not belonging to EIP(G)p−2.

Lemma 4.5.4. The following statements hold:
(1) Ω2

G(Wn,p) ∼=Wn+p,p for every n ≥ p.
(2) Ω2

G(Wp−1,p−1) ∼=W2p−1,p.
(3) Ω2

G(Wn,p−1) ̸∈ EIP(G) for n ≥ p.

Proof. (1) Thanks to Lemma 4.5.1(2) there is an exact sequence

(∗) (0) −→ Ω2
G(Wn,p) −→ kGn+1[1]

∂1−→ kGn ∂0−→Wn,p −→ (0)

of graded kG-modules with deg(∂j) = 0 for j ∈ {0, 1}.

(∗∗) We have dimk Top(Ω
2
G(Wn,p)) ≥ n+p.

To ease notation, we put M := Ω2
G(Wn,p). Let j ≥ 0. Thanks to (∗), there exists an exact sequence

(0) −→Mj −→ (kG)n+1
j−1 −→ (kG)nj −→ (Wn,p)j −→ (0).

If j ≤ p−1, we obtain
dimkMj = (n+1)j−n(j+1)+n−j = 0.

Thus, Mj = (0), so that M =
⊕

j≥pMj .
Since (Wn,p)p = (0), we have an exact sequence

(0) −→Mp −→ (kGn+1)p−1 −→ (kGn)p −→ (0).

Consequently,

dimkMp = dimk(kG
n+1)p−1−dimk(kG

n)p = (n+1)p−n(p−1) = n+p.

Observing Rad(M) = Rad(kG)M =
∑

i≥1 kGiM ⊆
∑

i≥p+1Mi, we conclude

dimk Top(M) = dimkM−dimk Rad(M) ≥ dimkMp = n+p,

as asserted. ⋄
Let α ∈ Pt(G) be a p-point of G. Then we have ℓα(M) ⊆ Rad(M), while Corollary 4.5.2(2) and
(∗∗) imply

n+p = dimk coker ℓα ≥ dimk Top(M) ≥ n+p.

Consequently, Rad(M) = ℓα(M), so that [7, (1.7)] yields M ∈ EIP(G). Since a1(M) = 1, Lemma
4.5.3 now provides a surjection Wn+p,p �M , which, by equality of dimensions, is an isomorphism.

(2) Lemma 4.5.1(1) provides an exact sequence

(0) −→M −→ kGp[1]
∂1−→ kGp−1 ∂0−→Wp−1,p−1 −→ (0),
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of homomorphisms of degree 0, with M := Ω2
G(Wp−1,p−1). The arguments of (1) show that M =⊕

j≥pMj as well as dimkMp = 2p−1. Consequently, dimk Top(Ω
2
G(Wp−1,p−1)) ≥ 2p−1, and the

proof may now be completed by adopting the arguments of (1) verbatim.
(3) Let n ≥ p and M := Ω2

G(Wn,p−1). Recall that M =
⊕

i∈ZMi is a Z-graded G-module. We
put supp(M) := {i ∈ Z ; Mi ̸= (0)} as well as [a, b] := {x ∈ Z ; a ≤ x ≤ b} for a, b ∈ Z. Lemma
4.5.1(1) implies

supp(M) = [p, 3p−3].

According to Lemma 4.5.2, we have ap := ap(M) = (n−p+2)p as well as a1(M) = 1. Suppose
that M ∈ EIP(G). Then Lemma 4.5.2 yields dimk Top(M) = n+ap and Lemma 4.5.3 provides a
surjection f : Wn+ap,p −→ M . Consequently, the restriction g : Radp−1(Wn+ap,p) −→ Radp−1(M)
is also surjective. Direct computation shows that dimk ker f = n−p+1 = dimk ker g. Thus, there
exists an exact sequence

(0) −→ V −→Wn+ap,p −→M −→ (0)

with V ( Radp−1(Wn+ap,p). Recall that Wn+ap,p is graded and that V ( Radp−1(Wn+ap,p) ⊆
(Wn+ap,p)p−1 is a homogeneous submodule. This implies that the indecomposableG-moduleWn+ap,p/V
is Z-graded with supp(Wn+ap,p/V ) = [0, p−1]. Consequently, [30, (4.1)] provides an isomorphism

(Wn+ap,p/V )[j] ∼=M

of Z-graded modules for some j ∈ Z. As a result, supp(M) = [j, j+p−1], a contradiction. �

Remark. Let ΩgrG be the Heller operator of the Frobenius category modZG. The proof of Lemma
4.5.4 yields

Ω2
grG(Wn,p) ∼=Wn+p,p[p] and Ω2

grG(Wp−1,p−1) ∼=W2p−1,p[p].

Consequently, each of these modules has a graded projective resolution, (Pn)n≥0 such that each Pn

is generated in degree δ(n), where

δ(n) :=

{
n
2p if n ∈ 2N0

n−1
2 p+1 otherwise.

Modules with this property are called p-Koszul modules, cf. [31]. Note that kG is a p-Koszul algebra
if and only if p = 2.

5. Auslander-Reiten Components

In this section we investigate the category of equal images modules over finite group schemes of
abelian unipotent rank ≥ 2 by means of Auslander-Reiten theory. For these groups, Auslander-
Reiten components of tree class A∞ occur most often. Moreover, if such a component Θ contains a
module of constant j-rank, then Θ ∼= Z[A∞] has the structure described in the Introduction. While
AR-components containing a module of constant j-rank or of constant Jordan type consist entirely
of such modules, the distribution of equal images modules depends on their Loewy lengths.
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5.1. The distribution of equal images modules. Given a finite group scheme G, we denote by
Γs(G) := Γs(kG) the stable Auslander-Reiten quiver of the self-injective algebra kG. By general
theory, the Auslander-Reiten translation τG : Γs(G) −→ Γs(G) is given by

τG(M) ∼= Ω2
G(M)⊗kkζ ,

where ζ : kG −→ k is the modular function of the cocommutative Hopf algebra kG, see [23, (1.5)].
According to the Riedtmann Structure Theorem [42, Struktursatz], each component Θ ⊆ Γs(G)

is of the form Θ ∼= Z[TΘ]/Π, where TΘ is a directed tree and Π ⊆ Autk(Z[TΘ]) is an admissible sub-
group of the automorphism group of the stable translation quiver Z[TΘ]. Moreover, the underlying
undirected tree T̄Θ is uniquely determined by Θ, and is customarily referred to as the tree class of
Θ.

A non-projective indecomposable G-module M is called quasi-simple, if
(a) the component Θ ⊆ Γs(G) containing M has tree class A∞, and
(b) the module M has exactly one predecessor in Θ.

By way of illustration, we take another look at elementary abelian p-groups of rank 2.

Examples. (1) Consider kG = k(Z/(p)×Z/(p)) and recall that there is a canonical functor F :
mod k(• ⇒ •) −→ modG. In view of Lemma 4.1.1, a pre-injective k(• ⇒ •)-module M gives rise
to an indecomposable equal images module F (M) of constant Jordan type Jt(F (M)) = [1]⊕ n[2].

For p = 2, the remark following (4.4.1) shows that the modules F (M) are just the Heller shifts
Ωn
G(k), with n ≥ 0. By [14, (II.7.3)], these modules belong to a stable Auslander-Reiten component

of type Z[Ã1,2].
Alternatively, the local algebra kG is wild and Erdmann’s Theorem [15, Thm.1] ensures that

the indecomposable G-module F (M) belongs to a stable Auslander-Reiten component Θ ∼= Z[A∞].
Thanks to [21, (3.1.2)], each F (M) is quasi-simple. Thus, if F (M) ∼= Wn,2 and F (M ′) ∼= Wn′,2

belong to Θ, then there exists m ∈ Z such that Wn′,2
∼= τmG (Wn,2) ∼= Ω2m

G (Wn,2). As p ≥ 3, this
implies n′ = n, so that Ω2m

G (Wn,2) ∼=Wn,2. Observing that equal images modules have full support,
we obtain cxG(Wn,2) = 2. This forces m = 0 and we conclude that the various F (M) all belong to
different AR-components of kG.

(2) Suppose that p ≥ 3. Given 1 ≤ d ≤ p and n ≥ d, [7, (2.3)] yields

Jt(Wn,d) =

d−1⊕
i=1

[i]⊕ (n−d+1)[d].

Hence Wn,d is indecomposable for d ≥ 2 and by [21, (3.1.2)], each Wn,d is quasi-simple.
(3) The same arguments yield that each member M/Uf of the algebraic family of indecomposable

G-modules constructed in the proof of Theorem 4.2.6 is quasi-simple.

Lemma 5.1.1. Let G be a finite group scheme of abelian unipotent rank rkau(G) ≥ 2. If Θ ⊆ Γs(G)

is a component such that Θ ∩ EIP(G) ̸= ∅, then either Θ has Euclidean tree class, Θ ∼= Z[Ãp,q], or
Θ ∼= Z[A∞], Z[A∞

∞], Z[D∞].

Proof. According to [20, (3.2)], the tree class TΘ of the component Θ is either a finite or infinite
Dynkin diagram, or a Euclidean diagram. Since Θ ∩ EIP(G) ̸= ∅, the component Θ contains a
G-module M of full support P (G)M = P (G), so that dimP (G)Θ ≥ rkau(G)−1 ≥ 1. In view of [20,
(3.3)], either the tree class T̄Θ is Euclidean, or Θ ∼= Z[Ãp,q],Z[A∞], Z[A∞

∞], Z[D∞]. �
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Lemma 5.1.2. Let G be a finite group scheme of abelian unipotent rank rkau(G) ≥ 2. If Θ ⊆ Γs(G)
is a component of tree class T̄Θ ̸= A∞, then Θ ∩ EIP(G)p−1 is finite.

Proof. Since rkau(G) ≥ 2, Lemma 5.1.1 implies that the component Θ has tree class T̄Θ ∈ {Ã1,2, D̃n,
Ẽn, A∞, A

∞
∞, D∞}. In view of T̄Θ ̸= A∞, [1, (VII.3)] shows that every τG-invariant subadditive

function f : Θ −→ N0 is bounded.
Let αK ∈ Πt(G) be a π-point. For M ∈ Θ, we write

Jt(M) =

p⊕
i=1

αK,i(M)[i].

If Θ ∩ EIP(G) ̸= ∅, then dimΠ(G)Θ = dimΠ(G) ≥ rkau(G)−1 ≥ 1, and a consecutive application
of [21, (2.3)] and [21, (2.4)] shows that, for i ∈ {1, . . . , p−1}, the function αK,i : Θ −→ N0 is
τG-invariant and additive. Hence there exists ℓ ∈ N such that αK,i(M) ≤ ℓ for all M ∈ Θ and
i ∈ {1, . . . , p−1}.

Let αK ∈ Πt(G) be a π-point. Given M ∈ Θ ∩ EIP(G)p−1, we have

Jt(M) =

p−1⊕
i=1

αK,i(M)[i],

so that

dimkM =

p−1∑
i=1

iαK,i(M) ≤ (p−1)p

2
ℓ.

Thanks to [17, (3.2)], which also holds for finite group schemes, this implies that Θ ∩ EIP(G)p−1 is
finite. �

Let G be a finite group scheme. A short exact sequence

(0) −→ N −→ E −→M −→ (0)

of G-modules is referred to as locally split, provided the exact sequence

(0) −→ α∗
K(NK) −→ α∗

K(EK) −→ α∗
K(MK) −→ (0)

is split exact for every π-point αK ∈ Πt(G).

Lemma 5.1.3. Let G be a finite group scheme. If

(0) −→ N −→ E −→M −→ (0)

is a locally split short exact sequence such that E ∈ EIP(G)d, then M,N ∈ EIP(G)d.

Proof. Thanks to Lemma 4.1.2, the G-module M belongs to EIP(G)d.
Let αK ∈ Πt(G) be a π-point. We claim that

(∗) ℓjαK
(NK) = ℓjαK

(EK) ∩NK for 1 ≤ j ≤ p−1.

Since the given sequence is locally split, there exists an Ap,K-submodule X ⊆ α∗
K(E) such that

α∗
K(EK) = α∗

K(NK)⊕X.

Let a ∈ Ap,K be an element. If v ∈ a.α∗
K(EK)∩ α∗

K(NK), then there exits n ∈ α∗
K(NK) and x ∈ X

such that v = a.n+ a.x. Thus, v − a.n = a.x ∈ α∗
K(NK) ∩X = (0), so that v = a.n ∈ a.α∗

K(NK).
Thus, a.α∗

k(NK) = a.α∗
K(EK) ∩ α∗

K(NK) and assertion (∗) follows by specializing a = tj .
Let j ∈ {1, . . . , p−1}. Since E ∈ EIP(G)d, there exists a subspace V ⊆ E, with V = (0) for j ≥ d,

such that
ℓjαK

(EK) = VK ∀ αK ∈ Πt(G).
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Let αK be a π-point. Thanks to (∗), we obtain

ℓjαK
(NK) = ℓjαK

(EK) ∩NK = VK ∩NK = (V ∩N)K .

As a result, N ∈ EIP(G)d. �

Let Θ ⊆ Γs(G) be a component. Then Θ is referred to as regular, provided Rad(P ) ̸∈ Θ for every
principal indecomposable G-module P . In case Θ ∩ EIP(G) ̸= ∅, we define

δΘ := min{(dimkN)2 ; N ∈ Θ ∩ EIP(G)}.
Let Θ ∼= Z[A∞] and suppose that M ∈ Θ is quasi-simple. Then there exists a unique infinite
sectional path

· · · → (r)M → (r−1)M → · · · → (1)M =M

in Θ. If X ∈ Θ is an arbitrary module, then there exist uniquely determined ℓ ∈ N and n ∈ Z such
that X ∼= τnG ((ℓ)M). In that case, we say that X has quasi-length qℓ(X) = ℓ. Following [16, (2.2)],
we call the full subquiver W(X) ⊆ Θ, whose vertices are the modules τnG ((m)M) with 1 ≤ m ≤ ℓ
and 0 ≤ n ≤ ℓ−m, the wing spanned by X.

Theorem 5.1.4. Let G be a finite group scheme of abelian unipotent rank rkau(G) ≥ 2, Θ ⊆ Γs(G)
be a regular component of tree class A∞. Then the following statements hold:

(1) If M ∈ Θ ∩ EIP(G), then W(M) ⊆ Θ ∩ EIP(G).
(2) Every M ∈ Θ ∩ EIP(G)p−1 is quasi-simple, and Θ ∩ EIP(G)p−1 is finite.
(3) If Θ ∩ EIP(G)p−2 ̸= ∅, then |Θ ∩ EIP(G)| ≤ δΘ and every M ∈ Θ ∩ EIP(G) is quasi-simple.

Proof. Since rkau(G) ≥ 2, Lemma 5.1.1 yields Θ ∼= Z[A∞].
(1) We prove our assertion by induction on the quasi-length qℓ(M) of M . If qℓ(M) = 2, then,

observing Θ being regular, we conclude that M is the middle term of an almost split sequence,
whose three terms form W(M). Lemma 5.1.3 thus yields W(M) ⊆ EIP(G).

Suppose that qℓ(M) ≥ 3. Since Θ is regular, there exist modules X,Y ∈ Θ of quasi-lengths
qℓ(X) = qℓ(M)−1 and qℓ(Y ) = qℓ(M)−2 such that

(0) −→ τG(X) −→M ⊕ Y −→ X −→ (0)

is the almost split sequence terminating in X. In view of

dimΠ(G)M = dimΠ(G) ≥ rkau(G)−1 ≥ 1

it follows from [6, (8.5)] that the above sequence is locally split. Moreover, the resulting map M −→
X is surjective, so that Lemma 4.1.2 ensures that X ∈ EIP(G). Since Y ∈ W(X), the inductive
hypothesis yields Y ∈ EIP(G). Thus, M ⊕ Y ∈ EIP(G), and Lemma 5.1.3 implies τG(X) ∈ EIP(G).
Since qℓ(τG(X)) = qℓ(X) = qℓ(M)−1 and

W(M) = {M} ∪W(τG(X)) ∪W(X),

the inductive hypothesis implies W(M) ⊆ EIP(G).
(2) Let M be an element of Θ∩EIP(G)p−1. Suppose that M has quasi-length qℓ(M) ≥ 2. Since Θ

is regular, there exists a sequence M � Mm−1 � · · · � M1 of irreducible epimorphisms such that
qℓ(Mi) = i. According to Lemma 4.1.2, each Mi belongs to EIP(G)p−1. There results an almost
split sequence

(∗) (0) −→ τG(M1) −→M2 −→M1 −→ (0).

As before, the almost split sequence (∗) is locally split. A consecutive application of Lemma 5.1.3 and
Corollary 4.1.4 now implies Ω2

G(M1) ∈ EIP(G)p−1. Since the stable Jordan types of M1 and ΩG(M1)

coincide, we obtain Jt(M1) = Jt(Ω2
G(M1)). Theorem 4.4.4(1) now implies Ω2

G(M1) ̸∈ EIP(G), a
contradiction. As a result, the G-module M is quasi-simple.
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Fix a G-module M0 ∈ Θ ∩ EIP(G)p−1 and let M ∈ Θ ∩ EIP(G)p−1. Since M and M0 are quasi-
simple, there exists n ∈ Z such that M = τnG (M0). A consecutive application of Corollary 4.1.4(2)
and Theorem 4.4.1(1) yields |n| ≤ (dimkM0)

2. This shows that Θ ∩ EIP(G)p−1 is finite.
(3) Let M ∈ Θ ∩ EIP(G). Since Θ ∩ EIP(G)p−2 ̸= ∅, it follows from [21, (3.2.3)] that Jt(M) =⊕p−2
i=1 ai[i] ⊕ ap[p]. Proposition 4.1.6 thus forces M ∈ EIP(G)p−2, so that (2) implies that M is

quasi-simple.
Let M0 ∈ Θ ∩ EIP(G) be a G-module of dimension

√
δΘ. Using Theorem 4.4.1(2) we obtain

Θ ∩ EIP(G) ⊆ {τnG (M) ; |n| ≤ δΘ−1}.
Our assertion now follows from Theorem 4.4.4(2). �

Remark. In Section 5.2 we will provide examples of components Θ with Θ ∩ EIP(G)p−1 ̸= ∅ such
that Θ ∩ EIP(G) is infinite and contains modules of arbitrarily large quasi-length.

Our first application concerns Auslander-Reiten components containing one-dimensional modules.

Proposition 5.1.5. Suppose that p ≥ 3, and let G be a finite group scheme of abelian unipotent
rank rkau(G) ≥ 2 such that the principal block B0(G) ⊆ kG possesses no simple module S of constant
Jordan type Jt(S) = m[p−1] ⊕ n[p]. Let Θ ⊆ Γs(G) be a component containing a one-dimensional
G-module kλ. Then the following statements hold:

(1) The component Θ is regular, and Θ ∼= Z[A∞],Z[A∞
∞], or Z[D∞].

(2) If Θ ∼= Z[A∞], then Θ ∩ EIP(G) = {kλ}.
(3) If Θ ∼= Z[A∞

∞] and G(k) has odd order, then Θ ∩ EIP(G) = {kλ}.
(4) If Θ ∼= Z[D∞], then Θ ∩ EIP(G) = {M ∈ Θ ; dimkM ≤ 2}.

Proof. According to Corollary 4.1.4, the functor

Tλ : mod(G) −→ mod(G) ; M 7→M⊗kkλ

is an auto-equivalence which leaves EIP(G) invariant. It sends the principal bock B0(G) to the
block Bλ ⊆ kG containing kλ and the component containing k onto the component containing kλ.
Moreover, α∗

K(Tλ(M)K) ∼= α∗
K(MK) for all αK ∈ Πt(G), and we may thus assume without loss of

generality that kλ = k is the trivial one-dimensional G-module.
(1) Suppose that Θ is not regular. Then there exists a principal indecomposable G-module P such

that Rad(P ) ∈ Θ. According to [21, (3.1.2)] (see also [6, (8.8)]), there exist m ∈ N and n ∈ N0 such
that Jt(Rad(P )) = m[1] ⊕ n[p]. Thus, the simple B0(G)-module S := Ω−1

G (Rad(P )) has constant
Jordan type Jt(S) = m[p−1] ⊕ n′[p]. As this contradicts our current assumption on B0(G), the
component Θ is regular.

Since components of Euclidean tree class and components of type Z[Ãp,q] are not regular (cf. [50,
Thm.A] and [4, p.155]), Lemma 5.1.1 now implies Θ ∼= Z[A∞], Z[A∞

∞], or Z[D∞].
(2) Suppose that Θ ∼= Z[A∞]. According to Theorem 5.1.4, the G-module k has quasi-length

qℓ(k) = 1. Thus, Θ ∩ EIP(G)p−2 ̸= ∅, while δΘ = 1. Hence Theorem 5.1.4 gives Θ ∩ EIP(G) = {k}.
(3) Suppose that Θ ∼= Z[A∞

∞]. Since k has constant Jordan type Jt(k) = [1], it follows from [21,
(3.1.2)] that

Jt(M) = [1]⊕ nM [p]

for every M ∈ Θ. As p ≥ 3, Proposition 4.1.6 yields nM = 0 whenever M ∈ Θ ∩ EIP(G).
Consequently, dimkM = 1 and M ∼= kλ for some λ ∈ X(G). As a result, the auto-equivalence Tλ
induces an automorphism of Θ of finite order nλ. Owing to [2, (4.15)], we obtain T 2

λ = idΘ, so that
k2λ ∼= k. Thus, λ ∈ X(G) has order a divisor of 2.
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The character group X(G0) of the infinitesimal group G0 is a p-group. As p ≥ 3, the restriction
λ|G0 ∈ X(G0) of λ ∈ X(G) is trivial, so that λ ∈ X(Gred). Since X(Gred) and G(k) have the same
order, we obtain λ = 0 and M ∼= k.

(4) Since Jt(k) = [1], it follows from [21, (3.1.1)] and [2, (4.5)] that every M ∈ Θ has constant
Jordan type

Jt(M) = aM [1]⊕ nM [p]

with aM ∈ {1, 2}. The arguments of (3) thus yield dimkM ≤ 2 for every M ∈ Θ ∩ EIP(G).
Conversely, if M ∈ Θ has dimension ≤ 2, then there is aM ∈ {1, 2} with Jt(M) = aM [1], so that
M has the equal images property. �

Remarks. (1) If cxG(k) ≥ 3, then [20, (3.3)] implies that the component containing kλ is isomor-
phic to Z[A∞]. If G is a finite group, then the same conclusion already holds if kλ belongs
to a block of wild representation type, cf. [15, Thm.1].

(2) If the group G is supersolvable, then all simple B0(G)-modules are one-dimensional [48,
(I.2.5)], so that the technical conditions of Proposition 5.1.5 hold in that case.

(3) Suppose that G is a finite group and let B ⊆ kG be a block whose stable Auslander-Reiten
quiver contains a component of tree class D∞. According to [15, Thm.4], the defect group
DB ⊆ G of B is semidihedral and p = 2.

Example. We consider the restricted Lie algebra sl(2) along with its standard basis {e, f, h}. Let
sl(2)s := sl(2) ⊕ kv0 be the four-dimensional central extension of sl(2), whose bracket and p-map
are given by

[x+ αv0, y + βv0] := [x, y] ∀ x, y ∈ sl(2) and e[p] = 0 = f [p] , h[p] = h+ v0 , v
[p]
0 = 0,

respectively. According to [21, (8.2.2)], the trivial U0(sl(2)s)-module k is the only simple mod-
ule of constant Jordan type. By the same token, the AR-component Θk containing k is of type
Z[A∞

∞]. Since sl(2)s corresponds to an infinitesimal group G (of height 1), we have G(k) = {1}, and
Proposition 5.1.5 implies Θk ∩ EIP(sl(2)s) = {k}.

A finite group scheme G is called trigonalizable if all simple G-modules are one-dimensional. Our
next result should be contrasted with the fact that AR-components containing a module of constant
Jordan type consist entirely of such modules, see [6, (8.7)].

Corollary 5.1.6. Suppose that p ≥ 3. Let G be a trigonalizable finite group scheme of abelian
unipotent rank rkau(G) ≥ 2, Θ ⊆ Γs(G) be a component.

(1) If Θ ∩ EIP(G) ̸= ∅, then Θ is regular and Θ ∼= Z[A∞],Z[A∞
∞], or Z[D∞].

(2) If Θ has tree class A∞, then the following statements hold:
(a) W(M) ⊆ EIP(G) for every M ∈ Θ ∩ EIP(G).
(b) The set Θ ∩ EIP(G)p−1 is finite with every M ∈ EIP(G)p−1 being quasi-simple.
(c) If Θ∩EIP(G)p−2 ̸= ∅, then |Θ∩EIP(G)| ≤ δΘ and Θ∩EIP(G) consists of quasi-simple

modules.
(3) If Θ ∩ EIP(G)p−2 ̸= ∅, then Θ ∩ EIP(G) is finite.

Proof. (1) Suppose that Θ is not regular. Then there exists a principal indecomposable G-module P
such that Rad(P ) ∈ Θ. Since G is trigonalizable, there exists λ ∈ X(G) such that Rad(P ) ∼= ΩG(kλ).
Thus, Rad(P ) has constant Jordan type Jt(Rad(P )) = [p− 1] ⊕ n[p] for some n ∈ N0. Since
Θ ∩ EIP(G) ̸= ∅ and rkau(G) ≥ 2, Proposition 4.1.6 and [21, (3.2.3)] now yield a contradiction. As
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components of Euclidean tree class of type Z[Ãp,q] are not regular (cf. [50, Thm.A] and [4, p.155]),
our assertions concerning the isomorphism type of Θ now follow from Lemma 5.1.1.

(2a) This follows from (1) and Theorem 5.1.4(1).
(2b) This is a direct consequence of (1) and Theorem 5.1.4(2).
(2c) The assertion follows from (1) and Theorem 5.1.4(3).
(3) The assertion follows from a consecutive application of (2c) and Lemma 5.1.2. �

Remark. If p ≥ 5 and M ∈ Θ ∩ EIP(G)2, then, using Proposition 4.4.2 instead of Theorem 5.1.4,
the conclusion of (2c) can be strengthened to Θ ∩ EIP(G) = {M}.

Corollary 5.1.7. Suppose that p ≥ 3 and let U be a unipotent group scheme of abelian unipotent
rank rkau(U) ≥ 2. Let Θ ⊆ Γs(U) be a component.

(1) Then Θ ∩ EIP(U)p−1 is finite and every M ∈ Θ ∩ EIP(U)p−1 is quasi-simple.
(2) If Θ ∩ EIP(U)p−2 ̸= ∅, then |Θ ∩ EIP(U)| ≤ δΘ and Θ ∩ EIP(G) consists of quasi-simple

modules.

Proof. We first show that the algebra kU is wild. If this is not the case, then kU is tame or
representation-finite. Since kU is a local algebra, [19, (5.1.5)] shows that kU is not tame. Hence kU
is representation-finite, so that 2 ≤ rkau(U) ≤ cxU(k) ≤ 1, a contradiction.

As noted in [17, (5.6)], Erdmann’s Theorem [15, Thm.1] holds for unipotent group schemes,
implying that every component Θ which meets EIP(U) is isomorphic to Z[A∞].

The result thus follows from Corollary 5.1.6(2b),(2c). �

5.2. Components for Z/(p)×Z/(p). By way of illustration, we consider the case where G :=
Z/(p)×Z/(p) for p ≥ 3. Recall that Erdmann’s Theorem [15, Thm.1] implies that a component
Θ ⊆ Γs(G) containing an equal images module is of type Z[A∞]. If M is a G-module of constant
Jordan type, we write

Jt(M) =

p⊕
i=1

ai(M)[i],

with ai(M) ∈ N0 for 1 ≤ i ≤ p. Given d ∈ {1, . . . , p} and n ≥ d, we let Θn,d ⊆ Γs(G) be the
AR-component containing the G-module Wn,d.

Proposition 5.2.1. The following statements hold:
(1) If d ≤ p−1, then Θn,d ∩ EIP(G)p−1 = {Wn,d}.
(2) If d ≤ p−2, then Θn,d ∩ EIP(G) = {Wn,d}.

Proof. (1) If N ∈ Θn,d ∩ EIP(G)p−1, then Corollary 5.1.7 implies that the G-modules N and Wn,d

are quasi-simple. Hence there exists m ∈ Z such that N ∼= Ω2m
G (Wn,d). Thus,

Jt(N) = Jt(Wn,d)⊕ ap[p]

for some ap ∈ N0, while our assumptionN ∈ EIP(G)p−1 forces ap = 0. Consequently, dimk Top(N) =
dimk Top(Wn,d) = n and a1(N) = a1(Wn,d) = 1. Lemma 4.5.3 thus provides a surjection Wn,d −→
N . Since N and Wn,d have the same dimension, it follows that N ∼=Wn,d.

(2) If d ≤ p−2, then a consecutive application of [21, (3.2.3)] and Proposition 4.1.6 gives Θn,d ∩
EIP(G) = Θn,d ∩ EIP(G)p−1, so that (1) yields the assertion. �
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We finally discuss the sets Θn,d ∩ EIP(G) for d ≥ p−1 that turn out to behave differently. Recall
that kG =

⊕2p−2
i=0 kGi inherits the canonical Z-grading from the polynomial ring in two variables.

Moreover, the kG-modules

Wn,d =

d−1⊕
i=0

(Wn,d)i

are also Z-graded, cf. [7, (2.1)].

Lemma 5.2.2. If (0) −→ N −→ E −→ M −→ (0) is an almost split sequence such that M,N ∈
EIP(G), then E ∈ EIP(G).

Proof. Given a G-module X and a p-point α ∈ Pt(G), we have ℓα(X) ⊆ Rad(X). There results a
natural epimorphism λX : X/ℓα(X) −→ Top(X).

If N is simple, then N ∼= k and Ω−2
G (k) ∼= M ∈ EIP(G), which contradicts Theorem 4.4.1.

Consequently, ℓα(N) = Rad(N) ̸= (0) for every α ∈ Pt(G), see [7, (1.7)]. Since the sequence is
almost split, [1, (V.3.2)] provides a commutative diagram

(0) −−−−→ N/ℓα(N) −−−−→ E/ℓα(E) −−−−→ M/ℓα(M) −−−−→ (0)yλN

yλE

yλM

(0) −−−−→ Top(N) −−−−→ Top(E) −−−−→ Top(M) −−−−→ (0)

with exact rows. In view of M,N ∈ EIP(G) being equal images modules, the maps λN and λM are
isomorphisms. Hence λE also has this property, so that ℓα(E) = Rad(E). Thanks to [7, (1.7)], this
implies E ∈ EIP(G). �

Proposition 5.2.3. The following statements hold:
(1) Let Θ ⊆ Γs(G) be a component and suppose that n ≥ p is minimal subject to Wn,p ∈ Θ.

Then n < 2p and
(a) Θ ∩ EIP(G) = {(r)Wn+mp,p ; r ≥ 1, m ≥ 0} for n ̸= 2p−1.
(b) Θ∩EIP(G) = {(r)W(m+2)p−1,p ; r ≥ 1, m ≥ 0}∪{(r)Wp−1,p−1 ; r ≥ 1} for n = 2p−1.

(2) |{Θn,p ; n ≥ p}| = p−1.

Proof. (1) Recall that Ω2
G is the Auslander-Reiten translation of modG. If n ≥ 2p, then Lemma

4.5.4 implies
Wn−p,p

∼= Ω−2
G (Wn,p) ∈ Θ,

which contradicts the choice of n. Consequently, p ≤ n < 2p.
If Θ is not regular, then Rad(kG) ∈ Θ. Since Jt(Rad(kG)) = [p−1]⊕ (p−1)[p], while Jt(Wn,p) =⊕p−1
i=1 [i]⊕ (n−p+1)[p], an application of [21, (3.2.3)] yields a contradiction.

(i) We have {(r)Wn+mp,p ; r ≥ 1, m ≥ 0} ⊆ Θ ∩ EIP(G).
Setting Θ(r) := {(r)Wn+mp,p ; m ≥ 0}, we shall show inductively that Θ(r) ⊆ Θ ∩ EIP(G) for all
r ≥ 1, the case r = 1 being an immediate consequence of Lemma 4.5.4. Let r > 1 and suppose that
Θ(r−1) ⊆ Θ ∩ EIP(G). Since Θ is regular, there exists an almost split sequence

(0) −→ (r−1)Wn+(m+1)p,p −→ (r)Wn+mp,p ⊕ (r−2)Wn+(m+1)p,p −→ (r−1)Wn+mp,p −→ (0)

for any given m ≥ 0. (Here we set (0)M = (0) for every M ∈ Θ.) Lemma 5.2.2 in conjunction with
the inductive hypothesis implies

(r)Wn+mp,p ⊕ (r−2)Wn+(m+1)p,p ∈ EIP(G),

so that Lemma 4.1.2 gives (r)Wn+mp,p ∈ EIP(G). ⋄
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(ii) If {(r)Wn+mp ; r ≥ 1, m ≥ 0} ( Θ ∩ EIP(G), then n = 2p−1.
If equality does not hold, then Θ being regular implies that Θ∩EIP(G)r{(r)Wn+mp ; r ≥ 1, m ≥ 0}
contains a chain

Mℓ �Mℓ−1 � · · · �M1

of epimorphisms with qℓ(Mj) = j for j ∈ {1, . . . , ℓ}. In particular, the G-module M1 is quasi-simple
and there exists m > 0 such that

Wn,p
∼= Ω2m

G (M1).

Consequently, Jt(M1) =
⊕p−1

i=1 [i]⊕ ap(M1)[p], so that a1(M1) = 1.
If ap(M1) ̸= 0, then Lemma 4.5.3 shows that M1

∼= Wap(M)+p−1,p, while Lemma 4.5.4 yields
n = ap(M1)+(m+1)p−1. Since p ≤ n < 2p, we obtain m = 0, a contradiction. Alternatively,
Jt(M1) =

⊕p−1
i=1 [i], and Lemma 4.5.3 implies M1

∼= Wp−1,p−1. In view of Lemma 4.5.4, application
of Ω2m

G to the short exact sequence (0) −→ Wp−1,p−1 −→ Wp,p −→ kp −→ (0) (cf. [7, (2.5)]) gives
a short exact sequence

(0) −→Wn,p −→W(m+1)p,p ⊕ kGr −→ Ω2m
G (k)p −→ (0)

for some r ≥ 0. Observing dimk Ω
2m
G (k) = mp2+1 as well as dimkWn,p = (n−p+1)p + pp−1

2 , we
arrive at

(mp+1)p+p
p−1

2
+rp2 = dimkW(m+1)p,p+dimk kG

r = dimkWn,p+p dimk Ω
2m
G (k)

= (n−p+1)p+p
p−1

2
+mp3+p,

whence
(m+r)p = n−p+1+mp2.

Thus, n ≡ −1 mod(p), so that n = 2p−1. ⋄

Now suppose that n = 2p−1. Lemma 4.5.4(2) yields

Ω2
G(Wp−1,p−1) ∼=W2p−1,p,

so that Wp−1,p−1 ∈ Θ. Lemma 5.2.2 in conjunction with (i) now implies {(r)Wp−1,p−1 ; r ≥ 1} ⊆
Θ ∩ EIP(G).

If Θ ∩ EIP(G)r({(r)W(m+2)p−1,p ; r ≥ 1, m ≥ 0} ∪ {(r)Wp−1,p−1}) ̸= ∅, then the arguments of
(ii) imply that this set contains a quasi-simple module M . Hence there exists m > 0 with

Ω2m
G (M) ∼=Wp−1,p−1,

so that Jt(M) =
⊕p−1

i=1 [i] ⊕ ap[p]. In view of Proposition 5.2.1, we have ap ̸= 0. Since a1(M) = 1,
Lemma 4.5.3 provides a surjection Wap+p−1,p � M , which is an isomorphism. Thus, Lemma 4.5.4
gives

Wp−1,p−1
∼= Ω2m

G (Wap+p−1,p) ∼=Wap+(m+1)p−1,p,

a contradiction.
(2) By (1), we have {Θn,p ; n ≥ p} = {Θp,p, . . . ,Θ2p−1,p}. �

Remark. Working in the category modZG, a much more detailed analysis shows that, for n ≥ p,
Wn,p−1 is the only equal images module in its AR-component. Hence EIP(G) ∩ Θn,d is infinite if
and only if Wn,d is a p-Koszul module.
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The shaded region in the following picture gives the sets Θ ∩ EIP(G) described in (a) and (b) of
Proposition 5.2.3. The diagonal within the region that is adjacent to the boundary comprises the
modules ((r)Wn,p)r≥1 and ((r)Wp−1,p−1)r≥1, respectively.
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