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THE LINKAGE PRINCIPLE FOR RESTRICTED
CRITICAL LEVEL REPRESENTATIONS OF AFFINE

KAC–MOODY ALGEBRAS

TOMOYUKI ARAKAWA, PETER FIEBIG

Abstract. We study the restricted category O for an affine Kac–
Moody algebra at the critical level. In particular, we prove the
first part of the Feigin-Frenkel conjecture: the linkage principle for
restricted Verma modules. Moreover, we prove a version of the
BGGH-reciprocity principle and we determine the block decom-
position of the restricted category O. For the proofs we need a
deformed version of the classical structures, so we mostly work in
a relative setting.

1. Introduction

The representation theory of an affine Kac–Moody algebra at the
critical level is of central importance in the approach towards the geo-
metric Langlands program that was proposed by Edward Frenkel and
Dennis Gaitsgory in [FG06]. While there is already a good knowl-
edge on the connection between critical level representations and the
geometry of the associated affine Grassmannian, central problems, as
for example the determination of the critical simple highest weight
characters, still remain open. In this paper we continue our approach
towards a description of the critical level category O that we started
in the paper [AF08].

Let ĝ be the affine Kac-Moody algebra associated to a finite dimen-
sional, simple complex Lie algebra g (for the specialists we point out
that we add the derivation operator to the centrally extended loop
algebra). We study the corresponding highest weight category O.

The Lie algebra ĝ has a one dimensional center and we let K ∈ ĝ

be one of its generators. The center acts semisimply on each object of
O, so O decomposes according to the eigenvalue of the action of K.
We say that an object M of O has level k ∈ C if K acts on M as
multiplication with k, and we let Ok be the full subcategory of O that
consists of all modules of level k. There is one special value, k = c,
which is called the critical level.
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2 RESTRICTED LINKAGE PRINCIPLE

For all levels k 6= c the categorical structure of Ok is well-known and
admits a description in terms of the affine Hecke algebra associated to
ĝ, in analogy to the case of the category O for a finite dimensional sim-
ple complex Lie algebra (cf. [Fi06]). However, for k = c the structure
changes drastically. In fact, Lusztig anticipated in his ICM address in
1990 that the representation theory at the critical level resembles the
representation theory of a small quantum group or a modular Lie alge-
bra (cf. [L91]). In particular, it should not be the affine Hecke algebra
that governs the structure of Oc, but its periodic module. The Feigin–
Frenkel conjecture on the simple critical characters (cf. [AF08]) points
in this direction as well. So one might hope that there is a description
of the critical level representation theory that closely resembles the one
given for small quantum groups and modular Lie algebras by Andersen,
Jantzen and Soergel in [AJS94].

The main result in this paper is another step towards such a de-
scription (following the paper [AF08]). We prove the restricted linkage
principle, i.e. we show that a simple module occurs in a restricted
Verma module only if their highest weights lie in the same orbit under
the associated integral Weyl group (cf. Theorem 6.1). Moreover, we
study restricted projective objects, prove a BGGH-reciprocity result
(cf. Theorem 5.5) and describe the corresponding block decomposition
(cf. Theorem 6.2). Our results are in close analogy to the quantum
group and the modular case, hence they strongly support the above
conjectures. In the remainder of the introduction we explain the state-
ments in more detail.

1.1. Restricted representations of ĝ. The action of the derivation
operator of ĝ allows us to consider O as a graded category, i.e. there is a
naturally defined shift equivalence T : O → O. We call an object M of
O restricted if for each n ∈ Z, n 6= 0, and each natural transformation
φ : id → T n, the induced homomorphism φM : M → T nM is the zero
homomorphism.

The shift equivalence T preserves the subcategories Ok for any k.
The critical level, however, is the only level for which T preserves even
each indecomposable block. Each object of non-critical level is re-
stricted, as there is no non-trivial natural transformation id → T n for
n 6= 0. In the critical level, however, our definition singles out a very
interesting subcategory Oc of Oc. For many problems, as for example
the computation of simple characters, it is sufficient (and very conve-
nient) to work with Oc instead of Oc. It is also Oc that should resemble
the representation category of a small quantum group or a modular Lie
algebra.
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1.2. Verma modules, simple and projective objects. We denote

by ĥ the Cartan subalgebra of ĝ and by ĥ⋆ its complex dual vector

space. For each λ ∈ ĥ⋆ we denote by ∆(λ) the Verma module for ĝ

with highest weight λ, and by L(λ) its simple quotient. We call a subset

J of ĥ⋆ open if it contains with any element also each element that is

smaller with respect to the usual partial order “6” on ĥ⋆. We call J
(locally) bounded if for any element of J there is only a finite number
of elements in J that are larger. For such an open and bounded subset
J we consider the full subcategory OJ of O that contains all objects
whose set of weights is contained in J .

The categories OJ have the advantage that they contain enough
projectives. We have L(λ) ∈ OJ if and only if λ ∈ J , and there exists
a projective cover PJ (λ)→ L(λ) in OJ . In general, it depends on J .
Each PJ (λ) admits a Verma flag, i.e. a finite filtration such that the
subquotients are isomorphic to Verma modules. For the corresponding
multiplicities holds the BGGH-reciprocity formula

(PJ (λ) : ∆(µ)) =

{
[∆(µ) : L(λ)], if µ ∈ J ,

0, else.

(By [M : L(λ)] we denote the Jordan-Hölder multiplicity of L(λ) in M ,
whenever this makes sense, cf. Section 2.10.)

1.3. The block decomposition and the Kac–Kazhdan theorem.

Let “∼” be the equivalence relation on ĥ⋆ generated by the relations
λ ∼ µ if there is some J such that PJ (λ) contains a subquotient

isomorphic to L(µ). For an equivalence class Λ ∈ ĥ⋆/∼ let OΛ ⊂ O
be the full subcategory generated by the PJ (λ) for arbitrary bounded

open subsets J of ĥ⋆ and λ ∈ Λ. From the definitions one can almost
immediately deduce the block decomposition: the functor

∏

Λ∈bh⋆/∼

OΛ → O,

(MΛ) 7→
⊕

Λ

MΛ

is an equivalence.
If λ ∈ J , then PJ (λ) contains ∆(λ) as a subquotient. Hence if

[∆(λ) : L(µ)] 6= 0, then λ ∼ µ. As each PJ (λ) admits a Verma flag,
we deduce that “∼” is also generated by the relations λ ∼ µ for all
pairs λ, µ such that [∆(λ) : L(µ)] 6= 0. The main result in [KK79] now
gives us a rather explicit description of such pairs (λ, µ). In order to
formulate the Kac–Kazhdan theorem we need the following definition:
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let (·, ·) : ĥ⋆× ĥ⋆ → C be a non-degenerate, invariant bilinear form and

denote by “�” the partial order on ĥ⋆ generated by the relations µ � λ
if there exists a positive root β of ĝ and a number n ∈ N such that

2(λ+ρ, β) = n(β, β) and µ = λ−nβ. (Here ρ ∈ ĥ⋆ is an arbitrary Weyl
vector, i.e. an element that takes the value 1 on each simple coroot.)

Theorem 1.1. [KK79] We have [∆(λ) : L(µ)] 6= 0 if and only if µ � λ.

As a corollary we obtain that the equivalence relation “∼” is gener-
ated by the partial order “�”.

1.4. The linkage principle. The construction of the partial order

“�” motivates the following definition: for λ ∈ ĥ⋆ we denote by Ŵ(λ)

be the subgroup of the Weyl group Ŵ associated to ĝ that is generated
by the reflections sβ for all real roots β such that 2(λ+ρ, β) ∈ Z(β, β).
It is called the integral Weyl group associated to λ. If λ ∼ µ, then

we have Ŵ(λ) = Ŵ(µ). The non-restricted linkage principle is the
following.

• Suppose that λ is non-critical, i.e. λ(K) 6= c. Then [∆(λ) :

L(µ)] 6= 0 implies µ ∈ Ŵ(λ).λ and µ ≤ λ.
• Suppose that λ is critical, i.e. λ(K) = c. Then [∆(λ) : L(µ)] 6= 0

implies µ ∈ Ŵ(λ).λ+ Zδ and µ ≤ λ.

Here δ ∈ ĥ⋆ denotes the smallest positive imaginary root.

1.5. The restricted versions. A Verma module ∆(λ) of critical level
is never restricted. It possesses, however, a unique maximal restricted
quotient ∆(λ), which is called the restricted Verma module of highest
weight λ. On the other side, a simple module L(λ) is always restricted.

As before we define for any bounded open subset J of ĥ⋆ the truncated

subcategory O
J

of O.
In this paper we prove that there is a restricted projective cover

P
J
(λ) → L(λ) in O

J
for each simple module L(λ) with λ ∈ J . We

prove that each P
J
(λ) admits a restricted Verma flag, i.e. a finite

filtration with subquotients isomorphic to restricted Verma modules,
and that for the multiplicities holds the following version of the BGGH-
reciprocity formula: we have

(PJ (λ) : ∆(µ)) =

{
[∆(µ) : L(λ)], if µ ∈ J ,

0, else.

Then we prove the restricted linkage principle:
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• Suppose that λ is critical. Then [∆(λ) : L(µ)] implies µ ∈

Ŵ(λ).λ and µ ≤ λ.

For the proof of the linkage principle we need a deformation theory,
i.e. we have to replace the field of complex number by a deformation
algebra A. The main technical point in this paper is to study the
deformed restricted category OA, in particular its projective objects,
and to prove the BGGH-reciprocity in this relative setting.

1.6. Acknowledgments: We would like to thank Henning Haahr An-
dersen, Jens Carsten Jantzen and Wolfgang Soergel for very motivating
and inspiring discussions on the subject of this paper. We would also
like to thank the Newton Institute in Cambridge for its hospitality.

2. Affine Kac–Moody algebras and the deformed

category O

In this section we recall the construction of the deformed category
O associated to an affine Kac-Moody algebra. Our main reference is
[Fi03].

2.1. Affine Kac-Moody algebras. We fix a finite dimensional, com-
plex, simple Lie algebra g and denote by ĝ the corresponding affine
Kac–Moody algebra. As a vector space we have ĝ = (g⊗C C[t, t−1])⊕
CK ⊕CD and the Lie bracket is given by

[K, ĝ] = 0,

[D, x⊗ tn] = nx⊗ tn,

[x⊗ tm, y ⊗ tn] = [x, y]⊗ tm+n +mδm,−nk(x, y)K

for x, y ∈ g, m,n ∈ Z. Here k : g× g→ C denotes the Killing form for
g.

Let us fix a Borel subalgebra b ⊂ g and a Cartan subalgebra h ⊂ g

inside b. The corresponding Cartan and Borel subalgebras of ĝ are

ĥ := h⊕ CK ⊕ CD

b̂ := (g⊗C tC[t] + b⊗C C[t])⊕CK ⊕ CD.

2.2. Roots of ĝ. The decomposition ĥ = h⊕ CK ⊕ CD allows us to

embed h⋆ in ĥ⋆ using the map that is dual to the projection ĥ → h.

Let δ, κ ∈ ĥ⋆ be the elements dual to D and K, resp., with respect to
the direct decomposition, so we have δ(h⊕CK) = κ(h⊕CD) = 0 and

δ(D) = κ(K) = 1. Then ĥ⋆ = h⋆ ⊕Cκ⊕Cδ.
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Let R ⊂ h⋆ be the set of roots of g with respect to h and g =
h⊕

⊕
α∈R gα the root space decomposition. The set of roots of ĝ with

respect to ĥ then is R̂ = R̂re ∪ R̂im, where

R̂re = {α+ nδ | α ∈ R, n ∈ Z},

R̂im = {nδ | n ∈ Z, n 6= 0}.

The sets R̂re and R̂im are called the sets of real and of imaginary roots,
resp. The corresponding root spaces are

ĝα+nδ = gα ⊗ t
n,

ĝnδ = h⊗ tn.

The positive roots R̂+ ⊂ R̂ are those that correspond to roots of b̂.
Explicitely, we have

R̂+ = {α+ nδ | α ∈ R, n > 0} ∪ {α | α ∈ R+},

where R+ ⊂ R denotes the roots of b ⊂ g. We set R̂+,re := R̂+ ∩ R̂re

and R̂+,im := R̂+ ∩ R̂im. We denote by Π ⊂ R the set of simple roots
corresponding to our choice of b. The set of simple affine roots is

Π̂ := Π ∪ {−γ + δ},

where γ ∈ R+ is the highest root.

2.3. The Weyl group and the bilinear form. To any real root

α ∈ R̂re there is an associated coroot α∨ ∈ ĥ and a linear isomorphism

sα : ĥ⋆ → ĥ⋆ given by sα(λ) = λ − 〈λ, α∨〉α. The affine Weyl group

associated to our data is the subgroup Ŵ of GL(ĥ⋆) generated by the

isomorphisms sα with α ∈ R̂re.
There is a bilinear form (·, ·) : ĝ× ĝ→ C that is, up to multiplication

with a non-zero scalar, uniquely defined by being non-degenerate, sym-
metric and invariant, i.e. it satisfies ([x, y], z) = (x, [y, z]) for x, y, z ∈ ĝ.

Its restriction to ĥ × ĥ is non-degenerate as well and hence induces a

non-degenerate bilinear form on ĥ⋆ × ĥ⋆ that we denote again by (·, ·).
It is explicitely given by the following formulas:

(α, β) = k(α, β),

(κ, h⋆ ⊕ Cκ) = 0,

(δ, h⋆ ⊕ Cδ) = 0,

(κ, δ) = 1,
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for α, β ∈ h⋆ (here we denote by k : h⋆ × h⋆ → C the bilinear form
induced by the Killing form). Moreover, it is invariant under the action

of Ŵ, i.e. for λ, µ ∈ ĥ⋆ and w ∈ Ŵ we have

(λ, µ) = (w(λ), w(µ)).

2.4. The deformed category O. Let S := S(h) and Ŝ := S(ĥ) be

the symmetric algebras over the complex vector spaces h and ĥ. The

projection ĥ → h along the decomposition ĥ = h ⊕ CK ⊕ CD yields

an algebra homomorphism Ŝ → S. We think from now on of S as an

Ŝ-algebra via this homomorphism.
Let A be a commutative, associative, noetherian, unital S-algebra.

In the following we call such an algebra a deformation algebra. Using

the homomorphism Ŝ → S from above we can consider A as an Ŝ-

algebra as well. We denote by τ : ĥ→ A the composition of the canon-

ical map ĥ→ Ŝ with the structure homomorphism Ŝ → A, f 7→ f · 1A.
Note that τ(D) = τ(K) = 0.

For any complex Lie algebra l we denote by lA := l⊗CA the A-linear
Lie algebra obtained from l by base change. An lA-module is then an
A-module endowed with an operation of l that is A-linear. We denote
by U(lA) the universal enveloping algebra of the A-Lie algebra lA.

Definition 2.1. Let M be a ĝA-module.

(1) We say that M is a weight module if M =
⊕

λ∈bh⋆ Mλ, where

Mλ :=
{
m ∈M | H.m = (λ(H).1A + τ(H))m for all H ∈ ĥ

}
.

We call Mλ the weight space of M corresponding to λ (even
though its weight is rather λ+ τ).

(2) We say that M is locally b̂A-finite, if for each m ∈M the space

U(b̂A).m is a finitely generated A-module.

We define OA as the full subcategory of ĝA-mod that consists of locally

b̂A-finite weight modules.

One checks easily that OA is an abelian subcategory of the category
of all ĝA-modules. In the following we write O for the non-deformed
category, i.e. for the category OC that is defined by giving C the struc-
ture of a deformation algebra by identifying it with S/mS, where m ⊂ S
is the ideal generated by h ⊂ S.

Suppose that A = k is a field. Then we can consider ĥk and b̂k
as Cartan and Borel subalgebras of ĝk. The C-linear map τ : ĥ → k

induces a k-linear map ĥk → k that we denote by τ as well and which we

consider as an element in the dual space ĥ⋆k = Homk(ĥk, k). Moreover,
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each λ ∈ ĥ⋆ induces a k-linear map ĥk → k, hence we can consider ĥ⋆

as a subset of ĥ⋆k. Then Ok is the full subcategory of the usual category
O over ĝk that consists of modules with the property that all weights

lie in the affine space τ + ĥ⋆ ⊂ ĥ⋆k.

2.5. The level. Suppose that M is a weight module. Since τ(K) = 0,
the element K acts on a weight space Mλ by multiplication with the
scalar λ(K) ∈ C. For k ∈ C we denote by Mk the eigenspace of the
action of K on M with eigenvalue k. Since K is central each eigenspace
Mk is a submodule of M and we have M =

⊕
k∈C

Mk. In the case
M = Mk we call k the level of the module M and we let OA,k ⊂ OA be
the full subcategory whose objects are those of level k.

It turns out that there is a distinguished level c ∈ C which is criti-
cal in the sense that the structure of OA,c differs drastically from the
structure of OA,k for all k 6= c. For the definition of c see Section 2.16.

2.6. Base change - part 1. Let A and A′ be two deformation algebras
and consider A′ as an A-algebra via a homomorphism A→ A′ of unital
algebras.

Lemma 2.2. The functor · ⊗A A
′ induces a functor OA → OA′ and

for any k ∈ C a functor OA,k → OA′,k.

Proof. For any λ ∈ ĥ⋆ and M ∈ OA we have (M ⊗A A
′)λ = Mλ ⊗A A

′,
hence M ⊗A A′ is a weight module. If for m ∈ M the A-module

U(b̂A).m is generated by v1, . . . , vn, then the A′-module U(b̂A′).(m⊗1)
is generated by v1⊗1, . . . , vn⊗1. Since A′ is assumed to be Noetherian,
every A′-submodule of the latter module is finitely generated as well.

From this it follows thatM⊗AA
′ is locally b̂A′-finite. Hence the functor

· ⊗A A
′ sends an object of OA to an object of OA′ . It is clear that it

preserves the level. �

2.7. The duality. For M ∈ OA we define

M⋆ :=
⊕

λ∈bh⋆

HomA(Mλ, A).

ThenM⋆ carries an action of ĝ that is given by (X.φ)(m) = φ(−ω(X).m)
for X ∈ ĝ, φ ∈ M⋆ and m ∈ M . Here ω : ĝ → ĝ is the Chevalley-
involution (cf. [K90, Section 1.3]). It has the property that it maps

the root space ĝα corresponding to α ∈ R̂ to ĝ−α. Together with the
obvious A-module structure, M⋆ is an object in OA, and if M is of level
k, then M⋆ is also of level k.
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2.8. The deformed Verma modules. For λ ∈ ĥ⋆ we denote by Aλ
the b̂A-module that is free of rank one as an A-module and on which b̂

acts via the character λ + τ : this means that H ∈ ĥ acts as multipli-

cation with the scalar λ(H).1A + τ(H) and each X ∈ [b̂, b̂] acts by the
zero homomorphism. The deformed Verma-module with highest weight
λ is

∆A(λ) := U(ĝA)⊗U(bbA) Aλ.

The deformed dual Verma module associated to λ is

∇A(λ) := ∆A(λ)⋆.

Both ∆A(λ) and ∇A(λ) are locally b̂A-finite weight modules, hence
are contained in OA. If A → A′ is a homomorphism of deformation
algebras, then we have isomorphisms

∆A(λ)⊗A A
′ ∼= ∆A′(λ), ∇A(λ)⊗A A

′ ∼= ∇A′(λ).

2.9. Simple objects in OA. Now suppose that A is a local deforma-
tion algebra with maximal ideal m ⊂ A and residue field k = A/m.
The residue field inherits the structure of an S-algebra and is, as such,
a deformation algebra as well. The canonical map A → k gives us a
base change functor · ⊗A k : OA → Ok by Lemma 2.2.

As we have observed before, the categoryOk is just a direct summand
of the usual categoryO for the affine Kac-Moody algebra ĝk. Its objects
are those whose non-zero weight spaces correspond to weights in the

affine hyperplane τ + ĥ⋆ ⊂ ĥ⋆k. By the classical theory, the simple
isomorphism classes in Ok are parametrized by the set of their highest

weights. This set is τ + ĥ⋆ and we denote by Lk(λ) a representative
corresponding to τ + λ.

In [Fi03, Proposition 2.1] we showed the following.

Proposition 2.3. Suppose that A is a local deformation algebra with
residue field k. Then the functor · ⊗A k yields a bijection

{
simple isomorphism

classes of OA

}
∼
→

{
simple isomorphism

classes of Ok

}
.

We denote by LA(λ) the simple object corresponding to Lk(λ) under
the above bijection.

2.10. Jordan–Hölder multiplicities. Suppose now that A = k is a
field. In this case we consider the full subcategory Ofk of Ok that con-
sists of objects M such that each weight space Mλ is finite dimensional

as a k-vector space and such that there exist µ1, . . . , µn ∈ ĥ⋆ with the
property that Mλ 6= 0 implies λ ≤ µi for some i.
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We denote by “6” the usual partial order on ĥ⋆ defined by λ 6 µ

if µ − λ is a sum of positive roots of ĝ. Let Z[ĥ⋆] =
⊕

λ∈bh⋆ Zeλ be

the group algebra of the additive group ĥ⋆ and
̂
Z[ĥ⋆] ⊂

∏
λ∈bh⋆ Zeλ its

completion with respect to the partial order: An element in
̂
Z[ĥ⋆] is

an element
∑

λ∈bh⋆ fλe
λ such that there exist µ1, . . . , µn ∈ ĥ⋆ with the

property that fλ 6= 0 implies λ ≤ µi for some i.
For each M ∈ Ofk we can then define its character

chM :=
∑

λ∈bh⋆

dimkMλ · e
λ ∈

̂
Z[ĥ⋆].

Now each simple object Lk(λ) belongs to Ofk and there are well defined
number aµ ∈ N with

chM =
∑

µ∈bh⋆

aµ chLk(µ).

(cf. [DGK82]). Note that the sum on the right hand side is in general
an infinite sum. We define the multiplicity of Lk(µ) in M as

[M : Lk(µ)] := aµ.

2.11. Truncation. Our next aim is to study the projective objects in
OA. Unfortunately not all of the LA(λ) admit a projective cover. In
order to overcome this slight technical problem, we introduce certain
truncated subcategories of OA in which a projective cover exist for each
of its simple objects.

Let J be a subset of ĥ⋆. We call J open if for all λ ∈ J , µ ∈ ĥ⋆ with

µ ≤ λ we have µ ∈ J . This indeed defines a topology on ĥ⋆. Note that

a subset I ⊂ ĥ⋆ is closed in this topology if λ ∈ I, µ ∈ ĥ⋆ with µ ≥ λ
implies µ ∈ I.

We now construct a functorial filtration on each object of OA that

is indexed by the set of closed subsets of ĥ⋆ and, dually, a functorial

cofiltration indexed by the set of open subsets of ĥ⋆.

Definition 2.4. Suppose that J ⊂ ĥ⋆ is open and let I := ĥ⋆ \ J be
its closed complement. Let M ∈ OA.

(1) We define MI ⊂ M as the ĝA-submodule generated by the
weight spaces corresponding to weights in I, i.e.

MI := U(ĝA).
⊕

λ∈I

Mλ.
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(2) We define
MJ := M/MI .

Let OA,I ⊂ OA be the full subcategory of objects M with M = MI

and OJ
A ⊂ OA the full subcategory of objects M with M = MJ .

Note that an object M of OA belongs to OA,I if and only if it is
generated by its weight spaces corresonding to weights in I. Dually,
M belongs to OJ

A if and only if Mλ 6= 0 implies that λ ∈ J .
If J ′ ⊂ J is another open subset with complement I ′ ⊃ I, then we

have a natural inclusion MI ⊂MI′ and a natural quotient MJ →MJ ′

.

For λ ∈ ĥ⋆, each of the modules ∆A(λ), ∇A(λ) and LA(λ) is contained
in OJ

A if and only if λ ∈ J . Note that M →MI defines a functor from
OA to OA,I that is right adjoint to the inclusion OA,I ⊂ OA. Dually,
M 7→ MJ defines a functor from OA to OJ

A that is left adjoint to the
inclusion OJ

A ⊂ OA.

Lemma 2.5. Suppose that J is an open subset in ĥ⋆ and that P is a
projective object in OJ

A . Then for any open subset J ′ ⊂ J , the object

PJ ′

is projective in OJ ′

A .

Proof. This follows immediately from the fact that the functor (·)J
′

: OJ
A →

OJ ′

A is left adjoint to the (exact) inclusion functor OJ ′

A → O
J
A . �

Lemma 2.6. Let M ∈ OA. Suppose that J ′ ⊂ J ⊂ ĥ⋆ are open
subsets. Then there is a canonical isomorphism MJ ′ ∼

→ (MJ )J
′

.

Proof. We denote by a the canonical homomorphism M → MJ ′

and
by b the composition of the homomorphisms M → MJ and MJ →
(MJ )J

′

and prove the claim by showing that the kernels of a and
b coincide. First, note that the kernel of a is the submodule of M

generated by its weight spaces corresponding to weights in ĥ⋆ \ J ′.

The kernel of M → MJ is generated by weights in ĥ⋆ \ J ⊂ ĥ⋆ \ J ′,

and the kernel of MJ → (MJ )J
′

is generated by weights in ĥ⋆ \ J ′.
Hence ker a = ker b. �

Lemma 2.7. Let 0 → M → N → O → 0 be an exact sequence in

OA. Let J ⊂ ĥ⋆ be open and let I be its closed complement. Then the
following holds.

(1) The sequence 0→ MI → NI → OI → 0 is exact at MI and at
OI (but not necessarily at NI).

(2) The sequence 0 → MJ → NJ → OJ → 0 is exact at NJ and
at OJ (but not necessarily at MJ ).

(3) The first sequence is exact at NI if and only if the second se-
quence is exact at MJ .
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That the two sequences referred to in the lemma need not be exact
is shown by the example 0→ ∆(−2) → ∆(0) → L(0)→ 0 of modules
in the usual category O over the Lie algebra sl2(C).

Proof. From the very definition of the functors it follows that the map
MI → NI is injective and that the map NI → OI is surjective, hence
(1). Now (2) and (3) follow from some chasing in the diagram

0 // MI

��

// M

��

// MJ

��

// 0

0 // NI

��

// N

��

// NJ //

��

0

0 // OI
// O // OJ // 0

which is commutative with exact rows and a short exact middle column.
�

2.12. Verma flags.

Definition 2.8. Let M be an object in OA. We say that M admits a
Verma flag if there is a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂ Mn = M

such that for i = 1, . . . , n, Mi/Mi−1 is isomorphic to ∆A(µi) for some

µi ∈ ĥ⋆.

Suppose that M ∈ OA admits a Verma flag. For each µ ∈ ĥ⋆, the
number of occurences of ∆A(µ) as a subquotient of a Verma flag of
M is independent of the chosen filtration. We denote this number by
(M : ∆A(µ)).

Let µ ∈ ĥ⋆ and M ∈ OA. The set J = {ν ∈ ĥ⋆ | ν ≤ µ} is open and
we define M6µ := MJ . We define M<µ likewise. Then we set

M[µ] := ker
(
M6µ →M<µ

)
.

Note that M[µ] is generated by its µ-weight space. One can show that
M admits a Verma flag if and only of M[µ] is non-zero for only finitely
many µ and for such µ it is isomorphic to a finite direct sum of copies
of ∆A(µ).

2.13. Projective objects in OA. As in Proposition 2.3 we assume
that A is a local deformation algebra with residue field k. For general
λ the simple module LA(λ) admits a projective cover in OA only if we
restrict the set of allowed weights from above. So let us call a subset
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J of ĥ⋆ bounded (rather locally bounded from above) if for any λ ∈ J
the set {µ ∈ J | λ ≤ µ} is finite.

Theorem 2.9. Suppose that A is a local deformation algebra with

residue field k. Let J be a bounded open subset of ĥ⋆.

(1) For each λ ∈ J there exists a projective cover PJ
A (λ) of LA(λ)

in OJ
A . It admits a Verma flag and we have

(PJ
A (λ) : ∆A(µ)) =

{
[∇k(µ) : Lk(λ)], if µ ∈ J ,

0, else.

(2) If J ′ ⊂ J is open as well, then

PJ
A (λ)J

′ ∼= PJ ′

A (λ).

(3) If A → A′ is a homomorphism of local deformation algebras
and P ∈ OJ

A is projective, then P ⊗A A
′ ∈ OJ

A′ is projective.
(4) We have PJ

A (λ)⊗A k ∼= PJ
k (λ).

(5) Suppose that P is a finitely generated projective object in OJ
A

and that A→ A′ is a homomorphism of local deformation alge-
bras. For any M ∈ OJ

A the natural map

HomOA
(P,M)⊗A A

′ → HomOA′
(P ⊗A A

′,M ⊗A A
′)

is an isomorphism.

Proof. The proofs of the above statements are all contained in [Fi03].
So here we give only a short sketch. First one shows, under the as-
sumption that J is bounded, that for each λ ∈ J there is an object
QJ
A(λ) in OJ

A that represents the functor M 7→ Mλ. One can find the
idea of its construction in [RCW82]. As each object of OA is a weight
module, this functor is exact, hence QJ

A (λ) is projective. Moreover,
it is clear that there is a surjection QJ

A (λ) → LA(λ), so we can take
for PJ

A (λ) any indecomposable direct summand of QJ
A (λ) that maps

surjectively onto LA(λ).
As each simple object is a quotient of one of the QJ

A(λ), the set
of objects {QJ

A(λ)}λ∈J generates OJ
A in the sense that each object

is a quotient of a direct sum of various QJ
A(λ)’s. Moreover, from

the construction it follows quite easily that there is an isomorphism
QJ
A(λ)⊗A A

′ ∼= QJ
A′(λ) for any homomorphism A→ A′ of deformation

algebras.
Property (5) now holds for the objects QJ

A(λ) as they represent the
functor M 7→Mλ. From this one deduces (5) for any finitely generated
projective object P , as any projective object is a direct summand of a
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direct sum of certain QJ
A(λ)’s. In an analogous fashion, part (3) is first

proven for QJ
A(λ) and follows for arbitrary projectives P in OJ

A .
Part (4) is proven using the idempotent lifting lemma and property

(5), in [Fi03, Proposition 2.6]. Then part (1) is shown to follow from
part (4) (cf. [Fi03, Theorem 2.7], note that there the multiplicity is
stated in terms of a Verma module, not a dual Verma module, but
the characters coincide and it is more natural to use the dual Verma
module). Clearly, (1) implies (2) as the truncation functor preserves
projectivity and is exact on Verma flags. �

2.14. The block decomposition of OA. Let A be a local deforma-
tion algebra with residue field k. We let ∼A be the equivalence relation

on ĥ⋆ that is generated by the relations λ ∼A µ for all λ, µ ∈ ĥ⋆ for

which there exists an open bounded subset J of ĥ⋆ such that LA(µ) is
a subquotient of PJ

A (λ).

Lemma 2.10. The equivalence relation ∼A is also generated by either
of the following sets of relations:

(1) λ ∼A µ if there exists an open bounded subset J of ĥ⋆ such that
(PJ

A (λ) : ∆A(µ)) 6= 0.
(2) λ ∼A µ if [∆k(λ) : Lk(µ)] 6= 0.

For an equivalence class Λ ∈ ĥ⋆/ ∼A we define the full subcategory
OA,Λ of OA that contains all objects M that have the property that
each highest weight of a subquotient lies in Λ. Note that it is the
subcategory generated by the objects PJ

A (λ) for all λ ∈ Λ and all

bounded open subsets J of ĥ⋆ that contain λ.
Then we have the following result on the decomposition of OA.

Theorem 2.11 ([Fi03, Proposition 2.8]). The functor
∏

Λ∈bh⋆/∼A

OA,Λ → OA

(MΛ) 7→
⊕

Λ

MΛ

is an equivalence of categories.

2.15. The Kac–Kazhdan theorem, integral roots and the inte-
gral Weyl group. The Kac-Kazhdan theorem gives a rather explicit
description of the set of pairs (λ, µ) such that [∆k(λ) : Lk(µ)] 6= 0. By
the lemma above, these pairs generate the equivalence relation “∼A”.

Recall the bilinear form (·, ·) : ĥ⋆ × ĥ⋆ → C. For any deforma-

tion algebra A we set ĥ⋆A := ĥ⋆ ⊗C A = HomC(ĥ, A) and denote by
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(·, ·)A : ĥ⋆A× ĥ⋆A → A the A-bilinear continuation of (·, ·). The structure

map τ : ĥ → A can be considered as an element in ĥ⋆A. Let ρ ∈ ĥ⋆ be

an element with (ρ, α) = 1 for any simple affine root α ∈ Π̂.
Now we can state the result of Kac and Kazhdan (we slightly refor-

mulate their original theorem in terms of equivalence classes):

Theorem 2.12 ([KK79]). The relation “∼A” is generated by λ ∼A µ

for all pairs λ, µ such that there exists a root α ∈ R̂ and n ∈ Z with
2(λ+ ρ, α)k = n(α, α)k and λ− µ = nα.

For λ ∈ ĥ⋆ we define the set of integral roots (with respect to λ) by

R̂A(λ) := {α ∈ R̂ | 2(λ+ ρ, α)k ∈ Z(α, α)k}

and the corresponding integral Weyl group by

ŴA(λ) := 〈sα | α ∈ R̂(λ) ∩ R̂re
A〉 ⊂ Ŵ .

Let Λ ⊂ ĥ⋆ be an equivalence class with respect to “∼A”. It follows

from the Kac–Kazhdan theorem that we have R̂A(λ) = R̂A(µ) and

ŴA(λ) = ŴA(µ) for all λ, µ ∈ Λ. Hence we can denote these two

objects by R̂A(Λ) and ŴA(Λ).

2.16. The critical level. Let Λ ∈ ĥ⋆/ ∼A be an equivalence class.
For each λ, µ ∈ Λ we then have λ(K) = µ(K), hence there is a certain
k = k(Λ) ∈ C such that each object in OA,Λ is of level k. We call this
k also the level of Λ.

Lemma 2.13. Let Λ ∈ ĥ⋆/ ∼A be an equivalence class. The following
are equivalent.

(1) We have λ(K) = −ρ(K) for some λ ∈ Λ.
(2) We have λ(K) = −ρ(K) for all λ ∈ Λ.
(3) We have λ+ δ ∈ Λ for all λ ∈ Λ.

(4) We have nδ ∈ R̂A(Λ) for some n 6= 0.

(5) We have nδ ∈ R̂A(Λ) for all n 6= 0.

The level c := −ρ(K) is called the critical level.

3. The graded center

In this section we recall one of the most significant structures that
we encounter for the category O of an affine Kac-Moody algebra at
the critical level. Recall that we add the derivation operator D to the
central extension of the loop algebra corresponding to g. This allows
us to consider O (and the deformed versions OA) as graded categories,
i.e. there is a natural shift functor T on O and the associated graded
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center A =
⊕

n∈Z
End(id, T n) of O. We use this graded center to define

the restricted representations of ĝ.

3.1. Tensor products. Suppose that M is a ĝA-module and that L is
a ĝ = ĝC-module. Then M ⊗C L acquires the structure of a ĝA-module
such that ĝ acts via the usual tensor product action (X(m ⊗ l) =
Xm ⊗ l + m ⊗Xl for X ∈ ĝ, m ∈ M , l ∈ L) and A acts only on the
first factor.

Lemma 3.1. (1) If M is locally b̂A-finite and L is locally b̂-finite,

then M ⊗C L is locally b̂A-finite.
(2) If M and L are weight modules, then M⊗CL is a weight module.
(3) If M ∈ OA and L ∈ O, then M ⊗C L ∈ OA.

Proof. In order to prove (1) it is enough to show that the b̂A-submodule
of M⊗CL that is generated by an element m⊗ l with m ∈M , l ∈ L, is

finitely generated over A. This follows from the fact that U(b̂A).m is a

finitely generated A-submodule of M and U(b̂).l is a finite dimensional
C-subvector space of L.

In the situation of (2) we have (M ⊗C L)λ =
⊕

µ∈bh⋆ Mµ ⊗C Lλ−µ,

hence M ⊗C L is a weight module. Now (3) is implies by (1) and
(2). �

3.2. A shift functor. Note that δ ∈ ĥ⋆ is the smallest positive imag-
inary root of ĝ. The simple module L(δ) = LC(δ) is one-dimensional.
The ĝ-module L(δ)⊗C L(−δ) ∼= L(0) is the trivial module. In particu-
lar, the shift functor

T : OA → OA

M 7→ M ⊗C L(δ)

is an equivalence with inverse T−1 = · ⊗C L(−δ).
Let n ∈ Z and consider the space AnA := Hom(id, T n) of natural

transformations between the identity functor on OA and the functor
T n. Recall that an element φ ∈ Hom(id, T n) associates a homomor-
phism φM : M → T nM to any object M ∈ OA such that for any
homomorphism f : M → N in OA the diagram

M
f

//

φM

��

N

φN

��

M
f

// N
commutes. Note that AnA carries a natural structure of an A-module:
for a ∈ A, φ ∈ AnA and M ∈ OA we let (a.φ)M be the homomorphism
a.(φM).
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There is an A-bilinear map

AnA ×A
m
A → A

m+n
A

(φ, ψ) 7→
(
M 7→ (TmφM) ◦ ψM

)

which makes AA :=
⊕

n∈Z
AnA into a graded A-algebra. It is called the

graded center of OA.
Note that AA is a commutative algebra. Since L(δ) has level 0 the

shift functor T preserves the subcategories OA,k, i.e. we get induced
autoequivalences T : OA,k → OA,k for each k. Accordingly, AA splits
into the direct product of the A-algebras AA,k with k ∈ C.

Let Λ ∈ ĥ⋆/ ∼A be an equivalence class. The corresponding block
OA,Λ is preserved by the functor T if and only if for each λ ∈ Λ we
have λ+ δ ∈ Λ, hence if and only if Λ is critical (cf. Lemma 2.13). So
if k 6= c then AnA,k = 0 for all n 6= 0. In contrast we have AnA,c 6= 0 for
all n. Most of the results in the following make sense in arbitrary level,
but contain no information if the level is not critical.

For some deformation algebras A and non-critical k the algebra
AA,k = A0

A,k, i.e. the ordinary center of OA,k, is calculated in [Fi03].

3.3. Base change - part 2. Let PA ⊂ OA be the full subcategory
consisting of objects that are isomorphic to an arbitrary direct sum

of various PJ
A (λ)’s for arbitrary open bounded subsets J of ĥ⋆ and

λ ∈ J . Then PA generates the category OA, which means that for
any M ∈ OA there is an exact sequence P ′ → P → M → 0 with
P, P ′ ∈ PA.

Let n ∈ Z. We have a natural homomorphism

AnA →
∏

J ⊂ bh⋆ open

λ∈J

Hom(PJ
A (λ), T nPJ

A (λ))

φ 7→ (φP
J

A
(λ))

of A-modules. Since PA generates OA we have the following:

Proposition 3.2. The above homomorphism is injective and identifies
AnA with the subspace EA ⊂

∏
J ,λ∈J Hom(PJ

A (λ), T nPJ
A (λ)) of tuples

(ψλ,J ) such that for any homomorphism f : PJ
A (λ) → PJ ′

A (λ′) in PA
the following diagram commutes:

PJ
A (λ)

f
//

ψλ,J

��

PJ ′

A (λ′)

ψλ′,J′

��

T nPJ
A (λ)

Tnf
// T nPJ ′

A (λ′).
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We use the above proposition now to construct a base change homo-
morphism.

Proposition 3.3. Suppose that A → A′ is a homomorphism of local
deformation algebras. Then there is a unique homomorphism Θ: AA →
AA′ of graded algebras such that for any M ∈ OA and φ ∈ AA we have

Θ(φ)M⊗AA
′

= φM ⊗ id : M ⊗A A
′ → M ⊗A A

′.

Proof. By Theorem 2.9 we have for any P ∈ PA that P ⊗A A
′ ∈ PA′

and for any P, P ′ ∈ PA we have that

Hom(P, P ′)⊗A A
′ = Hom(P ⊗A A

′, P ′ ⊗A A
′).

Now the statement follows from Proposition 3.2. �

3.4. A duality on the graded center. Suppose that M ∈ OA is
reflexive, i.e. that the natural homomorphism M → (M⋆)⋆ is an iso-
morphism. Let n ∈ Z and φ ∈ AnA. Let us apply this element to the
dual of M : we get a homomorphism φM

⋆

: M⋆ → T nM⋆. Taking the
dual gives a homomorphism (φM

⋆

)⋆ : (T nM⋆)⋆ = T nM → (M⋆)⋆ = M .
After applying the functor T−n we get a homomorphism M → T−nM ,
which we denote by (Dφ)M .

It is clear that Dφ defines thus a homomorphism id→ T−n between
the functors restricted to the subcategory of reflexive objects. As each
weight space of an indecomposable projective object in OJ

A is free over
A of finite rank, each indecomposable projective is reflexive and we
deduce from Proposition 3.2 that Dz defines a natural transformation
id→ T−n on the whole of OA. The duality hence gives us a map

D : AnA → A
−n
A .

3.5. The Feigin–Frenkel center. Let g̃ = g⊗C C[t, t−1]⊕CK ⊂ ĝ be
the centrally extended loop algebra. For k ∈ C we denote by U(g̃)k the
quotient of the universal enveloping algebra of g̃ by the ideal generated
by K − k. Following [Fr05] we define the completion

U ′
k := lim

←−
N

Uk(g̃)/Uk(g̃) · (g⊗ tNC[t]).

Note that the action of g̃ on each object in OA,k naturally extends to

an action of U ′(g̃)k, by the local b̂-finiteness condition.
If k = c is the critical value, then U ′

c acquires a large center Zc. The
grading operator D defines a Z grading Zc =

⊕
n∈Z
Znc and we can

view each element z ∈ Znc as a natural transformation idOA,k
→ T n.

Hence we obtain a graded homomorphism Zc → AA,c. Moreover, this
homomorphism is compatible with the base change maps AA,c → AA′,c

associated to a homomorphism A → A′ of deformation algebras, in
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the sense that the composition Zc → AA,c → AA′,c is the natural map
Zc → AA′,c defined above.

4. Restricted representations

Let A be a deformation algebra. For the moment, it need not be
local.

Definition 4.1. Let M ∈ OA. We say that M is restricted if for all
n 6= 0 and all φ ∈ AnA we have φM(M) = 0.

We denote by OA the full subcategory of OA that consists of re-

stricted representations. For an open subset J of ĥ⋆ we set O
J

A =
OA ∩ O

J
A . If k is not critical, each object M ∈ OA,k is restricted as

AnA,k = 0 for n 6= 0.
For M ∈ OA and n ∈ Z let AnAM be the submodule of M generated

by the images of all homomorphisms φT
−nM : T−nM →M . We define

Mres := {m ∈M | φM(m) = 0 for all φ ∈ AnA, n 6= 0},

M res := M/
∑

n∈Z,n 6=0

AnAM.

Both Mres and M res are restricted objects in OA. We get functors
M 7→ Mres and M 7→ M res from OA to OA that are right resp. left
adjoint to the inclusion functor OA → OA.

4.1. Restriction, truncation and base change. We now collect
some first results on the restriction functor.

Lemma 4.2. Let J ⊂ ĥ⋆ be open. For each M ∈ OA there is a natural
isomorphism

(M res)J ∼= (MJ )res.

Proof. Let us consider the compositions a : M
a1→M res a2→ (M res)J and

b : M
b1→ MJ b2→ (MJ )res of the canonical quotient maps. We show

that the kernels of a and b coincide, which implies the statement of the
lemma.

The kernel of a is generated by a−1
1 (M res

µ ) with µ 6∈ J , hence it is
generated by the subspaces AnAM for n 6= 0 and the weight spaces Mµ

for µ 6∈ J . The kernel of b is generated by b−1
1 (AnAM

J ) for n 6= 0,
hence it is generated by the subspaces AnAM for n 6= 0 and the weight
spaces Mµ for µ 6∈ J as well. �

Lemma 4.3. Let M ∈ OA and fix a homomorphism A→ A′ of defor-
mation algebras. Then there is a canonical isomorphism

(M ⊗A A
′)res → (M res ⊗A A

′)res.
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Proof. We consider the homomorphisms a : M ⊗A A
′ → (M ⊗A A

′)res

and b : M ⊗A A
′ → M res ⊗A A

′ → (M res ⊗A A
′)res and we show that

ker a = ker b. Note that the kernel of a is generated by the subspaces
AnA′(M ⊗A A

′) for n 6= 0 and the kernel of b is generated by the spaces
AnA′(AmAM ⊗A A

′) for m 6= 0, n 6= 0. From Proposition 3.3 we deduce
that ∑

m6=0,n 6=0

AnA′(AmAM ⊗A A
′) =

∑

n 6=0

AnA′(M ⊗A A
′),

hence ker a = ker b and the lemma is proven. �

4.2. Restricted Verma modules. For λ ∈ ĥ⋆ we define the restricted
Verma module by

∆A(λ) := ∆A(λ)res

and the restricted dual Verma module by

∇A(λ) := ∇A(λ)res.

Lemma 4.4. Suppose that X ∈ OA is a restricted module and λ ∈ ĥ⋆

is maximal with Xλ 6= 0. Then each surjective map X → ∆A(λ) splits.

Proof. Let x ∈ Xλ be a preimage of a generator of ∆A(λ). By maximal-
ity of λ there is a homomorphism ∆A(λ) → X that sends a generator
of ∆A(λ) to x. As X is restricted and since the functor (·)res is left ad-
joint to the inclusion functor OA → OA, this homomorphism induces
a homomorphism ∆A(λ)→ X which is left invers to our original map
up to multiplication with a non-zero scalar. �

Let us denote by Z+
c :=

⊕
n>0Z

n
c the strictly positive part of the

Feigin–Frenkel center. Recall that each z ∈ Znc gives us an element
in AnA,c, so for each M ∈ OA,c a homomorphism M → T nM . Let us
denote by Z+

c M ⊂ M the submodule generated by the images of the
homomorphisms z : T−nM → M for all n > 0. Then we have the
following result:

Lemma 4.5. Let A = k be a field. For each critical λ ∈ ĥ⋆, the
restricted Verma module ∆k(λ) equals the quotient ∆k(λ)/Z+

c ∆k(λ).

Proof. As the action of Zc on ∆k(λ) factors over the action of Ak via
the canonical map Zc → Ak, the restricted Verma module ∆k(λ) is a
quotient of ∆k(λ)/Z+

c ∆k(λ). As there is no non-zero homomorphism
∆k(λ − nδ) → ∆k(λ)/Z+

c ∆k(λ) (by (??)), we can deduce ∆k(λ) =
∆k(λ)/Z+

c ∆k(λ). �
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4.3. The character of a restricted Verma module. Let us define

the numbers p(n) ∈ N for n ≥ 0 by the following equation (in
̂
Z[ĥ⋆])

∏

l≥0

(1 + e−lδ + e−2lδ + . . . )rkg =
∑

n≥0

p(n)e−nδ,

and the numbers q(n) ∈ Z, n ≥ 0 by the corresponding equation for
the inverse of the left hand side:
(
∏

l≥0

(1 + e−lδ + e−2lδ + . . . )rkg

)−1

=
∏

l≥0

(1− e−lδ)rkg =
∑

n≥0

q(n)e−nδ.

Lemma 4.6. Suppose that A = k is a field. Let λ ∈ ĥ⋆ be critical.

(1) We have

ch ∆k(λ) = eλ
∏

α∈ bR+,re

(1 + e−α + e−2α + . . . ).

(2) For all µ ∈ ĥ⋆ we have

[∆k(λ) : Lk(µ)] =
∑

n≥0

q(n)[∆k(λ− nδ) : Lk(µ)].

Proof. The first statement is due to Feigin–Frenkel and Frenkel (cf. The-
orem 9.5.3 (??) in [Fr07]). Using the well-known character formula for
the usual Verma modules we get

ch ∆k(λ) = eλ
∏

α∈ bR+

(1 + e−α + e−2α + . . . )dimbgα

=
∏

l>0

(1 + e−lδ + e−2lδ + . . . )rkg ch ∆k(λ).

(Note that dim ĝα = 1 for real roots α, and dim ĝlδ = rkg for all l 6= 0.
Dividing this equation by

∏
l>0(1 + e−lδ + e−2lδ + . . . )rkg yields

ch ∆k(λ) =

(
∏

l>0

(1 + e−lδ + e−2lδ + . . . )rkg

)−1

ch ∆k(λ)

=
∑

n≥0

q(n)e−nδ ch ∆k(λ)

=
∑

n≥0

q(n) ch ∆k(λ− nδ),

hence (2). �
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4.4. Some results on the structure of restricted Verma mod-
ules. Before having a closer look at the restricted Verma modules we
prove the following commutative algebra statement:

Lemma 4.7. Let A be a local domain with residue field k and quotient
field Q. Let M be a finitely generated A-module and suppose that

dimkM ⊗A k = dimQM ⊗A Q.

Then M is a free A-module of rank rkAM = dimkM⊗Ak = dimQM⊗A
Q.

Proof. Let n = dimkM ⊗A k and let v1, . . . , vn ∈M be preimages of a
basis v1, . . . , vn of M⊗Ak. By Nakayama’s lemma, v1, . . . , vn generates
M , so we have a surjective map A⊕n →M . It induces a surjective map
Q⊕n → M ⊗A Q, which, by our assumption, is an isomorphism. We
deduce that A⊕n →M is also injective, hence an isomorphism. �

We will apply the above result to our deformation theory at several
places. So let A be a local deformation domain with residue field k and
quotient field Q.

Lemma 4.8. Suppose λ ∈ ĥ⋆ is critical. Then the following holds:

(1) The restricted Verma module ∆A(λ) coincides with the quotient
of ∆A(λ) by the submodule Z+

c ∆A(λ).

(2) For any µ ∈ ĥ⋆ the weight space ∆A(λ)µ is a free A-module of
rank

rkA∆A(λ)µ = dimk ∆k(λ)µ.

Proof. Let us denote by ∆A(λ)′ the quotient of ∆A(λ) by Z+
c ∆A(λ).

Lemma 4.5 together with the base change remark in Section 3.5 shows
that we have isomorphisms

∆A(λ)′ ⊗A Q ∼= ∆Q(λ), ∆A(λ)′ ⊗A k ∼= ∆k(λ).

As these isomorphisms induce isomorphisms on any weight space and
since the weight space dimensions coincide by Lemma 4.6, we get the
statement (2) of the Lemma for the module ∆A(λ)′ instead of ∆A(λ).

As Z+
c acts on ∆A(λ) via a homomorphism Z+

c → AA, we have a
canonical surjective map

∆A(λ)′ → ∆A(λ).

After applying the tensor functor · ⊗A Q we get canonical maps

∆A(λ)′ ⊗A Q→ ∆A(λ)⊗A Q→ ∆Q(λ).

As the composition is an isomorphism, the kernel of ∆A(λ)′ → ∆A(λ)
is a torsion module. As the first module is free, this homomorphism
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is hence an isomorphism, which proves statement (1) and at the same
time completes statement (2). �

Lemma 4.9. Let λ ∈ ĥ⋆ be critical. Then we have ∆A(λ)⋆ ∼= ∇A(λ),
∇A(λ)⋆ ∼= ∆A(λ).

Proof. Note that by Lemma 4.8, each weight space of ∆A(λ) is a free A-
module of finite rank, so it is reflexive, i.e. (∆A(λ)⋆)⋆ = ∆A(λ). Hence
it is enough to prove that ∆A(λ)⋆ ∼= ∇A(λ).

We consider now the short exact sequence

0→
⊕

n 6=0

AnA∆A(λ)→ ∆A(λ)→ ∆A(λ)→ 0.

As each weight space of ∆A(λ) and of ∆A(λ) is a free A-module of finite
rank, the sequence above splits as a sequence of A-modules. Hence each
weight space of

⊕
n 6=0A

n
A∆A(λ) is free and the dual sequence

0→ ∆A(λ)⋆ →∇A(λ)→

(
⊕

n 6=0

AnA∆A(λ)

)⋆

→ 0

is exact as well.
The injective map on the left factors over the inclusion ∇A(λ) →
∇A(λ), as ∆A(λ)⋆ is restricted. By definition, the composition of
∇A(λ) → ∇A(λ) with the surjection ∇A(λ) → (

⊕
n 6=0A

n
A∆A(λ))⋆ is

zero. Hence ∆A(λ)⋆ ∼= ∇A(λ). �

4.5. Restricted Verma flags. Now we state the definition of a re-
stricted Verma flag in analogy to Definition 2.8.

Definition 4.10. We say that a module M ∈ OA admits a restricted
Verma flag if there is a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂ Mn = M

such that for each i = 1, . . . , n, Mi/Mi−1 is isomorphic to ∆A(µi) for

some µi ∈ ĥ⋆.

Note that we are careful here. We do not assume that a module
admitting a restricted Verma flag is restricted itself. The reason for
this is the following: if A → A′ is a homomorphism of deformation
algebras and if M ∈ OA admits a restricted Verma flag, then M ⊗A A

′

admits a restricted Verma flag as well. It is, however, not clear whether
M ⊗A A

′ is restricted if M is.
Again, if M ∈ OA admits a restricted Verma flag, then for each

µ ∈ ĥ⋆ the number of occurences of ∆A(µ) is independent of the chosen
filtration. We denote this number by (M : ∆A(µ)).
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One can show that M ∈ OA admits a restricted Verma flag if and
only if M[µ] is non-zero only for finitely many µ and for those it is

isomorphic to a finite direct sum of copies of ∆A(µ).

Lemma 4.11. Let M ∈ OA.

(1) Suppose that M admits a restricted Verma flag and let {µ1, . . . , µl}

be an enumeration of the multiset that contains each µ ∈ ĥ⋆

with multiplicity (M : ∆A(µ)). Suppose furthermore that this
enumeration has the property that µi > µj implies i < j.
Then there is a filtration M0 ⊂ M1 ⊂ · · · ⊂ Ml = M with
Mi/Mi−1

∼= ∆A(µi) for each i = 1, . . . , l.

Let J be an open subset of ĥ⋆ and let I := ĥ⋆ \ J be its complement.

(2) M admits a restricted Verma flag if and only if both MI and
MJ admit restricted Verma flags.

(3) If either of the two equivalent properties in part (2) holds, then

we have for all µ ∈ ĥ⋆

(MI : ∆A(µ)) =

{
(M : ∆A(µ)), if µ ∈ I,

0, else,

(MJ : ∆A(µ)) =

{
(M : ∆A(µ)), if µ ∈ J ,

0, else.

Proof. Part (1) follows directly from Lemma 4.4. So let us prove (2).
Consider the short exact sequence 0 → MI → M → MJ → 0. From
the definition it immediately follows that if MI and MJ admit re-
stricted Verma flags, then so does M . So suppose that M admits
restricted Verma flag. By (1) we can find a filtration 0 = M0 ⊂
M1 ⊂ · · · ⊂ Ml = M such that Mi/Mi−1

∼= ∆A(µi) and such that
{µ1, . . . , µn} ⊂ I and {µn+1, . . . , µl} ⊂ J for some n ≥ 0. We then
have MI = Mn, as Mn is generated by its vectors of weights µ1, . . . , µn
and the weights of M/Mn belong to J . Hence MJ = M/Mn and we
deduce that both MI and MJ admit a restricted Verma flag and that
the multiplicity statements in (3) hold as well. �

Lemma 4.12. Let 0→M → N → O → 0 be a short exact sequence of
finitely generated objects in OA. Suppose that N and O admit restricted
Verma flags. Then the following holds:

(1) For any bounded open subset J of ĥ⋆ with complement I :=

ĥ⋆ \ J the sequences

0→MI → NI → OI → 0
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and

0→MJ → NJ → OJ → 0

are exact.
(2) M admits a restricted Verma flag.

Proof. Note that by Lemma 2.7 the exactness of one sequence in part
(1) implies the exactness of the other. Now if I is such that it contains
no weights of N , then MI = NI = OI = 0 and there is nothing to
show. Hence we can proceed inductively by assuming that our claim
is proven for a closed subset I ′ and considering the case I = I ′ ∪ {λ}.
We have a commutative diagram

0 // MI′
//

��

NI′
//

��

OI′
//

��

0

0 // MI
//

��

NI
//

��

OI
//

��

0

0 // MI/MI′
// NI/NI′

// OI/OI′
// 0

The first row is exact by assumption. In order to prove that the second
row is exact as well, it suffices to prove that the third row is exact.

Now set J ′ = ĥ⋆ \ I ′ = J ∪ {λ}. For any X ∈ OA the cokernel
of the inclusion XI′ →֒XI identifies with the kernel of the quotient
XJ ′

→ XJ . This kernel is the submodule generated by the weight
space (XJ ′

)λ. Hence we have to show that the sequence

0→ U(ĝA).(MJ ′

)λ → U(ĝA).(NJ ′

)λ → U(ĝA).(OJ ′

)λ → 0

is exact.
Now 0 → MJ ′

→ NJ ′

→ OJ ′

→ 0 is exact by our inductive
assumption, hence U(ĝA).(MJ ′

)λ → U(ĝA).(NJ ′

)λ is injective and
U(ĝA).(NJ ′

)λ → U(ĝA).(OJ ′

)λ is surjective. As both U(ĝA).(NJ ′

)λ
and U(ĝA).(OJ ′

)λ are isomorphic to finite direct sums of copies of
∆A(λ) (since NJ ′

and OJ ′

admit restricted Verma flags by Lemma
4.11), the kernel of U(ĝA).(NJ ′

)λ → U(ĝA).(OJ ′

)λ is generated by its
λ-weight space, from which we deduce the exactness statement in the
middle. So we proved part (1).

Now part (1) implies that for each µ ∈ ĥ⋆ the sequence

0→ M[µ] → N[µ] → O[µ] → 0

of subquotients is exact. As N[µ] and O[µ] are isomorphic to finite direct

sums of copies of ∆A(µ) this sequence splits, so M[µ] is isomorphic to

finite direct sums of copies of ∆A(µ), hence M admits a Verma flag. �



26 RESTRICTED LINKAGE PRINCIPLE

4.6. Base change - part 3.

Lemma 4.13. Let A be a local deformation domain with residue field
k and quotient field Q. Suppose that M ∈ OA has the property that
both M ⊗A k ∈ Ok and M ⊗A Q ∈ OQ admit restricted Verma flags

and that the multiplicities coincide, i.e. that for all µ ∈ ĥ⋆ we have

(M ⊗A k : ∆k(µ)) = (M ⊗A Q : ∆Q(µ)).

Then M admits a restricted Verma flag with (M : ∆A(µ)) = (M ⊗A k :

∆k(µ)) for all µ ∈ ĥ⋆.

Proof. Let µ ∈ ĥ⋆. From the above equality of multiplicities we deduce
that

dimkMµ ⊗A k = dimQMµ ⊗A Q.

By Lemma 4.7, Mµ is a free A-module. In particular, the natural
homomorphism M →M ⊗A Q is injective.

Now let µ ∈ ĥ⋆ be a maximal weight of M , let v ∈ Mµ be a preim-
age of a non-zero element v ∈ (M ⊗A k)µ. Let M1 ⊂ M be the
ĝA-submodule generated by v. We have a surjective homomorphism
∆A(µ) → M1 that sends a generator of ∆A(µ) to v. Now M1 ⊗A Q
is generated by the non-zero vector v ⊗ 1 and since M ⊗A Q admits a
Verma flag we have M1⊗AQ ∼= ∆Q(λ). We deduce that the homomor-
phism ∆A(µ)→M1 is also injective, hence an isomorphism.

As M1 ⊗A k is generated by v and M1 ⊗A Q is generated by v ⊗ 1,
our assumptions imply that

M1 ⊗A k ∼= ∆k(µ) and M1 ⊗A Q ∼= ∆Q(µ).

Hence we can assume, by induction on the length of the Verma flags
of M ⊗A k and M ⊗A Q, that M/M1 admits a Verma flag. Hence so
does M . �

5. Restricted projective objects

In this section we study the projective objects in the restricted and

truncated categories O
J

A .

Theorem 5.1. Suppose that A is a local deformation algebra. For each

open bounded subset J of ĥ⋆ and each λ ∈ J there exists a projective

cover P
J

A (λ) of LA(λ) in O
J

A .

Proof. Let P → LA(λ) be a projective cover of LA(λ) in OJ
A . We get

a projective object P res, as (·)res is left adjoint to the exact embedding

O
J

A ⊂ O
J
A , and a surjective map P res → LA(λ). Now we take for P

J

A (λ)
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an indecomposable direct summand of P res that maps surjectively onto
LA(λ). �

We will show later that, in the situation of the proof of the above

theorem, P res is in fact indecomposable, i.e. we will show that P
J

A(λ) ∼=
PJ
A (λ)res.

Our next goal is to show that each projective object in ÔJ
A admits

a restricted Verma flag and that the multiplicities are given, for the
indecomposables, by a BGGH-reciprocity formula, at least if A is a
local domain. We prove these facts first in the case of a deformation
field and then deduce the corresponding statements for local rings.

5.1. Some homological algebra. For each bounded open subset J

of ĥ⋆ the categoryO
J

A is abelian and contains enough projectives. So for

M,N ∈ O
J

A we can calculate the group Exti
O

J

A

(M,N) by first choosing

a projective resolution

· · · → P2 → P1 → P0 →M → 0

in O
J

A and then calculating the homology of the complex

0→ Hom
O

J

A
(P0, N)→ Hom

O
J

A
(P1, N)→ Hom

O
J

A
(P2, N)→ . . . .

If now J ′ ⊂ J is also open and M admits a restricted Verma flag,
then the complex

· · · → PJ ′

2 → PJ ′

1 → PJ ′

0 →MJ ′

→ 0

is a projective resolution of MJ ′

in O
J ′

A (it is exact by Lemma 4.12, as

M admits a restricted Verma flag). If, moreover, N is an object in O
J ′

A ,

then Hom
O

J

A

(Pi, N) = Hom
O

J ′

A

(PJ ′

i , N). Hence we get the following:

Lemma 5.2. Suppose that J ′ ⊂ J are bounded open subsets of ĥ⋆ and

suppose that M ∈ O
J

A admits a restriced Verma flag. For all N ∈ O
J ′

A

we then have
Exti

O
J

A

(M,N) = Exti
O

J′

A

(MJ ′

, N)

for all i ≥ 0.

5.2. A formula for the multiplicities. We need part (2) of the next
proposition in order to prove the BGGH-reciprocity formula for the
restricted projective objects.

Proposition 5.3. Suppose that A is a local deformation algebra and

that M ∈ O
J

A admits a restricted Verma flag. For ν ∈ J the following
holds:
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(1) We have Ext1

O
J

A

(M,∇A(ν)) = 0.

(2) Hom(M,∇A(ν)) is a free A-module of rank (M : ∆A(ν)).

Proof. We first prove part (1) by induction on the length l of the re-
stricted Verma flag of M . If l = 1, then M ∼= ∆A(λ) for some λ ∈ J .
Consider a short exact sequence

0→∇A(ν)→ X → ∆A(λ)→ 0.

If ν 6> λ, then this sequence splits by Lemma 4.4. Each weight space
in the above sequence is a free A-module of finite rank, so the duality
is involutive and exact on the above sequence. If ν > λ, then the dual
sequence

0→∇A(λ)→ X⋆ → ∆A(ν)→ 0

splits. Hence Ext1

O
J

A

(∆A(λ),∇A(ν)) = 0.

Now suppose l > 1. Then choose a submodule M1 of M such that
M1 and M/M1 are non-zero and admit restricted Verma flags. The
short exact sequence 0 → M1 → M → M/M1 → 0 induces an exact
sequence

Ext1

O
J

A

(M/M1,∇A(ν))→ Ext1

O
J

A

(M,∇A(ν))→ Ext1

O
J

A

(M1,∇A(ν)).

By our induction hypothesis, the spaces on the left and on the right
vanish, hence so does Ext1

O
J

A

(M,∇A(ν)). So part (1) is proven.

Now let us prove part (2). Again we use induction on the length
of a restricted Verma flag of M . Suppose that M ∼= ∆A(λ). We have
Hom(∆A(λ),∇A(ν)) = Hom(∆A(λ),∇A(ν)). The latter space vanishes
if λ 6= ν and it is free of rank 1 if λ = ν (by the statement that is dual
to statement (2) in Lemma 4.8). So suppose that l > 1 and choose
M1 ⊂M as before. By (1) we have an exact sequence

0→ Hom(M/M1,∇A(ν))→ Hom(M,∇A(ν))→ Hom(M1,∇A(ν))→ 0

and part (2) follows from the induction hypothesis and the additivity
of the multiplicities with respect to short exact sequences. �

Our next goal is to prove that each projective in O
J

A admits a re-
stricted Verma flag. First we consider the case that the deformation
algebra is a field.

5.3. The case of a field.

Theorem 5.4. Suppose that A = k is a field. Let J ⊂ ĥ⋆ be open

and bounded. Then each projective object P in O
J

k admits a restricted
Verma flag.
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Proof. We can assume that P is indecomposable, i.e. that P = P
J

k (λ)
for some λ ∈ J . We prove the statement of the theorem by induction
on the number l of elements in the set {µ ∈ J | µ ≥ λ}. Suppose that
l = 1. Then λ is maximal in J , so P ∼= ∆k(λ) by Lemma 4.4.

So suppose that l > 1 and that the claim is proven for all pairs (J ′,
λ′) such that the number of µ ∈ J ′ with µ > λ′ is smaller than l. Let
µ ∈ J be maximal with µ > λ and set J ′ = J \ {µ}. Then J ′ is
open and bounded as well. Let M be the kernel of the homomorphism
P → PJ ′

and consider the short exact sequence

0→M → P → PJ ′

→ 0.

Now PJ ′

is projective in O
J ′

k and admits a restricted Verma flag by
our induction hypothesis. Hence we have to show that M admits a
restricted Verma flag.

We first prove that Ext1

O
J

k

(M,∇k(ν)) = 0 for all ν ∈ J . For ν = µ

the statement that is dual to Lemma 4.4 (recall that our deformation
algebra is a field) gives Ext1

O
J

k

(M,∇k(µ)) = 0, as all weights of M

are smaller or equal to µ. So suppose that ν 6= µ, i.e. ν ∈ J ′. The
following is a part of the long exact sequence of Ext-groups associated
to the short exact sequence above:

Ext1

O
J

k

(P,∇k(ν))→ Ext1

O
J

k

(M,∇k(ν))

→ Ext2

O
J

k

(PJ ′

,∇k(ν)).

The first term vanishes as P is projective in O
J

k . Since ∇k(ν) ∈ O
J ′

k

we have, by Lemma 5.2,

Ext2

O
J

k

(PJ ′

,∇k(ν)) = Ext2

O
J ′

k

(PJ ′

,∇k(ν))

and the latter Ext-group vanishes by the projectivity of PJ ′

in O
J ′

k .
Hence Ext1

O
J

k

(M,∇k(ν)) = 0 for all ν ∈ J .

NowM is generated by its µ-weight space. Hence there is a surjection
∆k(µ)

L
n→→M for some n > 0. Let X be its kernel. We assume that n

is minimal, i.e. that the weights of X are strictly smaller than µ (again
we use the assumption that the deformation algebra is a field). We
now prove that Hom(X,∇k(ν)) = 0 for all ν ∈ J , which implies that
X = 0 and hence M ∼= ∆k(µ)⊕n. We have Hom(X,∇k(µ)) = 0 as
all weights of X are smaller than µ. For ν ∈ J with ν 6= µ consider
the following part of a long exact sequence associated to 0 → X →
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∆k(µ)⊕n →M → 0:

Hom
O

J

k
(∆k(µ)⊕n,∇k(ν))→ Hom

O
J

k
(X,∇k(ν))

→ Ext1

O
J

k

(M,∇k(ν)).

The first term vanishes as ν 6= µ. We have proven above that the third
term vanishes also, hence the middle term vanishes, which is what we
wanted to verify. �

Now we give an analogue of the BGGH-formula for the multiplicities

of restricted Verma modules in a restricted Verma flag of P
J

k (λ).

Theorem 5.5. Suppose that A = k is a field. Let J ⊂ ĥ⋆ be open and
bounded and λ ∈ J . Then we have

(P
J

k (λ) : ∆k(µ)) =

{
[∇k(µ) : Lk(λ)], if µ ∈ J

0, else.

Proof. Clearly, (P
J

k (λ) : ∆k(µ)) = 0 if µ 6∈ J . So suppose that µ ∈ J .
Using Proposition 5.3 we have

(P
J

k (λ) : ∆k(µ)) = dimk Hom(P
J

k (λ),∇k(µ))

= [∇k(µ) : Lk(λ)].

The second identity is a consequence of the fact that P
J

k (λ) is a pro-
jective cover of Lk(λ) in OJ

k . �

5.4. Properties of restricted projective objects (in the field
case). From Theorem 5.5 we can now deduce some properties of the
restricted projective objects.

Proposition 5.6. Suppose that the deformation algebra A = k is a

field and let J ⊂ ĥ⋆ be a bounded open subset.

(1) The restriction of an indecomposable projective object in OJ
k is

indecomposable, i.e. for all λ ∈ J we have

PJ
k (λ)res ∼= P

J

k (λ).

(2) For an open subset J ′ of J we have

P
J ′

k (λ) ∼= P
J

k (λ)J
′

.

(3) For any projective object P ∈ OJ
k the restriction admits a re-

stricted Verma flag and for the multiplicities holds the following
formula:

(P res : ∆k(µ)) =
∑

n≥0

q(n)(P : ∆k(µ− nδ))
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for all µ ∈ J .

Proof. We start with (1). Recall that PJ
k (λ)res is a projective object

in O
J

k and contains P
J

k (λ) as a direct summand. Both modules admit
restricted Verma flags by Theorem 5.4, so it is enough to prove that
the corresponding multiplicities coincide. Let ν ∈ J . By Proposition
5.3 we have

(PJ
k (λ)res : ∆k(ν)) = dimk Hom(PJ

k (λ)res,∇k(ν)).

Since ∇k(ν) is restricted we have

Hom(PJ
k (λ)res,∇k(ν)) = Hom(PJ

k (λ),∇k(ν)),

hence

(PJ
k (λ)res : ∆k(ν)) = dimk Hom(PJ

k (λ),∇k(ν))

= [∇k(ν) : Lk(λ)]

= (P
J

k (λ) : ∆k(ν)).

The last identity is the BGGH-reciprocity result. Hence the Verma

multiplicities of PJ
k (λ)res and of P

J

k (λ) coincide, hence these modules
are isomorphic.

As PJ
k (λ)J

′ ∼= PJ ′

k (λ) and since truncation commutes with restric-
tion by Lemma 4.2, (1) implies (2).

Now let us prove (3). We have already shown that P res is a projective

object in O
J

k (cf. the proof of Theorem 5.1) and that it admits a Verma
flag (cf. Theorem 5.4). In order to prove the multiplicity statement,

we can assume that P = PJ
k (λ) for some λ. Then P res ∼= P

J

k (λ) by
part (1) and the claim is, by the reciprocity results in Theorem 2.9 and
Theorem 5.5, equivalent to

[∇k(µ) : Lk(λ)] =
∑

n≥0

q(n)[∇k(µ− nδ) : Lk(λ)]

which is statement (2) of Lemma 4.6 in terms of the dual Verma mod-
ules. �

Next we want to prove the analogous statements in the case of a
local deformation algebra. But first we need yet another base change
result.

5.5. Base change - part 4. Suppose that A→ A′ is a homomorphism
of local deformation algebras. We have a restricted projective object

P
J

A(λ) and base change gives us an object P
J

A(λ)⊗A A
′. Note that we

do not know whether this object is restricted or not, i.e. whether it is



32 RESTRICTED LINKAGE PRINCIPLE

trivially acted upon by AnA′ for n 6= 0. The following proposition deals
with question in the cases of the canonical map A→ k, where k is the
residue field, and A→ Q, where A is a domain and Q its quotient field.

In the proof of the proposition we need an auxiliary category. Recall
that we have defined the strictly positive part Z+

c of the Feigin–Frenkel
center in Section 4.2.

Definition 5.7. We let O+
A,c be the full subcategory of OA,c that con-

sists of objects M such that Z+
c M = 0.

Since Hom(T−n∇A(λ),∇A(λ)) = 0 for all λ ∈ ĥ⋆ and n > 0, each
dual Verma module belongs to O+

A,c (but ∆A(λ) does not). Since for
all n there is a canonical map Znc → A

n
A,c which is compatible with

the actions on any object M ∈ OA,c, we can deduce that OA,c ⊂ O
+
A,c.

Moreover, if A → A′ is a homomorphism of deformation algebras and
M ∈ OA,c, then M ⊗A A

′ ∈ O+
A′,c, since the homomorphism Znc →

AnA,c is compatible with the base change homomorphism AnA,c → A
n
A′,c,

i.e. we get Znc → A
n
A′,c by composition.

Lemma 5.8. Suppose that A is a local deformation algebra with residue

field k. Let J ⊂ ĥ⋆ be open and bounded and λ ∈ J .

(1) We have P
J

A(λ)⊗A k ∼= P
J

k (λ).
(2) The object PJ

A (λ)res is indecomposable, i.e. we have PJ
A (λ)res ∼=

P
J

A(λ).

Proof. If λ is not critical, then there is nothing to prove. So let us
suppose that λ is critical. We start with the proof of (1). Note that
any module in Ok can actually be considered as a module in OA via
the homomorphism ĝA → ĝk of Lie algebras. If M ∈ Ok is restricted,
then it is also restricted as an object in OA, since AnA acts on M via a
homomorphism AnA → A

n
k by Proposition 3.3.

Let P
J

k (λ)→ Lk(λ) be a surjective map. We consider this now as a

morphism in OA. By projectivity of P
J

A (λ) there is a homomorphism

f : P
J

A(λ) → P
J

k (λ) such that the composition P
J

A(λ) → P
J

k (λ) →
Lk(λ) is surjective. Then f is surjective and induces a surjective map

P
J

A(λ)⊗A k → P
J

k (λ). We want to show that this is an isomorphism.
So let X be its kernel.

Now the short exact sequence

0→ X → P
J

A(λ)⊗A k → P
J

k (λ)→ 0
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is a sequence in O+
k,c (by the above arguments) and we get for all ν ∈ ĥ⋆

an exact sequence

Hom(P
J

k (λ),∇k(ν))→ Hom(P
J

A(λ)⊗A k,∇k(ν))

→ Hom(X,∇k(ν))→ Ext1
O+

k,c

(P
J

k (λ),∇k(ν))

The first homomorphism is an isomorphism since it is injective and the
dimensions coincide, as we show now: For ν 6∈ J , both spaces are the
zero spaces. For ν ∈ J we have

dim Hom(P
J

k (λ),∇k(ν)) = [∇k(ν) : Lk(λ)]

= dim Hom(P
J

A (λ),∇k(ν))

= dim Hom(P
J

A (λ)⊗A k,∇k(ν)).

Now P
J

k (λ) admits a restricted Verma flag. As in the proof of Propo-
sition 5.3 we can show that this implies that there are no extensions of

∇k(ν) with P
J

k (λ) even in O+
k,c, i.e. Ext1

O+
k,c

(P
J

k (λ),∇k(ν)) = 0. Hence

Hom(X,∇k(ν)) = 0 for all ν, so X = 0 and P
J

A(λ)⊗A k ∼= P
J

k (λ).
Now we prove (2). Using Lemma 4.3, Theorem 2.9, (4), and Propo-

sition 5.6, (1), we have

(PJ
A (λ)res ⊗A k)

res = (PJ
A (λ)⊗A k)

res

= PJ
k (λ)res

= P
J

k (λ).

As the latter module is indecomposable, the first module is indecom-
posable, hence so is PJ

A (λ)res. �

5.6. The case of a local deformation domain. We suppose that
A is a local deformation algebra which, moreover, is a domain. We

want to prove that each projective in O
J

A admits a Verma flag and
that the multiplicities are given by a BGGH-type reciprocity formula.
We denote by k the residue field of A and by Q its quotient field.

Theorem 5.9. Suppose that A is a local deformation domain with

residue field k. Let J ⊂ ĥ⋆ be open and bounded and λ ∈ J . Then

P
J

A(λ) admits a restricted Verma flag and we have for all µ ∈ ĥ⋆

(P
J

A(λ) : ∆A(µ)) =

{
[∇k(µ) : Lk(λ)], if µ ∈ J

0, else.
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Proof. Let us look at the following base change triangle:

PJ
A (λ)res

wwooooooooooo

''OOOOOOOOOOOO

PJ
A (λ)res ⊗A k PJ

A (λ)res ⊗A Q.

First we consider the module on the right hand side. Note that we do
not know yet if it is restricted, but in any case we have a surjective
homomorphism

PJ
A (λ)res ⊗A Q→ (PJ

A (λ)res ⊗A Q)res,

where the restriction functor on the right module is the one on OQ. By
Lemma 4.3 we have

(PJ
A (λ)res ⊗A Q)res = (PJ

A (λ)⊗A Q)res.

Now PJ
A (λ) ⊗A Q is a projective object in OJ

Q , hence we can apply

part (3) of Proposition 5.6 and deduce that (PJ
A (λ)⊗A Q)res admits a

restricted Verma flag with multiplicities

((PJ
A (λ)⊗A Q)res : ∆Q(µ)) =

∑

n≥0

q(n)(PJ
A (λ)⊗A Q : ∆Q(µ− nδ))

=
∑

n≥0

q(n)(PJ
A (λ) : ∆A(µ− nδ)).

Now let us consider the module PJ
A (λ)res⊗Ak on the left of the above

base change triangle. By Lemma 5.8 we have

PJ
A (λ)res ⊗A k = P

J

A (λ)⊗A k

= P
J

k (λ).

Hence this module is already restricted. Proposition 5.6 tells us that

P
J

k (λ) = PJ
k (λ)res and that the multiplicities of the latter module are

(PJ
k (λ)res : ∆k(µ)) =

∑

n≥0

q(n)(PJ
k (λ) : ∆Q(µ− nδ))

=
∑

n≥0

q(n)(PJ
A (λ) : ∆A(µ− nδ)).

We deduce that the Q-dimension of each weight space of PJ
A (λ)res⊗A

Q is equal or larger than the k-dimension of the resp. weight space of
PJ
A (λ)res ⊗A k. By Nakayama’s Lemma it cannot be larger, so these

dimensions coincide, hence we have

PJ
A (λ)res ⊗A Q = (PJ

A (λ)res ⊗A Q)res,
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i.e. that the left hand side is already restricted.
So we have shown that PJ

A (λ)res ⊗A k and PJ
A (λ)res ⊗A Q admit re-

stricted Verma flags and that the multiplicities coincide. From Lemma
4.13 we deduce that PJ

A (λ)res admits a restricted Verma flag with

(PJ
A (λ)res : ∆A(µ)) = (PJ

A (λ)res ⊗A k : ∆k(µ)).

By Lemma 5.8 we have P
J

A(λ) = PJ
A (λ)res and PJ

A (λ)res⊗A k ∼= P
J

k (λ).
So the BGGH-reciprocity statement is a consequence of Theorem 5.5.

�

One proves the following corollary with the same arguments as the
ones used for the proof of part (3) of Proposition 5.6.

Corollary 5.10. Let P ∈ OJ
A be projective. Then we have for all

µ ∈ J

(P res : ∆A(µ)) =
∑

n≥0

q(n)(P : ∆A(µ− nδ)).

5.7. Base change - part 5. Suppose that A→ A′ is a homomorphism
of local deformation domains and let M ∈ OA. By Proposition 3.3
the natural homomorphism M → M ⊗A A

′ induces a homomorphism
(AnAM)⊗A A

′ → AnA′(M ⊗A A
′) and hence a natural, surjective map

M res ⊗A A
′ → (M ⊗A A

′)res.

Proposition 5.11. Suppose that P ∈ OJ
A is projective. Then the above

homomorphism is an isomorphism

P res ⊗A A
′ ∼= (P ⊗A A

′)res.

In particular, if P ∈ OJ
A is restricted and projective, then P⊗AA

′ ∈ OJ
A′

is restricted and projective.

Proof. Note that P ⊗A A
′ is projective in OJ

A′ and we have

(P : ∆A(ν)) = (P ⊗A A
′ : ∆A′(ν))

for all ν ∈ J .
Since P res admits a restricted Verma flag, so does P res ⊗A A

′ and
the multiplicities coincide. Using Corollary 5.10 (twice) we have for all
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ν ∈ J

(P res ⊗A A
′ : ∆A′(ν)) = (P res : ∆A(ν))

=
∑

n≥0

q(n)(P : ∆A(µ− nδ))

=
∑

n≥0

q(n)(P ⊗A A
′ : ∆A′(µ− nδ))

= ((P ⊗A A
′)res : ∆A′(ν)).

As the multiplicities coincide, the canonical surjective map P res⊗AA
′ →

(P ⊗A A
′)res has to be an isomorphism. �

6. The restricted linkage principle and the restricted

block decomposition

In this section we use the above BGGH-reciprocity to prove our main
theorem, the restricted linkage principle:

Theorem 6.1. For λ, µ ∈ ĥ⋆ we have [∆(λ) : L(µ)] = 0 if λ 6∈ Ŵ(µ).µ.

Note that the above statement refers to the non-deformed objects
(i.e. we have A = C here). However, for its proof we need the defor-
mation theory developed in the main body of this paper. So let A be
an arbitrary local deformation domain with residue field k. As a first
step we study the restricted block decomposition.

6.1. The restricted block decomposition. Let ∼res
A be the relation

on the set ĥ⋆ that is generated by setting λ ∼res
A µ if there is some

open subset J ⊂ ĥ⋆ such that LA(µ) is isomorphic to a subquotient of

P
J

A(λ). For an equivalence class Λ ∈ ĥ⋆/ ∼res
A let OA,Λ ⊂ OA be the full

subcategory that contains all objects M that have the property that if
LA(λ) occurs as a subquotient of M , then λ ∈ Λ. Then the well-known
classical arguments yield the following.

Theorem 6.2. The functor
∏

Λ∈bh⋆/∼res
A

OA,Λ → OA

(MΛ) 7→
⊕

MΛ,

is an equivalence of categories.
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6.2. Critical restricted equivalence classes. Let us denote by · : ĥ⋆ →

h⋆, λ 7→ λ, the map that is dual to the inclusion h→ ĥ = h⊕CD⊕CK.
Note that δ = κ = 0.

Suppose that Λ ∈ ĥ⋆/∼res
A

is a critical equivalence class. We define

the corresponding set of integral finite roots and the finite integral Weyl
group by

RA(Λ) := {α ∈ R | 2(λ+ ρ, α)k ∈ Z(α, α)k},

WA(Λ) := 〈sα | α ∈ RA(Λ)〉 ⊂ W.

Lemma 6.3. Let Λ ∈ ĥ⋆/∼res
A

be a critical equivalence class. Then we

have
Λ =WA(Λ).λ

for all λ ∈ Λ.

Proof. The inclusion Λ ⊂ WA(Λ).Λ is clear, for the other direction use
finite Verma modules. �

6.3. Generic and subgeneric equivalence classes.

Definition 6.4. Let Λ ∈ ĥ⋆/∼res
A

be a critical equivalence class. We

call Λ

(1) generic, if Λ ⊂ h⋆ contains exactly one element,
(2) subgeneric, if Λ ⊂ h⋆ contains exactly two elements.

We call a critical element λ ∈ ĥ⋆ generic (subgeneric, resp.) if it is
contained in a generic (subgeneric, resp.) equivalence class.

Let λ ∈ ĥ⋆ be a critical element and suppose that sα.λ 6= λ. Then
we have sα.λ > λ if and only if s−α+δ.λ < λ. We define α ↑ λ to be
the element in the set {sα.λ, s−α+δ.λ} that is bigger than λ. Note that

this defines a bijection α ↑ · : ĥ⋆ → ĥ⋆.
Part (1) of the following Theorem is a direct consequence of Theorem

5.9 and Theorem 4.8 in [Fr05] (which states that a generic restricted
Verma module is simple) and part (2) is a direct consequence of The-
orem 5.9 and Theorem 5.9 in [AF08].

Theorem 6.5. Let A be a local deformation algebra. Let Λ ∈ ĥ⋆/∼res
A

be a critical equivalence class and fix λ ∈ Λ. Let J ⊂ ĥ⋆ be open and
bounded.

(1) Suppose that λ is generic. Then

P
J

A(λ) ∼= ∆A(λ)

if J contains λ.
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(2) Suppose that λ ∈ J is subgeneric and suppose that Λ = {λ, sα.λ}
for some α ∈ R. Then there is a non-split short exact sequence

0→ ∆A(α ↑ λ)→ P
J

A(λ)→ ∆A(λ)→ 0

if J contains λ and α ↑ λ.

Corollary 6.6. Let Λ ∈ ĥ⋆/∼res
A

be an equivalence class.

(1) If Λ is generic, then Λ contains only one element.

(2) If Λ is subgeneric, then there is some α ∈ R(Λ) such that Λ ⊂ ĥ⋆

is an orbit under the action of the subgroup Ŵα ⊂ Ŵ that is
generated by the reflections sα+nδ for n ∈ Z.

For any prime ideal p in a commutative ring A we denote by Ap the
corresponding localization. If A is a domain, then we have canonical
inclusions A ⊂ Ap ⊂ A(0) = Q.

Proposition 6.7. Let A be a local deformation domain and let Λ ⊂ ĥ⋆

be a critical equivalence class with respect to ∼res
A . If A =

⋂
pAp, then

∼res
A is the common refinement of all the relations ∼res

Ap
for prime ideals

p of height one, i.e. ∼res
A is generated by the relations λ ∼res

A µ if there
is a prime ideal p ⊂ A of height one such that λ ∼res

Ap
µ.

Proof. Let us denote by ∼′ the common refinement of the relations

∼res
Ap

for prime ideals of height one. It suffices to show that if λ, µ ∈ ĥ⋆

are critical such that there is an open bounded subset J of ĥ⋆ and

(P
J

A(λ) : ∆A(µ)) 6= 0, then λ ∼′ µ.

Let us consider the object P
J

A (λ)⊗AQ. It is an object in O
J

Q and ad-
mits a restricted Verma flag. We are going to apply the decomposition
result in Theorem 6.2 for the categories OQ and OAp

.

Let Λ′ ⊂ ĥ⋆ be the equivalence class under ∼′ that contains λ. As Λ′

is a union of equivalence classes for ∼res
Q we can find a unique decom-

position

P
J

A (λ)⊗A Q = X ⊕ Y,

where X and Y are objects in OQ admitting a restricted Verma flag

such that for all ν ∈ ĥ⋆ we have

(X : ∆Q(ν)) 6= 0:ν ∈ Λ′,

(Y : ∆Q(ν)) 6= 0:ν 6∈ Λ′.

Let p ⊂ A be a prime ideal of height one. As ∼′ is coarser than ∼res
Ap

,

we deduce that the inclusion P
J

A(λ) ⊗A Ap → P
J

A(λ) ⊗A Q = X ⊕ Y
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induces a direct sum decomposition

P
J

A(λ)⊗A Ap =
(
P

J

A(λ)⊗A Ap ∩X
)
⊕
(
P

J

A(λ)⊗A Ap ∩ Y
)
.

Now each weight space of P
J

A (λ) is a free A-module of finite rank
and we deduce that

P
J

A(λ) =
⋂

p

P
J

A(λ)⊗A Ap,

where the intersection is taken over all prime ideals of height one. Hence
we get an induced decomposition

P
J

A(λ) =
(
P

J

A(λ) ∩X
)
⊕
(
P

J

A(λ) ∩ Y
)
.

As P
J

A(λ) is indecomposable, and since X 6= 0 (since the restricted
Verma module ∆Q(λ) certainly occurs in X), we get Y = 0, i.e. all

restricted Verma subquotients of P
J

A(λ) have highest weights in Λ′.
Hence ∼res

A =∼′. �

6.4. A special deformation. Let S̃ be the localization of S at the
maximal ideal S ·h. This is a local deformation domain with the obvious
S-algebra structure. Its quotient field is C = S̃/S̃ · h and the category

OC is identified with the usual category O. For each prime ideal p ⊂ S̃

we denote by S̃p the localization of S̃ at p. We let Q̃ = S̃(0) be the

quotient field of S̃.

Proposition 6.8. Let p ⊂ S̃ be a prime ideal of height one and let

Λ ⊂ ĥ⋆ be an equivalence class for ∼res
p .

(1) If α∨ 6∈ p for all α ∈ R, then Λ is generic.
(2) If α∨ ∈ p for some α ∈ R, then Λ is either generic or sub-

generic. In both cases we have R(Λ) ⊂ {α,−α}.

Proof. Let k be the residue field of S̃p. For any β ∈ R we have (λ +
τ, β)k = (λ, β)k + (τ, β)k ∈ C⊕ h. Hence we have 2(λ+ τ, β) ∈ Z(β, β)
if and only if 2(λ, β) ∈ Z(β, β) and (τ, β)k = 0. The latter equality
implies β = ±α. From this we deduce both of the above statements.

�

Now we can prove our main result, Theorem 6.1.

Proof. We show that λ ∼res
C
µ implies µ ∈ Ŵ(λ).λ. Note that by defini-

tion we have ∼res
C

=∼res
eS . As we have S̃ =

⋂
p S̃p, where the intersection

is taken over all prime ideals of height one, we can apply Proposition
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6.7 and deduce that ∼res
eS is the common refinement of all ∼res

eSp
. Propo-

sition 6.8 shows that the equivalence classes of ∼res
eSp

are either generic

or subgeneric. But those we determined in Corollary 6.6: They are

orbits under a certain subgroup Ŵα of Ŵ(λ). Hence λ and µ must be

contained in a common Ŵ(λ)-orbit. �
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