
PARITY SHEAVES, MOMENT GRAPHS AND THE
p-SMOOTH LOCUS OF SCHUBERT VARIETIES

PETER FIEBIG AND GEORDIE WILLIAMSON

Abstract. We show that, with coefficients in a field or complete
local principal ideal domain k, the Braden-MacPherson algorithm
computes the stalks of parity sheaves with coefficients in k. As
a consequence we deduce that the Braden-MacPherson algorithm
may be used to calculate the characters of tilting modules for al-
gebraic groups and show that the p-smooth locus of (Kac-Moody)
Schubert varieties agrees with the rationally smooth locus, if the
underlying Bruhat graph satisfies a GKM-condition.
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1. Introduction

In Lie theory, one of the most successful methods to calculate repre-
sentation theoretic data (character formulae, decomposition numbers,
multiplicities, . . . ) is to find a geometric or topological interpretation
of the problem. In many examples one obtains a representation theo-
retic information from the stalks of intersection cohomology complexes
on an associated algebraic variety (for example the flag variety, the
nilpotent cone, or the group itself).

In the most successful applications of this approach (the Kazhdan-
Lusztig conjecture, canonical bases, character sheaves . . . ) the rep-
resentation theoretic objects under consideration are assumed to be
defined over a field of characteristic zero. In this case the decompo-
sition theorem often allows one to recursively calculate the stalks of
intersection cohomology complexes, hence solving (or at least provid-
ing a combinatorial algorithm to solve) the problem in representation
theory.

However, recently a number of authors have pointed out that geom-
etry also has something to say about modular representation theory
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(see [JMW09b] for a survey). In this article we are motivated by the
following two examples of this phenomenon:

• For a ring k, the geometric Satake equivalence of Mirkovic and
Vilonen [MV07] provides an equivalence of tensor categories be-
tween equivariant perverse k-sheaves on the affine Grassman-
nian and rational representations of the Langlands dual group
scheme over k.
• In [Fie07b] and [Fie07a] a certain category of sheaves of k-vector

spaces on the affine flag variety was related to representations of
the k-Lie algebra associated to the Langlands dual root system
(here k is a field whose characteristic is required to be at least
the associated Coxeter number). This relation is then used to
give a new proof of Lusztig’s conjecture on the simple rational
characters for reductive groups in almost all characteristics.

In [JMW09a] (motivated by a desire to better understand such re-
lationships) a new class of “parity sheaves” was introduced. These are
certain constructible sheaves on a stratified algebraic variety, which
satisfy a parity vanishing condition with respect to stalks and costalks.
It was shown that, under some additional assumptions, the indecom-
posable parity sheaves are classified in the same way as the intersection
cohomology complexes. If the coefficients are of characteristic zero the
decomposition theorem often implies that the indecomposable parity
sheaves are isomorphic to intersection cohomology complexes (up to
a shift). In positive characteristic this need no longer be true. With
coefficients of positive characteristic, parity sheaves are often easier to
work with than intersection cohomology complexes and may even form
their natural replacement. For example:

• the category considered in [Fie07b] turns out to be the category
of parity sheaves,
• under the geometric Satake equivalence (and under some mild

and explicit assumptions on the characteristic of k) the parity
sheaves correspond to tilting modules for the Langlands dual
group (cf. [JMW09a]).

The above results show that fundamental representation theoretic
data is encoded in the stalks of the indecomposable parity sheaves.
It is therefore an important problem to find an algorithm for their
calculation.

For an appropriately stratified complex algebraic variety X with
torus action Braden and MacPherson [BM01] describe an algorithm for
calculating the stalks of intersection cohomology complexes with coef-
ficients in a field of characteristic zero (using localisation techniques in
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equivariant cohomology developed by Goresky, Kottwitz and MacPher-
son [GKM98]). By assumption, the torus action has only finitely many
fixed points and one-dimensional orbits, and the structure of the one-
skeleton of the torus action may be encoded in the “moment graph” of
the variety:

• the vertices and edges are given by the torus fixed points and
one-dimensional orbits respectively, with a one-dimensional or-
bit incident to those fixed points in its closure,
• each edge is labelled by a character1 of the torus determining

an isomorphism of the orbit with C∗.
Braden and MacPherson then describe an algorithm (using only com-
mutative algebra) to produce a “sheaf” on the moment graph, and
show that its stalks agree with those of the equivariant intersection co-
homology complex. Thus the (a priori extremely difficult) computation
of the stalks of the intersection cohomology complex may (in principle)
be carried out in an elementary way.

The Braden–MacPherson algorithm makes sense with coefficients in
an arbitrary field k. However, simple examples show that it does not
compute the stalks of intersection cohomology complexes when the
coefficients are not of characteristic zero. The central result of this
paper is the following:

Theorem 1.1. Suppose that the pair (X, k) satisfies the GKM-condition
(cf. Section 4.7). Then the Braden-MacPherson algorithm computes
the stalks of indecomposable parity sheaves.

In the theorem, k denotes a complete local principal ideal domain.
If k is a field, then the GKM-condition may be stated simply: one
requires that, for all pairs of one-dimensional orbits having a common
torus fixed point in their closure, the corresponding characters do not
become linearly independent modulo k. Note that this condition can
easily be read off the associated moment graph.

In the course of the proof of the above result we generalise a version
of the localisation theorem to the case of coefficients in a ring. With
coefficients in a complete local ring we show that the localization of
parity sheaves yields Braden–MacPherson sheaves. In contrast to the
proof of Braden–MacPherson, our arguments are much more elemen-
tary, as we do not need the theory of mixed Hodge modules. However,
if k is a field of characteristic zero the decomposition theorem implies
that the parity sheaves are intersection cohomology complexes (up to
a shift), which yields a new proof of the Braden–MacPherson result.

1Strictly speaking, this character is only defined up to ±1.
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A consequence of [Fie07b] is that Lusztig’s conjecture can be checked
on the associated moment graph. Applying the above theorem to the
affine Grassmannian and using the Satake equivalence, we obtain:

Theorem 1.2. Suppose that p > h + 1, where h denotes the Coxeter
number of our datum. On the moment graph of the affine Grassman-
nian and with coefficients in the ring of p-adic integers, the Braden–
MacPherson algorithm calculates the characters of tilting modules of
the Langlands dual group over Fp.

The moment graph of the affine Grassmannian is GKM for a field k
if and only if k is of characteristic zero. This explains the appearance
of the p-adic integers in the above theorem.

Finally, we apply the multiplicity one result of [Fie10] to obtain a
description of the p-smooth locus of Schubert varieties. Recall that an
n-dimensional algebraic variety X is p-smooth if for all x ∈ X one has
an isomorphism of graded vector spaces

H•(X,X \ {x},Fp) ∼= H•(Cn,Cn \ {0},Fp).

The p-smooth locus of X is the largest open p-smooth subvariety. One
similarly defines rationally smooth, and rationally smooth locus by
replacing Fp by Q above. If X is rationally (resp. p-) smooth it satisfies
Poincaré duality with rational (resp. Fp-) coefficients.

Theorem 1.3. Let G be the moment graph of a (Kac-Moody) Schubert
variety X and suppose that (G,Fp) is a GKM-pair. Then the p-smooth
locus of X coincides with its rationally smooth locus.

In the finite case, the GKM-condition is always satisfied if p 6= 2 and
if, in addition, p 6= 3 in G2. This answers a (stronger version of) a
question of Soergel (cf. [Soe00]). In fact, we prove the above theorem
for a larger class of varieties with appropriate torus action for fields k
that satisfy the GKM-condition.

The smooth and rationally smooth locus of Schubert varieties has
been the subject of much investigation by a number of authors. See for
example [Car94], [Kum96], [Dye93], [Dye05] and [Ara98]. It is known
that the smooth and rationally smooth locus agree in simply-laced
type, which immediately implies the above theorem. However, there
are examples in non-simply-laced types of small rank where the 2-
smooth and 3-smooth locus do not agree with the rationally smooth
locus. It would be interesting to have a description of the p-smooth
locus in all characteristics.
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2. Equivariant sheaves

In this section we recall the construction of the bounded equivariant
derived category Db

G(X, k) that is associated to a topological group
G, a ring of coefficients k and a G-space X. To a suitable continuous
G-equivariant map f : X → Y one associates the push-forward functors

f∗, f! : D
b
G(X, k)→ Db

G(Y, k)

and the pull-back functors

f ∗, f ! : Db
G(Y, k)→ Db

G(X, k)

satisfying a Grothendieck formalism. We then recall the equivariant
cohomology H•G(F) of X with coefficients in F ∈ Db

G(X, k) and, finally,
the Mayer-Vietoris sequence associated to an open G-stable covering
X = U ∪ V .

We will be mainly concerned with the following situation: G will
either be a complex algebraic torus, i.e. G ∼= (C×)r for some r > 0,
endowed with its metric topology, or its compact subtorus (S1)r. The
space X will be a complex algebraic variety with an algebraic G-action,
and endowed with its metric topology. The main reference for the
following is [BL94].

2.1. The equivariant derived category of a G-space. We fix a
topological group G. A G-space is a topological space endowed with a
continuous G-action. There always exists a contractible G-space with
a topologically free G-action. We fix one of those and call it EG. For
any G-space X we can now define the quotient XG := X ×G EG of
X × EG by the diagonal G-action. Then we have two maps

X × EG
p

zzuuuuuuuuuu
q

%%JJJJJJJJJ

X XG.
The map q on the right is the canonical quotient map and p is the
projection onto the first factor.

Now we fix a ring of coefficients k. For any topological space Y
we denote by D(Y, k) the derived category of sheaves of k-modules
on Y . By Db(Y, k) we denote the full subcategory of objects with
bounded cohomology. For a continuous map f : Y → Y ′ we then have
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the push-forward functor f∗ : D(Y, k) → D(Y ′, k) and the pull-back
functor f ∗ : D(Y ′, k)→ D(Y, k) (see [Spa88]).

Definition 1. The equivariant derived category of sheaves on X with
coefficients in k is the full subcategory DG(X, k) of D(XG, k) that con-
tains all sheaves F for which there is a sheaf FX ∈ D(X, k) such that
q∗F ∼= p∗FX .

We denote by Db
G(X, k) ⊂ DG(X, k) the full subcategory of ob-

jects with bounded cohomology, i.e. of objects that are contained in
Db(XG, k).

It turns out that the categories DG(X, k) and Db
G(X, k) are indepen-

dent of the choice of EG. Since p is a trivial fibration with contractible
fibre EG, the functor p∗ : D(X, k)→ D(X×EG, k) is a full embedding.
We deduce that for F ∈ DG(X, k) the sheaf FX ∈ D(X, k) appearing
in the definition above is unique up to unique isomorphism, so the map
F 7→ FX even extends to a functor For : DG(X, k)→ D(X, k).

2.2. The equivariant functor formalism. In order to ensure that
all the functors that we introduce in the following exist we assume that
X is a complex algebraic variety endowed with its metric topology, and
that G is a Lie group acting continuously on X.

If f : X → Y is a continuous G-equivariant map then we get an
induced map fG := f ×G id : XG → YG and corresponding functors
f ∗G, fG∗, f

!
G and fG! between the categories Db(XG, k) and Db(YG, k).

(Some care is needed in the definition of f !
G and fG! because XG and YG

are not locally compact in general. In [BL94] this problem is overcome
by considering XG as a direct limit of locally compact spaces. It is
also possible to prove the existence and basic properties of f !

G in a
relative setting, see [SHS69].) It turns out that all four functors induce
functors between the subcategories Db

G(X, k) and Db
G(Y, k). By abuse

of notation we denote these functors by the symbols f ∗, f∗, f
! and f!.

For a G-stable subvariety i : Y ↪→X and a sheaf F ∈ Db
G(X, k) we

define

FY := i∗F .

So FY is an object in Db
G(Y, k).

2.3. Equivariant cohomology. The equivariant cohomology H•G(X, k)
of X with coefficients in k is the (ordinary) cohomology of the space
XG, i.e.

H•G(X, k) := H•(XG, k).
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In particular, the equivariant cohomology of a point is the cohomology
of the classifying space

BG := ptG = EG×G pt = EG/G

of G.
Now let F ∈ Db

G(X, k). The equivariant cohomology H•G(F) of X
with coefficients in F is defined as follows. We denote by π : X → pt the
map to a point. Then we have the object π∗F ∈ Db

G(pt, k) ⊂ Db(BG, k)
and we define

H•G(F) := H•(π∗F),

where on the right we have the ordinary cohomology of BG with co-
efficients in the sheaf π∗F . This is naturally a graded module over
H•G(pt, k) = H•(BG, k), so equivariant cohomology is a functor

H•G : Db
G(X, k)→ H•G(pt, k)-modZ.

Here and in the following we denote by A-modZ the category of Z-
graded modules over a Z-graded ring A. For a graded A-module M =⊕

n∈ZMn and l ∈ Z we denote by M [l] the graded module obtained by
a shift such that M [l]n = Ml+n for all n ∈ Z.

Let i : Y ↪→X be a locally closedG-stable subvariety and F ∈ Db
G(X, k).

The adjunction homomorphism id → i∗i
∗ yields a morphism F →

i∗i
∗F = i∗FY . After applying equivariant cohomology this yields a

homomorphism

H•G(F)→ H•G(i∗FY ) = H•G(FY )

of H•G(pt, k)-modules. We call such a homomorphism a restriction ho-
momorphism.

2.4. The Mayer–Vietoris sequence. We will often make use of the
equivariant Mayer-Vietoris sequence. Note that the equivariant state-
ment is a straightforward consequence of the non-equivariant one (see,
for example, [KS94, 2.6.28]).

Proposition 2.1. Let X = U ∪ V where U, V ⊂ X are open and G-
stable. Then, given any F ∈ Db

G(X, k), we have a long exact sequence
of equivariant cohomology

· · · → Hj−1
G (FU∩V )→ Hj

G(F)→Hj
G(FU)⊕Hj

G(FV )→
→ Hj

G(FU∩V )→ Hj+1
G (F)→ . . . .
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2.5. The case of a torus. Let us suppose now that G = T is a
complex torus, i.e. a topological group isomorphic to (C×)r for some
r > 0, endowed with the metric topology.

For n ≥ 0 we consider the space (Cn \ {0})r together with the T -
action given by

(t1, . . . , tr) · (x1, . . . , xr) = (t1 · x1, . . . , tr · xr).
The embeddings Cn \ {0} → Cn+1 \ {0} that map (z1, . . . , zn) to
(z1, . . . , zn, 0) define a direct system

· · · → (Cn \ {0})r → (Cn+1 \ {0})r → . . .

of T -spaces. The direct limit (C∞ \ {0})r := lim(Cn \ {0})r is a con-
tractible space together with a topologically free T -action, hence can
be chosen as a model for ET .

We denote by X∗(T ) the character lattice Hom(T,C×) of T . Let

Sk := S(X∗(T )⊗Z k)

be the symmetric algebra over the free k-module X∗(T ) ⊗Z k, graded
in such a way that X∗(T )⊗Z k ⊂ Sk is the homogeneous component of
degree 2. Then the Borel homomorphism (cf. [Bri98], [Jan09]) gives a
canonical identification

Sk
∼→ H•(BT, k) = H•T (pt, k).

2.6. An attractive proposition. Now let X be a complex T -variety.
Recall that a T -fixed point x ∈ X is called attractive if all weights of T
on the tangent space toX at x lie in an open half space ofX∗(T )⊗ZR. If
this is the case then one can find a one parameter subgroup α : C× → T
and an open neighbourhood U of x such that

(1) lim
z→0

α(z) · y = x for all y ∈ U .

If, in addition, X is connected and affine then x is the unique T -fixed
point of X and (1) holds for all y ∈ X. In particular, the smallest
T -stable open neighbourhood of x ∈ X is X itself.

Suppose for the remainder of this section that X is connected and
affine, and that x ∈ X is an attractive fixed point. We denote by
i : {x} → X the inclusion and by π : X → {x} the projection. If we
apply the functor π∗ to the natural transformation id → i∗i

∗ we get a
natural transformation π∗ → π∗i∗i

∗. Since π◦i is the identity morphism
on a point, we get a natural morphism

π∗ → i∗

of functors from Db
T (X, k) to Db

T ({x}, k).
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The goal of the rest of this section is to prove the following (for similar
statements in the non-equivariant or “weakly equivariant” setting see
[Spr84] and [Bra03]):

Proposition 2.2. Suppose that X is connected and affine and that
x ∈ X is an attractive fixed point. Then the morphism of functors
π∗ → i∗ is an isomorphism.

We begin with some lemmata. Suppose we have a pair of Cartesian
squares

F̃
ĩ //

q

��

X̃ //

q

��

π̃ // F̃

q

��
F

i // X //π // F

such that q is smooth and surjective, and π◦i = id (and hence π̃◦̃i = id).
The adjunctions (π∗, π∗) and (π̃∗, π̃∗) give morphisms of functors

π∗ → i∗ and π̃∗ → ĩ∗.

Lemma 2.3. Let F ∈ Db(X, k). Then π∗F → i∗F is an isomorphism

if and only if π̃∗q
∗F → ĩ∗q∗F is an isomorphism.

Proof. Because q is surjective, π∗F → i∗F is an isomorphism if and
only if q∗π∗F → q∗i∗F is an isomorphism. Now q∗i∗F ∼→ ĩ∗q∗F and
q∗π∗F

∼→ π̃∗q
∗F by smooth base change. Via these canonical isomor-

phisms we obtain a map

π̃∗q
∗F → ĩ∗q∗F .

This is the same map (up to isomorphism) as that coming from the

morphism π̃∗ → ĩ∗ (cf. [BL94, Theorem 1.8].) �

Now suppose a torus T contracts a variety X onto a fixed locus
F ⊂ X. Consider the diagram

X

π

��

X × ET
poo q //

π

��

X ×T ET
π

��
F

i

OO

F × ET
poo

i

OO

q // F ×T ET

i

OO
.

Both p and q are smooth, and so applying the above lemma twice we see
that, given F ∈ Db

T (X, k), we have that π∗F → i∗F is an isomorphism
in Db

T (F, k) if and only if π∗For(F)→ i∗For(F) is.
Given a G-space X, let us call F ∈ Db(X, k) naively equivariant if

we have an isomorphism m∗F → p∗F where m and p denote the action
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and projection maps

G×X
m //
p

// X.

Note that, if G acts freely on X then pullback along X → X/G allows
us to view any F ∈ Db(X/G, k) as a naively equivariant sheaf on X.
Note also that if F is naively equivariant for a group G, then it is also
naively equivariant for any subgroup H ⊂ G.

Lemma 2.4. Suppose that F ∈ Db
G(X, k). Then For(F) is naively

equivariant for G.

Proof. Consider the quotient map q : X × EG → X ×G EG. Then
q∗F is naively equivariant for G. Then smooth base change applied to
the projection p : X ×EG→ X yields that For(F) = p∗q

∗F is naively
equivariant for G. �

We can now prove the attractive proposition:

Proof of Proposition 2.2. The above arguments reduce the proof of the
above to showing that, if F ∈ Db(X, k) is naively equivariant for the
action of a one dimensional torus which contracts X onto x ∈ X, then
π∗F → i∗F is an isomorphism. But this is shown in [Spr82] (see also
[Bra03] for another accounts of this argument). �

3. The localisation homomorphism

Throughout this section k denotes a unique factorisation domain and
we suppose that X is a normal complex algebraic variety (endowed
with its metric topology), acted upon algebraically by a complex torus
T ∼= (C×)r. In addition, we assume the following:

(A1) The torus acts on X with only finitely many zero- and one-
dimensional orbits and the closure of each one-dimensional orbit
is smooth.

(A2) X admits a covering by open affine connected T -stable subvari-
eties, each of which contains an attractive (hence unique) fixed
point.

Note that, by a result of Sumihiro (see [Sum74, KKLV89]), X has a
covering by open affine T -stable subvarieties, hence (A2) is automati-
cally satisfied if X is proper and each T -fixed point is attractive.

Let XT ⊂ X be the subspace of T -fixed points and F ∈ Db
T (X, k).

The restriction homomorphism associated to the inclusion XT ↪→X,

H•T (F)→ H•T (FXT ),

is called the localisation homomorphism.
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As XT is a finite set we have H•T (FXT ) =
⊕

x∈XT H•T (Fx). Follow-
ing the results of [CS74] and [GKM98] we will show that for certain
choices of X, k and F the localisation map is injective and give an
explicit description of its image. This is most conveniently phrased in
terms of moment graphs (cf. [BM01]), as it turns out that this image
is determined by the restriction of F to the one-dimensional T -orbits
in X.

3.1. One-dimensional orbits. Suppose thatE ⊂ X is a one-dimensional
T -orbit. Then E ∼= T/StabT (x) for any x ∈ E. Now StabT (x) is the
kernel of a character αE ∈ X∗(T ) which is well-defined up to a sign.
From now on we fix a choice of αE for each one-dimensional orbit E in
X. Nothing that follows depends on this choice.

As before we denote by Sk the Z-graded symmetric algebra of the free
k-module X∗(T )⊗Zk and identify it with the T -equivariant cohomology
of a point with coefficients in k. Given α ∈ X∗(T ) we often abuse
notation and denote by α as well the image of α ⊗ 1 ∈ X∗(T )⊗Z k in
Sk.

Let E ⊂ X be a one-dimensional T -orbit. Then αE acts as zero
on H•T (E, k) (see, for example, [Jan03, Section 1.9]). As H•T(FE) is a
H•T (E, k)-module, we conclude:

Lemma 3.1. For any one-dimensional T -orbit E in X and any F ∈
Db
T (X, k) we have αEH•T(FE) = 0.

3.2. The localisation theorem – part I. For any closed connected
subgroup Γ of T we let XΓ be the subset of Γ-fixed points in X. Let
us fix a closed subspace Z ⊂ X which is a disjoint union

Z = XΓ1 tXΓ1 t · · · tXΓn

of the fixed points in X of finitely many connected subtori Γ1, . . . ,Γn ⊂
T . We set

PZ :=

{
αE ∈ X∗(T )

∣∣∣∣E is a one-dimensional
T -orbit in X \ Z

}
and define

sZ :=
∏
α∈PZ

α ∈ Sk.

In addition to (A1) and (A2) we assume from now on:

(A3) for each one-dimensional orbit E in X the image of αE ∈ X∗(T )
is non-zero in Sk.

(Of course this condition is vacuous if the characteristic of k is zero.)
We now come to the first part of the localisation theorem. In the
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characteristic 0 case it is due to Goresky, Kottwitz and MacPherson
(cf. [GKM98]).

Theorem 3.2. Assume that the assumptions (A1), (A2) and (A3) hold
and let F ∈ Db

T (X, k). Suppose that H•T (F) is a graded free Sk-module.
Then the restriction homomorphism

H∗T (F)→ H∗T (FZ)

is injective and becomes an isomorphism after inverting sZ ∈ Sk, i.e. af-
ter applying the functor · ⊗Sk Sk[1/sZ ].

The proof of the theorem will take up the rest of this section. We
follow Brion’s account [Bri98, Section 2] of the characteristic zero case
quite closely, but at points some additional care is needed.

Let K ∼= (S1)r ⊂ T ∼= (C×)r be the maximal compact subtorus of
T . We can regard X as a K-space via restriction of the action. This
yields a functor

resTK : Db
T (X, k)→ Db

K(X, k).

As T/K is contractible, for any equivariant sheaf G ∈ Db
T (X, k) restric-

tion gives an isomorphism

H•T (G)
∼→ H•K(resTKG).

In particular, we have a canonical isomorphism H•K(pt, k) ∼= Sk. In
the following we write H•K(G) for H•K(resTKG). Hence, for the proof of
Theorem 3.2, it is enough to consider the restriction homomorphism

H•K(F)→ H•K(FZ)

and to show that it is injective and becomes an isomorphism after
inverting sZ .

Before we prove this we need a couple of preliminary results. We
state them for the K-equivariant cohomology, however all lemmata
except Lemma 3.5 are true with T in place of K.

First we assume that X = V is a finite dimensional T -module. Let
P ⊂ X∗(T ) be the characters occurring in V and s =

∏
χ∈P χ ∈ Sk

their product. Here is the first step towards the localization theorem.

Lemma 3.3. If F ∈ Db
K(V \ {0}, k) then H•K(F) is annihilated by a

power of s.

Proof. Fix an isomorphism

(2) V ∼= Cχ1 ⊕ Cχ2 ⊕ · · · ⊕ Cχm

where χ1, χ2, . . . , χm ∈ P . (Here, given χ ∈ X∗(T ), Cχ denotes the one-
dimensional T -module with character χ.) We will use this isomorphism
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to write elements of V as (xj)1≤j≤m. For any 1 ≤ i ≤ m consider the
subset

Ui = {(xj) ∈ V | xi 6= 0}.
Projection gives us an equivariant map Ui → C×χi . By Lemma 3.1, the

equivariant cohomology H•K(G) of each G ∈ Db
K(Ui, k) is annihilated

by χi.
However, V \ {0} is covered by the sets Ui for 1 ≤ i ≤ m and the

Mayer–Vietoris sequence allows us to conclude that H•K(F) is annihi-
lated by a power of s. �

Now let Z ⊂ X be as before. From the above we deduce the second
step:

Lemma 3.4. If F ∈ Db
K(X \ Z, k) then H•K(F) is annihilated by a

power of sZ.

Proof. First we assume that X is affine and connected and contains
an attractive fixed point. In this case Z is necessarily of the form XΓ

for a closed subtorus Γ ⊂ T . We recall an argument due to Brion (cf.
[Ara98, Proposition 3.2.1-1], or the proof of Theorem 17 in [Bri98])
which constructs a finite T -equivariant map

π : X → V,

where V is a T -module with weights corresponding bijectively to the
one-dimensional orbits of T in X. Brion’s construction is as follows:

For each one-dimensional orbit E ⊂ X, E is smooth and hence
isomorphic, as a T -space, to CαE . For each such orbit we may find a
regular function πE : X → CαE such that the restriction of πE to E
is an equivariant isomorphism of affine spaces. Taking the direct sum
over all such πE yields a map

X
π→ V :=

⊕
E

CαE .

We claim that π is finite. Because x ∈ X is attractive, we can find
a rank one subtorus of T inducing a positive grading on the regu-
lar functions on X. By the graded Nakayama lemma π is finite if
and only if π−1(0) is finite. If π−1(0) is not finite, then it contains
a one-dimensional T -orbit (again by the attractiveness of x), but this
contradicts the construction.

Now let V Γ ⊂ V be the subspace of Γ-fixed points. Because each
fibre of π is finite and π is equivariant it follows that π−1(V Γ) = XΓ.
Choose a decomposition

V = V ′ ⊕ V Γ
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of T -modules and let V → V ′ denote the projection. We get an induced
map

π′ : X \XΓ → V ′ \ {0}
and the result follows from Lemma 3.3 because

H•K(F) ∼= H•K(π′∗F).

Hence we proved the lemma in the case of affine X.
By our assumption (A2), the general case follows from the Mayer-

Vietoris sequence. �

Lemma 3.5. For any equivariant sheaf F ∈ Db
K(X, k) we have an

isomorphism

H•K(FZ) ∼= lim
→

H•K(FU),

where the direct limit takes place over all K-stable open neighbourhoods
U of Z.

Proof. By assumption X has a covering by open subvarieties, all iso-
morphic to closed subvarieties of affine spaces with linear T -actions.
Thus we may choose a basis of open neighbourhoods {Ui}i∈I of Z which
are K-stable. (This is where we need the compactness of K.)

Now we may write EK as a countable direct limit of (finite dimen-
sional) manifolds with free K-action (for example, by taking EK = ET
as in Section 2.5). Hence XK can be written as a countable union of
compact subsets. Because XK is regular, we conclude that XK is para-
compact (cf. [MS74, Section 5.8] and [Dug66, Theorem 6.5]). It is
straightforward to see that {(Ui)K}i∈I give a basis of open neighbour-
hoods of ZK . It then follows from [KS94, Remark 2.6.9] that we have
an isomorphism

H•K(FZ) = H•(FZK ) ∼= lim
→

H•(F(Ui)K ) = lim
→

H•K(FU)

as claimed. �

Now we are ready to prove Theorem 3.2.

Proof. Let F ∈ Db
T (X, k) and assume that H•T (F) is free as an Sk-

module. We have to show that the restriction map

H•K(F)→ H•K(FZ)

is injective, and becomes an isomorphism after inverting sZ .
Let U be an open K-stable neighbourhood of Z ⊂ X. We have

inclusions

U
j
↪→ X

i←↩ X \ U
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and hence a distinguished triangle:

i!i
!F → F → j∗j

∗F [1]→ .

Applying Lemma 3.4 (and remembering that i∗ ∼= i!) we deduce that
H•K(i!i

!F) is annihilated by a power of sZ . As H•K(F) is free, the
restriction map H•K(F) → H•K(FU) is injective. It also follows that it
becomes an isomorphism after inverting sZ .

To finish the proof, note that, by Lemma 3.5,

H•K(FZ) ∼= lim
→

H•K(FU).

Because H•K(F)→ H•K(FU) is injective for all U it follows that H•K(F)→
H•K(FZ) is injective. Lastly, this map becomes an isomorphism after in-
verting sZ because the direct limit commutes with tensor products. �

4. The image of the localisation homomorphism

We are now going to describe the image of the localisation homo-
morphism under a certain further restriction on the ring k (the GKM-
condition). For this it is convenient to use the language of sheaves on
moment graphs. We start by recalling the main definitions and con-
structions in the theory of moment graphs. In particular, we define
the Z-graded category G-modZ

k of k-sheaves on a moment graph G and
associate to any such sheaf F its space of global sections Γ(F ).

To a T -space X with finitely many zero- and one-dimensional orbits
we associate a moment graph GX and define a functor

W : Db
T (X, k)→ GX-modZ

k

between Z-graded categories. We then show that under some assump-
tions on F ∈ Db

T (X, k), the equivariant cohomology of X with coeffi-
cients in F coincides with the space of global sections under the functor
W, i.e.

H•T(F) = Γ(W(F)).

4.1. Sheaves on moment graphs. Let Y ∼= Zr be a lattice of finite
rank.

Definition 2. An (unordered) moment graph G over Y is given by the
following data:

• A graph (V , E) with set of vertices V and set of edges E.
• A map α : E → Y \ {0}.

We assume that two vertices of a moment graph are connected by at
most one edge.
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Let G = (V , E , α) be a moment graph. We write E : x—— y for an
edge E that connects the vertices x and y. If we also want to denote

the label α = α(E) of E, then we write E : x
α

——— y. As before we
denote by Sk = S(Y ⊗Z k) the symmetric algebra of Y over k, which
we consider as a graded algebra with Y ⊗Z k sitting in degree 2.

Definition 3. A k-sheaf M on a moment graph G is given by the
following data:

• A graded Sk-module M x for any vertex x ∈ V,
• a graded Sk-module M E with α(E)M E = 0 for any E ∈ E,
• a homomorphism ρx,E : M x → M E of graded Sk-modules for

any vertex x lying on the edge E.

For a k-sheaf M on G and l ∈ Z we denote by M [l] the shifted
k-sheaf with stalks M [l]x = (M x)[l], M [l]E = (M E)[l] and shifted
ρ-homomorphisms. A morphism f : M → N between k-sheaves M
and N on G is given by a collection of homomorphisms of graded
Sk-modules fx : M x → N x and fE : M E → N E for all vertices x
and edges E that are compatible with the maps ρ, i.e. such that the
diagram

M x

ρM
x,E

��

fx // N x

ρN
x,E

��
M E

fE // N E

commutes for all vertices x that lie on the edge E. We denote by
G-modZ

k the category whose objects are k-sheaves on G and whose
morphisms are the morphisms between k-sheaves. It is Z-graded by
the functor M 7→M [l].

4.2. Sections of sheaves and the structure algebra. The structure
algebra over k of a moment graph G is

Zk =

{
(zx) ∈

∏
x∈V

Sk

∣∣∣∣ zx ≡ zy mod α(E)
for all edges E : x—— y

}
.

Coordinatewise addition and multiplication makes Zk into an Sk-algebra.
Let M by a k-sheaf on G. For any subset I of V we define the space

of sections of M over I by

Γ(I,M ) :=

(mx) ∈
∏
x∈I

M x

∣∣∣∣∣∣
ρx,E(mx) = ρy,E(my)

for all edges E : x—— y
with x, y ∈ I

 .

Coordinatewise multiplication makes Γ(I,M ) into a Zk-module (as
α(E)ρx,E(mx) = 0 for any edge E with vertex x).
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We call the space Γ(M ) := Γ(V ,M ) the space of global sections. If
I ⊂ J are two subsets of V , then the canonical projection

⊕
x∈J M x →⊕

x∈IM x induces a restriction map Γ(J ,M )→ Γ(I,M ).

4.3. The costalks of a sheaf. Let M be a k-sheaf on G such that
M E 6= 0 only for finitely many edges E, and let x be a vertex. Then
we define the costalk Mx of M at x to be the Sk-module

Mx := {m ∈M x | ρx,E(m) = 0 for all edges E that contain x}.
We can identify Mx in an obvious way with the kernel of the restriction
homomorphism Γ(V ,M )→ Γ(V \ {x},M ).

4.4. The moment graph associated to a T -variety. To a complex
T -variety X satisfying (A1) we associate the following moment graph
GX = (V , E , α) over the lattice X∗(T ):

• We let V := XT be the set of vertices.
• The vertices x and y, x 6= y, are connected by an edge if there

is a one-dimensional orbit E such that E = E ∪ {x, y}. We
denote this edge by E as well.
• We let α(E) = αE ∈ X∗(T ) be the chosen character.

Note that only those one-dimensional orbits E in X give rise to an
edge that pick up two distinct fixed points in their closure.

4.5. The functor W. Suppose that E ⊂ X is a one-dimensional T -
orbit, and suppose that x ∈ E is a fixed point in its closure. Let F be
an object in Db

T (X, k). Then the restriction homomorphism

H•T(FE∪{x})→ H•T(Fx)
is an isomorphism by the attractive Proposition 2.2. Hence we can
define a homomorphism ρx,E from H•T(Fx) to H•T(FE) by composing
the inverse of the above homomorphism with the restriction homomor-
phism H•T(FE∪{x})→ H•T(FE):

ρx,E : H•T(Fx)
∼← H•T(FE∪{x})→ H•T(FE).

Now we can define the functor W. To an equivariant sheaf F ∈
Db
T (X, k) on X we associate the following k-sheaf W(F) on GX :

• For a vertex x ∈ V we set W(F)x := H•T(Fx).
• For a one-dimensional orbit E we set W(F)E := H•T(FE) (note

that αEH•T(FE) = 0 by Lemma 3.1).
• In case that x ∈ E we let ρx,E : W(F)x → W(F)E be the map

constructed above.

This construction clearly extends to a functor W : Db
T (X, k)→ GX-modZ

k .
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4.6. The case X = P1. Suppose that T acts linearly on P1 via a
non-trivial character α. In this case the moment graph is

0
α

—— ∞.

Given F ∈ Db
T (P1, k) the sheaf W(F) consists of the stalks H•T(F0),

H•T(F∞) and the space H•T(FC×) together with the maps

H•T(F0)
ρ0,C×−→ H•T(FC×)

ρ∞,C×←− H•T(F∞).

An immediate consequence of the Mayer–Vietoris sequence is the fol-
lowing lemma.

Lemma 4.1. Let F ∈ Db
T (P1, k). Then the image of the restriction

homomorphism H•T(F)→ H•T(F0)⊕H•T(F∞) is {(z0, z∞) | ρ0,C×(z0) =
ρ∞,C×(z∞)}.

4.7. The localisation theorem – part II. Now we assume that X
satisfies the assumptions (A1), (A2) and (A3). Let F ∈ Db

T (X, k). If
H•T (F) is a free Sk-module, then Theorem 3.2 shows that we can natu-
rally view H•T (F) as a submodule of

⊕
x∈XT H•T (Fx) =

⊕
x∈XT W(F)x.

The space of global sections Γ(W(F)) is a submodule of this direct sum
as well. In this section we want to prove that these two submodules
coincide.

We need some more notation. For α ∈ X∗(T ) let us define Xα to be
the subvariety of all T -fixed points in X and all one-dimensional orbits
E ⊂ X such that kα ∩ kαE 6= 0 (note that if k is a field this means
that αE and α are linearly independent). Then X0 = XT for all rings
k, but Xα depends on the ring k for a general α.

We define

Pα :=

{
αE ∈ X∗(T )

∣∣∣∣E is a one-dimensional
T -orbit in X \Xα

}
and

sα :=
∏

αE∈Pα
αE ∈ Sk.

We need some additional assumptions on our data:

(A4a) For any α ∈ X∗(T ) the space Xα is a disjoint union of points
and P1’s.

(A4b) If E is a one-dimensional T -orbit and n ∈ Z is such that αE is
divisible by n in X∗(T ), then n is invertible in k.

Note that (A4a) and (A4b) imply that the greatest common divisor
of sα for all α ∈ X∗(T ) is 1. For the proof of the next theorem we
will only need this fact, but we need the stronger statements (A4a)
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and (A4b) later. Note also that (A4a) guarantees that we can apply
Theorem 3.2 with Z = Xα and sZ = sα.

Let GX be the moment graph associated to X. For α ∈ X∗(T ) we
denote by GαX the moment graph obtained from GX by deleting all edges
E with kαE ∩ kα = 0. Then (A4a) is equivalent to

(A4a)′ The moment graph GαX is a (discrete) union of moment graphs
with only one or two vertices.

Now we can state the second part of the localisation theorem.

Theorem 4.2. Suppose that (A1), (A2), (A3), (A4a) and (A4b) hold.
Let F ∈ Db

T (X, k) and suppose that H•T (F) and H•T (FXT ) are free Sk-
modules. Then

H•T (F) = Γ(W(F))

as submodules of
⊕

x∈XT H•T (Fx) =
⊕

x∈XT W(F)x.

For the proof of the above statement we use similar arguments as the
ones given in [CS74], [GKM98] or [Bri98]. We follow [Bri98] closely.

Proof. As a first step let F ∈ Db
T (X, k) be any sheaf and α ∈ X∗(T ).

Let Γα(W(F)) be the sections of the sheaf W(F) on the moment graph
GαX (so we only consider the edges E with kαE ∩ kα 6= 0). By (A3),

Γ(W(F)) =
⋂

α∈X∗(T )

Γα(W(F)).

By (A4a), Xα is a discrete union of points and P1’s. Hence, if we
denote by rα : H•T(FXα)→ H•T(FXT ) the restriction map, then Lemma
4.1 yields Γα(W(F)) = rα(H•T(FXα)). Hence:

W(F) =
⋂

α∈X∗(T )

rα(H•T(FXα)).

So we have to show that H•T(F) =
⋂
α∈X∗(T ) rα(H•T(FXα)).

Clearly H•T(F) is contained in the intersection
⋂
α∈X∗(T ) rα(H•T(FXα)).

Hence it remains to show that if f ′ ∈ H•T (FXT ) is in rα(H•T(FXα)) for
all α ∈ X∗(T ), then f is contained in H•T (F).

By Theorem 3.2 the injection i : H•T(F) → H•T(FXT ) becomes
an isomorphism after inverting s0. By assumption, H•T (F) is a free
Sk-module. We choose a basis e1, . . . , em for H•T (F) and denote by
e∗1, . . . , e

∗
m ∈ Hom(H•T (F), Sk) the dual basis. Because i becomes an iso-

morphism after inverting s0, we can find ẽ∗1, . . . , ẽ
∗
m ∈ Hom(H•T (FXT ), Sk[1/s

0])
such that e∗j = ẽ∗j ◦ i for 1 ≤ j ≤ m. Note that f is in H•T(F) if and

only if ẽ∗j(f) is contained in Sk for 1 ≤ j ≤ m.
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By Theorem 3.2, the map

H•T (F) ↪→ H•T (FXα)

becomes an isomorphism after inverting sα. As f is contained in
H•T (FXα), we conclude e∗j(f) ∈ Sk[1/sα] for any 1 ≤ j ≤ m. Hence,

e∗j(f) ∈
⋂

α∈X∗(T )

Sk[1/s
α].

But
⋂
α∈X∗(T ) Sk[1/s

α] = Sk as the greatest common divisor of all sα is

1. Hence e∗j(f) ∈ Sk, which is what we wanted to show. �

5. Equivariant parity sheaves

In the following sections we consider equivariant parity sheaves on a
stratified variety, which were introduced in [JMW09a]. It turns out that
the equivariant cohomology of such a sheaf is free over the symmetric
algebra, so by the results in the previous sections it can be calculated by
moment graph techniques. We determine the corresponding sheaves on
the moment graph explicitely: we show that these are the sheaves that
are constructed by the Braden-MacPherson algorithm (cf. [BM01]).

For all of the above, we need an additional datum: a stratification
of the variety.

5.1. Stratified varieties. We assume from now that the T -variety X
is endowed with a stratification

X =
⊔
λ∈Λ

Xλ

by T -stable subvarieties Xλ. We write Db
T,Λ(X, k) for the full subcat-

egory of Db
T (X, k) consisting of objects which are constructible with

respect to this stratification. In addition to the assumptions (A1) and
(A2) we assume:

(S1) For each λ ∈ Λ there is a T -equivariant isomorphism Xλ
∼= Cnλ ,

where Cnλ carries a linear T -action.
(S2) The category Db

T,Λ(X, k) is preserved by under Grothendieck-
Verdier duality. (This is satisfied, for example, if the stratifica-
tion is Whitney.)

By (A1) and (A2) each stratum Xλ contains a unique fixed point.
We denote this fixed point by xλ.

The topology of X gives us a partial order on the set Λ: We set λ ≤ µ
if and only if Xλ ⊂ Xµ. We use the following notation for an arbitrary
partially ordered set Λ: For λ ∈ Λ we set {≥ λ} := {ν ∈ Λ | ν ≥ λ}
and we define {≤ λ}, {> λ}, etc. in an analogous fashion.
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Definition 4. Let K be a subset of Λ.

• We say that K is open, if for all γ ∈ K, λ ∈ Λ with λ ≥ γ we
have λ ∈ K, i.e. if K =

⋃
γ∈K{≥ γ}.

• We say that K is closed if Λ\K is open, i.e. if K =
⋃
γ∈K{≤ γ}.

• We say that K is locally closed if it is the intersection of an
open and a closed subset of Λ.

For a subset K of Λ the set K+ :=
⋃
γ∈K{≥ γ} is the smallest open

subset containing K, and K− :=
⋃
γ∈K{≤ γ} is the smallest closed

subset containing K. K is locally closed if K = K− ∩ K+.
For any subset K of Λ we define

XK =
⊔
γ∈K

Xγ ⊂ X

If K is open (closed, locally closed), then XK is an open (closed, lo-
cally closed, resp.) subvariety in X. In particular, for any λ ∈ Λ the
subvariety X≤λ := X{≤λ} is closed. For F ∈ Db

T,Λ(X, k) we define
FK := FXK .

5.2. Equivariant parity sheaves. For λ ∈ Λ we denote by iλ : Xλ →
X the inclusion. We now give the definition of an equivariant parity
sheaf on X:

Definition 5. Let ? either denote the symbol ∗ or the symbol !, and let
P ∈ Db

T (X, k).

• P is ?-even (resp. ?-odd) if for all λ ∈ Λ the sheaf i?λP is
a direct sum of constant sheaves appearing only in even (resp.
odd) degrees.
• P is even (resp. odd) if it is both ∗-even and !-even (both ∗-odd

and !-odd, resp.).
• P is parity if it may be written as a sum P = P0 ⊕P1 with P0

even and P1 odd.

Note that, by assumption (S1), for all λ ∈ Λ, all T -equivariant local
systems on Xλ are trivial and we have

H•T (Xλ) = H•T (pt) = Sk.

Hence, we have the following classification of indecomposable parity
sheaves (see [JMW09a, Theorem 2.9]):

Theorem 5.1. Suppose that k is a complete local ring. For all λ ∈ Λ
there exists, up to isomorphism, at most one indecomposable parity
sheaf P(λ) extending the equivariant constant sheaf kXλ. Moreover, any
indecomposable parity sheaf is isomorphic to P(λ)[i] for some λ ∈ Λ
and some integer i.
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Note that in this paper (in contrast to [JMW09a]) we normalise
indecomposable parity sheaves so that the restriction of P(λ) to Xλ is
the constant sheaf in degree 0.

Proposition 5.2. Let λ ∈ Λ and assume that P(λ) exists. We have
D(P(λ)) ∼= P(λ)[2dλ] where dλ denotes the complex dimension of Xλ.

Proof. This is a simple consequence of the above theorem, together with
the fact that D preserves parity and the fact that DkXλ ∼= kXλ [2dλ]. �

5.3. Short exact sequences involving parity sheaves. Let Q be
a parity sheaf on X and let J ⊂ Λ be an open subset with closed
complement I = Λ \ J . Denote by j : XJ → X and i : XI → X the
corresponding inclusions. Consider the distinguished triangle

(3) i!i
!Q → Q→ j∗j

∗Q [1]→ .

Lemma 5.3. (1) The above triangle gives rise to a short exact se-
quence

0→ H•T(i!Q)→ H•T(Q)→ H•T(QJ )→ 0.

(2) Let P be another parity sheaf on X. Then the above triangle
gives rise to a short exact sequence

0→ Hom•(i∗P , i!Q)→ Hom•(P ,Q)→ Hom•(PJ ,QJ )→ 0.

Proof. We may assume without loss of generality that Q is even. Then
the distinguished triangle in (3) is a distinguished triangle of !-even
sheaves. If P (resp. Q′) is ∗-even (resp. !-even) then an induction (see
[JMW09a, Corollary 2.5]) shows that Hom(P ,Q′[n]) = 0 for odd n.
Then claim (2) follows and part (1) is the case P = kX . �

5.4. Further properties of equivariant parity sheaves. The fol-
lowing properties of the equivariant cohomology of parity sheaves will
be useful when we come to relate parity sheaves and Braden-MacPherson
sheaves in the next section.

Proposition 5.4. Suppose that P is a parity sheaf on X. Then the
following holds:

(1) For any open subset J of Λ the equivariant cohomology H•T(PJ )
is a free Sk-module.

(2) For any open subset J of Λ the restriction homomorphism
H•T(P)→ H•T(PJ ) is surjective.

(3) Assume that (A4b) holds and suppose that E ⊂ Xλ is a one-
dimensional orbit. Then the restriction map

ρλ,E : H•T(Pxλ)→ H•T(PE)
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is surjective with kernel αEH•T(Pxλ).

Proof. Note that (2) has already been shown in the previous lemma.
For (1), first note that if we choose an open subset J ⊂ Λ then PJ is
a parity sheaf on XJ . Hence it is enough to show that H•T(P) is a free
Sk-module. Choose x ∈ Λ minimal and let J denote its complement.
We have an exact sequence

0→ H•T(i!P)→ H•T(P)→ H•T(PJ )→ 0.

As P is a parity sheaf, i!P is a direct sum of constant sheaves and
so H•T(i!P) is a free Sk-module. Using induction we can assume that
H•T(PJ ) is a free Sk-module. Hence H•T(P) is free.

Finally, let us prove (3). Since E ∪ {xλ} is contained in Xλ, the
restriction of P to E ∪ {xλ} is isomorphic to a sum of shifted constant
sheaves. Hence it is enough to show that if T acts on C via the character
α 6= 0 such that n is invertible in k if α is divisible by n in X∗(T ), then
the map

ρ0,C× : H•T ({0}, k)→ H•T (C×, k)

identifies with the canonical quotient map Sk → Sk/αSk. With char-
acteristic zero coefficients this is proved in [Jan09, Section 1.10]. The
divisibility assumption guarantees that the argument given there also
works with coefficients in k. �

5.5. Obtaining parity sheaves via resolutions. Up until now we
have only discussed various properties of parity sheaves, without dis-
cussing their existence. We now show that the existence of certain
proper morphisms to the varieties Xλ guarantees the existence of par-
ity sheaves.

Assume that, for all λ ∈ Λ, there exists a T -variety X̃λ and a proper
surjective morphism

πλ : X̃λ → Xλ

such that:

(R1) each X̃λ is a smooth projective T -variety;

(R2) the fixed point set X̃λ

T
is finite;

(R3) πλ∗kX̃λ is constructible with respect to the stratification Λ (that

is, πλ∗kX̃λ ∈ D
b
T,Λ(X, k)).

Note that we do not assume that the morphisms πλ are birational.

Theorem 5.5. Assume that k is a complete local principal ideal do-
main. With the above assumptions we have:

(1) For all λ ∈ Λ there exists an indecomposable parity sheaf P(λ) ∈
Db
T (X, k) with support equal to Xλ and such that P(λ)Xλ

∼= kXλ.
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(2) For all µ ≤ λ the restriction homomorphism

H•T(P(λ))→ H•T(P(λ)xµ)

is surjective.
(3) The cohomology H•T(P(λ)) is self-dual of degree 2 dimXλ. That

is,

Hom•Sk(H
•
T(P(λ)), Sk) ∼= H•T(P(λ))[2 dimXλ].

Before proving the theorem we state and prove two propositions. For
this we need some more notation. Given a T -variety Z we write ωZ
for the T -equivariant dualising sheaf in Db

T (Z, k). Note that, up to
reindexing, H•T(ωZ) is the T -equivariant Borel-Moore homology of Z.

Let us fix µ ≤ λ and set F := π−1
λ (xµ). We have:

Proposition 5.6. (1) H•T(ωF ) and H•T(ωX̃λ) are free Sk-modules
concentrated in even degrees.

(2) The canonical map H•T(ωF ) → H•T(ωX̃λ) is a split injection of
Sk-modules.

Proof. As xµ is attractive, there exists a one parameter subgroup γ : C× →
T which contracts an open neighbourhood of xµ in X onto xµ as z ∈ C×

goes to zero. Moreover, we can choose γ such that X̃λ

C×
= X̃λ

T
.

Now consider the Bialynicki-Birula’s minus decomposition of X̃λ

T

with respect to γ. That is, for each x ∈ X̃λ

T
set

Y −x := {y ∈ X̃λ | lim
z→∞

γ(z) · y = x}.

Then a theorem of Bialynicki-Birula ([BB81]) asserts that each Y −x is a

locally closed T -stable subvariety of X̃λ isomorphic to an affine space.
Our choice of γ implies that

F = π−1
λ (xµ) =

⊔
x∈FT

Yx.

Moreover, as X̃λ is assumed projective (and hence Kähler). By a the-
orem of Carrrell and Sommese ([CS79, CG83]) we can find a filtration

∅ = F−1 ⊂ F0 ⊂ F1 ⊂ · · · ⊂ Fn = X̃λ such that Fi\Fi−1 is a Bialynicki-
Birula cell for 0 ≤ i ≤ n. A simple induction (see, for example, [Ful97]
for the non-equivariant case) shows that both H•T(ωX̃λ) and H•T(ωF )
are free Sk-modules with basis given by the equivariant fundamental
classes of the Bialynicki-Birula cells. The two statements of the lemma
then follow. �

Proposition 5.7. With notation as above we have:
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(1) πλ∗kX̃λ is parity and its support is equal to Xλ.

(2) For all µ ≤ λ the restriction homomorphism

H•T(πλ∗kX̃λ)→ H•T((πλ∗kX̃λ)xµ)

is surjective.

Proof. The support claim follows from the surjectivity of πλ. We now

explain why πλ∗kX̃λ is parity. As πλ is proper and X̃λ is smooth, πλ∗kX̃λ
is self-dual up to a shift and so it is enough to show that πλ∗kX̃λ is !-
even. As πλ∗kX̃λ is constructible with respect to the Λ-stratification, it

is enough to show that, for all µ, i!xµπλ∗kX̃λ is a direct sum of constant
sheaves concentrated in even degrees, where ixµ denotes the inclusion
{xµ} ↪→ X. A devissage argument shows that this is the case if and
only if H•T(i!xµπλ∗kX̃λ) is a free Sk-module.

By proper base change i!xµπλ∗kX̃λ is isomorphic (up to a shift) to

πλ∗ωF . Hence it is enough to show that H•T(ωF ) is a free Sk-module
concentrated in even degrees. This is the case by Proposition 5.6(1)
above.

For the second statement of the Proposition note that the restriction
homomorphism H•T(πλ∗kX̃λ) → H•T((πλ∗kX̃λ)xµ) is dual (again, up to

a shift) to the canonical map H•T(ωF ) → H•T(ωX̃λ) which is a split

injection by Proposition 5.6(2). �

Proof of Theorem 5.5. By Proposition 5.7, πλ∗kX̃λ ∈ D
b
T (X, k) is par-

ity. If we let Q denote an indecomposable summand of πλ∗kX̃λ con-
taining Xλ in its support then Q is also parity and, by Theorem 5.1,
we have QXλ ∼= kXλ [i] for some integer i. It follows that we can take
P(λ) := Q[−i].

Another consequence of Theorem 5.1 is that any indecomposable
parity sheaf P(λ) occurs as a direct summand of πλ∗kX̃λ [i] ∈ Db

T (X, k)

for some i. Hence, to show Part (2) of the theorem it is enough to
check that the map

H•T(πλ∗kX̃λ)→ H•T((πλ∗kX̃λ)xµ)

is surjective. This is the case by Proposition 5.7.
By Proposition 5.2 we have DP(λ) ∼= P(λ)[2 dimXλ]. We also know

that H•T(P(λ)) is a free Sk-module by Proposition 5.6 (recall that ωX̃λ
∼=

kX̃λ because X̃λ is smooth). Hence

Hom•Sk(H
•
T(P(λ)), Sk) ∼= H•T(P(λ))[2 dimXλ].

as Xλ is proper. �
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5.6. Parity sheaves and the functor W. In this section we begin
discussing the relationship between parity sheaves and the localisation
functor W. In particular, we show that W is fully faithful on morphisms
of all degrees between parity sheaves.

For the rest of this section we assume (A1)-(A4a/b) and (S1), (S2).

Proposition 5.8. Let P(λ) be a parity sheaf. Then the localisation
homomorphism H•T(P(λ))→ H•T(P(λ)XT ) identifies H•T(P(λ)) with the
global sections of W(P(λ)).

Proof. In order to apply Theorem 4.2 we only need to check that
H•T(P(λ)) and H•T(P(λ)XT ) are free Sk-modules. This is the case for
H•T(P(λ)) by Proposition 5.4. For H•T(P(λ)XT ) note that because P(λ)
is parity, the restriction of P(λ) to any T -fixed point is a direct sum of
equivariant constant sheaves. �

Theorem 5.9. The functor W is fully faithful when restricted to parity
sheaves, i.e. if P and P ′ are parity sheaves on X, then

Hom•DbT (X,k)(P ,P
′)→ Hom•G-modZ

k
(W(P),W(P ′))

is an isomorphism.

Proof. Without loss of generality we can assume that both P and P ′
are even. Let λ ∈ Λ be a minimal element and set J = Λ \ {λ}.
Denote by j : XJ = X \Xλ → X the corresponding open inclusion and
by i : Xλ → X the complementary closed inclusion. Then we have a
distinguished triangle

i!i
!P ′ → P ′ → j∗j

∗P ′ [1]→
which gives rise, by Lemma 5.3, to a short exact sequence

0→ Hom•(i∗P , i!P ′)→ Hom•(P ,P ′)→ Hom•(PJ ,P ′J )→ 0

of graded spaces. The map Hom•(P ,P ′) → Hom•(PJ ,P ′J ) is induced
by the restriction to an open subspace, hence we can fit the above short
exact sequence into a commutative diagram

0 // Hom(i∗P , i!P ′) //

��

Hom(P ,P ′) //

��

Hom(PJ ,P ′J )

��

// 0

0 // K // Hom(W(P),W(P ′)) // Hom•(W(PJ ),W(P ′J )) // 0.

As PJ and P ′J are parity sheaves on XJ we can, by induction on
the number of strata, assume that the vertical map on the right is
an isomorphism. Hence we can finish the proof by showing that the
vertical map on the left is an isomorphism as well.
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Now K is the space of all morphisms f : W(P)→W(P ′) with fµ = 0
and fE = 0 for vertices µ and edges E of J . By Proposition 5.4, (3),
it identifies with the set of homomorphisms from the stalk W(P)λ into
the costalk W(P ′)λ. By definition we have W(P)λ = H•T(i∗P). Now
let us look at the short exact sequence

0→ H•T(i!P ′)→ H•T(P ′)→ H•T(P ′J )→ 0

given by Lemma 5.3. By Proposition 5.8, H•T(P ′) and H•T(P ′J ) can be
identified with the sections of W(P ′) over Λ and J , respectively. Hence
we may identify

H•T(i!P ′) = W(P ′)λ.
As i∗P and i!P ′ are free sheaves on Xλ, we deduce from the above that
the homomorphism Hom(i∗P , i!P ′) → K in the commutative diagram
above is an isomorphism as well. �

6. Braden-MacPherson sheaves on a moment graph

We return now to the theory of sheaves on a moment graph. We first
motivate the definition of perhaps the most important class of such
sheaves, the class of Braden-MacPherson sheaves, by considering the
problem of extending local sections. Then we prove one of our main
results, namely that the functor W sends parity sheaves to Braden-
MacPherson sheaves.

6.1. Extending local sections. Let G = (V , E , α) be a moment graph.
We need now an additional piece of data: we give each edge a direction.
Then, for x, y ∈ V , we set x 6 y if and only if there is a directed path
from x to y and we assume that this determines a partial order on V ,
i.e. we assume that there are no non-trivial closed directed paths. We
call this datum a directed moment graph.

Recall that we defined the notion of an open subset for any partially
ordered set in Section 5. We call an element in Γ(J ,M ), where J is
an open subset of V , a local section.

Now we want to find some conditions on a sheaf M that ensure that
each local section can be extended to a global section, i.e. which ensure
that the restriction Γ(M )→ Γ(J ,M ) from global to local sections is
surjective for any open set J . For this we need the following definitions.

For a vertex x of G we define

Vδx := {y ∈ V | there is an edge E : x→ y}.
So Vδx is the subset of vertices y that are bigger than x in the partial
order and that are connected to x by an edge. We denote by

Eδx := {E ∈ E | E : x→ y}



PARITY SHEAVES AND MOMENT GRAPHS 29

the set of the corresponding edges. Then there is an obvious correspon-
dence Eδx

∼→ Vδx (as we assume that two vertices are connected by at
most one edge). For a sheaf M and a vertex x we define the map

ux : Γ({> x},M )→
⊕
E∈Eδx

M E

as the composition

Γ({> x},M ) ⊂
⊕
y>x

M y p→
⊕
y∈Vδx

M y ρ→
⊕
E∈Eδx

M E,

where p is the projection along the decomposition and ρ =
⊕

y∈Vδx ρy,E.
We let

M δx := ux(Γ({> x},M )) ⊂
⊕
E∈Eδx

M E

be the image of this map. Finally, we define the map

dx := (ρx,E)TE∈Eδx : M x →
⊕
E∈Eδx

M E.

The connection of the above definitions with the problem of extend-
ing local sections is the following. Suppose that m′ ∈ Γ({> x},M ) is a
section and that mx ∈M x. Then the concatenated element (mx,m

′) ∈⊕
y≥x M y is a section over {≥ x} if and only if ux(mx) = dx(m).

Lemma 6.1. For a sheaf M on the moment graph G the following are
equivalent:

(1) For any open subsets I ⊂ J of V the restriction map Γ(J ,M )→
Γ(I,M ) is surjective.

(2) For any vertex x ∈ V, the restriction map Γ({≥ x},M ) →
Γ({> x},M ) is surjective.

(3) For any x ∈ V, the map dx : M x →
⊕

E∈Eδx M E contains M δx

in its image.

Proof. Clearly property (2) is a consequence of property (1). Let us
prove the converse, so let us assume that (2) holds. It is enough to
prove property (1) in the special case that J = I ∪ {x} for a single
element x, since we get the general case from this by induction. So let
m = (my) be a section in Γ(J \{x},M ). Since {> x} ⊂ J \{x} we can
restrict m and get a section m′ in Γ({> x},J ). By assumption there is
an element mx ∈M x such that (mx,m

′) is a section over {≥ x}. From
the definition of a section it follows directly that (mx,m) is a section
over J . Hence (2) implies (1).

Let us show that (2) is equivalent to (3). Now (2) means that for
any section m over {> x} we can find mx ∈M x such that (mx,m) is
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a section over {≥ x}. But (mx,m) is a section over {≥ x} if and only
if dx(mx) = ux(m). Hence, a section m over {> x} can be extended to
the vertex x if and only of ux(m) is contained in the image of dx. �

For later use we prove the following statement.

Lemma 6.2. Let x be a vertex of G and M a sheaf on G. Then the
following are equivalent:

(1) The map Γ({≥ x},M )→M x is surjective.
(2) The image of the map dx : M x →

⊕
E∈Eδx M E is contained in

M δx.

Proof. Suppose that (1) holds and let s ∈M x. Then there is a section
m of M over {≥ x} with mx = s. If we denote the restriction of m
to {> x} by m′, then this means that dx(s) = ux(m

′). So dx(s) is
contained in the image of ux, which is M δx.

Conversely, suppose that (2) holds and let s ∈ M x. Then there
is a section m′ of M over {> x} such that dx(s) = ux(m

′). Hence
(s,m′) is a section over {≥ x}, hence s is contained in the image of
Γ({≥ x},M )→M x. �

6.2. Braden–MacPherson sheaves. The most important class of
sheaves on a moment graph is the following.

Definition 6. A sheaf B on the moment graph G is called a Braden–
MacPherson sheaf if it satisfies the following properties:

(1) Bx is a graded free Sk-module for any x ∈ V,
(2) for a directed edge E : x → y the map ρy,E : By → BE is sur-

jective with kernel α(E)By,
(3) for any open subset J of V the map Γ(B) → Γ(J ,B) is sur-

jective.
(4) The map Γ(B)→ Bx is surjective for any x ∈ V.

Theorem 6.3. (1) For any w ∈ V there is an up to isomorphism
unique Braden–MacPherson sheaf B(w) on G with the following
properties:
• We have B(w)w ∼= Sk and B(w)x = 0 unless x ≤ w.
• B(w) is indecomposable in G-modk.

(2) Let B be a Braden–MacPherson sheaf. Then there are w1, . . . , wn ∈
V and l1, . . . , ln ∈ Z such that

B ∼= B(w1)[l1]⊕ · · · ⊕B(wn)[ln].

The multiset (w1, l1),. . . ,(wn, ln) is uniquely determined by B.
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Remark 1. We need the locality assumption on k in order to ensure
that projective covers exist in the category of graded Sk-modules.

Proof. We first prove the existence part of statement (1). For w ∈ V
we define a sheaf B(w) by the following inductive construction:

(1) We start with setting B(w)w = Sk and B(w)x = 0 if x 6≤ w.
(2) If we have already defined B(w)y, then we set, for each edge

E : x→ y,

B(w)E := B(w)y/α(E)B(w)y

and we let ρy,E : B(w)y → B(w)E be the canonical map.
(3) Suppose x ∈ V is such that we have already defined B(w)

on the full subgraph G>x. By step (2) we have also defined
the spaces B(w)E for each edge E : x → y originating at x,
as well as the maps ρy,E : B(w)y → B(w)E. It remains to
define B(w)x and the maps ρx,E for those edges E. We can
already calculate the sections of B(w) over {> x}, as well
as the Sk-modules B(w)δx ⊂

⊕
E∈Eδx B(w)E. Now we define

dx : B(w)x → B(w)δx as a projective cover of B(w)δx in the
category of graded Sk-modules. The components of dx (with
respect to the inclusion B(w)δx ⊂

⊕
E∈Eδx B(w)E) give us the

maps ρx,E.

Let us check that B(w) is indeed a Braden–MacPherson sheaf. Since
B(w)x is projective for all x ∈ V it is a graded free Sk-module. Prop-
erty (2) in the definition of Braden–MacPherson sheaf is assured by step
(2) in the inductive construction of B(w). Property (3) is, by Lemma
6.1, equivalent to the fact that for all x ∈ V the map dx : B(w)x →⊕

E∈Eδx B(w)E contains B(w)δx in its image. This is clear by step (3).
In addition, step (3) also yields that the image of dx is contained

in B(w)δx. By Lemma 6.2 this is equivalent to the surjectivity of
Γ({≥ x},B(w)) → B(w)x. We have already seen that the restriction
map Γ(B(w))→ Γ({≥ x},B(w)) is surjective. Hence also Γ(B(w))→
B(w)x is surjective, hence B(w) also satisfies property (4) of a Braden–
MacPherson sheaf.

Now we prove statement (2) of the above theorem using the above
explicitly defined objects B(w). Note that this also gives the unique-
ness part of statement (1), which we have not yet proven. So let B be
an arbitrary Braden–MacPherson sheaf. We prove by induction on the
set of open subsets J of V that there are (w1, l1),. . . ,(wn, ln) such that

BJ ∼= B(w1)J [l1]⊕ · · · ⊕B(wn)J [ln],
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which yields our claim after the final step. So suppose that J is open,
that x ∈ J is minimal and we have a decomposition as above for
J ′ = J \ {x}. We get, in particular,

Γ({> x},B) ∼= Γ({> x},B(w1)[l1])⊕ · · · ⊕ Γ({> x},B(wn)[ln])

and

Bδx ∼= B(w1)δx[l1]⊕ · · · ⊕B(wn)δx[ln].

Now dx : Bx → Bδx is surjective, by property (3) of a Braden–MacPherson
sheaf and Lemma 6.1, and

⊕
B(wi)

x[li] →
⊕

B(wi)
δx[li] is a projec-

tive cover by construction. Hence we have a decomposition Bx =⊕
B(wi)

x[li] ⊕ R for some graded free Sk-module R which lies in the
kernel of dx. Each isomorphism R ∼= Sk[m1]⊕ · · · ⊕ Sk[mr] then yields
an isomorphism

BJ ∼= B(w1)J [l1]⊕ · · ·⊕B(wn)J [ln]⊕B(x)J [m1]⊕ · · ·⊕B(x)J [mr],

which is our claim for J . The above construction also yields the unique-
ness of the multiset (w1, l1),. . . ,(wn, ln). �

6.3. Directed moment graphs from stratified varieties. Suppose
that X is a complex T -variety satisfying (A1). In Section 4.4 we con-
structed an (undirected) moment graph GX from this datum. The ver-
tices of GX are the fixed points, the edges are given by one-dimensional
orbits and the label of an edge E is given by the action of T on E.

Suppose now that, in addition, we are given a stratification X =⊔
λ∈Λ Xλ satisfying (S1) and (S2). Recall that for each λ ∈ Λ we denote

by xλ the unique fixed point in Xλ. Hence we now have identifications
between the set of fixed points in X, the set Λ of strata and the set of
vertices of GX .

From this we obtain a direction of each edge as follows. Suppose that
the one-dimensional orbit E contains xλ and xµ in its closure. Then
either Xλ ⊂ Xµ or Xµ ⊂ Xλ. We direct the corresponding edge of
GX towards µ in the first case, and towards λ in the second case. We
denote by ≤ the partial order on the vertices of GX generated by the
relation λ ≤ µ if there is an edge E : λ→ µ. The following proposition
shows that this is the same order as the one induced by the closure
relations on the strata:

Proposition 6.4. We have λ ≤ µ if and only if Xλ ⊂ Xµ.

Proof. Clearly, if λ ≤ µ then Xλ ⊂ Xµ. For the converse we show:

(4)
If Xλ ⊂ Xµ then there exists an edge
E : λ→ ν such that Xν ⊂ Xµ.
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Let us assume that (4) holds. Then, if Xλ ⊂ Xµ by induction we can
find a chain λ→ ν1 → · · · → νm → µ and so λ ≤ µ.

It remains to show (4). Let U be an affine T -stable neighbourhood of
xλ in Xµ and let Nλ ⊂ U be a T -invariant normal slice to the stratum
Xλ at xλ. Because xλ ∈ Nλ is attractive, we can find a cocharacter
γ : C∗ → T such that limz→0 γ(z) · x = xλ for all x ∈ Nλ. It follows
that Y := (Nλ \ {xλ})/C∗ is a projective variety. By the Borel fixed
point theorem, T has a fixed point on Y and hence a one-dimensional
orbit on Nλ. This one-dimensional orbit belongs to some Xν , hence
connects xλ with xν . By construction we have Xν ⊂ Xµ. �

6.4. The k-smooth locus of a moment graph. In this subsection
we assume that k is a field and that the (directed) moment graph G
contains a largest vertex w. This moment graph carries the indecom-
posable Braden–MacPherson sheaf B := B(w) over k.

Definition 7. The k-smooth locus Ωk(G) of G is the set of all vertices
y of G such that By is a free Sk-module of (ungraded) rank 1.

In [Fie10] the k-smooth locus is determined for a large class of pairs
(G, k). In order to formulate the result, let B := Γ(B) be the space of
global sections of B. We consider this as a graded Z-module.

Definition 8. We say that B is self-dual of degree l ∈ Z if there is an
isomorphism

Hom•Sk(B, Sk) ∼= B[l]

of graded Z-modules.

The following is an analogue of the assumption (A4a) for moment
graphs.

Definition 9. We say that the pair (G, k) is a GKM-pair if for any
distinct edges E and E ′ containing a common vertex we have kαE ∩
kαE′ = 0.

Note that this can be considered, for given G, as a requirement on
the characteristic of k. The main result of [Fie10] is the following:

Theorem 6.5 ([Fie10, Theorem 5.1]). Suppose that (G, k) is a GKM-
pair and that B is self-dual of degree 2l. Then we have

Ωk(G) =

{
x ∈ V

∣∣∣∣ for all y ≥ x the number
of edges containing y is l

}
.

We are going to apply this statement later in order to study the
k-smooth locus of T -varieties.



34 PETER FIEBIG AND GEORDIE WILLIAMSON

6.5. The combinatorics of parity sheaves. Let X be a complex T -
variety, k a complete local principal ideal domain. Assume that these
data satisfy the assumptions (A1)-(A4a/b), (S1), (S2) and (R1)-(R3).
We now come to the principal result of this paper.

Theorem 6.6. Suppose that P ∈ Db
T (X, k) is a parity sheaf. Then

W(P) is a Braden–MacPherson sheaf. More precisely, W(P(λ)) ∼=
B(λ).

Proof. We have to show that W(P) satisfies the four properties listed
in Definition 6. If we translate this definition into our situation we see
that we have to check the following:

(1) For each x ∈ XT the cohomology H•T(Px) is a graded free mod-
ule over Sk.

(2) For each one-dimensional orbit E that is contained in the stra-
tum associated to the fixed point x, the map

H•T(Px)→ H•T(PE)

is surjective with kernel α(E)H•T(Px).
(3) For each open union XJ ⊂ X of strata the restriction homo-

morphism
H•T(P)→ H•T(PJ )

is surjective.
(4) For each x ∈ XT the homomorphism H•T(P)→ H•T(Px) is sur-

jective.

Part (1) follows directly from the definition of a parity sheaf, the parts
(2) and (3) are stated in Proposition 5.4. Part (4) follows from Theorem
5.5 and the fact P is the direct sum of shifted copies of P(λ)’s. The last
statement follows, as P(λ) is indecomposable if and only if W(B(λ))
is, by Theorem 5.9. �

7. The case of Schubert varieties

We now discuss a special and important case of the general theory
developed in the previous section, namely the case of Schubert varieties
in (Kac-Moody) flag varieties. For a detailed construction of these
varieties in the Kac-Moody setting the reader is referred to [Kum02].

We fix some notation. Let A be a generalised Cartan matrix of size
l and let g(A) = n−⊕h⊕n+ denote the corresponding Kac-Moody Lie
algebra with Weyl group W , Bruhat order ≤, length function ` and
simple reflections S = {si}i=1,...,l. To A one may also associate a Kac-
Moody group G with Borel subgroup B and connected algebraic torus
T ⊂ B. Given any subset I ⊂ {1, . . . , l} one has a standard parabolic
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subgroup PI containing B and standard parabolic subgroup WI ⊂ W .
The set G/PI may be given the structure of an ind-T -variety and is
called a Kac-Moody flag variety.

For each w ∈ W one may consider the Schubert cell XI
w := BwPI/PI ⊂

G/PI and its closure, the Schubert variety,

XI
w =

⊔
v≤w

BvPI .

Each Schubert cell is isomorphic to an affine space and each Schubert
variety is a projective algebraic variety. The partition of G/PI into
Schubert cells gives a stratification of G/PI .

The following proposition shows that the results of this article may
be applied to any closed union of finitely many B-orbits in G/PI :

Proposition 7.1. Let X ⊂ G/PI be a closed subset which is the union
of finitely many Schubert cells. Then X together with its stratification
into Schubert cells satisfies our assumptions (A1), (A2), (S1), (S2),
(R1), (R2) and (R3).

Proof. (A1), (A2), (S1) are standard properties of Kac-Moody Schubert
varieties (see [Kum02, Chapter 7]) and (S2) follows because we have an

equivalence Db
T,Λ(X, k) ∼= Db

B(X, k). Given a Schubert variety XI
w ⊂

X, let π : X̃ → XI
w denote a Bott-Samelson resolution (see [Kum02,

7.1.3]). Then X̃ is a smooth projective T -variety with finitely many

T -fixed points. Lastly, the variety X̃ is even a B-variety, and the map
π is B-equivariant. (R1), (R2) and (R3) then follow. �

We now describe the moment graph of G/PI . The identification of h
with the Lie algebra of T allows us to identify the lattice of characters
X∗(T ) with a lattice in h∗. Moreover, under this identification, all
the roots of g(A) lie in X∗(T ). Let R ⊂ X∗(T ) denote the subset of
real roots, and R+ the subset of real positive roots. Then we have a
bijection

R+ ∼→ {reflections in W}
α 7→ sα.

The following proposition follows from [Kum02, Chapter 7]:

Proposition 7.2. We have:

• The T -fixed points are in bijection with the set W/WI :

W/WI
∼→ (G/PI)

T

wWI 7→ wPI .
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• There is a one-dimensional T -orbit with xWI and yWI in its
closure if and only if sαxWI = yWI for some reflection sα ∈ W
in which case T acts on this orbit with character ±α.

We complete this section by discussing what the arithmetic assump-
tions (A3), (A4a) and (A4b) mean in the case of Kac-Moody flag va-
rieties. First note that the lattice ZR ⊂ X∗(T ) spanned by the real
roots determines a surjection of algebraic tori

s : T � T ′

so that X∗(T ′) = ZR. The action of T on G/PI is trivial on the
kernel of s and we obtain an action of T ′ on G/PI . (In the case of
a finite dimensional Schubert variety this corresponds to the fact that
one may always choose the adjoint form of a reductive group in order
to construct the flag variety.) Because real roots are never divisible in
ZR = X∗(T ′) it follows that (A4b) (and hence (A3)) is always satisfied
for Kac-Moody Schubert varieties viewed as T ′-varieties.

The condition (A3) is more subtle. If we fix a field k then condition
(A3) is satisfied if and only if no two roots in R+ become linearly
dependent modulo k. One may check that in the finite cases we have
to exclude characteristic 2 in non simply laced types and characteristic
3 in type G2.

In the affine case the situation is radically different. Suppose that

Ĝ is the affine Kac-Moody group associated to a semi-simple group G.

Recall that there exists a an element δ ∈ ĥ∗ such that the set of real
roots of Ĝ is equal to {α+nδ} where α ∈ h∗ is a root of G, and n ∈ Z.

It follows that condition (A3) is satisfied for Ĝ/P̂ and any parabolic

subgroup P̂ 6= Ĝ if and only if k is of characteristic zero.
However, if one restricts oneself to a fixed a Schubert variety X ⊂

Ĝ/P̂ the GKM-condition for X may yield interesting restrictions on
the characteristic of k (see [Fie07a]).

8. p-Smoothness

In this section we recall the definition and basic properties of the
p-smooth locus of a complex algebraic variety X. Our main goal is
Theorem 8.7 for which we need Proposition 8.5, where we show that an
(a priori weaker) condition on the stalks of the intersection cohomology
complex is enough to conclude p-smoothness.

Throughout this section all varieties will be pure dimensional and k
denotes a ring (assumed to be a field from 8.2 to 8.4). Dimension will
always refer to the complex dimension. Given a point y ∈ Y we denote
by iy : {y} ↪→ Y its inclusion.
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8.1. Smoothness and p-smoothness. If x is a smooth point of a
variety X of dimension n a simple calculation (using the long exact
sequence of cohomology, excision and the cohomology of a 2n − 1-
sphere) yields

Hd(X,X \ {x}, k) =

{
k, if d = 2 dimX,

0, otherwise.

The isomorphism

(5) Hd(i!xkX) ∼= Hd(X,X \ {x}, k)

motivates the following.

Definition 10. A variety X is k-smooth if, for all x ∈ X, one has an
isomorphism

Hd(i!xkX) ∼=

{
k, if d = 2 dimX,

0, otherwise.

The k-smooth locus of X is the largest open k-smooth subvariety of
X. We define p-smooth (respectively the p-smooth locus) to mean Fp-
smooth (respectively Fp-smooth locus).

Proposition 8.1. We have inclusions

Q-smooth
locus

⊃ p-smooth
locus

⊃ Z-smooth
locus

⊃ smooth
locus

.

Proof. The fact that the Z-smooth locus contains the smooth locus fol-
lows from the above discussion. For all rings k one has an isomorphism

(6) i!xkX
∼= i!xZX

L
⊗Z k.

As the category of Z-modules is hereditary, every object in Db({x},Z)
is isomorphic to its cohomology. It then follows from (6) that, for a
field k, the condition of k-smoothness is satisfied at x if and only if:

(1) Hd(i!xZX) is torsion except for d = 2n, where the free part is of
rank 1;

(2) all torsion in Hd(i!xZX) is prime to the characteristic of k.

The claimed inclusions now follow easily. �

Remark 2. The above proof shows that, if k is a field, then the k-smooth
locus only depends on the characteristic of k.
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8.2. k-smoothness and the intersection cohomology complex.
Until 8.4 we assume that k is a field. Let us denote by (D≤0(X, k), D≥0(X, k))
the standard t-structure on D(X, k) with heart Sh(X, k), the abelian
category of sheaves of k-vector spaces on X. We denote the corre-
sponding truncation and cohomology functors by τ≤0, τ>0 and Hd.

Let us a fix a Whitney stratification X =
⊔
λ∈ΛXλ and for all λ ∈ Λ,

denote by iλ : Xλ ↪→ X the inclusion. Recall that the intersection
cohomology complex of X, IC(X, k) ∈ D(X, k), is uniquely determined
by the properties:

(1) i∗λIC(X, k) ∼= kXλ for any open stratum Xλ ⊂ X;

and, for all strata Xλ of strictly positive codimension,

(2) Hd(i∗λIC(X, k)) = 0 for d ≥ codimX Xλ;
(3) Hd(i!λIC(X, k)) = 0 for d ≤ codimX Xλ.

Note that under this normalisation IC(X, k) is not Verdier self-dual.
Rather DIC(X, k) ∼= IC(X, k)[2 dimX]. Conditions (2) and (3) are
equivalent to the conditions

(2*) Hd(i∗xIC(X, k)) = 0 for d ≥ codimX Xλ;
(3*) Hd(i!xIC(X, k)) = 0 for d ≤ dimX + dimXλ.

for all x ∈ Xλ and strata Xλ of strictly positive codimension. (This
follows from the fact if y ∈ Y is a smooth point, then one has an
isomorphism of functors i!y

∼= i∗y[−2 dimY ].)

Proposition 8.2. A variety X is k-smooth if and only if IC(X, k) ∼=
kX .

Proof. If X is k-smooth then the constant sheaf kX satisfies (1), (2*)
and (3*) above and hence kX

∼= IC(X, k). On the other hand, if
kX
∼= IC(X, k) then DkX ∼= kX [2 dimX] and for all x ∈ X we have

i!xkX
∼= i!x(DkX)[−2 dimX] ∼= D(i∗xkX [2 dimX])

and hence

Hd(i!xkX) = H−d(i∗xkX [2 dimX]) =

{
k, if d = 2 dimX,

0, otherwise,

and so x is k-smooth. �

8.3. k-smoothness and stalks. Given a morphism f : X → Y of
complex algebraic varieties we write 0f∗ for the non-derived direct im-
age functor. The functor 0f∗ is left t-exact with respect to the standard
t-structure. Given F ∈ Sh(X, k) we have 0f∗F ∼= τ≤0f∗F canonically.

Lemma 8.3. Given F ∈ D≥0(X, k) and a morphism f : X → Y we
have a natural isomorphism τ≤0f∗F ∼= 0f∗τ≤0F .
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Proof. Applying f to the distinguished triangle

τ≤0F → F → τ>0F →
yields a distinguished triangle

f∗τ≤0F → f∗F → f∗τ>0F → .

Now f∗ is left t-exact for the t-structure (D≤0(X, k), D≥0(X, k)) and
so τ≤0f∗τ>0F = 0. Hence if we apply τ≤0 to the above distinguished
triangle we obtain the required isomorphism

0f∗τ≤0F = τ≤0f∗τ≤0F
∼→ τ≤0f∗F . �

Lemma 8.4. We have an isomorphism τ≤0IC(X, k) ∼= 0j∗kU , where
j : U ↪→ X denotes the inclusion of a smooth, open, dense subvariety
of X.

Proof. Choose a stratification of X which has U as the only stratum
of dimension n, and write Xi for the union of all strata of codimension
≤ i (so that X0 = U and Xn = X). We have a chain of inclusions

X0

j0
↪→ X1

j1
↪→ X2

j0
↪→ · · ·

jn−2

↪→ Xn−1

jn−1

↪→ Xn.

The Deligne construction (see [BBD82, Proposition 2.1.11]) gives an
isomorphism

IC(X, k) ∼= (τ≤n−1 ◦ jn−1∗) ◦ (τ≤n−1 ◦ jn−1∗) ◦ . . . (τ≤0 ◦ j0∗kU)

Repeatedly applying the above lemma yields

τ≤0IC(X, k) ∼= 0jn−1∗ ◦ · · · ◦ 0j1∗ ◦ 0j0∗kU
∼= 0j∗kU ,

as claimed. �

Proposition 8.5. A variety X is k-smooth if and only if IC(X, k)x ∼=
k for all x ∈ X.

Proof. If X is k-smooth then IC(X, k) ∼= kX by Proposition 8.2 and so
IC(X, k)x ∼= k for all x ∈ X. It remains to show the converse. Choose
an open, dense, smooth subvariety U of X and let j : U ↪→ X denote
its inclusion. The adjunction morphism

kX → 0j∗j
∗kX

is an injection on stalks, as may easily be checked from the definition of
0j∗. (It is an isomorphism if and only if X is unibranched, however we
will not need this fact.) It follows from our assumptions that IC(X, k)
lies in D≤0(X, k) and so we have an isomorphism

τ≤0IC(X, k)
∼→ IC(X, k).
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By the above lemma we also have an isomorphism 0j∗kU
∼= τ≤0IC(X, k).

It follows that all stalks of 0j∗kU are one-dimensional and that we have
an isomorphism

kX
∼→ 0j∗kU

∼→ IC(X, k).

Our claim now follows from Proposition 8.2. �

8.4. On the p-smooth locus of T -varieties. Now let X =
⊔
λ∈ΛXλ

be an irreducible, complex, stratified T -variety, and let k be a field.
Assume that these data satisfy the assumptions (A1)-(A4a/b), (S1),
(S2) and (R1)-(R3) and let Ωk(G) denote the k-smooth locus of the
moment graph G of X. The following proposition shows that the k-
smooth locus of X and of its moment graph agree.

Proposition 8.6. All points of a stratum Xλ belong to the k-smooth
locus of X if and only if λ ∈ Ωk(G).

Proof. Let U denote the p-smooth locus of X. It is a union of strata by
our assumption (S2). Because we have assumed that X is irreducible
there exists a unique open dense stratum Xλ ⊂ X. Let P be the corre-
sponding indecomposable parity sheaf normalised so that its restriction
to Xλ is kXλ .

In the following it will be useful to work with non-equivariant sheaves.
Note that the non-equivariant analogue of Theorem 5.1 is valid (see
[JMW09a, Theorem 2.9]) and P := For(P) is the indecomposable non-
equivariant parity sheaf with support X.

Let U ′ denote the largest open union of strata Xλ for which PXλ ∼=
kXλ . We claim U = U ′.

Indeed, if U ′ denotes this set then PU ′ satisfies the properties (1) and
(2) of the IC-complexes and hence also satisfies (3) because D(PU ′) ∼=
PU ′ [2 dimX]. Hence PU ′ ∼= IC(U, k) and so U ′ ⊂ U by Propositions 8.2
and 8.5. On the other hand, IC(U, k) ∼= kU is certainly indecomposable
and ∗-even. It is even !-even because DIC(U, k) ∼= IC(U, k)[2 dimX].
Hence PU ∼= kU by the classification of parity sheaves, together with
the fact that the restriction of an indecomposable parity sheaf to an
open union of strata is either zero or indecomposable (see [JMW09a,
Proposition 2.8]).

Now, by Theorem 6.6, W(P) ∼= B(λ) and hence PXµ ∼= kXλ if and
only if B(λ)µ ∼= Sk. The proposition then follows by definition of the
k-smooth locus of the moment graph of X. �

Combining this result with Theorem 6.5 yields:
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Theorem 8.7. A T -fixed point xµ ∈ Xµ belongs to the p-smooth locus
of X if and only if for all λ ≥ µ the number of one-dimensional T -
orbits having xλ in their closure is equal to the complex dimension of
X. Moreover, Xµ belongs to the k-smooth locus if and only if its T -fixed
point xµ does.

8.5. A freeness result. In this subsection k denotes a complete local
ring and p denotes the characteristic of the residue field of k. Let
X =

⊔
λ∈ΛXλ be an irreducible, complex, stratified T -variety. Assume

that these data satisfy the assumptions (A1)-(A4a/b), (S1), (S2). We
further assume that there exists an indecomposable parity sheaf P
corresponding to the unique open stratum Xµ ⊂ X. (For example, X
could be open in a stratified variety satisfying (R1), (R2) and (R3).)
For any λ ∈ Λ let

X>λ =
⊔
γ>λ

Xγ and X≥λ =
⊔
γ≥λ

Xγ

For any λ ∈ Λ we can find a T -stable affine neighbourhood U of xλ
and a T -invariant affine normal slice N ⊂ U to the stratum Xλ. The
aim of this section is to show the following result:

Proposition 8.8. H•T(PN\{xλ}) is torsion free over k.

Of course this result has no content if k is a field. However it seems to
be quite useful if k is, for example, the p-adic integers. Before turning
to the proof of this result we state a corollary, which is of central
importance to [JW]:

Corollary 8.9. If X>λ is p-smooth then H•T (N \ {xλ}, k) is a free
k-module.

Proof. If X>λ is p-smooth then the constant sheaf with coefficients in
k is self-dual and hence parity. Hence the restriction of P to X>λ is
isomorphic to the constant sheaf (cf. [JMW09a, Proposition 2.8]). The
result then follows from Proposition 8.8. �

Proof of Proposition 8.8. Consider the Cartesian diagram:

N // U

{xλ}

i

OO

// Xλ

ĩ

OO

Without loss of generality we may assume that Xλ is a closed stratum
in X. In this case we have seen in the course of the proof of Theorem 5.9
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that we have an isomorphism H•T(̃i!P) ∼= W(P)λ. Moreover, because
N ↪→ U is a normally non-singular inclusion we have

H•T(i!PN) = H•T(̃i!P) ∼= W(P)λ.

One the other hand, by the attractive proposition, we have H•T(PN) =
H•T(Pxλ) = W(P)λ.

Now consider the open-closed decomposition:

{xλ}
i
↪→ N

j
←↩ N \ {xλ}.

This leads to a distinguished triangle

i!i
!P → PU → j∗j

∗P [1]→ .

Taking hypercohomology and using the above observations we conclude
that we have an exact sequence

0→W(P)λ →W(P)λ → H•T(PN\{xλ})→ 0

where the first map is the inclusion. It follows that we have an embed-
ding

H•T(PN\{xλ}) ↪→
⊕
E:λ→γ

W(P)E

Now each W(P)E is isomorphic to a direct sum of shifts of S/(αE).
By assumption (A4b) no character αE is p-divisible in X(T ) and hence
each S/(αE) is torsion free over k. It follows that H•T(PN\{xλ}) is torsion
free over k. �

9. Representations of reductive algebraic groups

Let G be a simple reductive algebraic group over Fp and let RepG
denote the category of rational representations ofG. It is a fundamental
problem in representation theory to determine the characters of the
simple and tilting modules in RepG. For simple modules there exists
a conjecture, due to Lusztig, in the case that the characteristic p is
larger than the Coxeter number h associated to G. For tilting modules
there is no general conjecture. Schur-Weyl duality can be used to show
that knowledge of the characters of tilting modules for G = GLn(Fp)
implies dimension formula for the simple modules for Sm for m ≤ n in
characteristic p.

We want to explain how the above results allow one to reinterpret
these two basic problems using the geometry of certain Schubert vari-
eties in the (complex) affine Grassmannian associated with the Lang-
lands dual group. To this end let T ⊂ B ⊂ G denote a maximal torus
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and Borel subgroup of G respectively. Let X∗(T ) denote the charac-
ter lattice and X+(T ) denote the subset of dominant weights. Then
X+(T ) parametrises both the simple and tilting modules in RepG.

9.1. Tilting modules. Let G∨C denote the complex Langlands dual

group of G, G∨C((t)) its loop group, T̂∨C = T∨C × C× the extended torus
and Gr∨ := G∨C((t))/G∨C[[t]] the corresponding affine Grassmannian.
Then X+(T ) also parametrises the G∨C[[t]]-orbits on Gr∨ and Gr∨ sat-

isfies our assumptions when viewed with the action of T̂∨C (indeed, the
closures of G∨C[[t]]-orbits are examples of Kac-Moody Schubert vari-
eties). Recall that the geometric Satake equivalence [MV07] establishes
a tensor equivalence between the abelian category of rational represen-
tations of G and the tensor category of G∨C[[t]]-equivariant perverse
sheaves on Gr∨.

Recall the following two results which are Theorem 5.1 and Corollary
5.8 of [JMW09a]:

(1) If p > h+ 1, then parity sheaves correspond under the geomet-
ric Satake isomorphism to tilting modules. More precisely, the
indecomposable parity sheaf P(λ) corresponds to the indecom-
posable tilting module T (λ).

(2) The rank of H•T(P(λ)µ) is equal to the dimension of the µ-weight
space of the tilting module T (λ).

With the above results in mind, it seems natural to expect that the
Braden-MacPherson algorithm can be used to calculate the characters
of tilting modules. There is a problem, however: the moment graph of
the affine Grassmannian satisfies the GKM-condition if and only if k
is of characteristic zero.

To get around this problem we take k to be the ring Zp of p-adic
numbers. For this the GKM-condition is satisfied. Moreover it is shown
[JMW09a, Proposition 2.22] that the graded ranks of the stalks of
parity sheaves depend only on the characterstic of the residue field.
The following theorem then follows from the above discussion and our
main theorem:

Theorem 9.1. Suppose that p > h + 1 (see [JMW09a] for better
bounds). When conducted with coefficients in the ring k = Zp of p-adic
numbers, the Braden-MacPhersons algorithm computes the characters
of tilting modules. More precisely, for any character µ ∈ X∗(T ), the
dimension of the µ-weight space of T (λ) is equal to the rank of B(λ)µ.

9.2. Simple rational characters. We now turn to the application
of the above results to Lusztig’s conjecture. Let I∨ ⊂ G∨C((t)) be the
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Iwahori subgroup containing B∨ and let F l∨ := G∨C((t))/I∨ denote the

affine flag variety with its T̂∨C -action.
In [Fie07b] a certain subcategory I ⊂ Db

T̂
(F l∨, k) of special equi-

variant sheaves was considered and a functor Φ: I → R was defined,
where R is a category of projective objects in a category C naturally
associated to the Lie algebra of G. It turns out that all objects in I
are supported on a Schubert variety Xres ⊂ F l∨.

An intermediate step was a functor from I to the category of Braden–
MacPherson sheaves on the moment graph associated to F l∨. It turns
out that I is the category of parity sheaves on F l∨ (with respect to the
stratification by Schubert cells). Indeed, this follows that the functor
π∗sπs∗ preserves parity sheaves, where πs : F l∨ → F l∨s is the projection
onto the partial affine flag variety associated to a simple affine reflection
s (cf. [JMW09a, Proposition 4.7]). From the results in [Fie07b] we can
hence deduce that the ranks of the stalks of parity sheaves determine
baby Verma multiplicities for projective objects in C. These multi-
plicities determine the characters of simple rational representations of
G. Using the results of this paper we can rephrase the above as fol-
lows. Given λ ∈ Λ let IC(Xλ,Z) denote the intersection cohomology
complex of Xλ with integral coefficients (cf. [Jut09]).

Theorem 9.2. Suppose that the stalks and costalks of the intersection
cohomology complex IC(Xλ,Z) are p-torsion-free for all strata Xλ ∈
Xres. Then the characters of the simple modules for G are given by
Lusztig’s conjecture.

Proof. It is known (cf. [Lus83]) that IC(Xλ,Z)
L
⊗ Q is isomorphic to

the parity sheaf P(λ,Q). Hence IC(Xλ,Z)
L
⊗ Fp is isomorphic to the

parity sheaf P(λ,Fp) with coefficients in Fp if and only if the conditions
of the theorem are met. The theorem then follows from [Fie07b, Fie07a]
together with our main theorem. �
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Astérisque, pages 5–171. Soc. Math. France, Paris, 1982. 39



PARITY SHEAVES AND MOMENT GRAPHS 45

[BL94] J. Bernstein and V. Lunts. Equivariant sheaves and functors, volume
1578 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994. 6,
7, 10

[BM01] T. Braden and R. MacPherson. From moment graphs to intersection
cohomology. Math. Ann., 321(3):533–551, 2001. 3, 12, 21

[Bra03] T. Braden. Hyperbolic localization of intersection cohomology. Trans-
form. Groups, 8(3):209–216, 2003. 10, 11

[Bri98] M. Brion. Equivariant cohomology and equivariant intersection the-
ory. In Representation theories and algebraic geometry (Montreal, PQ,
1997), volume 514 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.,
pages 1–37. Kluwer Acad. Publ., Dordrecht, 1998. Notes by Alvaro Rit-
tatore. 9, 13, 14, 20

[Car94] J. B. Carrell. The Bruhat graph of a Coxeter group, a conjecture of
Deodhar, and rational smoothness of Schubert varieties. In Algebraic
groups and their generalizations: classical methods (University Park,
PA, 1991), volume 56 of Proc. Sympos. Pure Math., pages 53–61. Amer.
Math. Soc., Providence, RI, 1994. 5

[CG83] J. Carrell and M. Goresky. A decomposition theorem for the integral
homology of a variety. Invent. Math., 73:367–381, 1983. 25

[CS74] T. Chang and T. Skjelbred. The topological Schur lemma and related
results. Ann. of Math. (2), 100:307–321, 1974. 12, 20

[CS79] J. B. Carrell and A. J. Sommese. Some topological aspects of C*-actions
on compact Kaehler manifolds. Comment. Math. Helv., 54:567–582,
1979. 25

[Dug66] J. Dugundji. Topology. Allyn and Bacon Inc., Boston, Mass., 1966. 15
[Dye93] M. J. Dyer. The nil Hecke ring and Deodhar’s conjecture on Bruhat

intervals. Invent. Math., 111(3):571–574, 1993. 5
[Dye05] M. Dyer. Rank two detection of singularities of Schubert varieties.

preprint arXiv:0906.2994, 2005. 5
[Fie07a] P. Fiebig. Lusztig’s conjecture as a moment graph problem. Preprint

arXiv:0712.3909, 2007. 3, 36, 44
[Fie07b] P. Fiebig. Sheaves on affine Schubert varieties, modular representations

and Lusztig’s conjecture. Preprint arXiv:0711.0871, 2007. 3, 5, 44
[Fie10] P. Fiebig. The multiplicity one case of Lusztig’s conjecture. Duke Math.

J., 153:551–571, 2010. 5, 33
[Ful97] W. Fulton. Young tableaux. With applications to representation theory

and geometry. London Mathematical Society Student Texts. 35. Cam-
bridge: Cambridge University Press., 1997. 25

[GKM98] M. Goresky, R. Kottwitz, and R. MacPherson. Equivariant cohomology,
Koszul duality, and the localization theorem. Invent. Math., 131(1):25–
83, 1998. 4, 12, 13, 20

[Jan03] J. C. Jantzen. Representations of algebraic groups, volume 107 of Math-
ematical Surveys and Monographs. American Mathematical Society,
Providence, RI, second edition, 2003. 12

[Jan09] J. C. Jantzen. Moment graphs and representations. Lecture notes, 33
pages, www-fourier.ujf-grenoble.fr/IMG/pdf/notes_jantzen-2.

pdf, 2009. 9, 24

http://www.nd.edu/~dyer/papers/
http://arxiv.org/abs/0712.3909
http://arxiv.org/abs/0711.0871
www-fourier.ujf-grenoble.fr/IMG/pdf/notes_jantzen-2.pdf
www-fourier.ujf-grenoble.fr/IMG/pdf/notes_jantzen-2.pdf


46 PETER FIEBIG AND GEORDIE WILLIAMSON

[JMW09a] D. Juteau, C. Mautner, and G. Williamson. Parity sheaves. preprint
arXiv:0906.2994, 2009. 3, 21, 22, 23, 40, 41, 43, 44

[JMW09b] D. Juteau, C. Mautner, and G. Williamson. Perverse sheaves and mod-
ular representation theory. preprint arXiv:0901.3322, 2009. 3

[JW] D. Juteau and G. Williamson. Kumar’s criterion modulo p. preprint
2011. 41

[Jut09] D. Juteau. Decomposition numbers for perverse sheaves. Ann. Inst.
Fourier, 59, 2009. To appear. 44

[KKLV89] F. Knop, H. Kraft, D. Luna, and T. Vust. Local properties of algebraic
group actions. Algebraische Transformationsgruppen und Invarianten-
theorie, DMV Semin. 13, 63-75 (1989), 1989. 11

[KS94] M. Kashiwara and P. Schapira. Sheaves on manifolds, volume 292 of
Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-
ciples of Mathematical Sciences]. Springer-Verlag, Berlin, 1994. With a
chapter in French by Christian Houzel, Corrected reprint of the 1990
original. 8, 15

[Kum96] S. Kumar. The nil Hecke ring and singularity of Schubert varieties.
Invent. Math., 123(3):471–506, 1996. 5

[Kum02] S. Kumar. Kac-Moody groups, their flag varieties and representation
theory, volume 204 of Progress in Mathematics. Birkhäuser Boston Inc.,
Boston, MA, 2002. 34, 35

[Lus83] G. Lusztig. Singularities, character formulas, and a q-analog of weight
multiplicities. In Analyse et topologie sur les espaces singuliers, II, III
(Luminy, 1981), volume 101-102 of Astérisque, pages 208–229. Soc.
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