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Abstract. This article gives an overview and also supplements
the articles [AF08] and [AF09] on the critical level category O
over an affine Kac–Moody algebra. In particular, we study the
restricted projective objects and review the restricted reciprocity
and linkage principles.

1. Introduction

The main objective of this paper is to introduce and to comple-
ment the results of the papers [AF08] and [AF09] on the critical level
representation theory of affine Kac–Moody algebras that provide the
first steps in a research project, joint with Tomoyuki Arakawa, whose
main motivation is the determination of the critical level simple highest
weight characters.

There are at least two (essentially different) approaches to character
problems in Lie theory. The first (and slightly more classical) is due to
Beilinson and Bernstein and utilizes a localization functor, i.e. a functor
that realizes representations of a Lie algebra as D-modules on a conve-
nient algebraic variety. This functor was initially introduced in [BB81]
in order to determine the characters of simple highest weight represen-
tations of semisimple Lie algebras. Later, Kashiwara and Tanisaki used
a similar functor in the case of symmetrizable Kac–Moody algebras
(cf. [KT00]). For modular Lie algebras, i.e. Lie algebras over a field of
positive characteristic, a version of the localization functor is one of the
main ingredients in the work of Bezrukavnikov et al. (cf. [BMR08]).
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2 CRITICAL LEVEL REPRESENTATIONS

Recently, Frenkel and Gaitsgory used it in their formulation of the lo-
cal geometric Langlands conjectures and their study of the critical level
representation theory of affine Kac–Moody algebras (cf. [FG06]).

The second approach goes back to Soergel (cf. [S90]). Here, the
main idea is to link the representation theory to the topology of an al-
gebraic variety (most notably to the category of perverse sheaves) by an
intermediate “combinatorial” category. These combinatorial categories
often have a slightly artificial flavour; examples include categories of
Soergel bimodules, of sheaves on moment graphs and the highly com-
plicated category studied in [AJS94]. However, it turned out that they
can also play a significant role outside their originial habitat, for exam-
ple in knot theory or for p-smoothness questions in complex algebraic
geometry (cf. [FW10]).

The first example of a relation of this second type appears in [S90]
in the case of semisimple complex Lie algebras. The paper [F06] con-
tains the generalization to the symmetrizable, non-critical Kac–Moody
case. In the same spirit, the paper [F07] links restricted representa-
tions of a modular Lie algebra as well as representations of the small
quantum group to parity sheaves on affine flag varieties (one of the
main ingredients for this is the combinatorial description in [AJS94]).
In our research project we hope to establish a similar result for the
critical level representation theory of an affine Kac–Moody algebra.

Note that both approaches outlined above potentially are sufficient
to determine representation theoretic data such as characters, but it is
only after one takes them together that they release their full poten-
tial. For example, the celebrated Koszul duality for the category O of
a semisimple Lie algebra is constructed by combining the Beilinson–
Bernstein localization with the Soergel approach (cf. [BGS96]).

In the following we review our approach and state the main results
of the articles [AF08, AF09]. Moreover, we complement these articles
by a new and simplified treatment of projective covers in deformed
versions of the affine category O.

2. Affine Kac–Moody algebras

We fix a finite dimensional simple complex Lie algebra g and we
denote by κ : g × g → C its Killing form. First, we explain the main
steps of the construction of the affine Kac–Moody algebra associated
with g (for more details, see [K90]).

The loop algebra associated with g is the Lie algebra with underlying
vector space g ⊗C C[t, t−1] that is endowed with the C[t, t−1]-bilinear
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extension of the bracket of g. So we have

[x⊗ tn, y ⊗ tm] = [x, y]⊗ tm+n

for x, y ∈ g and m,n ∈ Z. The loop algebra has an up to isomorphism
unique non-split central extension g̃ of rank one. Its underlying vector
space is g⊗C C[t, t−1]⊕ CK and the bracket is given by

[x⊗ tn, y ⊗ tm] = [x, y]⊗ tm+n + nδm,−nκ(x, y)K,

[K, g̃] = {0}

(here δa,b denotes the Kronecker symbol).
In order to obtain the affine Kac–Moody algebra ĝ associated with

g we add the outer derivation operator D = t ∂
∂t

to g̃. So we obtain the
vector space g⊗C C[t, t−1]⊕ CK ⊕ CD with bracket

[x⊗ tn, y ⊗ tm] = [x, y]⊗ tm+n + nδm,−nκ(x, y)K,

[K, ĝ] = {0},
[D, x⊗ tn] = nx⊗ tn

for x, y ∈ g, m,n ∈ Z. Note that g naturally appears as a subalgebra
in ĝ via the map x 7→ x⊗ 1.

2.1. Roots and coroots. We fix a Cartan subalgebra h in g and
a Borel subalgebra b ⊂ g that contains h. Then the corresponding
Cartan and Borel subalgebras in ĝ are

ĥ := h⊕ CK ⊕ CD,

b̂ := g⊗ tC[t]⊕ b⊕ CK ⊕ CD.

Let us denote by R ⊂ h? = HomC(h,C) the root system of g with
respect to h and by R+ ⊂ R the subset of positive roots, i.e. the set
of roots of b. Let g = h ⊕

⊕
α∈R gα be the root space decomposition.

The coroot associated with α ∈ R is the unique element α∨ ∈ [gα, g−α]
with the property 〈α, α∨〉 = 2 (we denote by 〈·, ·〉 the canonical pairing
of a vector space and its dual).

Note that the dual of the projection ĥ→ h along the decomposition

ĥ = h ⊕ CK ⊕ CD allows us to view h? as a subset of ĥ?. We denote

by δ ∈ ĥ? the unique element with

δ(h⊕ CK) = {0},
δ(D) = 1.



4 CRITICAL LEVEL REPRESENTATIONS

Then the set of roots of ĝ with respect to ĥ is R̂ = R̂re ∪ R̂im, where

R̂re = {α + nδ | α ∈ R, n ∈ Z},

R̂im = {nδ | n ∈ Z, n 6= 0}.

The first set is called the set of real roots, the second set is called the
set of imaginary roots. The corresponding root spaces are

ĝα+nδ = gα ⊗ tn,
ĝnδ = h⊗ tn.

Let Π ⊂ R+ be the set of simple roots. The set of simple affine roots is

then Π̂ = Π ∪ {−γ + δ}, where γ ∈ R+ is the highest root. The set of

positive affine roots (i.e., the set of roots of b̂) is R̂+ = R+ ∪ {α+ nδ |
α ∈ R, n > 0} ∪ {nδ | n > 0}.

For a real root α+nδ the space [ĝα+nδ, ĝ−(α+nδ)] is a one-dimensional

subspace of ĥ. The coroot associated to α + nδ is the unique element
(α+nδ)∨ ∈ [ĝ−(α+nδ), ĝα+nδ] with the property 〈α+nδ, (α+nδ)∨〉 = 2.
Explicitly, this is

(α + nδ)∨ = α∨ +
2n

κ(α, α)
K.

Here we denote by κ : h? × h? → C the bilinear form induced by the
Killing form.

2.2. The affine Weyl group. To a real affine root α + nδ we

associate the following reflection on ĥ?:

sα+nδ(λ) = λ− 〈λ, (α + nδ)∨〉(α + nδ).

The affine Weyl group is the subgroup Ŵ ⊂ GL(ĥ?) that is generated

by all reflections sα+nδ with α + nδ ∈ R̂re.

We need the following shifted, non-linear action of Ŵ on ĥ?. Let

us choose an element ρ ∈ ĥ? with the property that ρ(α∨) = 1 for each
simple affine coroot α∨. Note that ρ is not uniquely defined, as the

simple coroots do not generate ĥ. Instead, ρ+xδ would do equally well

for each x ∈ C. However, as δ is stabilized by the action of Ŵ , the
dot-action

w.λ = w(λ+ ρ)− ρ

is independent of the choice. It fixes the line −ρ+ Cδ.



CRITICAL LEVEL REPRESENTATIONS 5

2.3. Simple highest weight characters. Let M be a ĝ-module.

For any linear form λ ∈ ĥ? we denote by

Mλ = {m ∈M | H.m = λ(H)m for all H ∈ ĥ}

the eigenspace of the ĥ-action on M with eigenvalue λ.

The set ĥ? carries a natural partial order (with respect to our choice
of b): we set λ ≥ µ if and only if λ − µ can be written as a sum of

positive roots, i.e. if and only if λ− µ ∈ Z≥0R̂
+.

There is an up to isomorphism unique simple ĝ-module L(λ) with
highest weight λ, i.e. that is generated by its λ-weight space and has the
property that L(λ)µ 6= 0 implies λ ≥ µ. Then the complex dimension
of L(λ)µ is finite, hence we can consider the formal sum

chL(λ) =
∑
µ≤λ

dimC L(λ)µe
µ

as an element in the formal completion (with respect to 6) of the group

algebra of the additive group ĥ?.
Now, if λ is integral and dominant (i.e., if 〈λ, α∨〉 ∈ Z≥0 for all

simple affine roots α), then chL(λ) is given by the Weyl-Kac character
formula (cf. [K90]). More generally, if λ is non-critical (i.e., if 〈λ +
ρ,K〉 6= 0), then chL(λ) is given by an appropriate version of the
formula conjectured by Kazhdan and Lusztig (cf. [KT00]). In the case
that λ is critical, Feigin and Frenkel conjectured a formula for chL(λ)
(see [AF08]). This conjecture, however, is yet unproven in general.
In the integral dominant critical case, the conjecture follows from the
results in [FG09]. The objective of this paper is to supplement the
papers [AF08, AF09] that provide a first step in a program that aims
to solve the character problem at the critical level.

2.4. The category Ô. It is most convenient to introduce now a
categorical framework for the above mentioned problem.

Definition 2.1. (1) M is called a weight module (with respect

to ĥ), if ĥ acts semisimply, i.e. if M =
⊕

λ∈ĥ? Mλ.

(2) M is called locally b̂-finite, if each element of M is contained

in a finite dimensional b̂-submodule.

We denote by Ô the full subcategory of all ĝ-modules which are

weight modules and on which b̂ acts locally finitely. This is an abelian

subcategory of ĝ-mod. Each simple object L(λ) is contained in Ô, as

is, more generally, each module with highest weight. For λ ∈ ĥ? the
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Verma module with highest weight λ is defined as

∆(λ) = U(ĝ)⊗U(b̂) Cλ,

where Cλ is the simple b̂-module corresponding to the character b̂ →
ĥ

λ→ C, where the map on the left is the homomorphism of Lie algebras

that is left invers to the inclusion ĥ ⊂ b̂. The dual Verma module ∇(λ)

is the restricted dual of ∆(λ), i.e. it is the set of ĥ-finite vectors in the

representation of ĝ that is dual to ∆(λ). Each ∇(λ) is contained in Ô
as well.

2.5. The level. For a ĝ-module M and a complex number k we
define

Mk := {m ∈M | K.m = km},
the eigenspace of the action of the central element K in ĝ with eigen-
value k. Clearly, each Mk is a submodule in M . A ĝ-module M is said
to be of level k if M = Mk.

If M is a weight module, then K acts semisimply on M , so M =⊕
k∈CMk. In fact, in this case we have Mk =

⊕
λ∈ĥ?,λ(K)=kMλ. If we

denote by Ôk the full subcategory of Ô that contains all modules of
level k, then the functor ∏

k∈C

Ôk → Ô

{Mk}k∈C 7→
⊕
k∈C

Mk

is an equivalence of categories.

2.6. A graded structure. In the following we construct a grading

functor T on Ô (i.e., an autoequivalence T : Ô → Ô). Let us consider
the simple ĝ-module L(δ) with highest weight δ. It is one-dimensional.
In fact, the algebra g̃ = [ĝ, ĝ] = g ⊗ C[t, t−1] ⊕ CK acts trivially on
L(δ), while D ∈ ĝ acts as the identity operator. Recall the usual
tensor structure on the category of ĝ-modules: If M and N are ĝ-
modules, then M⊗CN becomes a ĝ-module with the action determined
by X.(m⊗ n) = (X.m)⊗ n+m⊗X.n for X ∈ ĝ and m ∈M , n ∈ N .

We define the functor

T : ĝ-mod→ ĝ-mod,

M 7→M ⊗C L(δ)

with the obvious action on morphisms. It is an equivalence with inverse
T−1 : M 7→M⊗CL(−δ), and it preserves weight modules, as (TM)λ =
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Mλ−δ⊗CL(δ) for each ĝ-module M and λ ∈ ĥ?. Moreover, if N ⊂M is

a b̂-submodule, then N ⊗CL(δ) ⊂M ⊗CL(δ) is a b̂-submodule. Hence

T also preserves the b̂-local finiteness condition. So T preserves the

category Ô, hence it makes Ô into a graded category. As 〈δ,K〉 = 0,
the functor T in addition preserves the level, i.e. it induces a grading

on the subcategories Ôk for all k ∈ C.

2.7. The graded center. With any graded category (C, T ) we
can associate the following:

Definition 2.2. The graded center of (C, T ) is the graded vector
space A = A(C, T ) =

⊕
n∈ZAn, where An is the space of natural

transformations τ : idC → T n with the property that for all objectsM of
C and all m ∈ Z, the morphism Tm(τM) : TmM → TmT nM = T nTmM
equals the morphism τT

mM .

Note that A carries a natural multiplication that makes it into a
commutative, associative, unital algebra (cf. [AF08]).

In particular, we have the graded centers A of (Ô, T ) and Ak of

(Ôk, T ) for all k ∈ C. Clearly, A =
∏

k∈CAk. Now there is only one
value k = crit := 〈−ρ,K〉 for which (Ak)n is non-zero for all n ∈ Z (in
our normation, crit = −h∨, where h∨ is the dual Coxeter number). In
fact, if k 6= crit, then (Ak)n is the trivial vector space for all n 6= 0 (for
more information about (Ak)0 for k 6= crit, see [F03]). However, the
spaces (Acrit)n are huge for any n 6= 0 (cf. [AF08]).

2.8. The restricted category O. In the following we abbreviate

A = A(Ô, T ). We now define the restricted subcategory O of Ô as a
special fiber for the action of A.

Definition 2.3. An object M of Ô is called restricted if for all n 6=
0 and τ ∈ An we have that τM : M → T nM is the zero homomorphism.

We denote by O ⊂ Ô the full subcategory that contains all re-
stricted objects and by Ok ⊂ O the full subcategory of restricted mod-

ules of level k. Note that if k 6= crit, then each M ∈ Ôk is restricted,

i.e. Ok = Ôk, as (Ak)n = 0 for n 6= 0. A simple highest weight module
L(µ) is always restricted.

The inclusion functor O → Ô has adjoints on both sides. For

M ∈ Ô we denote by M ′ the submodule of M that is generated by the
images of all homomorphisms T−nτM : T−nM → M with τ ∈ An and
n 6= 0. Set M := M/M ′. Dually, denote by M the submodule of M
that contains all elements m with τM(m) = 0 for all τ ∈ An, n 6= 0.
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Then these definitions extend to functors ·, · : Ô → O. The next result
follows easily from the definitions.

Lemma 2.4. The functor M 7→ M is left adjoint to the inclusion

functor O ⊂ Ô, and the functor M 7→ M is right adjoint to the inclu-
sion functor.

We define the restricted Verma module corresponding to λ ∈ ĥ? as

∆(λ) := ∆(λ)

and the restricted dual Verma module as

∇(λ) := ∇(λ).

3. Deformed category O

One of the main methods in our approach to the representation
theory of Kac–Moody algebras is the following deformation idea. Let us

denote by S = S(h) and Ŝ := S(ĥ) the symmetric algebras associated

with the vector spaces h and ĥ. The projection ĥ → h along the

decomposition ĥ = h ⊕ CK ⊕ CD yields a homomorphism Ŝ → S
of algebras. Let A be a commutative, Noetherian, unital S-algebra.

Then we can consider A as an Ŝ-algebra via the above homomorphism.
We call such an algebra in the following a deformation algebra. As

A contains a unit, we have a canonical map τ : ĥ → A, f 7→ f.1A.
Note that, as we start with an S-algebra, we will always have τ(K) =
τ(D) = 0.

By a ĝA-module we mean in the following an A-module together
with an action of ĝ that is A-linear, i.e. a ĝ-A-bimodule. Let M be a

ĝA-module and λ ∈ ĥ?. We define the λ-weight space of M as

Mλ := {m ∈M | H.m = (λ(H) + τ(H))m for all H ∈ ĥ}.
(Note that it would be more appropriate to call this the λ + τ -weight
space.)

Let M be a ĝA-module.

Definition 3.1. (1) We say that M is a weight module if M =⊕
λ∈ĥ? Mλ.

(2) We say that M is locally b̂A-finite, if every element in M is

contained in a b̂A-submodule that is finitely generated as an
A-module.

We denote by ÔA the full subcategory of the category of ĝA-modules

that contains all locally b̂A-finite weight modules.
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Note that if A = K is a field, then ÔK is a direct summand of the

usual category Ô defined for the Lie algebra ĝ ⊗C K. It contains all

modules M whose weights have the special form λ + τ with λ ∈ ĥ?

(note that the latter element can be considered as a K-linear form on

the Cartan subalgebra ĥ⊗C K).

3.1. Verma modules in ÔA. Let λ ∈ ĥ? and denote by Aλ the

b̂A-module that is free of rank one as an A-module and on which ĥ acts

by the character λ + τ and [b̂, b̂] acts trivially. The deformed Verma
module with highest weight λ is

∆A(λ) := U(ĝ)⊗U(b̂) Aλ.

Then ∆A(λ) is a weight module and each weight space ∆A(λ)µ is a

free A-module of finite rank. Moreover, ∆A(λ) is b̂A-locally finite, so

it appears as an object in ÔA. If A → A′ is a homomorphism of
deformation algebras, then ∆A(λ)⊗A A′ ∼= ∆A′(λ).

Definition 3.2. We say that an object M of ÔA admits a Verma
flag if there is a finite filtration

0 = M0 ⊂M1 ⊂ · · · ⊂Mn = M

such that for each i = 1, . . . , n the quotient Mi/Mi−1 is isomorphic to

a deformed Verma module ∆A(µi) for some µi ∈ ĥ?.

It turns out that the multiset {µ1, . . . , µn} is independent of the
chosen filtration and hence for each M that admits a Verma flag the
multiplicity

(M : ∆A(ν)) := #{i | µi = ν}
is well defined for all ν ∈ ĥ?.

3.2. Simple objects in ÔA. Let us now assume that A is a local
deformation algebra with maximal ideal m and residue field K = A/m.
Note that we can consider each ĝK-module as a ĝA-module on which
A acts via the quotient map A → K. This even extends to a functor

Res : ÔK → ÔA. It is clearly isomorphic to the unique simple quotient
of ∆A(λ).

For λ ∈ ĥ? we have the simple quotient LK(λ) of the Verma module

∆K(λ) in ÔK and we define LA(λ) := Res(LK(λ)).

Proposition 3.3 ([F03]). The set {LA(λ)}λ∈ĥ? is a full set of rep-

resentatives for the simple objects in ÔA.
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3.3. The restricted deformed category OA. As in the non-

deformed situation we can define the shift functor T on ÔA that maps
an object M to M ⊗C L(δ) and has the obvious impact on morphisms.

Then T : ÔA → ÔA is an equivalence and we obtain the graded A-

algebra AA = A(ÔA, T ). An object M of ÔA is called restricted if
τM : M → T nM is the zero morphism for each τ ∈ (AA)n, n 6= 0. We

define OA as the full subcategory of ÔA that contains all restricted
objects.

As before there is a functor · : ÔA → OA that is left adjoint to the
inclusion functor (it is constructed as in the non-restricted case). The
deformed restricted Verma module with highest weight is

∆A(λ) := ∆A(λ).

4. Projective objects in ÔA
Let A be a local deformation algebra. Now we want to study pro-

jective objects in the deformed category ÔA. In particular, we want
to study projective covers of simple objects LA(λ), i.e. projective ob-
jects P together with a surjective map c : P → LA(λ) with the following
property: If g : M → P is a homomorphism such that c◦g : M → LA(λ)
is surjective, then g is surjective. Such projective covers do not always

exist in ÔA. But when we restrict ourselves to truncated categories,
then the situation improves.

4.1. Truncated subcategories. The truncations that we are go-

ing to consider are associated to open, locally bounded subsets of ĥ?.

Definition 4.1. A subset J of ĥ? is called open, if for all λ ∈ J
and all µ ∈ ĥ? with µ ≤ λ we have µ ∈ J . A subset J is locally

bounded, if for all µ ∈ ĥ? the set J≥µ := {γ ∈ J | γ ≥ µ} is finite.

Let us fix an open, locally bounded subset J of ĥ?. We define

the full subcategory ÔJA of ÔA that contains all objects M with the
property that Mλ 6= 0 implies λ ∈ J .

Let M ∈ ÔA and let M ′ be the submodule of M that is generated
by the weight spaces Mν with ν 6∈ J and set MJ := M/M ′. Then

M 7→ MJ is a functor from ÔA to ÔJA that is left adjoint to the

inclusion functor ÔJA ⊂ ÔA.

4.2. Existence of projective covers. The main objective of this
section is to give a new proof of the following result.
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Theorem 4.2. Suppose that A is a local deformation algebra. Let

µ ∈ J . Then there exists a projective cover PJA (µ)→ LA(µ) in ÔJA .

In order to prove the above theorem, we first consider the universal

enveloping algebra U(b̂) under the adjoint action of ĥ, so we obtain a

weight space decomposition U(b̂) =
⊕

γ∈Z≥0R̂+ U(b̂)γ. For µ ∈ J we

define J ′ = J − µ = {ν ∈ ĥ? | ν = γ − µ for some γ ∈ J } and I ′ =

ĥ? \ J ′. Then the vector space U(b̂)I′ =
⊕

γ∈I′ U(b̂)γ is a (two-sided)

ideal in U(b̂), and hence U(b̂)J
′

= U(b̂)/U(b̂)I′ is a U(b̂)-module. As

Ŝ = U(ĥ), we get a (right) action of Ŝ on U(b̂)J
′
, and hence we can

form the tensor product

QJA (µ) := U(ĝ)⊗U(b̂) U(b̂)J
′ ⊗Ŝ Aµ.

This is a ĝA-module. As in [RCW82] (see also [F03]) one shows that

this object represents the functor ÔJA → A-mod, M 7→ Mµ, so by the

definition of ÔA it is projective in ÔA. Moreover, it admits a Verma
flag with multiplicities

(QJA (µ) : ∆A(ν)) =

{
dimC U(n̂)ν−µ, if ν ∈ J ,
0, if ν 6∈ J ,

where n̂ =
⊕

α∈R̂+ ĝα. In particular, we have (QJA (µ) : ∆A(ν)) 6= 0

only if ν ≥ µ and (QJA (µ) : ∆A(µ)) = 1.
Every direct summand of a module with a Verma flag admits a

Verma flag as well. As ∆A(µ) occurs with multiplicity one, there is a
direct summand PJA (µ) of QJA (µ) with

(PJA (µ) : ∆A(µ)) = 1.

Note that we do not yet claim that PJA (µ) is unique up to isomorphism,
yet this will be a consequence once we prove Theorem 4.2. For now, it
suffices to choose a direct summand with the above properties.

As all other Verma subquotients of PJA (µ) have highest weights µ′

with µ′ > µ, there is a surjection PJA (µ) → ∆A(µ), hence a surjection
PJA (µ)→ LA(µ) and this surjection is unique up to non-zero scalars in
C. We can now prove the above theorem.

Proof of Theorem 4.2. We prove the statement by induction
on the number of elements in the set J≥µ. If it contains only the
element µ, then PJA (µ) = QJA (µ) ∼= ∆A(µ) and the locality of A implies
that ∆A(µ)→ LA(µ) is a projective cover.

So let us fix µ ∈ J and let us assume that the statement is proven
for all pairs µ′ ∈ J ′ such that J ′≥µ′ contains strictly less elements then
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J≥µ. As a next step we prove that LA(µ) is then the only simple quo-
tient of PJA (µ). Suppose that this is not the case, hence that there
exists a surjection PJA (µ)→ LA(ν) for some ν 6= µ. As PJA (µ) is gener-
ated by its weight spaces corresponding to weights in J≥µ, this implies
ν ∈ J≥µ. By induction assumption, PJA (ν) → LA(ν) is a projective
cover. Now by the projectivity of PJA (µ) there is a homomorphism
PJA (µ)→ PJA (ν) such that the diagram

PJA (µ) //

$$IIIIIIIII
PJA (ν)

zzuuuuuuuuu

LA(ν)

commutes. As PJA (ν) → LA(ν) is a projective cover, the homomor-
phism PJA (µ)→ PJA (ν) is surjective, and from the projectivity of PJA (ν)
and the indecomposability of PJA (µ) we deduce PJA (µ) ∼= PJA (ν), which
contradicts what we already know about the Verma subquotients of
both objects. Hence we have proven that LA(µ) is the only simple
quotient of PJA (µ).

Now let J ′ ⊂ J be another open subset of ĥ?. Then PJA (µ)J
′

is a

quotient of PJA (µ) and it is projective in ÔJ ′A , as the functor M 7→MJ ′ ,

ÔJA → ÔJ
′

A , is left adjoint to the inclusion functor. As PJA (µ) has a

unique simple quotient, we have PJA (µ)J
′ ∼= PJ

′

A (µ).
Now we can prove that c : PJA (µ)→ LA(µ) is a projective cover. So

let g : M → PJA (µ) be a homomorphism such that c◦g : M → LA(µ) is
surjective. Then the projectivity implies that there is a homomorphism
h : PJA (µ)→M such that the diagram

PJA (µ)
h //

$$IIIIIIIII
M

g // PJA (µ)

zzuuuuuuuuu

LA(µ)

is commutative. We will now prove that the composition f = g ◦
h is surjective, from which the surjectivity of g readily follows. Let
ν ∈ J be a maximal element and consider J ′ = J \ {ν}. Then fJ

′

is an endomorphism of PJA (µ)J
′ ∼= PJ

′

A (µ). By induction we know

that PJ
′

A (µ) → LA(µ) is a projective cover (in ÔJ ′A ), hence fJ
′

is an
automorphism. Hence the quotient PJA (µ)/imf is generated by its ν-
weight space. But this quotient then has to be trivial, as PJA (µ) has
no simple quotient of highest weight ν. Hence f is surjective, which is
what we wanted to show. �
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4.3. Restricted projective covers. Again we suppose that A is
a local deformation algebra. Each simple object LA(λ) is restricted,
and {LA(λ)}λ∈ĥ? is a full set of representatives of the simple objects in

OA as well. We will now show that projective covers also exist in the

truncated restricted categories OJA = OA ∩ ÔJA .

Theorem 4.3. Suppose that A is a local deformation algebra and

let J ⊂ ĥ? be an open, locally bounded subset. Then there exists for

each λ ∈ J a projective cover P
J
A (λ)→ LA(λ) in OJA .

Proof. Consider the projective cover PJA (λ)→ LA(λ) in OJA and

consider its restriction PJA (λ)→ LA(λ) = LA(λ). As the functor M 7→
M is left adjoint to the (exact) inclusion functor OA ⊂ OA, PJA (λ) is
projective in OA.

We have seen in the proof of Theorem 4.2 that LA(λ) is the only

simple subquotient of PJA (λ). Hence PJA (λ) is indecomposable. Now

we show that P
J
A (λ) := PJA (λ) → LA(λ) is a projective cover. As we

have seen in the proof of Theorem 4.2, for this it is enough to show

that if f is an endomorphism of P
J
A (λ) that has the property that

the composition P
J
A (λ)

f→ P
J
A (λ) → LA(λ) is surjective, then f is

surjective. By projectivity of PJA (λ) we can find an endomorphism f ′

of PJA (λ) such that the diagram

PJA (λ)
f ′ //

��

PJA (λ)

��

P
J
A (λ)

f // P
J
A (λ)

is commutative (here the vertical maps are the quotient maps). But
now f ′ is surjective, as we have seen in the proof of Theorem 4.2, so f
has to be surjective as well. �

5. Block decomposition of ÔA
We denote by ∼A the equivalence relation on ĥ? that is generated

by λ ∼A µ if there exists some open, locally bounded subset J of ĥ?

and a non-zero homomorphism PJA (λ) → PJA (µ). As PJA (λ) → LA(λ)

is a projective cover in ÔJA , this condition is equivalent to the fact
that LA(λ) occurs as a subquotient of PJA (µ) (in the following we write
[PJA (µ) : LA(λ)] 6= 0 if this is the case).
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For an equivalence class Λ ⊂ ĥ? with respect to∼A we define the full

subcategory ÔA,Λ of ÔA that contains all objects M with the property
that if LA(λ) is a subquotient of M , then λ ∈ Λ.

Theorem 5.1 (Block decomposition). The functor∏
Λ∈ĥ?/∼A

ÔA,Λ → ÔA,

{MΛ} 7→
⊕

MΛ

is an equivalence of categories.

Proof. For an equivalence class Λ and an object M of ÔA let
MΛ be the submodule of M that is generated by the images of all
homomorphisms PJA (λ) → M with λ ∈ Λ and arbitrary open, locally
bounded J . By definition of ∼A the sum of all MΛ is direct. Moreover,
we have M =

⊕
ΛMΛ, as M is isomorphic to a quotient of a direct

sum of various PJA (λ)’s. �

5.1. Restricted block decomposition. The block decomposi-
tion above has an immediate analogue in the restricted case: We

define the equivalence relation ∼A on ĥ? as generated by λ∼Aµ if

[P
J
A (λ) : LA(µ)] 6= 0 for some open, locally bounded subset J . As

before one proves the following result.

Theorem 5.2 (Restricted block decomposition). The functor∏
Λ∈ĥ?/∼A

OA,Λ → OA,

{MΛ} 7→
⊕

MΛ

is an equivalence of categories.

5.2. BGGH-reciprocity. The linkage principle and the restricted
linkage principle now describe the equivalence classes under ∼A and
∼A explicitly. The first step towards these results are the respective
BGGH-reciprocity statements.

Theorem 5.3 (Deformed BGGH-reciprocity). Let A be a local de-
formation algebra with residue field K and let J be an open locally

bounded subset of ĥ? and µ ∈ J . Then PJA (µ) admits a Verma flag
and we have

(PJA (µ) : ∆A(λ)) =

{
[∇K(λ) : LK(µ)], if λ ∈ J ,
0, if λ 6∈ J
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for all λ ∈ ĥ?.

Note that the right hand side refers to the K-linear versions of the
objects.

Proof. By construction, PJA (µ) is a direct summand of an object
that admits a Verma flag, hence also admits a Verma flag. In the
proof of Theorem 4.2 we have shown that PJA (µ) has a unique simple
quotient, hence PJA (µ)⊗AK must be indecomposable. As it is a direct

summand of the projective object QJK (µ) in ÔJK , it is projective. Hence
it has to be isomorphic to PJK (µ). Hence the Verma multiplicities of
PJA (µ) and PJK (µ) coincide. So it suffices to prove the above statement
in the case that A = K is a field, in which case it reduces to the
well-known non-deformed BGGH-reciprocity. �

The following is the restricted analogue of the above theorem.

Theorem 5.4 (Restricted BGGH-reciprocity). Let A be a local

deformation algebra and J an open locally bounded subset of ĥ? and

µ ∈ J . Then P
J
A (µ) admits a restricted Verma flag and for the multi-

plicities we have

(P
J
A (µ) : ∆A(λ)) =

{
[∇K(λ) : LK(µ)], if λ ∈ J ,
0, otherwise

for all λ ∈ ĥ?.

The proof can be found in [AF09].

5.3. The equivalence relation. Let us define the equivalence

relation ∼′A on ĥ? as generated by λ ∼′A µ if [∆K(λ) : LK(µ)] 6= 0.

Lemma 5.5. We have ∼′A=∼A.

Proof. Since the characters of ∆K(λ) and ∇K(λ) coincide, the
BGGH-reciprocity implies that we have ∼′A=∼′′A, where ∼′′A is gener-
ated by λ ∼′′A µ if there exists some J with (PJA (λ) : ∆A(µ)) 6= 0.
Hence we have to show that ∼A=∼′′A. It is clear that λ ∼′′A µ im-
plies λ ∼A µ. So let us suppose that [PJA (λ) : LA(µ)] 6= 0. Then
there is a non-zero homomorphism PJA (µ) → PJA (λ). So there must
be a Verma subquotient of PJA (λ) that admits a non-zero homomor-
phism from PJA (µ), so if its highest weight is ν, then ν ∼′′A λ and
there is a non-zero homomorphism PJA (µ)→ ∆A(ν). This implies that
[∆K(ν) : LK(µ)] = [∇K(ν) : LK(µ)] 6= 0, hence µ ∼′′A ν, again by
BGGH-reciprocity. So λ ∼′′A µ. �
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Moreover, the restricted version of the above statement holds as
well: using analogous arguments (in particular, using the restricted
BGGH-reciprocity) one can prove that ∼A is also generated by λ∼Aµ
if [∆K(λ) : LK(µ)] 6= 0. Note, however, that ∼A is a finer relation than
∼A, i.e. λ∼Aµ implies λ ∼A µ.

6. The linkage principle

In some sense, the results of the previous section are quite abstract
and do not give us enough information about the structure of category

Ô. The next step is to prove the linkage principles, i.e. to determine the
equivalence classes with respect to ∼A and ∼A. In the non-restricted
case, the linkage principle follows from our results above together with
a theorem of Kac and Kazhdan.

6.1. The theorem of Kac and Kazhdan. Let A be a local de-
formation algebra with residue field K. As before, we consider τ as an

element in ĥ?A = HomA(ĥ⊗CA,A) = ĥ?⊗CA. Let (·, ·)A : ĥ?A× ĥ?A → A

be the A-bilinear extension of the bilinear form (·, ·) : ĥ?× ĥ? → C that
is induced by the usual non-degenerate, invariant bilinear form on ĝ

(cf. [K90]). Now let us consider the partial order ↑A on ĥ? that is

generated by µ ↑A λ if there exists a positive root β ∈ R̂+ and some
n ∈ N such that 2(λ+ τ + ρ, β)K = n(β, β)K and µ = λ− nβ.

Theorem 6.1 ([KK79]). We have [∆K(λ) : LK(µ)] 6= 0 if and only
if µ ↑A λ.

In particular, the equivalence relation∼A is generated by the partial
order ↑A. The following lemma is immediate from the above theorem.

Lemma 6.2. If λ ∼A µ, then {α ∈ R̂ | 2(λ+τ+ρ, α)K ∈ Z(α, α)K} =

{α ∈ R̂ | 2(µ+ τ + ρ, α)K ∈ Z(α, α)K}.

Hence any equivalence class Λ ∈ ĥ? defines

R̂A(Λ) := {α ∈ R̂ | 2(λ+ τ + ρ, α)K ∈ Z(α, α)K for some λ ∈ Λ},

= {α ∈ R̂ | 2(λ+ τ + ρ, α)K ∈ Z(α, α)K for all λ ∈ Λ}.
We also define

ŴA(Λ) := 〈sα+nδ | α + nδ ∈ R̂re ∩ R̂A(Λ)〉.
Clearly, the elements in a fixed equivalence class Λ have the same

level, so we can talk about the level of an equivalence class. Note that

an equivalence class is of critical level if and only if δ ∈ R̂A(Λ), i.e. if
(λ + ρ, δ) = (δ, δ) = 0 for all λ ∈ Λ. This is the case if and only
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if nδ ∈ R̂A(Λ) for all n 6= 0. In this case, ŴA(Λ) is an affine Weyl
group isomorphic to the affinization of its finite analogue WA(Λ) that

is generated by the reflections sα for all finite roots α in R̂A(Λ).
The Kac–Kazhdan theorem now immediately implies the following.

Theorem 6.3 (The non-restricted linkage principle). Let Λ ⊂ ĥ?

be an equivalence class with respect to ∼A.

(1) If Λ is non-critical, then Λ is a ŴA(Λ)-orbit in ĥ?.

(2) If Λ is critical, then Λ is an orbit under ŴA(Λ)× Zδ.
6.2. Base change. Now we explain one of the main reasons for

the use of the deformation theory in our approach. Let us look at the

special case A = S̃ = S(h)(0), the localization of the symmetric algebra
S(h) at the maximal ideal generated by h ⊂ S(h). For any prime ideal

p of S̃ we denote by S̃p the localization of S̃ at p and by Kp the residue

field of S̃p. Then S̃ is the intersection of S̃p inside the quotient field Q̃

of S̃ for all prime ideals of height one.

Proposition 6.4. The equivalence relation ∼S̃ is the finest relation

on ĥ? that is coarser than ∼S̃p
for all prime ideals p of S̃ of height one.

Proof. Recall that the equivalence relation ∼A is generated by

λ∼Aµ if (P
J
A (λ) : ∆A(µ)) 6= 0 for some open, locally bounded set J . If

A → A′ is a homomorphism of deformation algebras, then P
J
A (λ) ⊗A

A′ is projective in OJA′ , hence splits into a direct sum of restricted
projective covers. Hence λ∼S̃p

µ implies λ∼S̃µ. Let ∼′
S̃

be the finest

relation on ĥ? that is coarser than ∼S̃p
for all prime ideals p of S̃ of

height one. Let Λ be an equivalence class with respect to ∼S̃. Then Λ
is a union of equivalence classes with respect to ∼′

S̃
. Let us write this

decompositon as Λ =
⋃
i∈I Λi.

Now P
J
S̃ (µ)⊗S̃ Q̃ splits into a direct sum of Verma modules in OQ̃,

hence we have a canonical decomposition

P
J
S̃ (µ)⊗S̃ Q̃ =

⊕
i∈I

Pi,

where Pi is the direct summand that contains all Verma modules with
highest weight belonging to Λi. By our assumption on ∼′

S̃
, this direct

sum decomposition induces a direct sum decomposition of P
J
S̃ (µ)⊗S̃ S̃p

for each prime ideal p of height one, i.e.

P
J
S̃ (µ)⊗S̃ S̃p =

⊕
i∈I

(
P
J
S̃ (µ)⊗S̃ S̃p ∩ Pi

)
.
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After taking the intersection we get a direct sum decomposition

P
J
S̃ (µ) =

⊕
i∈I

(
P
J
S̃ (µ) ∩ Pi

)
and we deduce that only one direct summand on the right hand side
appears, i.e. that Λ is already an equivalence class with respect to ∼′

S̃
.

So we have ∼S̃ = ∼′
S̃
. �

The advantage now is that the equivalence relations ∼S̃p
can be

described explicitly.

6.3. The restricted linkage principle. In the restricted case,
we do not yet have such an explicit description of the highest weights
of simple subquotients of a given Verma module as we have, by the
Kac–Kazhdan theorem, in the non-restricted case. Nevertheless, we
can explicitly determine the equivalence relations ∼S̃p

for each prime

ideal p of height one and then use Proposition 6.4.

Let λ ∈ ĥ? be a weight at critical level and define R(λ) = {α ∈ R |
〈λ, α∨〉 ∈ Z} (note that this definition only refers to finite roots!). For
any α ∈ R(λ) we denote by α ↓ λ the maximal element in {sα+nδ.λ |
n ∈ Z} that is smaller or equal to λ. Here is our first result:

Theorem 6.5 ([AF08]). Let λ ∈ ĥ? be of critical level and let

p ⊂ S̃ be a prime ideal of height one.

(1) If α∨ 6∈ p for all α ∈ R(λ), then ∆Kp(λ) is simple, i.e.

[∆Kp(λ) : LKp(µ)] =

{
1, if λ = µ,

0, otherwise.

In particular, λ∼S̃p
µ implies λ = µ.

(2) If α∨ ∈ p for some α ∈ R(λ), then p = α∨S̃ and we have

[∆Kp(λ) : LKp(µ)] =

{
1, if µ ∈ {λ, α ↓ λ},
0, otherwise.

In particular, the equivalence class of λ with respect to ∼S̃p
is

the orbit of λ under the subgroup of Ŵ that is generated by the
reflections sα+nδ with n ∈ Z.

We can now deduce the restricted linkage principle. Let Λ ⊂ ĥ? be
a critical, restricted equivalence class and define

Ŵ(Λ) := 〈sα+nδ | α ∈ R(λ) for some λ ∈ Λ and n ∈ Z〉.
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Theorem 6.6 ([AF09]). Suppose that Λ is a restricted critical

equivalence class. Then Λ is a Ŵ(Λ)-orbit in ĥ?.

Proof. Let λ ∈ Λ. Let p ⊂ S̃ be a prime ideal of height one. If

α∨ ∈ p for some α ∈ R(λ), then p = α∨S̃ and Theorem 6.5 implies that
the ∼S̃p

-equivalence class of λ is its 〈sα+nδ | n ∈ Z〉-orbit. If α∨ 6∈ p for

all α ∈ R(λ), then λ forms an ∼S̃p
-equivalence class by itself, again by

Theorem 6.5. As by Proposition 6.4 the relation ∼S̃ is generated by

the relations ∼S̃p
, the equivalence class of λ is its Ŵ(Λ)-orbit. �
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