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A CATEGORICAL APPROACH TO WEYL MODULES

VYJAYANTHI CHARI, GHISLAIN FOURIER, AND TANUSREE KHANDAI

Abstract. Global and local Weyl Modules were introduced via generators and relations in
the context of affine Lie algebras in [CP2] and were motivated by representations of quantum
affine algebras. In [FL] a more general case was considered by replacing the polynomial ring
with the coordinate ring of an algebraic variety and partial results analogous to those in [CP2]
were obtained. In this paper, we show that there is a natural definition of the local and global
Weyl modules via homological properties. This characterization allows us to define the Weyl
functor from the category of left modules of a commutative algebra to the category of modules
for a simple Lie algebra. As an application we are able to understand the relationships of
these functors to tensor products, generalizing results in [CP2] and [FL]. We also analyze the
fundamental Weyl modules and show that unlike the case of the affine Lie algebras, the Weyl
functors need not be left exact.

1. Introduction

The category of finite–dimensional representations of affine and quantum affine Lie alge-
bras has been intensively studied in recent years. One of the reasons that this category has
proved to be interesting is the fact that it is not semi-simple. Moreover, it was proved in
[CP2] that irreducible representations of the quantum affine algebra specialized to reducible
indecomposable representations of the affine Lie algebra. This phenomenon is analogous to
the one observed in modular representation theory where an irreducible finite–dimensional
representation in characteristic zero becomes reducible on passing to characteristic p and is
called a Weyl module.

The definition of Weyl modules (global and local) in [CP2] for affine algebras was motivated
by this analogy. Thus given any dominant integral weight of the semisimple Lie algebra g, one
can define an infinite–dimensional left module W (λ) for the corresponding affine (in fact for
the loop) algebra via generators and relations. The module W (λ) is a direct sum of finite–
dimensional g–modules and it was shown in [CP2] that it is also a right module for a polynomial
algebra Aλ which is canonically associated with λ. The local Weyl modules are obtained by
tensoring the global Weyl modules with irreducible modules for Aλ or equivalently can be
given via generators and relations. A necessary and sufficient condition for the tensor product
of local Weyl modules to be a local Weyl module was given. Using this fact, the character
of the local Weyl module was conjectured in [CP2] and the conjecture was heavily influenced
by the connection with quantum affine algebras. In particular, the conjecture implied that
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the dimension of the local Weyl module was independent of the choice of the irreducible Aλ–
module, i.e that the global Weyl module is a free module for Aλ. The character formula was
proved in [CP2] for sl2, in [CL] for slr+1, in [FoL] for simply–laced algebras and the general
case can be deduced by passing to the quantum case by using the work of [K] and [BN].

In [FL], Feigin and Loktev extended the notion of Weyl modules to the higher–dimensional
case, i.e. instead of the loop algebra they worked with the Lie algebra g ⊗ A where A is the
coordinate ring of an algebraic variety and obtained analogs of some of the results of [CP2].
For instance when g is of type sl2 and A is the polynomial ring in two variables they compute
the dimension of the Weyl module. They also give a necessary and sufficient condition for
the tensor product of local Weyl modules to be a local Weyl module analogous to the one in
[CP2]. However, they do not define the algebra Aλ and the bi–module structure on W (λ) and
hence do not say much about the structure of the global Weyl module.

In this paper, we take a more general functorial approach to Weyl modules associated to
the algebra g⊗A, where A is a commutative associative algebra (with unit) over the complex
numbers. This approach (as also the approach in [CG1], [CG2]) is motivated by the methods
used to study another well–known category in representation theory: the BGG-category O for
semi–simple Lie algebras. As a result we are able to extend the definition of Weyl modules
to a more general situation and allows us to do a deeper analysis of the global Weyl modules.
We also give the classification and description of irreducible modules for g⊗A for an arbitrary
finitely generated algebra which is analogous to the one given in [C1],[CP1],[L],[R] in the case
when A is a polynomial algebra.

We now explain our results in some detail. Let IA be the category of g⊗A–modules which
are integrable as g–modules. For λ ∈ P+ we let Iλ

A be the full subcategory of IA consisting of
objects whose weights are bounded above by λ. Given λ ∈ P+, one can define in a canonical
way a projective module PA(λ) ∈ IA and we prove that the global Weyl module WA(λ) is the
largest quotient of PA(λ) that lies in Iλ

A. We then define a right action of the algebra U(h⊗A)
on WA(λ) where h is a Cartan subalgebra of g which is compatible with the left action of g⊗A.
Let Aλ be the quotient of U(h⊗ A) by the torsion ideal for this action so that WA(λ) can be
regarded as a bi-module for (g ⊗ A,Aλ). We prove that the bimodule structure is functorial
in A.

Let Wλ
A be the right exact functor WA(λ)⊗Aλ

from the category modAλ of left modules

for Aλ to Iλ
A. The local Weyl modules are then just Wλ

AM where M is an irreducible object

of modAλ. In section 3, we prove that one can define a functor Rλ
A which is exact and right

adjoint to Wλ
A. That allows us to give a categorical characterization of the local Weyl modules

and more generally of the modules Wλ
AM , M ∈ modAλ. Namely we prove that these modules

are given by the vanishing of HomIλ
A

and Ext1
Iλ

A

and we show also that the functors Wλ
A are

left exact iff we have vanishing of Ext2
Iλ

A

.

In section 4 we prove that the algebra Aλ is finitely generated iff A is finitely generated.

We use the results of section 3 to study the relationship between the functors W
λ+µ
A⊕B and

Wλ
A ⊗ W

µ
B when A,B are finite–dimensional algebras. In section 5, we give a necessary and

sufficient condition for the tensor product Wλ
AM ⊗W

µ
AN to be isomorphic to W

λ+µ
A (M ⊗N)

when A is finitely generated and M,N ∈ modAλ.
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In section 6 we assume that A is finitely generated and that the Jacobson radical of A is
0. We prove that the algebra Aλ is isomorphic to the ring of invariants of a subgroup Sλ

of the symmetric group on dλ letters acting on A⊗dλ . Here dλ is a positive integer naturally
associated with λ. This implies that the irreducible modules in modAλ are determined (up
to isomorphism) by the orbits of this action.

The tensor product results of Sections 4 and 5 imply that to understand the local Weyl
modules it is enough to understand local Weyl modules corresponding to certain special orbits.
In section 7, we consider the case when ξ is the orbit of a point in A⊗dλ which has trivial
stabilizer under the entire symmetric group Sdλ

. In this case Wλ
AMξ is a tensor product of the

local fundamental Weyl modules and we describe the character of these modules completely
for any finitely generated algebra A and for the classical simple Lie algebras.

The results of section 7 show that there are many important differences between the study of
Weyl modules for the polynomial algebra in one variable and the more general case considered
here. The dimension of the local fundamental Weyl modules associated to A depends on ξ if
the variety associated to A is not smooth. It also proves that the dimension of Wλ

AMξ is not
independent of ξ even if A is an irreducible smooth variety and ξ is the orbit of a point in
A⊗dλ with trivial stabilizer for the Sλ-action. In particular, this proves that the global Weyl
module is not projective as a right Aλ–module (and hence the Weyl functors not exact) even
when A is the polynomial ring in two variables. There are thus, many natural and interesting
algebraic and geometric questions that arise as a result of this paper which will be studied
elsewhere.

Acknowledgements: We would like to thank Wee Liang Gan, Michael Ehrig, Friederich
Knop, Peter Littelmann for many discussions on the algebra Aλ. We are grateful to Peter
Russell for his patience with our long discussions and our not always well-formulated questions
on group actions, homological algebra and commutative algebra. Finally, particular thanks are
due to Shrawan Kumar for sharing with us, his result (Proposition 2.5 ) on extensions between
tensor products of modules for direct sums of Lie algebras.

2. Preliminaries

2.1. Throughout the paper C denotes the set of complex numbers and Z+ the set of
non–negative integers. Let g be a finite–dimensional simple Lie algebra of rank n with Cartan
matrix (aij)i,j∈I where I = {1, · · · , n}. Fix a Cartan subalgebra h of g and let R denote
the corresponding set of roots. Let {αi}i∈I (resp. {ωi}i∈I) be a set of simple roots (resp.
fundamental weights) and Q (resp. Q+), P (resp. P+) be the integer span (resp. Z+–span) of
the simple roots and fundamental weights respectively. Denote by ≤ the usual partial order
on P ,

λ, µ ∈ P, λ ≤ µ ⇐⇒ µ − λ ∈ Q+.

Set R+ = R ∩Q+ and let θ be the unique maximal element in R+ with respect to the partial
order.

Let x±
α , hi, α ∈ R+, i ∈ I be a Chevalley basis of g and set x±

i = x±
αi

, hα = [x+
α , x−

α ] and

note that hi = hαi
. For each α ∈ R+, the subalgebra of g spanned by {x±

α , hα} is isomorphic
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to sl2. Define subalgebras n± of g, by

n± =
⊕

α∈R+

Cx±
α ,

and note that

g = n− ⊕ h ⊕ n+.

Given any Lie algebra a, let U(a) be the universal enveloping algebra of a. The map x →
x ⊗ 1 + 1 ⊗ x, x ∈ a extends to an algebra homomorphism ∆ : U(a) → U(a) ⊗ U(a).By the
Poincare Birkhoff Witt theorem, we know that if b and c are Lie subalgebras of a such that
a = b ⊕ c as vector spaces then

U(a) ∼= U(b) ⊗ U(c)

as vector spaces.

2.2. Let A be a commutative associative algebra with unity over C and let A+ be a fixed
vector space complement to the subspace C of A. Given a Lie algebra a define a Lie algebra
structure on a ⊗ A, by

[x ⊗ a, y ⊗ b] = [x, y] ⊗ ab, x, y ∈ g, a, b ∈ A.

If φ : B → A is a homomorphism of associative algebras, there exists a corresponding ho-
momorphism φa : a ⊗ B → a ⊗ A of Lie algebras, which is injective (resp. surjective) if φ is
injective (resp. surjective). In particular, if B is a subalgebra of A, the Lie algebra a ⊗B can
be regarded naturally as a Lie subalgebra of a ⊗ A and we identify a with the Lie subalgebra
a ⊗ C of a ⊗ A. Similarly, if b is a Lie subalgebra of a, then b ⊗ A is naturally isomorphic to
a subalgebra of a⊗A. Finally we denote by U(g⊗A+) the subspace of U(g⊗A) spanned by
monomials in the elements x ⊗ a where x ∈ g, a ∈ A+. The following is elementary but we
include a proof for the reader convenience and because it is used repeatedly throughout the
paper.

Lemma. Let g be a finite–dimensional simple Lie algebra and A a commutative associative
algebra with unity over C. Then any ideal of g ⊗ A is of the form g ⊗ S for some ideal S of
A and [g ⊗ A/S, g ⊗ A/S] = g ⊗ A/S.

Proof. Let i be an ideal in g ⊗ A and set

S = {a ∈ A : g ⊗ a ⊂ i}.

Since g = [g, g] we see that S is an ideal on A. The Lemma follows if we prove that g⊗ S = i.
Let x ∈ i and write

x =
∑

α∈R

xα ⊗ aα +
∑

i∈I

hi ⊗ ai,

for some aα, ai ∈ A. We proceed by induction on

r = #{α ∈ R : aα 6= 0},

to show that g ⊗ aα ⊂ i and g ⊗ ai ⊂ i for all α ∈ R, i ∈ I. If r = 0, we have

[
∑

i∈I

hi ⊗ ai, x
+
j ] = x+

j ⊗
∑

i∈I

αj(hi)ai ∈ i, j ∈ I.
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Since the Cartan matrix of A is invertible, it follows now that x+
j ⊗ ai ∈ i for all i, j ∈ I and

since g is simple we see that g ⊗ ai ∈ i for all i ∈ I.

Suppose now that we have proved the result when 0 ≤ r < k and suppose that aβ1
, · · · , aβk

are the non–zero elements. Choose h ∈ h such that βk(h) 6= 0 and βk−1(h) = 0. Then

0 6= [h, x] =

k−2
∑

s=1

βs(h)xα ⊗ aβs + βk(h)xβk
⊗ aβk

∈ i.

The induction hypothesis applies to [h, x] and we find that

aβk
∈ S, x − xβk

⊗ aβk
∈ i.

The induction hypothesis again applies to x − (xβk
⊗ aβk

) and we get the result. �

2.3. Let V be any g–module. We say that V is locally finite–dimensional if any element of
V lies in a finite–dimensional g–submodule of V . This means that V is isomorphic to a direct
sum of irreducible finite–dimensional g–modules and hence we can write

V =
⊕

λ∈h∗

Vλ,

where Vλ = {v ∈ V : hv = λ(h)v, ∀ h ∈ h}. We set

wt(V ) = {λ ∈ h∗ : Vλ 6= 0}.

For λ ∈ P+, let V (λ) be the simple g–module which is generated by an element vλ ∈ V (λ)
satisfying the defining relations:

n+vλ = 0, hvλ = λ(h)vλ, (x−
i )λ(hi)+1vλ = 0,

for all h ∈ h, i ∈ I. Then,

wt(V (λ)) ⊂ λ − Q+, dim V (λ) < ∞.

Moreover any irreducible locally finite–dimensional g–module is isomorphic to V (λ) for some
λ ∈ P+. The following can be found in [B].

Lemma. Let a be a Lie algebra such that [a, a] = a and assume that a has a faithful finite–
dimensional irreducible representation. Then a is a semi–simple Lie algebra.

2.4. Suppose that g is a finite–dimensional semisimple Lie algebra and that g1, g2 are
ideals of g such that

g ∼= g1 ⊕ g2

as Lie algebras. Then g1 and g2 are also semisimple Lie algebras and it is standard that
any irreducible finite–dimensional representation of g is isomorphic to a tensor product of
irreducible representations of g1 and g2.

Proposition. Let A and B be commutative associative algebras. Any finite–dimensional ir-
reducible representation V of g ⊗ (A⊕ B) is isomorphic to a tensor product V1 ⊗ V2 where V1

and V2 are irreducible representations of g ⊗ A and g ⊗ B respectively.
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Proof. Let ρ : g ⊗ (A ⊕ B) → End(V ) be an irreducible finite–dimensional representation.
Then ker ρ is an ideal of finite codimension in g ⊗ (A ⊕ B) and hence

ker ρ = g ⊗ M,

for some ideal M of A ⊕ B. Since any ideal of A ⊕ B is of the form M1 ⊕ M2 where M1,M2

are ideals in A and B respectively, we see that V is a faithful irreducible representation of g̃ =
g⊗(A/M1⊕B/M2). Lemma 2.3 implies that g̃ is a finite–dimensional semi-simple Lie algebra.
The result now follows by the comments preceding the statement of this proposition. �

2.5. We shall need the following result due to Shrawan Kumar [Ku].

Proposition. For r = 1, 2, let gr be a finite–dimensional Lie algebra and assume that Ur, Vr

are finite dimensional gr–modules. For all m ≥ 0 we have

Extmg1⊕g2
(U1 ⊗ U2, V1 ⊗ V2) ∼=

⊕

p+q=m

Extpg1
(U1, V1) ⊗ Extqg2

(U2, V2).

3. The category IA

3.1. Let IA be the category whose objects are modules for g⊗A which are locally finite–
dimensional g–modules and morphisms

HomIA
(V, V ′) = Homg⊗A(V, V ′), V, V ′ ∈ IA.

Clearly IA is an abelian category and is closed under tensor products. We shall use the
following elementary result often without mention in the rest of the paper.

Lemma. Let V ∈ Ob IA.

(i) If Vλ 6= 0 and wtV ⊂ λ − Q+, then λ ∈ P+ and

(n+ ⊗ A)Vλ = 0, (x−
i )λ(hi)+1Vλ = 0, i ∈ I.

If in addition, V = U(g⊗A)Vλ and dim Vλ = 1, then V has a unique irreducible quotient.
(ii) If V = U(g ⊗ A)Vλ and (n+ ⊗ A)Vλ = 0, then wt(V ) ⊂ λ − Q+.
(iii) If V ∈ IA is irreducible and finite–dimensional, then there exists λ ∈ wtV such that

dim Vλ = 1, wt(V ) ⊂ λ − Q+.

�

3.2. Regard U(g ⊗ A) as a right g–module via right multiplication and given a left g–
module V , set

PA(V ) = U(g ⊗ A) ⊗U(g) V.

Then PA(V ) is a left g ⊗ A–module by left multiplication and we have an isomorphism of
vector spaces

PA(V ) ∼= U(g ⊗ A+) ⊗C V. (3.1)
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Proposition. Let V be a locally finite–dimensional g–module. Then PA(V ) is a projective
object of IA. If in addition V ∈ IA, then the map PA(V ) → V given by u ⊗ v → uv is a
surjective morphism of objects in IA. Finally, if λ ∈ P+, then PA(V (λ)) is generated as a
U(g ⊗ A)–module by the element pλ = 1 ⊗ vλ with defining relations

n+pλ = 0, hpλ = λ(h)pλ, (x−
i )λ(hi)+1pλ = 0, i ∈ I, h ∈ h. (3.2)

Proof. For x ∈ g, we have

x(u ⊗ v) = [x, u] ⊗ v + u ⊗ xv, u ∈ U(g ⊗ A), v ∈ V.

Since the adjoint action of g on g⊗A (and hence on U(g⊗A)) is locally finite, it is immediate
that PA(V ) ∈ IA. The proof that it is projective is standard. It is clear that the element
pλ ∈ PA(V (λ)) satisfies the relations in (3.2) and the fact that they are the defining relations
follows by using the isomorphism in (3.1). �

For ν ∈ P+ and V ∈ ObIA, let V ν ∈ ObIA be the unique maximal g ⊗ A quotient of V
satisfying

wt(V ν) ⊂ ν − Q+, (3.3)

or equivalently,

V ν = V/
∑

µ�ν

U(g ⊗ A)Vµ.

A morphism π : V → V ′ of objects in IA clearly induces a morphism πν : V ν → (V ′)ν . Let
Iν

A be the full subcategory of objects V ∈ IA such that V = V ν . It follows from the theory of
finite–dimensional representations of simple Lie algebras that

V ∈ Iν
A =⇒ # wtV < ∞. (3.4)

The following is immediate.

Corollary. Let ν ∈ P+ and V ∈ Iν
A. Then PA(V )ν is a projective object of Iν

A.

3.3. For λ ∈ P+, set

WA(λ) = PA(V (λ))λ,

and let wλ be the image of pλ in WA(λ). The following proposition is essentially an immediate
consequence of Proposition 3.2 and gives an alternative definition of WA(λ) via generators and
relations. In fact this was the original definition given in [CP2] when A is the ring of Laurent
polynomials and later generalized in [FL].

Proposition. For λ ∈ P+, the module WA(λ) is generated by wλ with defining relations:

(n+ ⊗ A)wλ = 0, hwλ = λ(h)wλ, (x−
i )λ(hi)+1wλ = 0, i ∈ I, h ∈ h. (3.5)

Proof. Since wtWA(λ) ⊂ λ−Q+ it follows that (n+⊗A)wλ = 0. The other relations are clear
since they are already satisfied by pλ. To see that these are all the relations, let W ′

A(λ) be
the module generated by an element wλ with the relations in (3.5). By Proposition 3.2 we see
that W ′

A(λ) is a quotient of PA(V (λ)). On the other hand wt(W ′
A(λ)) ⊂ λ−Q+ which implies

that W ′
A(λ) satisfies (3.3). It follows by the maximality of WA(λ) that W ′

A(λ) is a quotient of
WA(λ) and the proposition is proved. �
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Set

Anng⊗A(wλ) = {u ∈ U(g ⊗ A) : uwλ = 0}, Annh⊗A(wλ) = Anng⊗A(wλ) ∩ U(h ⊗ A).

Clearly Annh⊗A(wλ) is an ideal in U(h ⊗ A) and we denote by Aλ the quotient of U(h ⊗ A)
by the ideal Annh⊗A(wλ).

3.4. Regard WA(λ) as a right module for h ⊗ A as follows:

(uwλ)(h ⊗ a) = u(h ⊗ a)wλ, u ∈ U(g ⊗ A), h ∈ h, a ∈ A.

To see that this map is well defined, one must prove that:

(n+ ⊗ A)(h ⊗ a)wλ = 0, (h′ − λ(h′))(h ⊗ a)wλ = 0,

(x−
i )λ(hi)+1(h ⊗ a)wλ = 0,

for all i ∈ I, a ∈ A and h, h′ ∈ h. The first two are obvious. The third follows from the fact
that x+

i ((h ⊗ a) ⊗ vλ) = 0 and that WA(λ) ∈ IA. Thus, we have proved that WA(λ) is a
bi–module for the pair (g ⊗ A, h ⊗ A).

For all µ ∈ P , the subspaces WA(λ)µ are h ⊗ A–submodules for both the left and right
actions and

Annh⊗A(wλ) = {u ∈ U(h ⊗ A) : wλu = 0 = uwλ} = {u ∈ U(h ⊗ A) : WA(λ)u = 0}.

Then WA(λ) is a (g ⊗ A,Aλ)–bimodule and each subspace WA(λ)µ is a right Aλ–module.
Moreover WA(λ)λ is a Aλ–bimodule and we have an isomorphism of bimodules,

WA(λ)λ ∼= Aλ.

Let modAλ be the category of left Aλ–modules. Let Wλ
A : modAλ → Iλ

A be the right exact
functor given by

Wλ
AM = WA(λ) ⊗Aλ

M, Wλ
Af = 1 ⊗ f,

where M ∈ modAλ and f ∈ HomAλ
(M,M ′) for some M ′ ∈ modAλ. Note that since

WA(λ) ∈ IA, it is clear that the g–action on Wλ
AM is also locally finite and so Wλ

AM ∈ Ob Iλ
A.

The preceding discussion also shows that

Wλ
AAλ

∼=g⊗A WA(λ), (Wλ
AM)µ ∼= WA(λ)µ ⊗Aλ

M, µ ∈ P, M ∈ modAλ.

3.5.

Lemma. For all λ ∈ P+ and V ∈ Iλ
A we have Annh⊗A(wλ)Vλ = 0.

Proof. By Lemma 3.1 and Proposition 3.3 we see that given v ∈ Vλ there exists a morphism
of g ⊗ A–modules WA(λ) → U(g ⊗ A)v which maps wλ → v. Hence uv = 0 for all u ∈
AnnU(h⊗A)(wλ) �

As a consequence of the Lemma we see that the left action of U(h⊗A) on Vλ induces a left
action of Aλ on Vλ and we denote the resulting Aλ–module by Rλ

AV . Given π ∈ HomIλ
A
(V, V ′)

the restriction of πλ : Vλ → V ′
λ is a morphism of Aλ–modules and

V → Rλ
AV, π → Rλ

Aπ = πλ
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defines a functor Rλ
A : Iλ

A → modAλ which is exact since restriction π to a weight space is
exact. If M ∈ ObmodAλ, we have an isomorphism of left Aλ–modules,

Rλ
AWλ

AM = (Wλ
AM)λ = WA(λ)λ ⊗Aλ

M ∼= wλAλ ⊗Aλ
M ∼= M,

and hence an isomorphism of functors idAλ
∼= Rλ

AWλ
A.

3.6.

Proposition. Let λ ∈ P+ and V ∈ Iλ
A. There exists a canonical map of g ⊗ A–modules

ηV : Wλ
ARλ

AV → V such that η : Wλ
ARλ

A ⇒ idIλ
A

is a natural transformation of functors and

Rλ
A is a right adjoint to Wλ

A.

Proof. Regard WA(λ)⊗C Vλ as a left g⊗A–module via the action of g⊗A on WA(λ). Lemma
3.1 implies that the assignment WA(λ) ⊗C Vλ → V given by gwλ ⊗ v → gv is a well–defined
map of left g ⊗ A–modules. To see that this map factors through to a map ηV : Wλ

AVλ → V
it suffices to observe that

gwλ(h ⊗ a) ⊗ v − gwλ ⊗ (h ⊗ a)v = g(h ⊗ a)wλ ⊗ v − gwλ ⊗ (h ⊗ a)v 7→ 0

for all g ∈ U(g ⊗ A), h ∈ h and a ∈ A. It is now clear that the collection {ηV ;V ∈ ObIλ
A}

defines a natural transformation η : Wλ
ARλ

A ⇒ idIλ
A
.

To check that Rλ
A is right adjoint to Wλ

A we must prove that there exists a natural isomor-
phism of abelian groups

τ = τM,V : HomIλ
A
(Wλ

AM,V ) ∼= HomAλ
(M,Rλ

AV ),

for all M ∈ modAλ and V ∈ Iλ
A, such that the the following diagram commutes for all

f ∈ HomAλ
(M,M ′), π ∈ HomIλ

A
(V, V ′):

HomIλ
A
(Wλ

AM ′, V )
W

λ
Af∗

−−−−→ HomIλ
A
(Wλ

AM,V )
π∗−−−−→ HomIλ

A
(Wλ

AM,V ′)




y

τ





y

τ





y

τ

HomAλ
(M ′,Rλ

AV )
f∗

−−−−→ HomAλ
(M,Rλ

AV )
Rλ

A
π∗

−−−−→ HomAλ
(M,Rλ

AV ′).

Define τM,V by
τM,V (π) = πλ.

Since Wλ
AM is generated by M as a g⊗A–module, it follows that τ(π) = τ(π′) implies π = π′.

For f ∈ HomAλ
(M,Rλ

AV ) it is easily seen that

τM,V (ηV ◦ Wλ
Af) = f,

and hence τ is an isomorphism. The fact that the diagram commutes is straightforward. �

The following is a standard consequence of properties of adjoint functors.

Corollary. The functor Wλ
A maps projective objects to projective objects.
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3.7. The next result gives a categorical definition of Wλ
AM .

Theorem. Let V ∈ Iλ
A. Then V ∼= Wλ

ARλ
AV iff for all U ∈ Iλ

A with Uλ = 0, we have

HomIλ
A
(V,U) = 0, Ext1

Iλ
A

(V,U) = 0. (3.6)

Proof. Suppose first that M ∈ modAλ. Then (Wλ
AM)λ = wλ ⊗ M generates Wλ

AM and
hence

HomIλ
A
(Wλ

AM,U) = 0, if Uλ = 0.

Let

P1 → P0 → M → 0

be a right exact sequence of modules in modAλ, with P0, P1 projective and consider the
corresponding right exact sequence

Wλ
AP1 → Wλ

AP0 → Wλ
AM → 0

in Iλ
A. Let K be the image of Wλ

AP1 in Wλ
AP0 (or equivalently the kernel of Wλ

AP0 → Wλ
AM).

Then K is generated as U(g ⊗ A)–module by Kλ and hence HomIλ
A
(K,U) = 0 if U ∈ Iλ

A and

Uλ = 0. By Corollary 3.6 we see that Wλ
AP0 is projective and it now follows by applying

HomIλ
A
(−, U) to the short exact sequence

0 → K → Wλ
AP0 → Wλ

AM → 0.

that Ext1
Iλ

A

(Wλ
AM,U) = 0.

Conversely suppose that we are given V ∈ Iλ
A satisfying (3.6). Let V ′ = U(g ⊗ A)Vλ and

note that

V/V ′ ∈ Iλ
A, (V/V ′)λ = 0.

It follows from (3.6) that

HomIλ
A
(V, V/V ′) = 0.

This proves that V = V ′ = U(g⊗A)Vλ and hence that the map ηV : Wλ
ARλ

AV → V defined in

Proposition 3.6 is surjective. Moreover if we set U = ker ηV , then we have Rλ
AU = 0. Consider

the short exact sequence

0 → U → Wλ
AVλ → V → 0.

Applying HomIλ
A
(−, U) now gives

0 → HomIλ
A
(U,U) → 0,

and hence U = 0 and the proof is complete. �

Corollary. The functor Wλ
A is exact iff for all U ∈ Iλ

A with Uλ = 0, we have

Ext2
Iλ

A

(Wλ
AM,U) = 0 ∀ M ∈ modAλ. (3.7)
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Proof. Assume that (3.7) is satisfied. Let 0 → M ′′ → M → M ′ → 0 be a short exact sequence
of modules in modAλ and consider the induced short exact sequence

0 → K → Wλ
AM → Wλ

AM ′ → 0.

Apply Hom(−, U) to the preceding short exact sequence and using Theorem 3.7 and (3.7) we
find that

HomIλ
A
(K,U) = 0, Ext1

Iλ
A
(K,U) = 0, ∀ U ∈ ObIλ

A with Uλ = 0

Hence K ∼= Wλ
AKλ. Applying the functor Rλ

A and using the fact that Rλ
AWλ

A is naturally

isomorphic to the identity functor, we see that if V is the kernel of Wλ
AM ′′ → K then Vλ = 0.

Applying HomIλ
A
(−, V ) to the short exact sequence

0 → V → WλM ′′ → K → 0,

proves that V = 0.

For the converse, suppose that Wλ
A is exact. Let M ∈ ObmodAλ and let P ∈ Ob modAλ

be projective such that we have an exact sequence 0 → M ′ → P → M → 0. This gives us

0 → Wλ
AM ′ → Wλ

AP → Wλ
AM → 0.

Applying HomIλ
A
(−, U) with U ∈ Iλ

A, Uλ = 0 and recalling that Wλ
AP is projective in Iλ

A we

get a piece of the long exact sequence

0 → Ext2(Wλ
AM,U) → 0,

and the converse is established. �

4. The structure of WA(λ)

4.1. We begin by proving that the construction of WA(λ) is functorial in A. Assume that
B is a commutative associative algebra and let f : A → B be a homomorphism of algebras.
Then (1⊗ f) : g⊗A → g⊗B is a homomorphism of Lie algebras and given any g⊗B–module
V we can regard it as a g ⊗ A–module via f and we denote this module by f∗V .

Proposition. Let λ ∈ P+ and let f : A → B be a homomorphism of associative algebras.
Then f induces a canonical homomorphism fλ : Aλ → Bλ of associative algebras and a
canonical map of (g ⊗ A,Aλ)-bimodules f∗

λ : WA(λ) → f∗(WB(λ)). Moreover, fλ and f∗
λ are

surjective if f is surjective.

Proof. The action of g ⊗ A on f∗(WB(λ)) is given by

(x ⊗ a) ◦ wλ,B = (x ⊗ f(a))wλ,B

and it follows immediately from Proposition 3.3 that there is a well–defined map of left g⊗A–
modules

WA(λ) → f∗(WB(λ)), wλ,A → wλ,B .

Since (1 ⊗ f) maps h ⊗ A to h ⊗ B this is also a map of right U(h ⊗ A)–modules. The proof
of the proposition is complete if we prove that

u ∈ Annh⊗A(wλ,A) =⇒ (1 ⊗ f)(u) ∈ Annh⊗B(wλ,B).
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But this is clear since

wλ,Au = uwλ,A → (1 ⊗ f)(u)wλ,B = wλ,B(1 ⊗ f)(u).

�

Let A,B and f : A → B be as in the proposition and given M ∈ modBλ, let f∗
λM ∈ modAλ

be the corresponding Aλ–module.

Corollary. There exists a natural morphism of g ⊗ A–modules Wλ
Af∗

λM → f∗Wλ
BM which

is surjective if f is surjective. In particular we have a morphism of g ⊗ A–modules

Wλ
Af∗

λBλ → f∗Wλ
BBλ

∼= f∗(WB(λ)), (4.1)

which is surjective if f is surjective.

Proof. It is clear that there exists a map f∗ ⊗ f∗
λ of g ⊗ A–modules

WA(λ) ⊗Aλ
f∗

λM = Wλ
Af∗

λM −→ f∗WB(λ) ⊗Aλ
f∗

λM.

Composing with the map of g ⊗ A–modules,

f∗WB(λ) ⊗Aλ
f∗

λM → f∗Wλ
BM = f∗(WB(λ) ⊗Bλ

M), u ⊗ m → u ⊗ m

proves the corollary. �

4.2. The next proposition begins an analysis of the behaviour of the modules WA(λ) and
the functors Wλ

A under tensor products. We shall assume from now on that an unadorned ⊗
denotes the tensor product of vector spaces over C.

Proposition. Let λ, µ ∈ P+.

(i) There exists a homomorphism of g ⊗ A–modules

τλ,µ : WA(λ + µ) → WA(λ) ⊗ WA(µ),

such that τλ,µ(wλ+µ) = wλ ⊗ wµ.
(ii) The homomorphism ∆ : U(h ⊗ A) → U(h ⊗ A) ⊗ U(h ⊗ A) induces a canonical homo-

morphism ∆λ,µ : Aλ+µ → Aλ ⊗ Aµ and

∆λ,µ = σµ,λ ◦ ∆µ,λ, (1 ⊗ ∆µ,ν) ◦ ∆λ,µ+ν = (∆λ,µ ⊗ 1) ◦ ∆λ+µ,ν , ν ∈ P+.

where σλ,µ : Aλ ⊗ Aµ −→ Aµ ⊗ Aλ denotes the flip map.
(iii) The tensor product WA(λ)⊗WA(µ) is canonically a (g⊗A,Aλ⊗Aµ)–bimodule and hence

also a (g ⊗ A,Aλ+µ)–bimodule.
(iv) The map τλ,µ is a map of (g ⊗ A,Aλ+µ)–bimodules and for M ∈ modAλ, N ∈ modAµ

we have an induced map of g ⊗ A-modules

τM,N : Wλ+µ
A ∆∗

λ,µ(M ⊗ N) → Wλ
AM ⊗W

µ
AN.

Proof. Part (i) is immediate from Proposition 3.3. It follows that

u ∈ Annh⊗A(wλ+µ) =⇒ ∆(u)(wλ ⊗ wµ) = 0,

i.e., that

∆(u) ∈ Annh⊗A(wλ) ⊗ U(h ⊗ A) + U(h ⊗ A) ⊗ Annh⊗A(wµ),



A CATEGORICAL APPROACH TO WEYL MODULES 13

and hence we have an induced map ∆λ,µ : Aλ+µ → Aλ⊗Aµ. The remaining statements in (ii)
follow from the co-commutativity and co-associativity of ∆. The right action of Aλ on WA(λ)
and of Aµ on WA(µ) defines a right action of Aλ ⊗ Aµ on WA(λ) ⊗ WA(µ) in the obvious
pointwise way and part (iii) now follows easily. To prove (iv), note that we clearly have a map

W
λ+µ
A ∆∗

λ,µ(M ⊗ N) → (WA(λ) ⊗ WA(µ)) ⊗Aλ+µ
∆∗

λ,µ(M ⊗ N).

Since there exist canonical maps of g ⊗ A–modules

(WA(λ) ⊗ WA(µ)) ⊗Aλ+µ
∆∗

λ,µ(M ⊗ N) → (WA(λ) ⊗ WA(µ)) ⊗Aλ⊗Aµ (M ⊗ N)

and a map

(WA(λ) ⊗ WA(µ)) ⊗Aλ⊗Aµ (M ⊗ N) → Wλ
AM ⊗ W

µ
AN,

(w ⊗ w′) ⊗ (m ⊗ n) → (w ⊗ m) ⊗ (w′ ⊗ n),

the result follows. �

4.3. Given two commutative associative algebras A and B the direct sum C = A ⊕ B is
canonically an associative algebra and let pA (resp. pB) be the projection onto A (resp. B).
By Proposition 4.1 any M ∈ modAλ (resp. N ∈ modBµ) can be regarded as a module for
Cλ (resp. Cµ) and hence the tensor product M ⊗N can be viewed as a module for Cλ ⊗Cµ.
Pulling this module back by ∆λ,µ we get a Cλ+µ–module which by abuse of notation, we shall
just denote by M ⊗ N and we shall see that the context is such that no confusion arises from
this abuse of notation. The following is immediate from Corollary 4.1 and Proposition 4.2(iv).

Corollary. For M ∈ modAλ, N ∈ modBµ, there exists a surjective homomorphism of g⊗C–
modules

W
λ+µ
C (M ⊗ N) ։ Wλ

AM ⊗W
µ
BN.

4.4.

Theorem. Assume that A is a finitely generated algebra.

(i) For all λ ∈ P+, the algebra Aλ is finitely generated and WA(λ) is a finitely generated
right Aλ–module.

(ii) If M ∈ modAλ is a finitely generated (resp. finite–dimensional) then Wλ
AM is a finitely

generated (resp. finite-dimensional) g ⊗ A–module.
(iii) Suppose that A and B are finite–dimensional commutative, associative algebras and let

λ, µ ∈ P+. For M ∈ modAλ, N ∈ modBµ with dimM < ∞ and dimN < ∞ we have,

W
λ+µ
A⊕B(M ⊗ N) ∼= Wλ

AM ⊗W
µ
BN,

as g ⊗ (A ⊕ B)–modules.

We prove the theorem in the rest of the section.
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4.5. Let u be an indeterminate and for a ∈ A, α ∈ R+, define a power series pa,α(u) in u
with coefficients in U(h ⊗ A) by

pa,α(u) = exp

(

−

∞
∑

r=1

hα ⊗ ar

r
ur

)

.

For s ∈ Z+, let ps
a,α be the coefficient of us in pa,α(u). The following formula is proved in

[G] in the case when A is the polynomial ring C[t] and a = t. Applying the Lie algebra
homomorphism

g ⊗ C[t] → g ⊗ A, x ⊗ tr → x ⊗ ar, r ∈ Z+, x ∈ g,

gives the result for g ⊗ A.

Lemma. Let r ∈ Z+. Then,

(x+
α ⊗ a)r(x−

α ⊗ 1)r+1 −
r
∑

s=0

(x−
α ⊗ ar−s)ps

a,α ∈ U(g ⊗ A)(n+ ⊗ A),

(x+
α ⊗ a)r+1(x−

α ⊗ 1)r+1 − pr+1
a,α ∈ U(g ⊗ A)(n+ ⊗ A)

�

4.6. Part (i) of the theorem was proved in the case when A is the polynomial ring in one
variable in [CP2]. The proof in the general case is very similar, and we only give a brief sketch
here. Let a1, · · · , am be a set of generators for A. Using the defining relations of WA(λ) and
Lemma 4.5, we see that

(x+
i ⊗ ak)

ni(x−
i ⊗ 1)ni+1wλ =

ni
∑

s=0

(x−
i ⊗ ani−s

k )ps
ak ,αi

wλ = 0

for all i ∈ I, 1 ≤ k ≤ m and ni = λ(hi). Applying x+
i ⊗a, a ∈ A, to both sides of the equation,

we get
(

hi ⊗ aani

k +

ni
∑

s=1

(hi ⊗ aani−s
k )ps

ak ,αi

)

wλ = 0.

It is now straightforward to see by using an iteration of this argument that for all i ∈ I,
(r1, · · · , rm) ∈ Zm

+ , we have

hi ⊗ (ar1

1 · · · arm
m )wλ = H(i, r1, · · · , rm)wλ

for some H(i, r1, · · · , rm) in the subalgebra of U(h ⊗ A) generated by the elements of the set

{hi ⊗ as1

1 · · · asm
m : 0 ≤ sℓ ≤ ni, 1 ≤ ℓ ≤ m, i ∈ I}.

In other words, we have proved that Aλ is the quotient of a finitely generated algebra.

Let {β1, · · · , βN} be an enumeration of R+ and set

S = {as1

1 · · · asm
m : (s1, · · · , sm) ∈ ZM

+ }.

Using the PBW theorem, we see that elements of the set,
{

(x−
βi1

⊗ b1) · · · (x
−
βiℓ

⊗ bℓ)wλ : 1 ≤ i1 ≤ · · · ≤ iℓ ≤ N, ℓ ∈ Z+, b1, · · · , bℓ ∈ S
}

(4.2)
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generate WA(λ) as a right module for Aλ. Using Lemma 4.5 and the defining relations for
WA(λ) we see that

(x+
α ⊗ ar)

nα(x−
α ⊗ 1)nα+1wλ =

nα
∑

s=0

x−
α ⊗ anα−s

r ps
ar,αwλ = 0, 1 ≤ r ≤ m,

for all α ∈ R+ and nα = λ(hα). That implies

(x−
α ⊗ as

r)wλ ∈ sp{(x−
α ⊗ aℓ

r)wλAλ : 0 ≤ ℓ < λ(hα)}.

Applying hα ⊗ ak
p with r 6= p to the preceding equation gives,

(x−
α ⊗ as

ra
k
p)wλ ∈ sp{(x−

α ⊗ aℓ
ra

k
p)wλAλ : 0 ≤ ℓ < λ(hα)}

⊂ sp{x−
α ⊗ aℓ

ra
ℓ′

p WA(λ)λ, 0 ≤ ℓ, ℓ′ < nα}.

It is now clear that more generally we have

(x−
α ⊗ A)wλ ⊂ sp{(x−

α ⊗ (ar1

1 · · · arm
m )wλAλ : 0 ≤ rℓ < nα)}.

An induction on the length of the monomials in (4.2) identical to the one used in [CP2]
now proves that WA(λ) is a finitely generated Aλ–module. Part (ii) of the theorem is now
immediate by using (3.4).

4.7. To prove (iii), we begin with the following refinement of Theorem 3.7.

Proposition. (i) Let λ, ν ∈ P+ be such that λ � ν and ν � λ. Let U ∈ Iν
A be irreducible

and assume that Uν 6= 0. Then

Extm
IA

(Wλ
AM,U) = 0, m = 0, 1,

for all M ∈ ObmodAλ.
(ii) Let V ∈ Iλ

A be such that dim Vλ < ∞. Then Wλ
ARλ

AVλ
∼= V iff

Extmg⊗A(V,U) = 0, m = 0, 1 (4.3)

for all U ∈ Ob Iλ
A with dim U < ∞ and Uλ = 0.

Proof. For (i), observe that since U is irreducible any non–zero morphism η : WA(λ) → U
must be surjective. But this is impossible since (Wλ

AM)ν = 0. Suppose next that

0 → U → V → Wλ
AM → 0

is a short exact sequence of objects in IA. Then

Vλ 6= 0, wtV ⊂ (ν − Q+) ∪ (λ − Q+),

and since λ � ν we see that (n+ ⊗ A)Vλ = 0. Set V ′ = U(g ⊗ A)Vλ so that wtV ⊂ λ − Q+.
To prove that the sequence splits, it suffices to prove that

V ′ ∩ U = {0}.

Otherwise since U is irreducible we would have U ∩V ′ = U which would imply that ν ∈ wtV ′

contradicting ν � λ.
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A simple induction on the length of U shows that it suffices to to prove that Wλ
AVλ

∼= V if

(4.3) holds for all irreducible modules U ∈ Ob Iλ
A with Uλ = 0. As in the proof of Theorem

3.7 we have V = U(g ⊗ A)Vλ and hence a short exact sequence

0 → K → Wλ
AVλ → V → 0.

By part (ii) of Theorem 4.4 we have dimWλ
AVλ < ∞ and hence we have

dim K < ∞, Kλ = 0.

If K 6= 0, then Homg⊗A(K,U) 6= 0 for some irreducible module U ∈ Iλ
A with Uλ = 0. Applying

HomIλ
A
(−, U) and using the fact that Homg⊗A(Wλ

A, U) = 0, we get

0 → Homg⊗A(K,U) → Ext1g⊗A(V,U)

which is impossible since V satisfies (4.3). Hence K = 0 and the proof of (ii) is complete. �

4.8. The proof of part(iii) of the Theorem is completed as follows. By Corollary 4.3 we
have a surjective map of g ⊗ (A ⊕ B)–modules,

W
λ+µ
A⊕B(M ⊗ N) −→ Wλ

AM ⊗ W
µ
BN → 0.

To prove that it is an isomorphism it suffices by Proposition 4.7(ii) to prove that

Extm
Iλ+µ

A⊕B

(Wλ
AM ⊗W

µ
BN,U) = 0, m = 0, 1,

for all irreducible U ∈ Ob Iλ+µ
A⊕B with Uλ+µ = 0. By Proposition 2.4 we may write such a

module as a tensor product,

U ∼= UA ⊗ UB , UA ∈ ObIA, UB ∈ ObIB,

where UA and UB are irreducible. Let νA (resp. νB) be the highest weight of UA (resp. UB) and
note that νA + νB ∈ wtU ⊂ λ+µ−Q+. Since Wλ

AM , W
µ
BN and U are all finite–dimensional

modules for finite–dimensional Lie algebras, we have for m = 0, 1,

Extmg⊗(A⊕B)(W
λ
AM ⊗ W

µ
BN,U) ∼= Extm

Iλ+µ
A⊕B

(Wλ
AM ⊗ W

µ
BN,U),

Extmg⊗A(Wλ
AM,UA) ∼= Extm

Iλ
A

(Wλ
AM,UA), Extmg⊗B(Wµ

BN,UB) ∼= Extm
Iλ

b

(Wµ
BN,UB).

By Proposition 2.5 it suffices to prove that either

Extm
Iλ

A

(Wλ
AM,UA) = 0, or ExtmIµ

B
(Wµ

BN,UB) = 0, m = 0, 1. (4.4)

If UA ∈ ObIλ
A or UB ∈ ObIν

B then (4.4) follows from Proposition 4.7(ii). Otherwise we have

νA � λ, νB � µ.

Since νA+νB < λ+µ, it follows now that λ � νA and now (4.4) follows from Proposition 4.7(i).

5. Further results on tensor products

Throughout this section, we assume that A is finitely generated.
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5.1. Let irr modAλ be the set of irreducible representations of Aλ. Since Aλ is a com-
mutative finitely generated algebra it follows that if M ∈ irrmodAλ then dim M = 1. By
Theorem 4.4 we see that

dimWλ
AM < ∞, Rλ

AWλ
AM = M, for M ∈ irr modAλ,

and we denote by Vλ
AM the unique irreducible quotient of Wλ

AM (see Lemma 3.1). It now

follows from Lemma 2.2 and Lemma 2.3 that there exists an ideal of finite–codimension K̃λ
M

of A such that g ⊗ A/K̃λ
M is a semisimple Lie algebra and

(x ⊗ a)Vλ
AM = 0 ∀ x ∈ g, a ∈ K̃λ

M .

Suppose that M ∈ modAλ is finite dimensional of length r, M1, · · · ,Mr be the irreducible
constituents of M and set

K̃λ
M =

r
∏

s=1

K̃λ
Ms

.

5.2. The next result shows that any irreducible module in Iλ
A is isomorphic to V

µ
AM for

some µ ∈ P+.

Lemma. Let λ ∈ P+ and assume that V ∈ Iλ
A is irreducible. There exists µ ∈ P+ ∩ (λ−Q+)

such that

wt V ⊂ µ − Q+, dim Vµ = 1.

In particular, V is the unique irreducible quotient of W
µ
AR

µ
AV and hence dim V < ∞. If

V ′ ∈ Ob IA we have V ∼= V ′ as g ⊗ A–modules iff R
µ
AV ∼= R

µ′

A V ′ as Aµ–modules.

Proof. Since V ∈ Iλ
A, it follows that there exists µ ∈ λ − Q+ with

Vµ 6= 0, (n+ ⊗ A)Vµ = 0.

It is immediate from Proposition 3.6 that V is a quotient of W
µ
AR

µ
A. If V ′

µ = U(h ⊗ A)Vµ is
a proper h ⊗ A–submodule of Vµ, then V ′ = U(g ⊗ A)V ′

µ is a proper submodule of V which

is a contradicton. Hence R
µ
AV is an irreducible Aµ–module which implies that dimVµ = 1.

Theorem 4.4 now implies that dimW
µ
AR

µ
AV < ∞ and hence dim V < ∞. The proof that V

is the unique irreducible quotient of WA
µ R

µ
AV is standard since R

µ
AW

µ
AR

µ
AV ∼= Vµ. The final

statement of the lemma is now trivial. �

5.3. The main result of this section is the following.

Theorem. Let λ, µ ∈ P+ and let M,N be irreducible modules for Aλ and Aµ respectively
and assume that

A/K̃λ
M K̃λ

N
∼= A/K̃λ

M ⊕ A/K̃λ
N . (5.1)

Then

V
λ+µ
A (M ⊗ N) ∼=g⊗A Vλ

AM ⊗ V
µ
AN, K̃λ+µ

M⊗N = K̃λ
MK̃µ

N , (5.2)

W
λ+µ
A (M ⊗ N) ∼=g⊗A Wλ

AM ⊗W
µ
AN. (5.3)
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5.4. To prove (5.2) recall that M ⊗ N is an irreducible Aλ ⊗Aµ–module with the action
being pointwise and hence also an irreducible Aλ+µ–module (via ∆λ,µ). By Lemma 5.2 we see

that it suffices to prove that Vλ
AM ⊗V

µ
AN is the irreducible g⊗A quotient of W

λ+µ
A (M ⊗N).

Clearly, Vλ
AM ⊗ V

µ
AN is an irreducible module for the semisimple Lie algebra g ⊗ (A/K̃λ

M ⊕

A/K̃λ
N ) and hence using (5.1) it is an irreducible module for g ⊗ A/K̃λ

M K̃λ
N and so for g ⊗ A

as well. Since
R

λ+µ
A (Vλ

AM ⊗ V
µ
AN) ∼= M ⊗ N,

we see from Lemma 3.5 that Vλ
AM ⊗ V

µ
AN is a quotient of W

λ+µ
A (M ⊗ N) and the first

isomorphism in (5.2) is proved. For the second, observe that by definition if S is any ideal in
A such that

(g ⊗ S)Vλ
AM = 0,

then S ⊂ K̃λ
M and similarly for K̃µ

N . One deduces easily from (5.1) that K̃λ
MK̃λ

N is the largest
ideal in A such that

(g ⊗ K̃λ
MK̃λ

N )Vλ
AM ⊗ V

µ
AN = 0.

Since K̃λ+µ
M⊗N is maximal with the property that

(g ⊗ K̃λ+µ
M⊗N )Vλ+µ

A (M ⊗ N) = 0

we now get that K̃λ+µ
M⊗N = K̃λ

MK̃λ
N .

5.5. We need several results to prove (5.3). Theorem 4.4 and Lemma 2.2 imply that given
λ ∈ P+ and M ∈ modAλ with dim M < ∞, there exists an ideal of finite codimension Kλ

M in
A which is maximal with the property that

(g ⊗ Kλ
M )Wλ

AM = 0.

If 0 → M ′ → M → M ′′ → 0, is a short exact sequence of modules in Aλ then since the functor
Wλ

M is right exact, we see that

Kλ
M ′Kλ

M ′′ ⊂ Kλ
M ⊂ Kλ

M ′′ . (5.4)

Let K ⊂ Kλ
M be an ideal in A and set A/K = B. It is clear that Wλ

AM is a module for g⊗B
and since

Rλ
BWλ

AM = M,

we get by Lemma 3.5 that M is also a Bλ–module.

Lemma. Let λ ∈ P+ and M modAλ be finite–dimensional. For all ideals K ⊂ Kλ
M , we have

an isomorphism of g ⊗ A (or equivalently g ⊗ A/K) modules,

Wλ
AM ∼= Wλ

A/KM. (5.5)

Proof. By Corollary 4.1 and the discussion preceding the statement of the Lemma we see that
we have a surjective map of g ⊗ A–modules

Wλ
AM → Wλ

BM → 0, wλ ⊗ m → wλ ⊗ m.

On the other hand by Proposition 3.6 we have a map of g ⊗ B–modules

Wλ
BM ∼= Wλ

BRλ
BWλ

AM −→ Wλ
AM, wλ ⊗ m → wλ ⊗ m

and hence (5.5) is proved. �
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5.6.

Proposition. Let λ ∈ P+ and M ∈ modAλ be finite–dimensional. We have

(K̃λ
M )λ(hθ) ⊂ Kλ

M .

Proof. It suffices by (5.4) to consider the case when M is irreducible. Using Lemma 4.5 we
see as in the proof of Theorem 4.4 that

0 = (x+
θ ⊗ a)(x−

θ )λ(hθ)+1(wλ ⊗ m) =

λ(hθ)
∑

s=0

(x−
θ ⊗ ar−s)ps

a,θ(wλ ⊗ m).

If a ∈ K̃λ
M then (h ⊗ a)(wλ ⊗ m) = 0 and since ps

a,θ is in the subalgebra generated by the

elements {hθ ⊗ ap : p ∈ Z+, p > 0} with constant term zero, we see that ps
a,θ(wλ ⊗ m) = 0 for

all s > 0. This implies that

(x−
θ ⊗ aλ(hθ))(wλ ⊗ m) = 0.

Since [x−
θ , n−] = 0 we get

(x−
θ ⊗ aλ(hθ))Wλ

AM = 0.

Since g is generated by x−
θ as a g–module the result follows.

�

5.7. By part (i) of the theorem and Proposition 5.6, we may choose r ≥ 1 so that

(K̃λ
M )r(K̃µ

N )r = (K̃λ+µ
M⊗N )r ⊂ (Kλ

MKµ
M ) ∩ Kλ+µ

M⊗N .

Set C = A/(K̃λ
M K̃µ

N )r and note that

C = A/(K̃λ
M )r ⊕ A/(K̃µ

N )r.

By Theorem 4.4(ii), we have an isomorphism of g ⊗ A/C–modules

W
λ+µ
C (M ⊗ N) ∼= Wλ

A/(K̃λ
M )rM ⊗ W

µ

A/(K̃µ
N )r

N.

Lemma 5.5 now proves that we have isomorphisms of g ⊗ A–modules,

W
λ+µ
C (M ⊗ N) ∼= W

λ+µ
A (M ⊗ N), WA/(K̃λ

M )rM ∼= Wλ
AM, W

µ

A/(K̃µ
N )r

N ∼= W
µ
AN,

and (5.3) is proved.

5.8. The statement of (5.3) can be strengthened as follows by using Proposition 5.6.

Corollary. Let M ∈ modAλ and N ∈ modAµ be finite–dimensional and assume that

A/K̃λ
M K̃λ

N
∼= A/K̃λ

M ⊕ A/K̃λ
N . (5.6)

Then

W
λ+µ
A (M ⊗ N) ∼= Wλ

AM ⊗ W
µ
AN. (5.7)
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6. The algebra Aλ

We continue to assume that A is a finitely generated commutative associative algebra over
C. Denote by maxA the set of maximal ideals of A and let J(A) be the Jacobson radical of
A. In this section we shall identify the max spectrum of Aλ and if J(A) = 0 we shall also
identify the algebra Aλ. As a consequence we also obtain a classification of the irreducible
finite dimensional modules in IA

λ . Special cases of this classification were proved earlier in
[C1], [CP1] for A = C[t, t−1], in [L] and [R] in the case when A is the polynomial ring in k
variables.

6.1. For r ∈ Z+ the symmetric group Sr acts naturally on A⊗r and max(A)×r and we
let (A⊗r)Sr be the corresponding ring of invariants and max(A)×r/Sr the set of orbits. If
r = r1 + · · · + rn, then we regard Sr1

× · · · × Srn as a subgroup of Sr in the canonical way, i.e
Sr1

permutes the first r1 letters, Sr2
the next r2 letters and so on. Given λ =

∑

i∈I riωi ∈ P+,
set

rλ =
∑

i∈I

ri, Sλ = Sr1
× · · · × Srn , Aλ = (A⊗rλ)Sλ , (6.1)

max(Aλ) = (max(A)r1/Sr1
) × · · · × (max(Arn)/Srn). (6.2)

The algebra Aλ is clearly finitely generated. For M ∈ max (Aλ), let evM : Aλ → C be the
corresponding algebra homomorphism.

We shall prove the following in the rest of the section.

Theorem. (i) There exists a canonical bijection

max Aλ → maxAλ

(ii) Assume that J(A) = 0 and let λ ∈ P+. There exists an isomorphism of algebras

τλ : Aλ → Aλ.

6.2. Let Ξ be the monoid of finitely supported functions ξ : max(A) → P+, where for
ξ, ξ′ ∈ Ξ and S ∈ maxA, we define

(ξ + ξ′)(S) = ξ(S) + ξ′(S), supp ξ = {S ∈ max(A) : ξ(S) 6= 0}, wt(ξ) =
∑

S∈max(A)

ξ(S).

Clearly wt : Ξ → P+ is a morphism of monoids and we set

Ξλ = {ξ ∈ Ξ : wt ξ = λ}.

Given ξ ∈ Ξλ, let

Kξ =
∏

S∈supp ξ

S, gξ = g ⊗ A/Kξ , Vξ =
⊗

S∈supp ξ

V (ξ(S)).

Then gξ is a finite–dimensional semi–simple Lie algebra and Vξ is an irreducible finite–
dimensional representation of gξ and hence of g ⊗ A with action given by

(x ⊗ a)(v1 ⊗ · · · ⊗ vr) =
r
∑

k=1

evSk
(a)(v1 ⊗ · · · ⊗ xvk ⊗ · · · ⊗ vr), (6.3)
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where S1, · · · , Sr is an enumeration of supp ξ. Set Mξ = Rλ
AVξ. By Lemma 5.2 we see that

Vξ is the unique irreducible quotient of Wλ
AMξ and hence

Vξ
∼= Vλ

AMξ.

Let λ ∈ P+ and M ∈ irr modAλ. Since A/K̃λ
M is a finite–dimensional semi–simple algebra

we know that
K̃λ

M = S1 · · ·Sr, r ∈ Z+,

where S1, · · · , Sr are (uniquely defined up to permutation) maximal ideals in A. Moreover
Vλ

AM is a representation for the semi-simple Lie algebra gM = ⊕r
k=1g ⊗ A/Si. So there exist

unique elements µ1, · · · , µr ∈ P+ such that

Vλ
AM ∼=gM

V (µ1) ⊗ · · · ⊗ V (µr).

Define ξM ∈ Ξλ by

ξM (Sk) = µk, 1 ≤ k ≤ r, ξ(S) = 0, otherwise.

Then Vλ
AM ∼= Vξ as g ⊗ A–modules. Summarizing, we have proved that:

Proposition. The assignment ξ → Mξ, (resp. ξ → Vξ) defines a natural bijection between
Ξλ and the set of isomorphism classes of irreducible representations of Aλ (resp. isomorphism
classes of irreducible objects in Iλ

A). Moreover this bijection is compatible with the functor Vλ
A,

in the sense that
Vξ

∼= Vλ
AMξ.

�

Given ξ ∈ Ξλ, define evξ : U(h ⊗ A) → C by extending

evξ(h ⊗ a) =
∑

S∈max A

evS(a)ξ(S)(h).

Corollary. Let λ ∈ P+. Then

Annh⊗A wλ ⊂
⋂

ξ∈Ξλ

ker evξ .

Proof. Let u ∈ U(h⊗A) and assume that uwλ = 0. Since Vξ is a quotient of WA(λ) it follows
that u(Vξ)λ = 0. On the other hand it is clear from the definition of Vξ that

(h ⊗ a)(Vξ)λ = evξ(h ⊗ a)(Vξ)λ,

and the corollary follows. �

6.3. The set Ξλ also parametrizes the set max Aλ as follows. Let M ∈ max(Aλ) be the
orbit of an element (S1, · · · , Srλ

) ∈ max(A)×rλ . Define ξ(M) ∈ Ξλ by

ξ(M)(S) =
∑

i∈I

pi(S)ωi, S ∈ max(A),

pi(S) = #{p :
i−1
∑

k=1

rk < p ≤
i
∑

k=1

rk, Sp = S}.
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It is easily seen that the assignment M → ξ(M) is well–defined bijection of sets max(Aλ) → Ξλ

and part (i) of the Theorem is established.

6.4. The algebra Aλ is generated by elements of the form

symi
λ(a) = 1⊗(r1+···ri−1) ⊗

(

ri−1
∑

k=0

1⊗k ⊗ a ⊗ 1⊗(ri−k−1)

)

⊗ 1⊗(ri+1+···rn), a ∈ A, i ∈ I. (6.4)

It is clear that the assignment

τ̃λ(hi ⊗ a) = symi
λ(a), i ∈ I, a ∈ A

extends to a surjective algebra homomorphism τ̃λ : U(h ⊗ A) 7→ Aλ. Moreover it is easily
checked that

evξ(M)(h ⊗ a) = evM τ̃λ(h ⊗ a), h ∈ h, a ∈ A. (6.5)

Lemma. We have

ker τ̃λ =
⋂

M∈max Aλ

ker evM τ̃λ =
⋂

ξ∈Ξλ

ker evξ, (6.6)

and hence τ̃λ induces a surjective homomorphism of algebras τλ : Aλ → Aλ.

Proof. The first equality in (6.6) is trivial since J(Aλ) = 0 if J(A) = 0. The second equality
is immediate from (6.5) and the fact that M → ξ(M) is bijective. The final statement of the
Lemma is immediate from Corollary 6.2. �

6.5. It remains to prove that τλ is injective. To do this we adapt an argument in [FL].
Thus, we identify a natural spanning set of Aλ and prove that its image in Aλ is a basis. Fix
an ordered countable basis {ar : r ∈ Z+} of A with a0 = 1 and ar ∈ A+ for r ≥ 1.

Lemma. The elements

{

n
∏

i=1

qi
∏

s=1

(hi ⊗ ai,s)wλ : a0 < ai,1 ≤ · · · ≤ ai,qi
, i ∈ I, qi ≤ λ(hi)}

span WA(λ)λ.

Proof. It is clearly enough to prove that for each i ∈ I and elements 1 ≤ p1 ≤ · · · ≤ pℓ,

ℓ
∏

s=1

(hi ⊗ aps)wλ ∈ span

{

m
∏

s=1

(hi ⊗ ars)wλ : 1 ≤ r1 ≤ r2 ≤ · · · ≤ rm, m ≤ λ(hi)

}

.

Since

0 =
ℓ
∏

s=1

(x+
i ⊗ aps)(x

−
i ⊗ 1)ℓ =

ℓ
∏

s=1

(hi ⊗ aps)wλ + Hwλ, ℓ ≥ λ(hi) + 1,

where H is in the span of elements of the form
∏r

s=1(hi ⊗ apjs
) with r < ℓ, the Lemma follows

by a simple induction on ℓ. �
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6.6. As a result of the Lemma we see that Aλ is spanned by the image of the set

{

n
∏

i=1

mi
∏

s=1

(hi ⊗ ai,s) : ai,s ∈ A+, ai,1 ≤ · · · ≤ ai,mi
, i ∈ I, mi ≤ λ(hi)}.

The proof that τλ is injective follows if we prove that the set
{

m1
⊗

s=1

sym1
λ(a1,s)

⊗

· · ·

mn
⊗

s=1

symn
λ(an,s) : ai,s ∈ A+, ai,1 ≤ · · · ≤ ai,mi

, i ∈ I, mi ≤ λ(hi)

}

is linearly independent in Aλ. Since the tensor product of linearly independent sets is linearly
independent it is enough to prove the following. Let N ∈ Z+ and for b1, · · · , bN ∈ A let

symN (b1 ⊗ · · · ⊗ bN ) =
∑

σ∈SN

(bσ(1) ⊗ · · · ⊗ bσ(N)).

Lemma. The elements

symN (ar1
⊗ 1⊗N−1) symN (ar2

⊗ 1⊗N−1) · · · symN (arm ⊗ 1⊗N−1), 1 ≤ r1 ≤ · · · ≤ rm, m ≤ N
(6.7)

are linearly independent in A⊗N .

Proof. Set

U =
⊕

0≤m≤N

A⊗m
+ ⊗ 1⊗(N−m),

and let p : A⊗N → U be the canonical projection. The projection onto U of the elements in
(6.7) are

symrm
(ar1

⊗ ar2
⊗ · · · arm) ⊗ 1N−m, 1 ≤ r1 ≤ · · · ≤ rm, m ≤ N

and these are clearly linearly independent in U and the Lemma is proved. �

7. The fundamental Weyl modules

We use the notation of the previous sections freely. Throughout this section we shall assume
that A is finitely generated. Theorem 6.1(i) applies and we have bijections max(Aλ) → Ξλ →
max(Aλ). Recall that max Aλ is the set of orbits of the group Sλ acting on (max A)⊗rλ . The
orbits of maximal size (i.e those coming from an element of (maxA)⊗rλ with trivial stabilizer
under the Sλ action) correspond under this bijection to the subset

Ξns
λ = {ξ ∈ Ξλ : ξ(S) =

∑

i∈I

miωi, mi ≤ 1 ∀ S ∈ max A}

of Ξ. The group Srλ
also acts on (max A)⊗rλ by permutations and the orbits of this action

can be naturally identified with a subset of max Aλ. The orbit of points with trivial stabilizer
under the Srλ

action corresponds further to the subset

1Ξ
ns
λ = {ξ ∈ Ξλ : ξ(S) ∈ {0, ω1, · · · , ωn}, ∀ S ∈ maxA},

of Ξns
λ . Clearly

Ξωi
= 1Ξ

ns
ωi

.
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In this section we shall analyze the modules Wλ
AMξ, ξ ∈ 1Ξ

ns
λ when g is an algebra of

classical type. By Theorem 5.3 we see that

Wλ
AMξ

∼=
⊗

S∈supp ξ

W
ξ(S)
A MξS

, supp ξS = {S}, ξS(S) = ξ(S). (7.1)

This means that if ξ ∈ 1Ξ
ns
λ , it is enough to analyze the modules W

ωi

A Mξ, i ∈ I, ξ ∈ Ξωi
.

7.1. Assume from now on that g is of type An, Bn, Cn or Dn. Assume also that the nodes
of the Dynkin diagram of g are numbered as in [B]. Define a subset J0 of I as follows:

J0 =











I, g of type An, Cn,

{n}, g of type Bn,

{n − 1, n}, g of type Dn.

Given m,k ∈ Z+, let c(m) be the dimension of the space of polynomials of degree m in
k–variables, i.e

c(m) = #{s = (s1, · · · , sk) ∈ Zk
+ : s1 + · · · + sk = m}.

For S ∈ maxA and i ∈ I let ξi
S ∈ Ξωi

be given by requiring supp ξ = S.

Theorem. Assume that S ∈ max A and that dimS/S2 = k. We have an isomorphism of
g–modules,

W
ωi

A Mξi
S

∼=g V (ωi), i ∈ J0, (7.2)

W
ωi

A Mξi
S

∼=g

⊕

{j:i−2j≥0}

V (ωi−2j)
⊕c(j), i /∈ J0. (7.3)

Remark. The theorem was proved when A is the polynomial ring in one variable in [C2],[CM].

7.2. Before proving the theorem, we note the following. Let dimλ : Ξλ → Z+ be the
function ξ → dimWλ

AMξ.

Corollary. Let A be a smooth irreducible algebraic variety. The restriction of dimλ to 1Ξ
ns
λ

is constant.

Proof. Since A is smooth and irreducible, it follows that dimS/S2 is independent of S and
hence by Theorem 7.1 we see that the corollary is true for ωi. The general case now follows
from (7.1). �

Remark. In the special case when A = C[t] the function dimλ is constant on Ξλ. This was
conjectured in [CP2] and proved there for sl2. It was later proved in [CL] for slr+1, in [FoL] for
algebras of type A,D,E. The general case can be deduced by passing to the quantum group
situation and using results in [K], [BN]. No self–contained algebraic proof of this fact has been
given for the non–simply laced algebras.

However, it is not true that if A is an arbitrary smooth irreducible variety, then dimλ is
constant on Ξns

λ . As an example take g = sl3, A = C[t1, t2] and consider λ = ω1 + ω2. Let
S, S′ be the maximal ideals in A corresponding to distinct points (z1, z2, ) and (z′1, z

′
2). Let

ξ, ξ′ ∈ Ξλ be given by
ξ(S) = ω1, ξ(S′) = ω2, ξ′(S) = λ.
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Then by Theorem 7.1

Wλ
AMξ

∼=g V (ω1) ⊗ V (ω2),

and hence is nine–dimensional.

On the other hand the following argument proves that Wλ
A(M ′

ξ) is at least 10–dimensional.

Recall that V (ω1 + ω2) ∼=g gad where gad is the adjoint representation of g and hence has
dimension eight. Let < , > be the Killing form of g. A relatively straightforward check shows
that if we set W = gad ⊕ C ⊕ C and define an action of g ⊗ A on W by

(x ⊗ f)(y, z, z′) = (f(z′1, z
′
2)[x, y],

df

dt1
(z′1, z

′
2) < x, y >,

df

dt2
(z′1, z

′
2) < x, y >),

then W is a quotient of Wλ
A(M ′

ξ).

7.3. The rest of the section is devoted to proving the theorem. We shall repeatedly use
the following

(h ⊗ S)(wωi
⊗ Mξi

S
) = 0. (7.4)

Given α ∈ R+, let εi(α) ∈ {0, 1, 2} be the coefficient of αi in α and set

htα =
∑

j∈I

εj(α), n−r =
⊕

{α∈R+:εi(α)=r}

g−α.

It is a simple matter to check that

[n−0 , n−0 ] = n−0 , [n−0 , n−1 ] = n−1 , [n−1 , n−1 ] = n−2 . (7.5)

Lemma. We have
(

(n−0 ⊗ A) ⊕ (n−1 ⊗ S) ⊕ (n−2 ⊗ S2)
)

(wωi
⊗ Mξi

S
) = 0.

In particular (g ⊗ S2)Wωi

A Mξi
S

= 0, i.e. S2 ⊂ Kωi

M
ξi
S

.

Proof. It is trivial that

n+(x−
j ⊗ A)(wωi

⊗ Mξi
S
) = 0, j 6= i, n+(x−

i ⊗ S)(wωi
⊗ Mξi

S
) = 0

Since ωi − αj /∈ P+ for all i ∈ I, it follows by elementary representation theory that

(x−
j ⊗ A)(wωi

⊗ Mξi
S
) = 0, j 6= i, (x−

i ⊗ S)(wωi
⊗ Mξi

S
) = 0.

Using (7.5) we see that a straightforward induction on htα proves the lemma. �

7.4. We now prove by using Lemma 5.5 and Lemma 7.3 that it suffices to prove Theorem
7.1 in the case when A is the polynomial ring in finitely many variables. For this, suppose
that B is a finitely generated algebra and let SB a maximal ideal in B. Let t1, . . . , tk ∈ S be
such that the images of these elements form a basis of SB/S2

B. Let A = C[x1, . . . , xk], and
define an algebra homomorphism A −→ B by extending the assignment xi 7→ ti. Let SA be
the ideal in A generated by x1, · · · , xk. Clearly SA maps to SB and we have a homomorphism
of algebras φ : A/S2

A → B/S2
B. Moreover, since t1, · · · , tk are linearly independent in SB/S2

B
it follows that φ is injective. Further, since

dim A/S2
A = dimB/S2

B = k + 1,
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it follows that φ is an isomorphism of algebras. We now have

W
ωi

B Mξi
SB

∼= W
ωi

B/S2
B

Mξi
SB

∼= W
ωi

A/(SA)2
Mξi

SA

∼= W
ωi

A Mξi
SA

,

where the first and last isomorphisms follow from Lemma 5.5 and the isomorphism in the
middle is induced by φ.

7.5. From now on we shall assume that A = C[t1, . . . , tk] is the polynomial ring in k
variables. Moreover since the theorem is proved for k = 1 in [C2],[CM], we shall assume that
k > 1. In addition we may assume that S is the maximal ideal generated by t1, · · · , tk. There
is no loss of generality in doing this for the following reason. Suppose that S′ is another
maximal ideal corresponding to the point z = (z1, · · · , , zk) ∈ Ck. Consider the automorphism
of φz : g⊗A → g⊗A given by x⊗ tr → x⊗ (tr − zr), x ∈ g, 1 ≤ r ≤ k. It is not hard to check
that

W
ωi

A Mξi
S

∼= φ∗
zW

ωi

A Mξi
S′

.

7.6. Let A+ be the subspace of polynomials with constant term zero. Since g ⊗ A+ is an
ideal in g ⊗ A, to prove (7.2) it suffices to show that for all α ∈ R+ and a ∈ A+,

(x−
α ⊗ a)(wωi

⊗ Mξi
S
) ∈ U(g)(wωi

⊗ Mξi
S
). (7.6)

Let C = C[t], where t is an indeterminante. Consider the map g ⊗ C → g ⊗ A given by
x⊗ t → x⊗ a. By Proposition 4.1 there exists a map of g⊗C–modules W

ωi

C Mξi
S
→ W

ωi

A Mξi
S
.

Since the theorem is known for C, it follows that

(x−
α ⊗ t)(wωi

⊗ Mξi
S
) ∈ U(g)(wωi

⊗ Mξi
S
) ⊂ W

ωi

C Mξi
S
,

which proves (7.6).

7.7. The rest of the section is devoted to proving (7.3) and hence we may and will assume
that g is of type Bn or Dn. For j ∈ I, j ≥ 2, set ωj − ωj−2 = θj. Then one checks easily [H]

θj ∈ R+, θj−2 − θj = αj−3 + 2αj−2 + αj−1, θj − αr ∈ R+ ⇐⇒ r = j.

where we understand that α−1 = 0.

Proposition. Let i ∈ I, 1 ≤ ℓ,m ≤ k, and set vℓ = (x−
θi
⊗ tℓ)(wωi

⊗ Mξi
S
). Then

(n+ ⊗ A)vℓ = 0, (h ⊗ S)vℓ = 0. (7.7)

In particular, the g ⊗ A–submodule of W
ωi

A Mξi
S

generated by vℓ is a quotient of W
ωi−2

A Mξi−2
S

.

Further, we have

(x−
θi−2

⊗ tm)vℓ = (x−
θi−2

⊗ tℓ)vm. (7.8)

Proof. Note that (n+ ⊗ S)vℓ and (h ⊗ S)vℓ are both contained in (g ⊗ S2)(wωi
⊗ Mξi

S
) and

hence by Lemma 7.3

(n+ ⊗ S)vℓ = 0 = (h ⊗ S)vℓ.

Since S is maximal, (7.7) follows if we prove that

(n+ ⊗ 1)vℓ = 0.
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Since

[x+
j , x−

θi
] = 0, j 6= i, and εi(θi − αi) = 1,

we see that Lemma 7.3 gives (x+
j ⊗ 1)vℓ = 0 for all j ∈ I. The second statement of the

proposition is now clear. Hence we have by Lemma 7.3 that

(x−
α ⊗ S)vℓ = 0 if εi−2(α) 6= 2.

Writing

x−
θi−2

= [x−
i−2, [x

−
αi−3+αi−2+αi−1

, x−
θi

]],

and using Lemma 7.3 we get

(x−
θi−2

⊗ tm)vℓ = (x−
θi−2

⊗ tm)(x−
θi
⊗ tℓ)(wωi

⊗ Mξi
S
) = (x−

θi
⊗ tℓ)(x

−
θi−2

⊗ tm)(wωi
⊗ Mξi

S
)

= (x−
θi
⊗ tℓ)x

−
i−2x

−
αi−3+αi−2+αi−1

(x−
θi
⊗ tm)(wωi

⊗ Mξi
S
)

= (x−
θi−2

⊗ tℓ)vm + X(wωi
⊗ Mξi

S
),

where X is a linear combination of the elements

x−
i−2x

−
αi−3+αi−2+αi−1

(x−
θi
⊗ tℓ)(x

−
θi
⊗ tm), x−

i−2(x
−
θi+αi−3+αi−2+αi−1

⊗ tℓ)(x
−
θi
⊗ tm),

x−
αi−3+αi−2+αi−1

(x−
θi+αi−2

⊗ tℓ)(x
−
θi
⊗ tm).

But by Lemma 7.3 all these terms act as zero on (wωi
⊗ Mξi

S
), since (x−

θi
⊗ tm)(wωi

⊗ Mξi
S
)

generates a quotient of W
ωi−2

A Mξi−2
S

and

εi−2(θi + αi−2 + αi−1 + αi−3) = 1 = εi−2(θi + αi−2).

�

The following is now immediate.

Corollary. Given i, ℓ ∈ I with 2ℓ ≤ i, and rs ∈ {1, · · · , k}, 1 ≤ s ≤ ℓ, the elements,

v(r1, · · · , rℓ) = (x−
θi−2ℓ

⊗ trℓ
) · · · (x−

θi−2
⊗ tr2

)(x−
θi
⊗ tr1

).(wωi
⊗ Mξi

S
)

generate a submodule of W
ωi

A Mξi
S

which is a quotient of W
ωi−2ℓ

A Mξi−2ℓ
S

. Moreover if σ ∈ Sℓ,

we have,

v(r1, · · · , rℓ) = v(rσ(1), · · · , rσ(ℓ).

7.8. Suppose that α ∈ R+ is such that εi(α) = 2. Then we can write α = γ + β + θi

for some β, γ ∈ R+ with εi(β) = εi(γ) = 0. This implies that x−
α = c[x−

β , [x−
γ , x−

θi
]], for some

non–zero c ∈ C and hence

(x−
α ⊗ tℓ)(wωi

⊗ Mξi
S
) = c[x−

β , [x−
γ , x−

θi
⊗ tℓ]](wωi

⊗ Mξi
S
) ∈ U(g)(x−

θi
⊗ tℓ)(wωi

⊗ Mξi
S
).

Proposition 7.7 now gives,

W
ωi

A Mξi
S

= U(g)(wωi
⊗ Mξi

S
) ⊕

k
∑

ℓ=1

U(g ⊗ A)(x−
θi
⊗ tℓ)(wωi

⊗ Mξi
S
)
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as g–modules. Using Corollary 7.7 we find

W
ωi

A Mξi
S

= U(g)(wωi
⊗ Mξi

S
)
⊕

0≤2l≤i





∑

0≤r1≤···≤rℓ

U(g)v(r1, · · · , rℓ)



 ,

which proves that

Homg(V (µ),Wωi

A Mξi
S
) = 0, µ 6= i − 2j, dim Homg(V (ωi−2j),W

ωi

A Mξi
S
) ≤ c(j).

7.9. To complete the proof it suffices to prove that the elements v(r1, · · · , rl) are linearly
independent for all i, ℓ ∈ I with 2ℓ ≤ i and rs ∈ {1, · · · , k}, 1 ≤ s ≤ ℓ. We do this as in [CM]
by explicitly constructing a module which is a quotient of W

ωi

A Mξi
S

and where these elements

are linearly independent. Suppose that Vs for 0 ≤ s ≤ ℓ are g–modules such that

Homg(g ⊗ Vs, Vs+1) 6= 0, Homg(∧
2(g) ⊗ Vs, Vs+1) = 0. (7.9)

Set V = ⊕ℓ
s=0Vs and fix non–zero elements ps ∈ Homg(g ⊗ Vs, Vs+1) for 0 ≤ s ≤ k. Define a

g ⊗ A–module structure on V ⊗ A by:

(x ⊗ 1)(v ⊗ a) = xv ⊗ a, (x ⊗ tr)(v ⊗ a) = ps(x ⊗ v) ⊗ atr, x ∈ g, a ∈ A 1 ≤ r ≤ k,

(x ⊗ S2)(v ⊗ a) = 0.

To see that this is an action, the only non–trivial part is to notice that,

[x ⊗ tr, y ⊗ tm](v ⊗ c) = ps+1(x ⊗ ps(y ⊗ v)) ⊗ trtmc − ps+1(y ⊗ ps(x ⊗ v)) ⊗ trtmc,

= ps+1(ps ⊗ 1)((x ⊗ y − y ⊗ x) ⊗ v) ⊗ trtℓc = 0,

where the last equality follows by noticing that ps+1(ps ⊗ 1) ∈ Homg(g ⊗ g ⊗ Vs, Vs+1) and
using (7.9).

It was shown in [CM] that the modules V (ωi−2s), 0 ≤ 2s ≤ i satisfy (7.9) and also that

ps(x
−
θi−2s−2

⊗ vωi−2s
) = vωi−2s−2

.

and hence we can apply the preceding construction to this family of modules. Consider the
U(g ⊗ A)–module W̄ generated by vωi

⊗ 1. It is clear that

(n+ ⊗ A)(vωi
⊗ 1) = 0 = (h ⊗ S)(vωi

⊗ 1),

since ωi−2 < ωi. Hence W̄ is a quotient of W
ωi

A Mξi
S
. Moreover, it is simple to check now that

(x−
θi−2ℓ

⊗ trℓ
) · · · (x−

θi−2
⊗ tr2

)(x−
θi
⊗ tr1

).vωi
= vωi−2ℓ

⊗ tr1
· · · trℓ

.

Since these elements are manifestly linearly independent the result follows.
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