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A CATEGORICAL APPROACH TO WEYL MODULES
VYJAYANTHI CHARI, GHISLAIN FOURIER, AND TANUSREE KHANDAI

ABSTRACT. Global and local Weyl Modules were introduced via generators and relations in
the context of affine Lie algebras in [CP2| and were motivated by representations of quantum
affine algebras. In [FLJ] a more general case was considered by replacing the polynomial ring
with the coordinate ring of an algebraic variety and partial results analogous to those in [CP2]
were obtained. In this paper, we show that there is a natural definition of the local and global
Weyl modules via homological properties. This characterization allows us to define the Weyl
functor from the category of left modules of a commutative algebra to the category of modules
for a simple Lie algebra. As an application we are able to understand the relationships of
these functors to tensor products, generalizing results in [CP2| and [FL]. We also analyze the
fundamental Weyl modules and show that unlike the case of the affine Lie algebras, the Weyl
functors need not be left exact.

1. INTRODUCTION

The category of finite-dimensional representations of affine and quantum affine Lie alge-
bras has been intensively studied in recent years. One of the reasons that this category has
proved to be interesting is the fact that it is not semi-simple. Moreover, it was proved in
[CP2| that irreducible representations of the quantum affine algebra specialized to reducible
indecomposable representations of the affine Lie algebra. This phenomenon is analogous to
the one observed in modular representation theory where an irreducible finite-dimensional
representation in characteristic zero becomes reducible on passing to characteristic p and is
called a Weyl module.

The definition of Weyl modules (global and local) in [CP2] for affine algebras was motivated
by this analogy. Thus given any dominant integral weight of the semisimple Lie algebra g, one
can define an infinite-dimensional left module W () for the corresponding affine (in fact for
the loop) algebra via generators and relations. The module W () is a direct sum of finite—
dimensional g—modules and it was shown in [CP2] that it is also a right module for a polynomial
algebra A, which is canonically associated with A. The local Weyl modules are obtained by
tensoring the global Weyl modules with irreducible modules for Ay or equivalently can be
given via generators and relations. A necessary and sufficient condition for the tensor product
of local Weyl modules to be a local Weyl module was given. Using this fact, the character
of the local Weyl module was conjectured in [CP2] and the conjecture was heavily influenced
by the connection with quantum affine algebras. In particular, the conjecture implied that

VC was partially supported by the NSF grant DMS-0500751.
G.F. was supported by the DFG-project “Kombinatorische Beschreibung von Macdonald und Kostka-Foulkes
Polynomen ”.
1


http://arxiv.org/abs/0906.2014v1

2 VYJAYANTHI CHARI, GHISLAIN FOURIER, AND TANUSREE KHANDAI

the dimension of the local Weyl module was independent of the choice of the irreducible A )—
module, i.e that the global Weyl module is a free module for Ay. The character formula was
proved in |[CP2] for sl,, in [CL] for sl,,1, in [FoL] for simply-laced algebras and the general
case can be deduced by passing to the quantum case by using the work of [K]| and [BN].

In [FL], Feigin and Loktev extended the notion of Weyl modules to the higher—dimensional
case, i.e. instead of the loop algebra they worked with the Lie algebra g ® A where A is the
coordinate ring of an algebraic variety and obtained analogs of some of the results of [CP2].
For instance when g is of type sly and A is the polynomial ring in two variables they compute
the dimension of the Weyl module. They also give a necessary and sufficient condition for
the tensor product of local Weyl modules to be a local Weyl module analogous to the one in
[CP2]. However, they do not define the algebra Ay and the bi-module structure on W (\) and
hence do not say much about the structure of the global Weyl module.

In this paper, we take a more general functorial approach to Weyl modules associated to
the algebra g ® A, where A is a commutative associative algebra (with unit) over the complex
numbers. This approach (as also the approach in [CG1], [CG2]) is motivated by the methods
used to study another well-known category in representation theory: the BGG-category O for
semi-simple Lie algebras. As a result we are able to extend the definition of Weyl modules
to a more general situation and allows us to do a deeper analysis of the global Weyl modules.
We also give the classification and description of irreducible modules for g® A for an arbitrary
finitely generated algebra which is analogous to the one given in [C1],[CP1],|L],|R] in the case
when A is a polynomial algebra.

We now explain our results in some detail. Let 74 be the category of g ® A—modules which
are integrable as g—modules. For A € PT we let Ij‘ be the full subcategory of Z4 consisting of
objects whose weights are bounded above by A. Given A € P, one can define in a canonical
way a projective module P4(A) € Z4 and we prove that the global Weyl module W4 () is the
largest quotient of P4()) that lies in 7). We then define a right action of the algebra U(h® A)
on W4 () where b is a Cartan subalgebra of g which is compatible with the left action of g® A.
Let A be the quotient of U(h ® A) by the torsion ideal for this action so that W4 () can be
regarded as a bi-module for (g ® A, Ay). We prove that the bimodule structure is functorial
in A.

Let ng be the right exact functor W (A)®a, from the category mod A of left modules
for Ay to Ij;. The local Weyl modules are then just WQM where M is an irreducible object
of mod A . In section 3, we prove that one can define a functor Rﬁ which is exact and right
adjoint to Wj. That allows us to give a categorical characterization of the local Weyl modules
and more generally of the modules WﬁM , M € mod A ). Namely we prove that these modules
are given by the vanishing of Homzjx and Ext%?‘ and we show also that the functors ng are

left exact iff we have vanishing of Ext;.
A

In section 4 we prove that the algebra A is finitely generated iff A is finitely generated.
We use the results of section 3 to study the relationship between the functors Wz&% and
Wi‘; ® W', when A, B are finite-dimensional algebras. In section 5, we give a necessary and

sufficient condition for the tensor product W4 M ® W4 N to be isomorphic to Wi‘;r“ (M®N)
when A is finitely generated and M, N € mod A.
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In section 6 we assume that A is finitely generated and that the Jacobson radical of A is
0. We prove that the algebra A is isomorphic to the ring of invariants of a subgroup S
of the symmetric group on dy letters acting on A®% . Here d, is a positive integer naturally
associated with A. This implies that the irreducible modules in mod A are determined (up
to isomorphism) by the orbits of this action.

The tensor product results of Sections 4 and 5 imply that to understand the local Weyl
modules it is enough to understand local Weyl modules corresponding to certain special orbits.
In section 7, we consider the case when ¢ is the orbit of a point in A®% which has trivial
stabilizer under the entire symmetric group Sg, . In this case WgMg is a tensor product of the
local fundamental Weyl modules and we describe the character of these modules completely
for any finitely generated algebra A and for the classical simple Lie algebras.

The results of section 7 show that there are many important differences between the study of
Weyl modules for the polynomial algebra in one variable and the more general case considered
here. The dimension of the local fundamental Weyl modules associated to A depends on & if
the variety associated to A is not smooth. It also proves that the dimension of WﬁMg is not
independent of £ even if A is an irreducible smooth variety and & is the orbit of a point in
A®I\ with trivial stabilizer for the Sy-action. In particular, this proves that the global Weyl
module is not projective as a right Ay—module (and hence the Weyl functors not exact) even
when A is the polynomial ring in two variables. There are thus, many natural and interesting
algebraic and geometric questions that arise as a result of this paper which will be studied
elsewhere.

Acknowledgements: We would like to thank Wee Liang Gan, Michael Ehrig, Friederich
Knop, Peter Littelmann for many discussions on the algebra Ay. We are grateful to Peter
Russell for his patience with our long discussions and our not always well-formulated questions
on group actions, homological algebra and commutative algebra. Finally, particular thanks are
due to Shrawan Kumar for sharing with us, his result (Proposition ) on extensions between
tensor products of modules for direct sums of Lie algebras.

2. PRELIMINARIES

2.1. Throughout the paper C denotes the set of complex numbers and Z the set of
non—negative integers. Let g be a finite-dimensional simple Lie algebra of rank n with Cartan
matrix (ai;)ijer where I = {1,--- ,n}. Fix a Cartan subalgebra h of g and let R denote
the corresponding set of roots. Let {«;}icr (resp. {w;}icr) be a set of simple roots (resp.
fundamental weights) and Q (resp. QT), P (resp. PT) be the integer span (resp. Z,-span) of
the simple roots and fundamental weights respectively. Denote by < the usual partial order
on P,

MpEP A< <= p-reQt.
Set RT = RN Q™ and let 6 be the unique maximal element in R' with respect to the partial
order.
Let 2, h;, a € RT, i € I be a Chevalley basis of g and set " = 2, ho = [z}, 23] and
note that h; = h,,. For each a € R, the subalgebra of g spanned by {zZ,h,} is isomorphic
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to sly. Define subalgebras n™ of g, by
nt = EB Cazl,
a€ERT
and note that
g=n_@hon'.
Given any Lie algebra a, let U(a) be the universal enveloping algebra of a. The map x —
r®1+1®zx, x € aextends to an algebra homomorphism A : U(a) — U(a) ® U(a).By the

Poincare Birkhoff Witt theorem, we know that if b and ¢ are Lie subalgebras of a such that
a = b @ ¢ as vector spaces then

U(a) = U(b) ® U(c)

as vector spaces.

2.2. Let A be a commutative associative algebra with unity over C and let A, be a fixed
vector space complement to the subspace C of A. Given a Lie algebra a define a Lie algebra
structure on a ® A, by
If  : B — A is a homomorphism of associative algebras, there exists a corresponding ho-
momorphism ¢4 : a ® B — a ® A of Lie algebras, which is injective (resp. surjective) if ¢ is
injective (resp. surjective). In particular, if B is a subalgebra of A, the Lie algebra a ® B can
be regarded naturally as a Lie subalgebra of a ® A and we identify a with the Lie subalgebra
a® C of a ® A. Similarly, if b is a Lie subalgebra of a, then b ® A is naturally isomorphic to
a subalgebra of a ® A. Finally we denote by U(g ® A, ) the subspace of U(g ® A) spanned by

monomials in the elements r ® a where z € g, a € A;. The following is elementary but we
include a proof for the reader convenience and because it is used repeatedly throughout the

paper.
Lemma. Let g be a finite—dimensional simple Lie algebra and A a commutative associative
algebra with unity over C. Then any ideal of g ® A is of the form g® S for some ideal S of
Aand [g@ A/S,g® A/S|=g® A/S.
Proof. Let i be an ideal in g ® A and set

S={a€A:g®acCi}.
Since g = [g, g] we see that S is an ideal on A. The Lemma follows if we prove that g® S = i.

Let x € 1 and write
T = Z$a®aa+zhi®aia
aER el

for some aq,a; € A. We proceed by induction on

r=#{a € R: a, # 0},
to show that g® a, Ciand g®Ra; Ciforalla € R, i€ I. If r =0, we have

[Z h; ®ai,£j] = xj & Zaj(h,-)a,- ei, jel.
el iel
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Since the Cartan matrix of A is invertible, it follows now that xj ®a; €1iforall 7,7 € I and
since g is simple we see that g ® a; € i for all ¢ € I.

Suppose now that we have proved the result when 0 < r < k£ and suppose that ag,, -+ ,ag,
are the non-zero elements. Choose h € § such that §;(h) # 0 and fx_1(h) = 0. Then
k—2
0# [h,a] =Y Bs(h)za ® ag, + Br(h)zs, © ag, €.
s=1

The induction hypothesis applies to [h,z] and we find that
ag, €S, T —1xg, Qag, €i.
The induction hypothesis again applies to z — (zg, ® ag,) and we get the result. U
2.3. Let V be any g—module. We say that V is locally finite-dimensional if any element of

V lies in a finite-dimensional g—submodule of V. This means that V is isomorphic to a direct
sum of irreducible finite-dimensional g—modules and hence we can write

V=W,

Aeh*
where Vy ={v e V: hv = A(h)v, ¥ h € bh}. We set
wt(V)={A e bh*: V) #0}.

For A € P*, let V()) be the simple g-module which is generated by an element vy € V())
satisfying the defining relations:

nfuy =0, huy=Ah)vy, (z7
for all h € h, i € I. Then,
wt(V(A\) CA—QT, dimV()\) < oo.

),\(hi)+1w -0,

Moreover any irreducible locally finite-dimensional g-module is isomorphic to V() for some
A € P*. The following can be found in [B].

Lemma. Let a be a Lie algebra such that [a,a] = a and assume that a has a faithful finite—
dimenstonal irreducible representation. Then a is a semi—simple Lie algebra.

2.4. Suppose that g is a finite-dimensional semisimple Lie algebra and that g;, go are
ideals of g such that

g=91 D0
as Lie algebras. Then g; and go are also semisimple Lie algebras and it is standard that

any irreducible finite-dimensional representation of g is isomorphic to a tensor product of
irreducible representations of g; and gs.

Proposition. Let A and B be commutative associative algebras. Any finite—dimensional ir-
reducible representation V' of g ® (A @ B) is isomorphic to a tensor product Vi ® Vo where Vi
and Vo are irreducible representations of g @ A and g ® B respectively.



6 VYJAYANTHI CHARI, GHISLAIN FOURIER, AND TANUSREE KHANDAI

Proof. Let p : g® (A ® B) — End(V) be an irreducible finite-dimensional representation.
Then ker p is an ideal of finite codimension in g ® (A & B) and hence

kerp=g® M,

for some ideal M of A @ B. Since any ideal of A ® B is of the form M; & M, where My, Mo
are ideals in A and B respectively, we see that V is a faithful irreducible representation of g =
g® (A/M;@® B/M,). Lemma 23limplies that g is a finite-dimensional semi-simple Lie algebra.
The result now follows by the comments preceding the statement of this proposition. O

2.5.  We shall need the following result due to Shrawan Kumar [Kul.

Proposition. For r = 1,2, let g, be a finite—dimensional Lie algebra and assume that U,V
are finite dimensional g,—modules. For all m > 0 we have

Ext™

Bl@gz(Ul ® U27 Vl & VQ) = @ Extgl (U17 Vl) ® Extg2(U2, ‘/2)

p+g=m

3. THE CATEGORY 74

3.1. Let Z4 be the category whose objects are modules for g ® A which are locally finite—
dimensional g—modules and morphisms

Homz, (V, V') = Homgga(V, V'), V.V’ € Za4.

Clearly T4 is an abelian category and is closed under tensor products. We shall use the
following elementary result often without mention in the rest of the paper.

Lemma. Let V € ObZy.
(i) IfVAa#0and wtV C A —QT, then A € P* and

(Mt @A)V =0, (z;)h)Hly =0, iel

If in addition, V = U(g® A)V) and dim V), = 1, then V' has a unique irreducible quotient.
(i) IfV=U(g®e AV, and (nt @ A)V\ =0, then wt(V) C A — Q.
(iii) If V € Iy is irreducible and finite-dimensional, then there exists A € wt' V' such that
dimVy =1, wt(V)cCA—QT.

O

3.2. Regard U(g ® A) as a right g-module via right multiplication and given a left g—
module V', set

Pa(V)=U(g®@ A) @y V-

Then P4(V) is a left g ® A-module by left multiplication and we have an isomorphism of
vector spaces

Pa(V)2U(g® AL) @c V. (3.1)
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Proposition. Let V' be a locally finite-dimensional g—module. Then Pa(V') is a projective
object of T. If in addition V' € Iy, then the map Pao(V) — V given by u @ v — uv is a
surjective morphism of objects in Tn. Finally, if X\ € PT, then Pa(V()\)) is generated as a
U(g ® A)-module by the element py = 1 ® vy with defining relations

npy =0, hpy=Ah)py, (z;) B+l =0, iel, heb. (3.2)

Proof. For x € g, we have
z(u®@v)=[r,ul@v+uxzy, ucU(GeA), veV.

Since the adjoint action of g on g® A (and hence on U(g® A)) is locally finite, it is immediate
that P4(V) € Z4. The proof that it is projective is standard. It is clear that the element
px € P4(V(X)) satisfies the relations in (3.2]) and the fact that they are the defining relations
follows by using the isomorphism in (B.1]). (]

For v € PT and V € ObZIy, let V¥ € ObZ4 be the unique maximal g ® A quotient of V

satisfying
wt(VY) Ccv —QT, (3.3)
or equivalently,
VY =V/Y Ug® AV,
pgv

A morphism 7 : V — V' of objects in Z4 clearly induces a morphism 7 : V¥ — (V’')". Let
7% be the full subcategory of objects V' € T4 such that V' = V¥. It follows from the theory of
finite-dimensional representations of simple Lie algebras that

Vell = #wtV <oc. (3.4)
The following is immediate.

Corollary. Let v € Pt and V € T%. Then Ps(V)Y is a projective object of TY.

3.3. For A € PT, set
Wa(A) = Pa(V (M),
and let w)y be the image of py in W4 (A). The following proposition is essentially an immediate
consequence of Proposition and gives an alternative definition of W4 () via generators and
relations. In fact this was the original definition given in [CP2] when A is the ring of Laurent
polynomials and later generalized in [FL].

Proposition. For A € Pt the module WA()\) is generated by wy with defining relations:
(mt @ Awy =0, hwy = Ah)wy, (z7) ")+l =0, iel, heb. (3.5)

Proof. Since wt W4(\) C A — Q™ it follows that (n™ ® A)wy = 0. The other relations are clear
since they are already satisfied by py. To see that these are all the relations, let W/ (\) be
the module generated by an element wy with the relations in ([8.5]). By Proposition 3.2 we see
that W/ (X) is a quotient of P4(V(\)). On the other hand wt(W/ (X)) C A— Q™ which implies
that W/, (\) satisfies ([8:3]). It follows by the maximality of W4 () that W/ (\) is a quotient of
W4(A) and the proposition is proved. O
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Set
Anngga(wy) = {u e U(g® A) : uwy =0}, Annpga(wy) = Anngga(wy) NU(h @ A).

Clearly Annpga(wy) is an ideal in U(h ® A) and we denote by A the quotient of U(h ® A)
by the ideal Anngyga(wy).

3.4. Regard W4 () as a right module for h ® A as follows:
(vwy)(h®@a) =ulh®@a)wy, uveU(ge A), hebh,ac A
To see that this map is well defined, one must prove that:
(nt @ A)(h®a)wy =0, (K —XHN))(h®a)wy =0,
(@) " (h @ a)wy =0,
foralli € I, a € A and h,h' € h. The first two are obvious. The third follows from the fact

that ;7 ((h ® a) ® vy) = 0 and that Wa(\) € Z4. Thus, we have proved that Wa()\) is a
bi-module for the pair (g ® A,h @ A).

For all u € P, the subspaces W4()), are h @ A-submodules for both the left and right
actions and
Amnpga(wy) ={u e UH @A)t wyu=0=uwy} ={u e U(h ® A) : Wa(A)u = 0}.
Then Wa()) is a (g ® A, Ay)-bimodule and each subspace W4(\), is a right Ajy-module.
Moreover W4 () is a Ay—bimodule and we have an isomorphism of bimodules,

Wa(A)a = Ay

Let mod A be the category of left Ay—modules. Let Wi‘; :mod Ay — Ij; be the right exact
functor given by

WAIM = Wa(\) ®a, M, WAf=1®f,
where M € modA) and f € Hompa, (M,M’) for some M’ € modA). Note that since

Wa(X) € Za, it is clear that the g-action on W% M is also locally finite and so WAM € ObT}.
The preceding discussion also shows that

WAA) Zgoa Wa()), (WAM), 2 Ws(\), ®a, M, p€P, McmodA,.

3.5.

Lemma. For all A\ € Pt and V € Ij‘ we have Anngg s (wy)Vy = 0.

Proof. By Lemma [3.1] and Proposition B.3] we see that given v € V), there exists a morphism
of g ® A-modules W4(A\) — U(g ® A)v which maps wy — v. Hence uwv = 0 for all u €

Annypg4) (wy) O

As a consequence of the Lemma we see that the left action of U(h® A) on V) induces a left
action of A, on V) and we denote the resulting A y—module by RQV. Given w € HomI?‘ (V, V"

the restriction of my : Vi, — V is a morphism of A -modules and

V - RV, ©m— Rim =y
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defines a functor R2 : Ij“ — mod A which is exact since restriction 7 to a weight space is
exact. If M € Obmod A ), we have an isomorphism of left A y—modules,

RYWAM = (WHM)y = Wa(\)r @a, M ZwyAy @a, M = M,

: : . ~ ATV
and hence an isomorphism of functors ida, = Ry W7.

3.6.
Proposition. Let A\ € Pt and V € Ij;. There exists a canonical map of g @ A—modules
ny WQRQV — V such that n : WQRQ = idI?‘ is a natural transformation of functors and
Rﬁ s a Tight adjoint to Wj.
Proof. Regard Wa(\) ®c V), as a left g®@ A-module via the action of g® A on W4 (\). Lemma
B implies that the assignment W4 (\) ®c V), — V given by gwy ® v — gv is a well-defined

map of left g ® A—modules. To see that this map factors through to a map ny : WQVA -V
it suffices to observe that

gurx(h®a)®@v—gw)® (h®a)v =g(h®a)wy @v—gwy @ (h®a)v— 0

for all g € U(g® A), h € h and a € A. It is now clear that the collection {ny;V € ObZ}}
defines a natural transformation 7 : Wi“Rg = idI?x .

To check that RAA is right adjoint to Wg we must prove that there exists a natural isomor-
phism of abelian groups

7= mary - Hompy (WAM, V) = Homa, (M, R}V),

for all M € modA, and V € Ij;, such that the the following diagram commutes for all
f € Homa, (M, M), m € Homg (V, V'):

WA * .
Homyy (WAM, V) A%, Homyy (WAM, V) —™— Homgy (WM, V")

I I I

A

* R4} 7«
Homa, (M, R\V) —L— Homa, (M,R\V) —2" Homa, (M,R\V").

Define 7psyv by
Ty () = Ty
Since WA M is generated by M as a g® A-module, it follows that 7(7) = 7(7') implies 7 = 7.
For f € Homa, (M, RQV) it is easily seen that

Ty (v o Wif) = f,

and hence 7 is an isomorphism. The fact that the diagram commutes is straightforward. [

The following is a standard consequence of properties of adjoint functors.

Corollary. The functor Wg maps projective objects to projective objects.
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3.7. The next result gives a categorical definition of WAM .
Theorem. Let V € Iﬁ. Then V = WQRQV iff for all U € Iﬁ with Uy = 0, we have
Homgpy (V.U) = 0, Ext;?‘(v, U) =0. (3.6)

Proof. Suppose first that M € mod Ay. Then (WQM)A = w) ® M generates WQM and
hence

Homp, (WAM,U) =0, if Uy =0.
Let
Pl — PO —- M -0

be a right exact sequence of modules in mod Ay, with Py, P, projective and consider the
corresponding right exact sequence

WAP, — WAP) - WiM — 0

in Ij;. Let K be the image of WﬁPl in W/)QPO (or equivalently the kernel of W/)QPO — WﬁM)
Then K is generated as U(g ® A)-module by K and hence Homgx (K,U) =0if U € T} and

U, = 0. By Corollary we see that WAPO is projective and it now follows by applying
Homgx (—,U) to the short exact sequence

0— K — W3Py— WiM — 0.
that Extz, (WAM,U) = 0.

Conversely suppose that we are given V € I} satisfying (3:6). Let V' = U(g ® A)V) and
note that

V/V' eIy, (V/V)\=0.
It follows from (3.6]) that
Homgx (V,V/V') = 0.

This proves that V = V' = U(g® A)V, and hence that the map ny : WARAV — V defined in
Proposition is surjective. Moreover if we set U = ker 1y, then we have RQU = (0. Consider
the short exact sequence

0—U— WiV, — V —0.
Applying HomI?‘ (—=,U) now gives
0— HomI?‘(U, U)—0,
and hence U = 0 and the proof is complete. O
Corollary. The functor Wg is exact iff for all U € Ij‘ with Uy = 0, we have

Ext%‘ (WAM,U)=0 ¥V M € modA,. (3.7)
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Proof. Assume that ([87) is satisfied. Let 0 — M” — M — M’ — 0 be a short exact sequence
of modules in mod A ) and consider the induced short exact sequence

0— K — WHiM — WiM' — 0.

Apply Hom(—, U) to the preceding short exact sequence and using Theorem [B.7] and (3.7]) we
find that

Homp (K,U) =0, Ext;?‘ (K,U)=0, ¥V Ue€ObZ) with Uy =0
Hence K = WQK A Applying the functor Rﬁ and using the fact that R;\KWQ is naturally

isomorphic to the identity functor, we see that if V' is the kernel of WQM " — K then V) = 0.
Applying HomI?‘ (—, V) to the short exact sequence

0—-V—->W,M - K—0,

proves that V = 0.

For the converse, suppose that Wg is exact. Let M € Obmod Ay and let P € Obmod A,
be projective such that we have an exact sequence 0 — M’ — P — M — 0. This gives us

0— WiM' — WAP — WiM — 0.
Applying Hong(—, U) with U € 1'2, U, = 0 and recalling that WQP is projective in Zz we
get a piece of the long exact sequence
0 — Ext? (WAM,U) — 0,

and the converse is established. O

4. THE STRUCTURE OF W4(\)

4.1. We begin by proving that the construction of W4 () is functorial in A. Assume that
B is a commutative associative algebra and let f : A — B be a homomorphism of algebras.
Then (1® f) : g® A — g® B is a homomorphism of Lie algebras and given any g ® B—module
V we can regard it as a g ® A-module via f and we denote this module by f*V.

Proposition. Let A € P* and let f : A — B be a homomorphism of associative algebras.
Then f induces a canonical homomorphism fy : Ay — By of associative algebras and a
canonical map of (g ®@ A, Ay)-bimodules fy : Wa(A) — f*(Wg(X)). Moreover, fx and f5 are
surjective if f is surjective.

Proof. The action of g® A on f*(Wpg(\)) is given by

(z®a)owyp = (r® f(a))wr,p

and it follows immediately from Proposition 3.3l that there is a well-defined map of left g ® A—
modules

Wa(A) = ff(WB(A)),  wxa — wip.
Since (1 ® f) maps h ® A to h ® B this is also a map of right U(h ® A)-modules. The proof
of the proposition is complete if we prove that

u € Annpga(wya) = (1@ f)(u) € Annggp(wy, B).
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But this is clear since
wx AU = uwy A — (1@ f)(u)wrp =wrp(1® f)(u).
O

Let A,B and f : A — B be as in the proposition and given M € mod By, let ffM € mod A,
be the corresponding A y—module.

Corollary. There exists a natural morphism of g ® A-modules Wﬁ M — f*WgM which
is surjective if f is surjective. In particular we have a morphism of g ® A-modules

WLAB) — f*WEB) & f*(Ws(N)), (4.1)

which is surjective if f is surjective.

Proof. 1t is clear that there exists a map f* ® f} of g ® A-modules
Wa(\) ®a, XM = WAFIM — fWg(\) @4, fiM.
Composing with the map of g ® A-modules,
FWB\) ®a, fiM — f*WEM = f*(Wp(\) @B, M), UM —um

proves the corollary. O

4.2. The next proposition begins an analysis of the behaviour of the modules W4 (\) and
the functors Wﬁ under tensor products. We shall assume from now on that an unadorned ®
denotes the tensor product of vector spaces over C.

Proposition. Let A\, € PT.
(i) There exists a homomorphism of g ® A-modules
Tap P WaA + 1) — Wa(A) @ Wa(p),
such that Ty ,(Wagy) = wWx @ wy,.
(ii) The homomorphism A : Uh ® A) —» U(h ® A) @ U(h ® A) induces a canonical homo-
morphism Ay, 1 Ay, — A\ ® A, and
A)\,u =00 Au,)\y (1 ® Au,u) © A)\,/H-V = (AA,M ® 1) o A)x-i-u,uy ve Pt

where o), A\ ® A, — A, ® A denotes the flip map.

(iii) The tensor product Wa(X)@Wa(p) is canonically a (g® A, Ay ® A,)-bimodule and hence
also a (g ® A, Ax;,)-bimodule.

(iv) The map Ty, is a map of (g ® A, Axy,)-bimodules and for M € mod Ay, N € mod A,
we have an induced map of g ® A-modules

Tyt WAL (M ® N) — WAM @ W4N.

Proof. Part (i) is immediate from Proposition B3l It follows that
u € Anngga(waty) = Au)(wy ® wy,) =0,

i.e., that
A(u) € Anngga(wy) @ U(h® A) + U(h ® A) ® Anngga(wy,),
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and hence we have an induced map Ay , : Ay, — Ayx®A,. The remaining statements in (ii)
follow from the co-commutativity and co-associativity of A. The right action of Ay on W4 ()
and of A, on Wx(u) defines a right action of Ay ® A, on Wa(A\) ® Wa(u) in the obvious
pointwise way and part (iii) now follows easily. To prove (iv), note that we clearly have a map

WATHAL (M @ N) — (Wa(X) @ Wa(n)) ®a,,, A% (M @ N).
Since there exist canonical maps of g ® A-modules
(Wa(A) @ Wa(pn)) @y, A3 (M @ N) — (Wa(A) @ Wa(n)) ®a,0a, (M &N)
and a map
(Wa(N) @ Wa(p)) @a,oa, (M & N) — WAM © WHN,
(wow)®(men)— (wem)® (w @n),

the result follows. O

4.3. Given two commutative associative algebras A and B the direct sum C = A @ B is
canonically an associative algebra and let p4 (resp. pp) be the projection onto A (resp. B).
By Proposition {1l any M € mod A (resp. N € modB,) can be regarded as a module for
C, (resp. C,) and hence the tensor product M ® N can be viewed as a module for Cy ® C,,.
Pulling this module back by Ay , we get a Cy,~module which by abuse of notation, we shall
just denote by M ® N and we shall see that the context is such that no confusion arises from
this abuse of notation. The following is immediate from Corollary A1l and Proposition A2l(iv).

Corollary. For M € mod Ay, N € mod B, there exists a surjective homomorphism of g& C—
modules

WEH(M @ N) - WAM @ W¥N.
4.4.

Theorem. Assume that A is a finitely generated algebra.

(i) For all A € PT, the algebra A, is finitely generated and W()\) is a finitely generated
right A y—module.
(ii) If M € mod A is a finitely generated (resp. finite-dimensional) then W% M is a finitely
generated (resp. finite-dimensional) g ® A-module.
(iii) Suppose that A and B are finite-dimensional commutative, associative algebras and let
A\, € Pt. For M € mod Ay, N € mod B, with dim M < co and dim N < co we have,

WhHe (M @ N) = WAM @ WiN,
as g ® (A ® B)-modules.

We prove the theorem in the rest of the section.
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4.5. Let u be an indeterminate and for a € A, o € R, define a power series pg o (u) in u
with coefficients in U(h @ A) by

> he ®a” -
Pa,o(u) = exp <—Z U )

r=1

For s € Z, let p; , be the coefficient of u® in pyo(u). The following formula is proved in
[G] in the case when A is the polynomial ring C[t] and a = ¢. Applying the Lie algebra
homomorphism

gRC[t] —g® A, zt —2z®d", r€eZ,, xz€gyg,
gives the result for g ® A.

Lemma. Let r € Z,. Then,

T

(zF ®a) (z; @ 1)t - Z(m; ®a" " *)ps. € U(g® A)(nT ® A),
s=0

(zf @a) ™ Hzg @ 1) —plitl € Ug @ A)(n" @ A)
O
4.6. Part (i) of the theorem was proved in the case when A is the polynomial ring in one
variable in [CP2]. The proof in the general case is very similar, and we only give a brief sketch

here. Let aq,--- ,a,, be a set of generators for A. Using the defining relations of W4 (\) and
Lemma [£5] we see that

g

(x;k ® ak)m(xz_ ® 1)m‘+1w)\ — Z( ® am S)p2k7aiw>\ -0
5=0

foralli € I,1 <k <m and n; = A(h;). Applying azj ®a, a € A, to both sides of the equation,

we get
<hi ® aa, Z i @ aay ™) pak’ai> wy = 0.

It is now straightforward to see by using an iteration of this argument that for all ¢ € I,
(11, y7m) € Z1', we have

hi ® (a7 - - apm)wy = H(i,r1, - Tm)wa
for some H(i,71,--- ,rmy) in the subalgebra of U(h ® A) generated by the elements of the set
{hi®@af*--aym:0<s,<my, 1<l<m, i€}
In other words, we have proved that A is the quotient of a finitely generated algebra.
Let {81, -+ ,Bn} be an enumeration of RT and set
S={ast---aim: (s1,-- ,8m) € ZYY}.
Using the PBW theorem, we see that elements of the set,

{(‘/E@-l®b1)“'(x@e®b5)w>\:1§il§“‘§i€§N7 teZ,, b1,"',bg€5} (4.2)
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generate Wy () as a right module for Ay. Using Lemma and the defining relations for
Wa(A) we see that

(zF @ a,) " (z; @ 1),y Zm ® ayep; qwx=0, 1<r<m,

for all @ € R™ and n, = A(hg). That implies
(x,, @ ad)wy € sp{(z, @ al)wrAy: 0< L < Aha)}.

Applying h, ® a’; with r # p to the preceding equation gives,

(x, ® aﬁal;)wA € sp{(z, ® afa';)w)\A,\  0<l< A(ha)}

C sp{z, ® aeae Wa(AN)x, 0< 4,0 <ny}.

It is now clear that more generally we have

(g ® A)wy Csp{(zy ® (a1 -+ aym)waAy 10 <71y <ng)}.
An induction on the length of the monomials in (4.2)) identical to the one used in [CP2]
now proves that W4 () is a finitely generated Ay—module. Part (ii) of the theorem is now
immediate by using (3.4]).

4.7. To prove (iii), we begin with the following refinement of Theorem [B.71

Proposition. (i) Let \,v € PT be such that A « v and v ¢« X. Let U € T be irreducible
and assume that U, # 0. Then

Extf, (WAM,U) =0, m=0,1,

for all M € Obmod A.
(ii) Let V € I be such that dim V) < co. Then WARAV\ 2V iff

Extgoa(V,U) =0, m=0,1 (4.3)
for allU € ObIj‘l with dimU < oo and Uy = 0.
Proof. For (i), observe that since U is irreducible any non—zero morphism 7 : Wy(\) — U
must be surjective. But this is impossible since (WQM )y = 0. Suppose next that
0-U—V—=WiM —0
is a short exact sequence of objects in Z4. Then
N#0, wtVC(@-QHU\-Q"),

and since A\ £ v we see that (n™ @ A)V), = 0. Set V' = U(g ® A)V) so that wtV C A — Q*.
To prove that the sequence splits, it suffices to prove that

V'NU = {0}.

Otherwise since U is irreducible we would have U NV’ = U which would imply that v € wt V'
contradicting v £ .
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A simple induction on the length of U shows that it suffices to to prove that WAV,\ =2 Vif
([#3]) holds for all irreducible modules U € ObIﬁ with Uy = 0. As in the proof of Theorem
B7 we have V = U(g ® A)V) and hence a short exact sequence

O—>K—>W2V>\—>V—>0.
By part (ii) of Theorem F4l we have dim W V), < oo and hence we have
dim K < oo, Ky =0.
If K # 0, then Homgg (K, U) # 0 for some irreducible module U € T} with Uy = 0. Applying
HomI?‘(—, U) and using the fact that Homgga(W?,U) = 0, we get
0 — Homgga(K,U) — Ext}J@A(V, U)
which is impossible since V satisfies (£.3]). Hence K = 0 and the proof of (ii) is complete. O

4.8. The proof of part(iii) of the Theorem is completed as follows. By Corollary 3] we
have a surjective map of g ® (A @ B)-modules,

WAL (M ® N) — WAM @ WHN — 0.
To prove that it is an isomorphism it suffices by Proposition [£.7(ii) to prove that
Ext?,, (WM @ WiEN,U) =0, m=0,1,

A®B

for all irreducible U € Oblzg% with Uy;, = 0. By Proposition 2.4l we may write such a
module as a tensor product,

Ux~Uy@Up, UscObZIs, UgécObZp,

where Uy and Up are irreducible. Let v4 (resp. vp) be the highest weight of U4 (resp. Up) and
note that v4 +vg € wtU C A+ pu— Q™. Since WQM, W/ N and U are all finite-dimensional
modules for finite-dimensional Lie algebras, we have for m = 0, 1,

Extye aem (WAM @ WEN,U) = Bxte, (WAM @ WEN, U),
Extye /(WAM, Us) 2 Extyy (WAM,Uy),  Extgyp(W5N,Up) = Exty (Wi N, Up).
By Proposition it suffices to prove that either
EXt% (WAM,U,s) =0, or Extzy (WEN,Ug) =0, m=0,1. (4.4)
If Uy € ObZ) or Ug € ObTY then (@) follows from Proposition 7(ii). Otherwise we have

va £ A, vp % .
Since va+vp < A+, it follows now that A £ v4 and now (£4) follows from Proposition E.7(1).

5. FURTHER RESULTS ON TENSOR PRODUCTS

Throughout this section, we assume that A is finitely generated.
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5.1. Let irrmod A be the set of irreducible representations of Ay. Since A) is a com-
mutative finitely generated algebra it follows that if M € irrmod Ay then dimM = 1. By
Theorem [£.4] we see that

dim WAM < oo, RYWAM = M, for M € irrmod Ay,

and we denote by VjM the unique irreducible quotient of WAM (see Lemma B.0]). It now
follows from Lemma and Lemma that there exists an ideal of finite-codimension K3,
of A such that g® A/K J’\\/[ is a semisimple Lie algebra and

(x®a)VAM =0 V¥ z€g, ac Kj.

Suppose that M € mod A is finite dimensional of length r, Mj,--- , M, be the irreducible
constituents of M and set

&Y =TI &

s=1

5.2. The next result shows that any irreducible module in Zz is isomorphic to fo‘M for
some p € PT.

Lemma. Let A € Pt and assume that V € T is irreducible. There exists p € PTN(A—Q7)
such that

wtV Cpu—QT, dimV, = 1.
In particular, V is the unique irreducible quotient of WZRZV and hence dimV < oco. If
V' € ObZ, we have V =V’ as g @ A-modules iff R4V = Rff‘,V’ as A, ~modules.

Proof. Since V € Ij“, it follows that there exists p € A — Q1 with
Vu#0, (W oA)V,=0.

It is immediate from Proposition that V is a quotient of WHR/. If V,=U(h® AV, is
a proper h ® A-submodule of V,, then V' = U(g ® A)V;i is a proper submodule of V' which
is a contradicton. Hence RZV is an irreducible A ,—module which implies that dim V), = 1.
Theorem E4 now implies that dim WAR/{V < oo and hence dim V' < oo. The proof that V
is the unique irreducible quotient of WﬁRZV is standard since R{ WAR/.V = V. The final
statement of the lemma is now trivial. O

5.3. The main result of this section is the following.

Theorem. Let A\, € Pt and let M, N be irreducible modules for Ay and A, respectively
and assume that

A/KY KN 2 AJKY @ A/KA. (5.1)

Then
VITHM ® N) 204 VAM @ VAN, KNIy = K KR, (5.2)
WHTH(M @ N) Zgo4 WHM @ WHN. (5.3)
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5.4. To prove (5.2) recall that M ® N is an irreducible Ay ® A ,-module with the action
being pointwise and hence also an irreducible Ay, ,~module (via A, ,). By Lemma [5.2] we see

that it suffices to prove that VAM @ VAN is the irreducible g ® A quotient of Wi‘;r“ (M®N).
Clearly, VﬁM ® VAN is an irreducible module for the semisimple Lie algebra g ® (A/K j\\/j e

A/K?) and hence using () it is an irreducible module for g ® A/K3, K7 and so for g ® A
as well. Since

R\ (VAM @ VAEN) =~ M ® N,
we see from Lemma that VAM ® V4N is a quotient of Wff” (M ® N) and the first
isomorphism in (5.2]) is proved. For the second, observe that by definition if S is any ideal in
A such that

(g® S)VAM =0,

then S ¢ K j\\/j and similarly for K - One deduces easily from (5.I)) that K j\\/[f( f\‘, is the largest
ideal in A such that

(8@ K3 KN)VAM @ VAN = 0.

Since K])\‘jé‘ n is maximal with the property that
A A
(6@ Kyl )WVitt(M @ N) =0

we now get that K])\‘jé‘]v = K, K.

5.5. We need several results to prove (5.3). Theorem [£.4] and Lemma 2.2l imply that given
A € PT and M € mod A with dim M < oo, there exists an ideal of finite codimension K j\\/j in
A which is maximal with the property that

(9 K3)WAM = 0.

If0— M — M — M"” — 0, is a short exact sequence of modules in A then since the functor
W% is right exact, we see that

KK € K3y € Kayo. (5.4)

Let K C K3, be an ideal in A and set A/K = B. It is clear that W M is a module for g® B
and since

REWAM = M,
we get by Lemma that M is also a By—module.

Lemma. Let A € P™ and M mod A, be finite-dimensional. For all ideals K C K])\‘/[, we have
an isomorphism of g ® A (or equivalently g ® A/K ) modules,

WAM = W) M. (5.5)
Proof. By Corollary [4.1] and the discussion preceding the statement of the Lemma we see that
we have a surjective map of g ® A-modules
WAM — WEM — 0, wy ®m — wy Qm.
On the other hand by Proposition we have a map of g ® B—modules
WRM = WAREWAM — WAM, wy @ m — wy @ m
and hence (B.5]) is proved. O
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5.6.
Proposition. Let A € PT and M € mod A, be finite—dimensional. We have

(K C Ky

Proof. Tt suffices by ([5.4]) to consider the case when M is irreducible. Using Lemma [A5] we
see as in the proof of Theorem [4.4] that

A(ho)
0=(z} ® a)(xe_)’\(h")ﬂ(w,\ ®m) = Z (x5 ©@a"*)p p(wr @ m).
s=0

If a € K3, then (h ® a)(wy, ® m) = 0 and since p? , is in the subalgebra generated by the
elements {hg ® aP : p € Z,,p > 0} with constant term zero, we see that pfb’e(wA ®m) =0 for
all s > 0. This implies that

(x5 © a ")) (wy @ m) = 0.
Since [z, ,n"] =0 we get
(zy; @ a*hYWAM = 0.

Since g is generated by x, as a g-module the result follows.

5.7. By part (i) of the theorem and Proposition [5.6] we may choose > 1 so that
AN\ (BT A r A

(Kap)" (K§)" = (KM+§N) C (KpKhy)n KMJESN'

Set C' = A/(K3,K%)" and note that
C=A/(Ky)" & A/(KR)".
By Theorem [£.4](ii), we have an isomorphism of g ® A/C—modules
Atp ~ WA o

Wi (M ®N) = WA/(K]@)TM@WA/(K]“V)TN‘

Lemma now proves that we have isomorphisms of g ® A—modules,

WM @ N) = Wi (Mo N), W,

and (5.3) is proved.

(M = WAM, Wi/(quN ~ WHN,
5.8. The statement of (5.3]) can be strengthened as follows by using Proposition
Corollary. Let M € mod Ay and N € mod A, be finite-dimensional and assume that
A/KY KN 2 AJKY @ A/KA. (5.6)
Then
WM ® N) = WAM @ WHN. (5.7)
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6. THE ALGEBRA A

We continue to assume that A is a finitely generated commutative associative algebra over
C. Denote by max A the set of maximal ideals of A and let J(A) be the Jacobson radical of
A. In this section we shall identify the max spectrum of Ay and if J(A) = 0 we shall also
identify the algebra A). As a consequence we also obtain a classification of the irreducible
finite dimensional modules in I/‘\“. Special cases of this classification were proved earlier in
[C1], [CPT] for A = C[t,t7!], in [[] and [R] in the case when A is the polynomial ring in &
variables.

6.1. For r € Z, the symmetric group S, acts naturally on A®" and max(A4)*" and we
let (A®")% be the corresponding ring of invariants and max(A4)*"/S, the set of orbits. If
r=r;+ -+ 1y, then we regard S, x --- x S, as a subgroup of S, in the canonical way, i.e
Sy, permutes the first r; letters, S, the next ra letters and so on. Given \ = Eiel riw; € PT,
set

TA= ) T, Sa=Sp X xSy, Ay = (AT (6.1)
il
max(Ay) = (max(A4)™/S,,) x -+ x (max(A™)/Sy,)- (6.2)

The algebra A) is clearly finitely generated. For M € max (A)), let evy : Ay — C be the
corresponding algebra homomorphism.

We shall prove the following in the rest of the section.
Theorem. (i) There exists a canonical bijection
max Ay — max A
(i) Assume that J(A) =0 and let A € PT. There exists an isomorphism of algebras
T Ay — Ay

6.2. Let = be the monoid of finitely supported functions ¢ : max(A) — P%, where for
£, € Z and S € max A, we define

(€+E)S) =€) +E(S),  suppé— (S emax(4) :£(8) £0), W= D (8.
Semax(A)
Clearly wt : 2 — P7 is a morphism of monoids and we set
Ex={{€E:wt{= A}
Given € € =), let
Ke= J[ S wg=004/Ke, Ve= Q) V().

Sesupp € Sesupp &

Then g¢ is a finite-dimensional semi-simple Lie algebra and V¢ is an irreducible finite-
dimensional representation of g¢ and hence of g ® A with action given by

E@a) (@ @)=Y evg (@) (v @ Davp - Duy), (6.3)
k=1
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where Si,---, 5, is an enumeration of supp§. Set Mg = RﬁVg. By Lemma 5.2 we see that
V¢ is the unique irreducible quotient of Wi‘;MS and hence

Ve = Vi M.

Let A € P* and M € irrmod A . Since A/ K ])\‘/[ is a finite-dimensional semi—simple algebra
we know that
Ky =51---S,, reZ,,
where Sy,---, S, are (uniquely defined up to permutation) maximal ideals in A. Moreover
VAM is a representation for the semi-simple Lie algebra gy = ®,_,9 ® A/S;. So there exist
unique elements jiq,-- -,y € PT such that

VAM 25, V() ® - ® V().
Define &y € =y by
Em(Sk) =, 1<k<r, &) =0, otherwise.
Then VﬁM = V¢ as g ® A-modules. Summarizing, we have proved that:

Proposition. The assignment & — Mg, (resp. & — V¢) defines a natural bijection between
=\ and the set of isomorphism classes of irreducible representations of Ay (resp. isomorphism
classes of irreducible objects in Ij“). Moreover this bijection is compatible with the functor Vi‘x,
in the sense that
Y A
Ve = VM.

Given £ € 2y, define eve : U(h ® A) — C by extending
evehwa) = S evs(@E(S)(h).

S€max A
Corollary. Let A € PT. Then

Anngg g wy C ﬂ kerevy .
§EEN

Proof. Let uw € U(h® A) and assume that uwy = 0. Since V¢ is a quotient of W4 () it follows
that u(V¢)x = 0. On the other hand it is clear from the definition of V¢ that

(h®@a)(Ve)r =eve(h @ a)(Ve)a,

and the corollary follows. O

6.3. The set =) also parametrizes the set max Ay as follows. Let M € max(A)) be the
orbit of an element (Si,---,Sy,) € max(A)*™. Define {(M) € Zj by

EM)(S) = pi(S)wi, S € max(A),

el

i—1 7
pi(S)=#{p:> re<p< D 1 Sp=S5}
k=1 k=1
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It is easily seen that the assignment M — &(M) is well-defined bijection of sets max(Ay) — =y
and part (i) of the Theorem is established.

6.4. The algebra A, is generated by elements of the form

ri—1
sym (a) = 190170 @ <Z 19 © a @ 1®(’“i—’“‘1)> @180t g e A iel. (6.4)
k=0

It is clear that the assignment
#y(hi ® a) =symi(a), icT,ac A

extends to a surjective algebra homomorphism 7, : U(h ® A) — A). Moreover it is easily
checked that

eveany(h ®@a) =evya(h ®a), heb, ac A (6.5)
Lemma. We have
ker 7, = ﬂ ker evy 7 = ﬂ ker eve, (6.6)
Memax Ay 1SS

and hence Ty induces a surjective homomorphism of algebras 7y : Ay — Aj.

Proof. The first equality in (6.6]) is trivial since J(Ay) = 0 if J(A) = 0. The second equality
is immediate from (6.5 and the fact that M — (M) is bijective. The final statement of the
Lemma is immediate from Corollary O

6.5. It remains to prove that 7, is injective. To do this we adapt an argument in [FL].
Thus, we identify a natural spanning set of A and prove that its image in A) is a basis. Fix
an ordered countable basis {a, : 7 € Z} of A with ag =1 and a, € A for r > 1.

Lemma. The elements

n  q;
{H H(hi Rais)wy:ag < a1 << ajqg, €1, ¢ <Ahi)}

i=1s=1

span Wa(A)x.

Proof. 1t is clearly enough to prove that for each ¢ € I and elements 1 < p; < --- < py,

l m
H(hi ® ap, )wy € span{H(h,' ®ar)wy:1<r; <rg<---<rp, m< )\(hi)}.

s=1

l 4
0=[]G ®a)@; @ 1) =[]k ® ap,)wr + Hwx, £>A(hs) + 1,
s=1 s=1
where H is in the span of elements of the form [];_, (h; ® ap,, ) with r < ¢, the Lemma follows
by a simple induction on /. O
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6.6. As a result of the Lemma we see that A is spanned by the image of the set

n o m;

{HH ®als 15 € A+,ai,1 <... < ai,mi,z’ el, m; < )\(hl)}
i=1s=1

The proof that 7 is injective follows if we prove that the set

mi Mp,
{®symi<a1,s> Q) Q) syml(ans) ais € Ap,ai1 <o < @y, i €1, my < A(hn}
s=1

s=1
is linearly independent in Ay. Since the tensor product of linearly independent sets is linearly
independent it is enough to prove the following. Let N € Z, and for by,--- ,by € A let

symy (b1 @ -+ @by) = Y (bo(1) ® -+ ® by(ny)-
oESN
Lemma. The elements
1®N_1)Sym]\,(ar2 & 1®N_1) cesymy(ap, ® 1®N_1), 1<rm < <ryp, m<N
(6.7)

Sym (aﬁ ®
are linearly independent in A®N.

Proof. Set
@ A?m ® 1®(N—m)7
0<m<N

and let p : A®YN — U be the canonical projection. The projection onto U of the elements in

(67) are

i< <<y, m<N

and these are clearly linearly independent in U and the Lemma is proved. O

sym,. . (ar, @ ar, ® -+~ ay,,) ®

7. THE FUNDAMENTAL WEYL MODULES

We use the notation of the previous sections freely. Throughout this section we shall assume
that A is finitely generated. Theorem [6.1)(i) applies and we have bijections max(A)) — =\ —
max(A)). Recall that max A, is the set of orbits of the group S\ acting on (max A)®"*. The
orbits of maximal size (i.e those coming from an element of (max A)®"™ with trivial stabilizer
under the Sy action) correspond under this bijection to the subset

EV={¢e=\: (S Zmzw,, m; <1V S € maxA}
i€l

of . The group S, also acts on (max A)®"* by permutations and the orbits of this action
can be naturally identified with a subset of max Ay. The orbit of points with trivial stabilizer
under the S, action corresponds further to the subset

12X ={¢€=):4(5) € {0,wy, - ,wp}, ¥V S € maxA},
of Z%*. Clearly

- —ns
Swp T 15y, -
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—=ns

In this section we shall analyze the modules Wi‘ng, § € 1E23° when g is an algebra of
classical type. By Theorem [5.3] we see that

~ S
WiMe = Q) WiT M, suppés = {S}, &s(S) =&(S). (7.1)
Sesupp &
This means that if £ € 1Z%°, it is enough to analyze the modules W' M, i € I, £ € =,,.
7.1. Assume from now on that g is of type A,, By, Cy or D,. Assume also that the nodes
of the Dynkin diagram of g are numbered as in [B]. Define a subset Jy of I as follows:
I, g of type An, Cn,
Jo=1{{n}, g of type B,,
{n—1,n}, g of type D,,.
Given m,k € Z,, let c(m) be the dimension of the space of polynomials of degree m in
k—variables, i.e
c(m)=#{s=(s1,--+ ,81) €ZE 151+ + s, = m}.
For S € max A and i € I let 5@ € E,, be given by requiring supp§ = S.

Theorem. Assume that S € max A and that dim S/S? = k. We have an isomorphism of
g—modules,

Wi M =g V(wi), i€ Jo, (7.2)
W4 M =g P Vwio)®Y, i¢ . (7.3)
{j:i—2j>0}

Remark. The theorem was proved when A is the polynomial ring in one variable in [C2],[CM].

7.2. Before proving the theorem, we note the following. Let dimy : Ey — Z4 be the
function £ — dim W?‘Mg.

Corollary. Let A be a smooth irreducible algebraic variety. The restriction of dimy to 1Z3°
15 constant.

Proof. Since A is smooth and irreducible, it follows that dim.S/S? is independent of S and
hence by Theorem [.I] we see that the corollary is true for w;. The general case now follows

from ([T1]). O

Remark. In the special case when A = CJt] the function dim) is constant on Zy. This was
conjectured in [CP2] and proved there for sly. It was later proved in [CL] for sl,1, in [Foll] for
algebras of type A, D, E. The general case can be deduced by passing to the quantum group
situation and using results in [K], [BN]. No self-contained algebraic proof of this fact has been
given for the non—simply laced algebras.

However, it is not true that if A is an arbitrary smooth irreducible variety, then dimy is
constant on =3°. As an example take g = sl3, A = CJt1,t2] and consider A = w; + wy. Let
S, S’ be the maximal ideals in A corresponding to distinct points (z1,22,) and (27, 25). Let
£, € 2, be given by

g(s) = Wi, g(s/) = w2, 5/(5) = A
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Then by Theorem [7.1]
WM 224 V(w) @ V(wa),
and hence is nine—dimensional.

On the other hand the following argument proves that Wj(Mé) is at least 10—dimensional.
Recall that V(w1 + w2) =5 gaa Where goq is the adjoint representation of g and hence has
dimension eight. Let <, > be the Killing form of g. A relatively straightforward check shows
that if we set W = g,q ® C @ C and define an action of g ® A on W by

d d
(@® )y, 2) = (2 A)le.ul, d—i( L) <y >, d—i( L) <y ),

then W is a quotient of Wi(Mg/)

7.3. The rest of the section is devoted to proving the theorem. We shall repeatedly use
the following

(h® 8)(wy, ® Mgg) =0. (7.4)
Given a € RT, let g;(a) € {0,1,2} be the coefficient of «; in o and set
ht o = Zsj(oz), n, = EB I—a-
jel {a€R*:e;(a)=r}
It is a simple matter to check that
my.mgl=ny,  [mgonpl=ny, [apng)=ng. (7.5)
Lemma. We have
(g @A) & (ny © ) ® (ny ®5%)) (wa, ® Mgy ) = 0.
In particular (g ® 52)WﬁiM§g =0, ie S?C Kﬁgg.
Proof. 1t is trivial that
nF(z; ® A)(wy, © Mg ) =0, j#1i, nt(z; ®8)(w,, ® Mg ) =0
Since w; — aj ¢ PT for all i € I, it follows by elementary representation theory that
(z; ® A)(wy, ®M€g):0, J #1, (w;@S)(wwG@M%) =0.
Using (7.5) we see that a straightforward induction on ht a proves the lemma. O

7.4. We now prove by using Lemma [5.5] and Lemma [T.3] that it suffices to prove Theorem
[Tl in the case when A is the polynomial ring in finitely many variables. For this, suppose
that B is a finitely generated algebra and let Sp a maximal ideal in B. Let t1,...,t; € S be
such that the images of these elements form a basis of Sp/S%. Let A = C[zy,..., ], and
define an algebra homomorphism A — B by extending the assignment x; — t;. Let S4 be
the ideal in A generated by z1,- - ,zp. Clearly S4 maps to Sp and we have a homomorphism
of algebras ¢ : A/S% — B/S%. Moreover, since t1,--- ,t; are linearly independent in Sp/S%
it follows that ¢ is injective. Further, since

dim A/S?% = dim B/S% =k + 1,
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it follows that ¢ is an isomorphism of algebras. We now have
Wi Y Wi AN wi V) Wi )
Wi Mgy, = Wys Mey = WisapMey, = Wikl

where the first and last isomorphisms follow from Lemma and the isomorphism in the
middle is induced by ¢.

7.5. From now on we shall assume that A = Clty,..., | is the polynomial ring in k
variables. Moreover since the theorem is proved for k = 1 in [C2],[CM], we shall assume that
k > 1. In addition we may assume that S is the maximal ideal generated by t1,- - ,tx. There
is no loss of generality in doing this for the following reason. Suppose that S’ is another
maximal ideal corresponding to the point z = (z1,--- ,,2x) € C*. Consider the automorphism
of o 1 g® A —g®Agiven by 2 ®@t, - z® (t, — 2,), v € g, 1 <r < k. It is not hard to check
that

WZZMEZ'@ & qﬁéWf{Mgg/.

7.6. Let AL be the subspace of polynomials with constant term zero. Since g ® AL is an
ideal in g ® A, to prove (.2) it suffices to show that for all « € RT and a € A4,

(25 ® a)(w,, ® M) € U(g)(w,, ® M), (7.6)

Let C = CIJt], where ¢ is an indeterminante. Consider the map g ® C — g ® A given by
r®t — x®a. By Proposition {1l there exists a map of g ® C-modules W Me; — W Me; .
Since the theorem is known for C, it follows that

(07 © t)(wa, & Myy) € Ulg) (w, @ M) © WM,
which proves (7.6]).
7.7. The rest of the section is devoted to proving (7.3)) and hence we may and will assume
that g is of type By, or D,,. For j € I, j > 2, set wj —w;_2 = 6. Then one checks easily [H]
9j € R+, 9]'_2 — 9j = -3+ ZOzj_g + aj-1, 9j — Qy € Rt «— r= 7-
where we understand that w1 = 0.
Proposition. Leti € I, 1 <{,m <k, and set vy = (z, @ t;)(wy, ® Mgg)- Then
(nt ® A, =0, (h® S)ve =0. (7.7)
In particular, the g @ A-submodule of WﬁiMSg generated by vy is a quotient of WziﬁMgf;?-
Further, we have
(g, , @tm)ve = (T4, @te)Vm. (7.8)
Proof. Note that (n™ ® S)v, and (h ® S)v, are both contained in (g ® S?)(w.,, ® Mg ) and
hence by Lemma [7.3]
(1‘1+ RSy =0 = (h®S)v,.
Since S is maximal, (7.7)) follows if we prove that

(nt @ 1w, = 0.
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Since
+ — . .
(2], 2] =0, j#4, and &/(0; — ;) =1,

we see that Lemma [T.3] gives (:v;|r ® 1)vg = 0 for all j € I. The second statement of the
proposition is now clear. Hence we have by Lemma [7.3] that

(g @8y =0 if g;i_o(a) # 2.
Writing

Ty , = [z s, [x;i,3+ai72+ai,1a%_i]]a
and using Lemma [7.3] we get

(xe_iiz ® tm)vp = (:EQ_F2 ® tm)(xe_i ® tr)(wy,; ® M%) = (:1:9_1 ® tf)(xe_i,z ® tm) (W, @ M%)
= (Tg, ®t)T; 9T0, ra; stas s (Tg, ® tm)(We, ® Mgg)

= (wy, , @to)vm + X(wy, @ Mgg),

where X is a linear combination of the elements
T 9Ta, stanatas 1 (Tg, @) (Tg, @lm), Tio(Ty 0. o yra,, ©10)(Tg, ®tm),
Ty gtanotai1 (Lo, pa, , @t)(Tg @ tm).

But by Lemma [(.3] all these terms act as zero on (w,, ® Mgg), since (24, @ tm) (W, ® Mgg)

generates a quotient of Wzi72M§i72 and
S

gi—2(0i + i+ aim1 +ai3) =1 =¢;_2(0; + aj—2).

The following is now immediate.
Corollary. Given i,£ € I with 20 <1, and rs € {1,--- |k}, 1 < s < ¥, the elements,
o(ry, e, re) = (xg_ifu ® ty,) -+ (5179_1-,2 ® trz)(fﬂe_i ® try)- (W, ® Mgg)
generate a submodule of WﬁiMSg which is a quotient of WZZ‘72ZM57;722. Moreover if o € Sy,
S
we have,
U(Tlu o 7745) = U(To(l), e 7r0(5)’

7.8. Suppose that a € R is such that g;(a) = 2. Then we can write a« = v+ 3 + 6;
for some (3,7 € R with ;(8) = €i(y) = 0. This implies that z, = clzy, [2],2,]], for some
non-zero ¢ € C and hence

(g @ te)(wy; @ Mgg) = clzg, v, 7y, @ t]|(we, ® Mgg) € U(g)(zy, @ te)(wew, ® Mgg)'

Proposition [T.7] now gives,

k
WM = U(g)(we, @ M) @) Ulg @ A) (a5, ® te) (we; © Myy)
/=1



28 VYJAYANTHI CHARI, GHISLAIN FOURIER, AND TANUSREE KHANDAI

as g—modules. Using Corollary [Z.7 we find

W;}XZMSQ = U(g)(wwl ® Mgg) @ Z U(g)U(?"l, T ,7"() )
0<2I<: 0<r1<---<ry

which proves that
Homg(V(u),Wﬁngg) =0, p#i—2j, dimHomg(V(wi_gj),Wﬁngg) < c(j).
7.9. To complete the proof it suffices to prove that the elements v(ry,--- ,7;) are linearly
independent for all 4, ¢ € I with 2¢ <i and rs € {1,--- ,k}, 1 < s < {. We do this as in [CM]

by explicitly constructing a module which is a quotient of W'’ M, and where these elements
are linearly independent. Suppose that V; for 0 < s < £ are g—modules such that

Homg(g ® Vi, Vig1) # 0, Homg(A?(g) ® Vs, Vay1) = 0. (7.9)

Set V = @ﬁZOVS and fix non-—zero elements p, € Homgy(g ® Vi, Vsi1) for 0 < s < k. Define a
g ® A—module structure on V ® A by:

(z@1l)(vea)=2v®a, (2@t)(v@a)=ps(r@v)®at,, v€g, acA 1<r<k,
(z®SH(v®a)=0.
To see that this is an action, the only non—trivial part is to notice that,
[ @ty @tn](v® c) = ps1(T @ ps(y ®V)) @ trtme — Pss1(y @ ps(z @ v)) @ trtpme,
=psr1(ps @ N)((z @y —y @ x) ®v) @ tpte =0,

where the last equality follows by noticing that psy1(ps ® 1) € Homg(g ® g ® Vi, Viy1) and
using (Z.9]).
It was shown in [CM] that the modules V(w;_25), 0 < 2s < i satisfy (7.9]) and also that
pS(xe_i,zs,z ® Uwi72s) = Vw95 o-

and hence we can apply the preceding construction to this family of modules. Consider the
U(g ® A)-module W generated by v,, ® 1. It is clear that

@A) (v, ®1) = 0 =(Ho85)(w, @1),

since wj_s < w;. Hence W is a quotient of W‘X Mgg . Moreover, it is simple to check now that

($9_7;le ® tw) e (5179_1-72 ® trz)(xe_i ® tTl)‘UWi = Vg @ty oty

Since these elements are manifestly linearly independent the result follows.
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