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DEMAZURE MODULES AND WEYL MODULES: THE TWISTED CURRENT
CASE

GHISLAIN FOURIER AND DENIZ KUS

ABSTRACT. We study finite-dimensional respresentations of twisted current algebras and show that any
graded twisted Weyl module is isomorphic to level one Demazure module for the twisted affine Kac-
Moody algebra. Using the tensor product property of Demazure modules, we obtain, by analyzing the
fundamental Weyl modules, dimension and character formulas. Moreover we prove that graded twisted
Weyl modules can be obtained by taking the associated graded modules of Weyl modules for the loop
algebra, which implies that its dimension and classical character are independent of the support and
depend only on its classical highest weight. These results were known before for untwisted current

algebras and are new for all twisted types.

1. INTRODUCTION

Weyl modules for loop algebras g @ C[t,t71], where g is a simple complex Lie algebra, have gained a
lot of attraction during the last two decades. Starting with the analysis of finite—dimensional irreducible
modules for quantum affine algebras (JCP01D]), which are highest weight modules in a certain sense. It
was natural to ask for maximal finite—dimensional modules with these highest weights since contrary to
the theory of simple complex Lie algebras, the category of finite—dimensional modules is not semi—simple.
In the same paper it was conjectured, that the classical limit ¢ = 1 of these irreducible modules specialize
to modules for the loop algebra satisfying some universal properties, the so called local Weyl modules.
In a series of papers ([BN04], [CL06], [CP01a], [FLOT], [Nak01], [Nao]) the character and dimension of
these Weyl modules were computed. In the proofs, these modules were identified with Weyl modules for
the current algebra g ® C[t]. Using the tensor product property (JCP01b]) and some pullback maps, the
study was reduced to analyzing graded Weyl modules for g ® C[t], where the grading is induced by the
grading of C[t].

One major step in the analysis of the graded Weyl modules is their identification with level one Demazure
modules for simply-laced algebras ([CLO6], [FLO7]). With the tensor product property for Demazure
modules (JFLO6]) and the computation for fundamental Weyl and Demazure modules ([CLOG], [FL06]),
the character and dimension formulas were proven. In the non simply—laced case, Weyl modules admit a
filtration by Demazure modules and via this filtration, the dimension and character formula were proven
([Nag]). One should mention that these results can also be deduced from the results in [BN04|, [NakO1],
but there is no written proof so far in the literature.

Local Weyl modules for current and loop algebras can be parametrized by finitely supported functions
from C (resp. C*) to PT, the set of dominant integral weights for g. To each function one can associate
a weight, which is the sum of all images, hence in PT. To summarize the results above, the dimension
and character of a local Weyl module are independent of the support of the parametrizing function and
depend only on its weight. The graded local Weyl module of weight A is parametrized by the function
of weight A with support in the origin only. We can also reformulate this result in terms of the global


http://arxiv.org/abs/1108.5960v1

2 GHISLAIN FOURIER AND DENIZ KUS

Weyl module, which is a projective module in a certain category and in general infinite-dimensional.
The results on local Weyl modules are equivalent to the statement, that the global Weyl module is a free
module for a certain commutative algebra A .

There are several ways to generalize the notion of local Weyl modules. By replacing C[t,t~!] with a
commutative, associative algebra ([FL04], [CEFK10]) one can define local and global Weyl modules as
before, obtain similar tensor product properties, but character and dimension formulas are known only
in certain cases. Even for a case as simply looking as g = sly and Cl[tq,...,t,] with n > 4 there is no
dimension formula known.

Another way of generalizing local Weyl modules is to look at twisted current and loop algebras. Given
a complex simple Lie algebra g and a commutative algebra A (= C[t], C[t,t!]), both equipped with the
action of a finite group I' (I' = Z/mZ) by automorphism, one can extend this action to g ® A. The
fixpoint Lie algebra (g ® A)' is called the twisted current algebra (resp. twisted loop algebra). The
twisted current algebra is a subalgebra of the twisted affine Kac-Moody algebra associated to g, while
the twisted loop is obtained by taking the quotient by the central element of the subalgebra without
derivation [Car05].

Local Weyl modules for the twisted loop algebra were introduced and studied in [CFS0§|. It was proven,
that every Weyl module is the tensor product of Weyl modules located in a single point only. So to obtain
dimension and character formulas it was sufficient to compute them for Weyl modules with support in a
single point. The main theorem in [CES08] states that every Weyl module for the twisted loop algebra
is isomorphic to the restriction of a Weyl module for the untwisted loop algebra. So all interesting
information can be deduced from this isomorphism. In [EMS] the aforementioned global Weyl modules
will be defined and studied for twisted loop algebras as well. It will be shown, that the twisted global
Weyl module is a submodule of the untwisted global Weyl module, viewed as a module for the twisted
loop algebra by restriction. The results about twisted local Weyl module translate again into the freeness
of the twisted global Weyl module as a module for a certain commutative algebra Al.

In [FKKS]| the notion of local Weyl modules was generalized to certain equivariant map algebras. Given
X an affine scheme and g a finite-dimensional Lie algebra, both defined over an algebraically closed field
and I a finite group acting on X and g by automorphisms, the equivariant map algebra is the Lie algebra
of equivariant maps from X to g. In [FKKS]| several restrictions to this general case were assumed, the
group action on X had to be free and abelian. But under these assumptions, again the tensor product
property was proven. Furthermore it was shown, that every Weyl module for the equivariant map algebra
is isomorphic to the restriction of a Weyl module for the algebra of maps from X to g.

In this paper we are considering the gap in the computation of dimension and character formulas for
local Weyl modules of twisted current algebras. For twisted and untwisted loop and current algebras,
dimension formulas for all local Weyl modules are known except for graded local Weyl modules for the
twisted current algebra. Let I' be the finite group of non-trivial diagram automorphism of a simple Lie
algebra g, so I' is of order 2 or 3 and g of type A, D, E. In terms of equivariant map algebras, the affine
scheme would be X = C and T' = (), where ¢ is the multiplication by a primitive 2nd or 3rd root of
unity. We see immediately that 0 is a fix point, so the group action is not free. In this setting, the results
of [FKKS| do not apply at the origin.

The goal of this paper is to compute a dimension and character formula for the local Weyl module located

in 0 (the graded local Weyl module) of the twisted current algebra. The main tool are, as in [FLO7] and
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[Nao|, Demazure modules.

There are two cases to be considered, the first one is:

Theorem. Let g be not of type Ay and A € Py, then the local graded (g ® C[t])'-Weyl module WT())

is isomorphic to a Demazure module of level 1.

In the proof we will use the sly ® C[t] and the (sl3 ® C[t])" cases (proven in [CPOID], [CLO6], resp.
Section [M). A tensor product property for Demazure modules was proven in [FLO6], so to obtain a
character formula for Weyl modules it is sufficient to determine the fundamental local Weyl modules, as
done in Section Bl Concluding we were able to prove an analogous result to [CFS08], [FKKS|, that the
dimension of the local Weyl module does not depend on the support but only on the highest weight.

Theorem. For g not of type Ay and A € Py, the local graded (g ® C[t])"-Weyl module is isomorphic
to the associated graded module of the restriction of a local Weyl module for g ® C[t,t71].

In the second case, we assume that g is of type Ag;, then the fixpoint algebra g is of type B;. Here with
our methods, one can only determine the local Weyl module for weights A, where A(’) is odd. In this
case there is an identification with Demazure modules as before, so the graded local (g ® C[t])'-Weyl

module is isomorphic to a Demazure module of level 1. Furthermore we are able to show the following:
Theorem. Let A = \; + Xy € PO+, where X\2(¢)) is odd, and @ € C*. Then

W) 2 gr(Wa (A1) © WE(A2)),
where W, (1) is the local Weyl module for g ® C[t,¢~!], supported in a with highest weight \;.

In the case where () is even the dimension and character of the local Weyl modules remains uncom-

puted, the identification with Demazure modules fails. We can state here a conjecture only

Conjecture. Let )\ € P0+ , then the graded local Weyl module is isomorphic to the associated graded
module of the restriction of a local Weyl module for g ® C[t,t~!]. The dimension of a local Weyl module
of highest weight A is independent of the support of the module.

The structure of the paper is as follows, in Section 2l are basics and notations for affine Kac-Moody
algebras recalled, in Section [3 for twisted current algebras. In Section ] Demazure and Weyl modules are
defined. In Section [l we identify Demazure modules with Weyl modules and determine the “smallest”
Weyl modules. In Section [0l we show that every graded Weyl module of the twisted current algebra can
be obtained by taking the associated graded of the restriction of a untwisted loop module. In Section [7]

the case g = sl is treated seperately, since it is used in some of the proofs of the other cases.
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during which the ideas in the current paper were developed. The first author was partially sponsored
by the DFG-Schwerpunktprogramm 1388 “Darstellungstheorie” and the second author by the “SFB/TR

12-Symmetries and Universality in Mesoscopic Systems”.
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2. THE AFFINE KAC-MOODY ALGEBRAS

2.1. Notation and basic results. In this section we fix the notation and the usual technical padding.
Let g = g(A) be a simple complex Lie algebra of rank [ associated to a Cartan matrix A of finite type.
We fix a Cartan subalgebra h in g and a Borel subalgebra b O h. Denote ® C h* the root system of g,
and, corresponding to the choice of b, let @ be the set of positive roots and let IT = {ay, ..., a;} be the

corresponding basis of ®.

For a root 8 € ® let BY € h be its coroot. The basis of the dual root system (also called the coroot
system) ®¥ C b is denoted IIV = {aY,...,a)}. The Weyl group W of @ is generated by the simple
reflections s; = s,, associated to the simple roots.

Let P = @221 Zw; be the weight lattice of g and let P = @221 Z>ow; be the subset of dominant
weights. The group algebra of P is denoted Z[P], we write x = > a e/ (finite sum, u € P, a, € Z)
for an element in Z[P], where the embedding P — Z[P] is defined by p +— e*. Further we denote by
Q= 692:1 Zay; (respectively Q1 = 692:1 Z>a;) be the root (respectively positive root) lattice and let
{z£, hi|i € I} be a set of Chevalley generators of g.

Let g be the affine Kac-Moody algebra (twisted or untwisted) corresponding to the Cartan matrix
A= (a;,j). Note that, if g is a untwisted affine Kac-Moody algebra associated to g:

§=9g®cC[t,t" ] @ Cca Cd.

Here d denotes the derivation d = t% and c is the canonical central element. Recall that the Lie bracket

is defined as
[t" @z + A+ pd, t" @y +ve+nd] =" @ [2,y] + pnt™ @y + ngmt™ @ & + My, —n (T, y)c.

We assume g is arbitrary (possibly twisted) and we fix a Cartan subalgebra 6 in g and a Borel subalgebra
bDh II= {ao,...,aq} the set of simple roots, IIY = {«y,..., )"} the set of simple coroots. Denote
by ® the root system of g and let ®+ be the subset of positive roots. We denote by P the weight
lattice of g and let P+ be the subset of dominant weights. The Weyl group W of & is generated by the
simple reflections s; = s,, associated to the simple roots. Further we fix uniquely determined vectors
w = (ag,...,a)t v = (a,...,a)), such that vA = Aw = 0. Then it is known that the center of g is
1-dimensional and is spanned by the canonical cantral element
1
c= Z al o).

=0

Define further

1
522&1-041-; 0 =0 —apag

=0

and d € 6 which satisifes the following conditions

a;(d)=0,fori=1,...,1; ap(d)=1.
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Clearly the elements oy, ..., ), d form a basis of E We have a non—degenerate symmetric bilinear form
(-,-) on b defined in ([Kac90], Chapter 6)

<O‘;/7a;/> = ZjV‘a”Lj i,j =0, N4
(2.1) (ay,d)=0 i=1,....0
<a6/7d>zs_§ (d,d) =0

This W-invariant form induces a isomorphism

—~ ~ - C
v:h—b*, vh): b
N )
With the notation as above it follows for i = 0,...,:
a;
v(ay) = 2o,

Let Ag, ..., A; be the fundamental weights in ﬁ, then for i =1,...,1 we have

a;/
0

With this we have P = >\_ ZA; + Z(6/ag) and PT = \_, ZzoA; + Z(6/aq).

2.2. Realisation of twisted affine algebras. In this paper we are mainly interested in twisted affine
Kac-Moody algebras, which can be realised as fixed point subalgebras of so-called twisted graph auto-
morphisms. Let g be a finite dimensional simple Lie algebra and ¢ : g — g be a graph automorphism of

order m. In particular

) 2, ifgoftype Ay, A1, Diy1 or Ep
B 3, if gis of type Dy

th

Let € be a primitive m™" root of unity, then it is well-known that there exists a decomposition of g into

eigenspaces. We obtain:

g9=090D D gm—1,
whereby g; = {z € glo(z) = &z}, j =0,--- ,m—1. The fixed point algebra go is again a simple complex
Lie algebra of type Cj, By, Fy or G2 and the eigenpaces are irreducible gg-modules.

Remark 2.2.1. Let a be a subalgebra of g such that o(a) = a, then we get a analogue decomposition
a=0apD-- - Dapy_1.
Soif g=n® hEn_ is a triangular decomposition of g, we obtain
gi=n;®h;d(n_); foral 0 <j<m-—1.
Now we can extend o to a automorphism of the corresponding untwisted affine algebra given by
olz@t)=¢("o(x) @t forxzecg
o(c)=¢; o(d)=d.
The twisted affine algebra is realized as the fixed point subalgebra

2P at™) o o Pgm1 @™ "Dy e Cea Cd
kEZ kEZ
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- D

7=0 keZ

@tk ) @ Ce @ Cd.

Using the above notation we can conclude

h=ho® (Cc+Cd) bh* = (ho)*

We have the following table, which describes the various possibilities for g, go, g and the eigenspaces

g1, 92.

® (C5 + CAy).

We put a “0” on (almost) everything related to g, e.g. denote by &y C

‘ m ‘ g ‘ g0 ‘ ‘ o1 ‘ g2 ‘ Dynkin diagram of g ‘
2 A2 Al A§2) V(4w1) Séﬁf
2 | Ag,i>2 | B | AY | V(2w) 00— =00
0

2 Aglfl,l Z 2 Ol Ag) 1 V((UQ) / (1) — C2> — .. —lol<: Cl>
D@

2 Dl+1,lz3 Bl l+1 V(wl) / 8<:c1>— .._li)1:>cl>
(2) o — _

2 | Eg F, | Eg4 V(wr) / 0—0—0<=0—20

3 | Dy Go Df) Viwa) | V(wz) o = °—o

(ho)* the root system of gg. The

recently defined element ¢ is the imaginary root in ®+ and 0 is the highest short root of the root system

l(i)u E(Q) Df). In the remaining twisted cases § — «p is the highest root of

the root system of go. For more details we refer to ([Kac90],[Car05]).

of go if A is of type A2l 1

Remark 2.2.2. The untwisted Kac-Moody algebras § = g ®c C[t,t~}] ® Cc @ Cd can also be realised
as fixed point algebras for any automorphism of order 1. We have go = g and the eigenspaces are the

zerospaces. In this case 6 is the highest root of g.

2.3. The extended affine Weyl group. Now we give a description of the Weyl group W of the affine

Kac-Moody algebra g. The Weyl group is generated by fundamental reflections sq, ..., s;, which act on

bh* by

si(A) = A= AMaY)ay, Aeb*.

Since §()) = 0 for all ¢ = 0,...,1, the Weyl group W fixes 6. Another well-known description of the
affine Weyl-group is the following. Let W} be the subgroup of W generated by s1,...,s;, i.e. Wy can be
identified with the Weyl group of the Lie algebra go, since Wy operates trivially on (C§ + CAp). Further
let

l

(2.3) M = Z Za; if A symmetric or m > ag
i=1
or
1
(2.4) = V(Z Zay) otherwise.
i=1

For an element j1 € M let ¢, the following endomorphism of the vector space E*:

(2.5) A=A+bAg+70 = tu(A) = A+ A(c) — (A, ) + %m, 1A ()5
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ObVlously we have t, ot, = tHJW/, denote t3s the abelian group consisting of the elements ¢, u € M.
Then W is the semidirect product W= Woktar.

The extended affine Weyl group et is the semidirect product West = Wl><tL, where L = I/(@izl Zw))
is the image of the coweight lattice. The action of an element ¢, i € L, is defined as above in (2.3]). Let
Y be the subgroup of Weat stabilizing the dominant Weyl chamber C:

Y ={oceW|g(C)=C).
Then ¥ provides a complete system of coset representatives of Weat / /V[7, so we can write in fact Wert =

YKV,

The elements o € X are all of the form
0 =Tit_ywy) = Til —w;;

where w) is a minuscule fundamental coweight. Further, set 7; = wowo,;, where wyp is the longest word

Wy and wy; is the longest word in W, the stabilizer of w; in W.

2.4. Weight space decomposition and roots. Remember that the Borel subalgebra for the twisted
case is given by:
b=(hoan)el)e P @et™) e@@met™ ) e & @(gna @™ " D) e Ceas Cd.
k€N kEN kEN

Furthermore we remember that g; is a irreducible gg-module for all j, so one can obtain the following

weight space decomposition

0= P @)

a€(ho)*
Proposition 2.4.1. b; = (gj)o; (n-); = Baco,, 8i)a; 1 = Dacoryy, (@i)a, 0 < <m—1.
Let (®¢)s be the set of short roots and (®¢); be the set of long roots of gy and ®; = {a € (ho)*[(g;)a #
0} — {0}, then we get

g=b& P @a=be P @) P @)

acd; acdf aed;

whereby dim(g;)o = 1 for all & € ®;, hence (g;j)+a = (CXij for o € <I>j and we have the following table
[Car05):

‘ g ‘ 90 ‘ D, ‘ Dy ‘ Dynkin diagram of gg
Ao A | (Po) U{2a:a € Do} / °
Agy, 1> 2 B | (o) U{20: € (Po)s} / 0O—9—r—0=0
Ay 1,1>2 | C (®o)s / 0—9g—:—o040
Dyy1,1>3 | By (Po)s / 0—9— _131:> °
Ee Fa (®o)s / ST
D, G (®o)s (®o)s °= 0
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3. THE TWISTED CURRENT ALGEBRA €(g)

In this section we will define the twisted current algebra €(g) and certain subalgebras, which will be

needed in the following sections. The main object of this paper will be

@ @ ® ¢,

j=0 k>0
The algebra €(g) can be realized by taking the fixpoints under the group of automorphisms I' restricted
to the current algebra, in detail (g ® C[t])T = €(g), hence it is called the twisted current algebra.

In order to give an explicit basis of €(g) we use the embedding g; < g for all 0 < j < m — 1, so that
we can realize the generators of the weight spaces (g;)+q as elements in g. This is already described

in [Kac90],[Car05] and [CFS0§] if « is a simple root and can be continued to arbitrary o 6 ®y: Let

(a1, , am) be a m-element orbit of o on ® and x~ € g be root vectors such that o(xi) - x E Then
we obtain

m—1

Z ‘71(01) (gj)i&‘ﬂho, 0<j<m-—1.

i=0

n ([Car03], Chapter 18.4) it is shown that the weight spaces of g; are spanned by such elements for all
m-element orbits (aq,---,am). So the weight spaces (g;)+o can be described as follows: There has to

be a root &, such that dy, = @ and

m—1
+
(3.1) CXoy =CQ_ (€Y 75)
1=0
We set further
m—1
(3.2) Chaj =C(D_ (€ hoi(@)
i=0

At this point we have adapted our notation while we denote by h, ¢ the coroot of a root o € ®.

Lemma 3.0.1. Assume g is of type A2l 1 l(-2|-)1’ E(2) or D(3) If o is a long root then we get an canonical

isomorphism
sly @ C[t] = (X o @™, hao ®t"™|s € N)¢ =1 slp o ® C[t™]
and if o is short we have
sly @ Clt] = (X, @™ he ;@ t™ s €N, 0<j<m—1)c =5l ® C[t].

Proof. Since the Lie algebra <Xa 05 ha,0)c is canonically isomorph to sl the first isomorphism is given by

sER s X @t

h@t° s hao®t™.
To verify the second isomorphism we define

T @t >—>X§j®ts, ifs=7 modm
h@t' = he; @t if s=j modm

To show that this map is an homomorphism of Lie algebras we need to check

(33) [X;_“ ; X;,zé] = ha,il—i-ig mod m» [hoz,ig ; Xin] :l:2Xi

a,i1+is mod m
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Since we require « to be a short root, we know that the weight space (¢;)+a, 0 <j <m — 1 is non-zero
and therefore we can use the description in (B, 82) with &, such that o(@) # @. More than this, a

case by case consideration shows o7 (@)(c%(@)) = 0 and o?(a) — o?(@) is not a root for i # j, e.g. in

l(i)l we have for an arbitrary short root «; + --- + o of By, that @ = «; + - - + oy and therefore

o(@) — & = aj41 — oy is not a root and o(@)(a") = a(o(a)¥) = 0. The proof in the other cases is similar.
We set Xij = (Zzlgl({i)jxfi(a)), haj = (300 (€) hyiga)). The required equations in (B3) are now

immediate. O

type D

If g is of type Ag) we obtain a similar result

Lemma 3.0.2. Assume g is of type Ag) and o be a long root then we get an canonical isomorphism
sl @ Clt] = (X, @t™ hej @t™H|seN, 0<j<m—1)¢c =:sl,® C[

and if « is a short root, then we get an canonical isomorphism
(AP 2 (XE, @™ X5 @t™ b @t |s €N, 0<j <m— 1)

Proof. The proof of the first isomorphism is similar to LemmaB.0.Tland to justify the second isomorphism

we will demonstrate how to realize the elements h, j, X+ X;anl as elements in As;. Let o« = a; +- - -+

a,j?
be an arbitrary short root of type B; and & = a; + - - - + o be the root considered as a root in type Aoy,
i.e. the restriction to by equals a. It is easy to see that o(a) # &, o(@) — & is not a root of Ay and

continuing o(@)(a") = a(o(a)¥) = —1. We set
XE| = (€PV2E +at ) € (0)sa
Xéta,l = [.’L’;—‘E,Jif(a)] € (gl)i2a
haj = 2% (ha + & ho(@)

Now, knowing the embedding in Ag, it is straighforward to check the required relations. 0

3.1. Filtration on €(g). The Lie algebra €(g) has a natural grading and an associated natural filtration
F*(€(g)), where F*(€(g)) is defined to be the subspace of g-valued polynomials with degree smaller or
equal s. One has an induced filtration also on the enveloping algebra U(€(g)) and therefore an induced
filtration on arbitrary cyclic U(€(g))-modules W with cyclic vector w. Denote by Wy the subspace
spanned by the vectors of the form g.w, where g € F*(U(€(g))), and denote the associated graded
€(g)—module by gr(W)
gr(W) = @Wi/Wi_l, where W_; = 0.
i>0
4. DEMAZURE MODULES AND WEYL MODULES

4.1. Definition of Demazure modules. For a dominant weight A € P* let V(A) be the irreducible
highest weight module of highest weight A. Given an element w € W, fix a generator vy, () of the line
V(A)w(ay = Cuyay of b-eigenvectors in V(A) of weight w(A).

~ —~

Definition. The U(b)-submodule V,,(A) = U(b).v,(a) generated by v,y is called the Demazure sub-
module of V(A) associated to w.

Remark 4.1.1.
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(1) Since E acts by multiplication with a scalar on vy,(s), the Demazure module V,,(A) is a cyclic
U (n)-module generated.
(2) The modules V,,(A) are finite-dimensional although V'(A) is infinite-dimensional.

To associate more generally to every element cw € West = YW a Demazure module, recall that
elements in ¥ correspond to automorphisms of the Dynkin diagram of g, and thus define an associated
automorphism of g, also denoted o. For a module V of g let o*(V') be the module with the twisted action
gov = o0"1(g)v. Then for the irreducible module of highest weight A € Pt we get o (V(A)) =V (e(A)).
So for ow € Wert = SxW we set

(41) Vow(A) = Vawa’l(o(A))'

We are mainly interested in go-stable Demazure modules. For i € Iy we have X qv,(a) = 0 if and only
if w(A)(ey) < 0. Consequently we can see that V,(A) is go-stable if and only if w(A)(e)) < 0 for all
i € Ip. Assume that w(A) = —\ + kAo + 99, then V,,(A) is stable under go if and only if A € P,". We

define a set
X ={(\ ki) € Pf x (1/a})Zso x (1/ag)Z | I € P :wo(N) + kAg + i6 € W(A)},

where wy is the longest word in Wy. Let (A k,i) € X and w € W, such that w(A) = wo(X) + kAo + 0.
Then by the above computation we get the go-stability of the Demazure module V,,(A) and we denote

Vi (A) = D(k, A)il.

Remark 4.1.2.

(1) The go stable Demazure modules are in fact €(g)-modules.
(2) For any A € Pt and i € (1/a)Z, we have V(A) 22 V(A +id), as €(§)-modules. Therefore we get

D(k, A)li] = D(k, N)[i + n],
which justifies the notation D(k, \) as a €(g)-module.

Remark 4.1.3. Whenever we speak about D(k, \) we will assume that (A, k) € X. If g is not of type
Ag) (I > 1) the set X is given by X = PJ X Z~o X Z and else we have PO+ X ZLso X7 < X.

4.2. Demazure character formula. Let £ be a real root of the root system ®. We define the Demazure

operator:
R R er — es8(M)—B
Dj : ZIP] = Z[P], Dp(e)) = ————5—
Lemma 4.2.1.
(1) For A\ p € P we have:
e P e if (A,8Y) =0
(4.2) Dg(e*) =4 0 A7) =1
_eMB A28 o _ess(N)-B i (\BY) <=2

~

(2) Let x,n € Z[P]. If Dg(n) =1, then
(4.3) Ds(x-n) =n- (Dp(x))-

Proof. For (1) see ([DemT74], (1.5)—(1.8)) and for (2) see ([FLOG], (2.2)). O
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Since Dy, (1 —€%) = (1 —¢€?) for all i = 0,...,n, [@3) shows that the ideal I5 = ((1 — ¢°)) is stable under

all Demazure operators Dg. Thus we obtain induced operators (we still use the same notation Dg)
Dp : Z[P)/Is — Z[P)/15, &+ I5 > Dp(e) + Is.

In the following we denote by D;, i = 0,...,n the Demazure operator D, corresponding to the simple
root a;. Recall that for any reduced decomposition w = s;, - -+ s;, of w € /V[7 the operator D, = D;, - -+ D;,
is independent of the choice of the decomposition (see [Kum02], Corollary 8.2.10). We have the following

important theorem:
Theorem 4.2.1 ([Kum02] Chapter VIII).

Char Vy,(A) = Dy (™).
We will need the following elementary proposition:

Proposition 4.2.1. Let A}, \Y be two dominant coweights, and set \V = XY + \Y. Then

(1) Dt—uu{)Dt—u(Ag) =Dt_, ;v
(2) Di_ Dy, =Dy

v(AY) T v(AY)Wo

-~ -~

4.3. Properties of Demazure modules. Since V,,(A) = U(b) - vy (a), there exists an Ideal J C U(b),
such that Vi, (A) = U (E) /J. So the Demazure module can be described by generators and relations, which

was done in [Mat88]. We give here a reformulation for the twisted affine case:

Proposition 4.3.1 ([Mat88]). Let A € Pt and let w be an element of the affine Weyl group of §. The

-~

Demazure module V,,(A) is as a U(b)-module isomorphic to the cyclic module, generated by v # 0 with
respect to the following relations.
Forﬁefbj, 0<j<m-—1 we have:

(X;j @™ty =0 where s >0, kg = max{0, —(w(A), (B + (ms +5)6)V)}

(X5, ® tmstiykstl =0 where s > —0j (1, m-1}, kg =maz{0,—(w(A), (=B + (ms+7)5)")}

(h@t"™st ) v = §; 005 0w(A)(R)v Vh € b, where s >0, dwv=w(A)(d).v, co=w(A)(c)v
Corollary 4.3.1. As a module for €(g) the Demazure module D(k, \) is isomorphic to the cyclic U(€(g))—

module generated by a vector v # 0 subject to the following relations:
Forﬂefbj, 0 <j<m—1 we have:

n; @ C[t"]w =0
2(ms + 7)

(X5, ® tmstiyketl y =0 where s >0, kg = max{0, (\, 3Y) — Wkag}
(h@t™t9) v = §;0050Mh)v Vh €b;, wheres >0
Proof. The proof is similar to the one given in ([FL07] Corollary 1). O

Remark 4.3.1. Since the defining relations of D(k, \) respect the grading of €(g), D(k, ) is a graded

module.

In [FLO6] it was shown by using the Demazure operator, that D(k,\) decomposes as a g (resp. go)
module into a tensor product of ”smaller” Demazure modules. We give here the result for the twisted

affine case:
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Theorem 4.3.1. [FLO6| Let AY = AY +AY +...4+ A be a sum of dominant coweights. Then for m > 0 we
have an isomorphism of go-modules between the Demazure module V_ v (mAg) and the tensor product

of Demazure modules:
Voav(mAg) =~ V,)\lv (mAp) ® V,sz (mAp) ® -+ ® V_ay (mAyp).
Remark 4.3.2. This theorem holds for any special vertex k of the twisted affine diagram.

4.4. Definition of Weyl modules. The representation theory of twisted current algebras is particularly
interesting because the category of finite—dimensional representation is not semisimple. It makes sense to
ask for the “maximal” finite—dimensional cyclic representations in this class, which leads to the definition
of Weyl modules. Let A = 22:1 miw; € P(;r be a dominant integral weight for go. Then we define the

Weyl module WT'()\) in terms of generators and relations:

Definition. Let A = Zli:1 m;w; be a dominant integral weight for go. Denote WT'(\) be the U(€(g))-

module generated by an element wy with the relations:

(4.4) n @UCH"awy =0, 0<j<m—1
(45) (h X tmerj).w)\ = 5j705570)\(h)’(U)\ Vh € [)j, where s > 0
(4.6) (X5,0® 1)A(5v)+1uu =0, for all positive roots S of gg

Remark 4.4.1. Note that the modules W' (\) are graded modules since U(€(g)) is graded by the powers
of t and the defining relations are graded, particulary we have

wr) = @ whsl,

SEZL4

where W' ()\)[s] is a go-module by identifying go with go @ 1 C €(g).
4.5. Properties of Weyl modules.

Proposition 4.5.1.
(1) We have
W'y = @ Wi,
ne(ho)*

and WY (N), # 0 only if p € A — QF . Further we get WY(X),, # 0 if and only if WF()\)UJ(#) #0
for all w € Wy.

(2) As a go module W ()\) and WY(\)[s] decompose into finite-dimensional irreducible representa-
tions of go-

(8) Let p be a dominant integral weight, such that A — u is as well dominant integral. Then there
exists a canonical homomorphism WT(X) — WT(u) @ WY (X — u) mapping wy to w, @ wr—,.

Proof. Tt sufficies to show that for every v € WT(\), the module U(go).v is finite dimensional, since
this proves the non-trivial statements in part (1) and (2). Part (3) is clear from the defining relations.
Given v € WT()\), we obtain U(gg).v = U((n_)o)U(ng).v. From part (1) we obtain that U(ng).v is
finite dimensional. By the PBW-theorem U((n_)g) is spanned by monomials, so it suffices to show that
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X5 € (n—)o acts nilpotently on v. Assume that v € U(€(g))wx and the action of (n_)o on €(g), which
is given by the Lie bracket is locally nilpotent. We obtain with

N
B v _ N _ ~ \N_—
(X50@ DMy =0, (X50)N (wawy) = Z <k>((Xﬂ)0)ku)(Xﬂ)0)N Fwy
-~ k=0
that X 5,0 acts nilpotently on v, which finally implies that U(gg).v is finite dimensional. O

Remark 4.5.1. WT()\) is finite-dimensional. This will be an immediate consequence of Theorem
and Corollar [7.1.2

By definition we obtain some obvious maps between Weyl modules and certain Demazure modules.

Corollary 4.5.1. Let A be a dominant integral weight for go. Then for all k € (1/ay)Zso, such that
(A, k) € X, the Demazure module D(k,\) is a quotient of the Weyl module W' ().

Proof. This follows immediately by comparing the relations for the Weyl module in Definition [£4] and
the relations for the Demazure module in Corollary A3l O

In this paper we want to show, that the map between Weyl and Demazure modules is in fact an
isomorphism. This is already known for untwisted current algebras of simply-laced type ([CPO1Db,
ICLOG, [FLOT]). We recall the result for g = slp here only, since this will be heavily used throughout
this paper.

Theorem 4.5.1. For g = sly and nw € PT, we have an isomorphism of sl ® C[t]-modules

W (nw) = D(1, nw).

5. CONNECTION BETWEEN WEYL MODULES AND DEMAZURE MODULES

In this section we will show, that almost all Weyl modules are isomorphic to certain Demazure modules,

e.g. the map in Corollary 5. lis in fact an isomorphism.

Theorem 5.0.2. Suppose g is of type Ag?ll, Dl(i)l, Eé2) or Df), then we have an isomorphism of €(g)-

modules

WY\ = D(1/ay, \).

If g is of type Ag) and A = Y m,w; be a dominant weight, such that m; is odd, we have an isomorphism
i=1
of €(g)-modules
WT(\) =2 D(1/ag, \).

Proof. By Corollary [£5.1] we know already that the Demazure module is a quotient of the Weyl module.
By comparing the defining relations in Corollary [£.31] and in Definition 4] we see that to prove that
this map is an isomorphism, it is sufficient to show that the generator of the Weyl module is subject to
the following relations:
Forallogjgm—l,ﬁefbj:

~2(ms+j) 1,

(5.1) (X5, ® gmstiyketl s =0, where s > 0, kg = max{0, (\,8") - =———=>—aJ}.
’ <ﬁ7ﬁ> )
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Assume g is not of type Ag), then (B1) is equivalent to :

max{0, (A, BY) — s}, if B is long

5.2 X7 . @tmst)ks+l 4y =0, where s >0, kg =
(5.2 (X, ) A 7 max{0, (A, 8Y) — (ms+j)}, if 3 is short

Let B € @ be a long root and V = U(sly s ® C[t™]).wy € WT()) be the sly 5 ® C[t™]-submodule.
Further let W ((\, 8Y)w) be the sly ® C[t]-Weyl module, which is by Theorem [£.5.1] isomorphic to the
sl ® C[t]-Demazure module D(1, (A, 3¥)w). Since wy is a cyclic generator for V and satisfies obviously

the defining relations of W (({\, 8Y)w) we obtain by Lemma [3.0.T] a surjective homomorphism:
W\, BYIw) = D(1, (N BV)w) =V CWE(N).
In particular, w) satisfies the defining relations of D(1, (A, 8Y)w), which contain the relation
(27 ® ts)ma"{o’()"ﬁv%s}ﬂ.v =0VseN,
therefore again by Lemma [3.0.1] we obtain
(X,B_,o ® th)max{o,(A,ﬁV)—s}ﬂ_wA -0

Now suppose 3 is a short root and consider the sl 3 ® C[t]-submodule V = U(sly g @ C[t]).wy € WT(N).

By the same reasons as above and Lemma [3.0.]] we get an surjective homomorphism
W((\BY)w) = D(1, (N, BY)w) - V CWH(N),

and therefore w) satisfies again the relations of D(1, (), 8¥)w). Using the isomorphism in Lemma B.0.]

we obtain:

(X5, @ tmetdymad0. QB =mati} 4, =0, Vs € N,0 < j <m — 1,

which proves (5.2)).
To prove the theorem it remains to consider the case where g is of type Ag). We have (A,1/2,0) € X,

in particulary we have D(1/ay,\) =V,
EI) into
(5.3)

otr—w, (A1). In order to use again Corollary L.3.1] we reformulate

_ max{0, (\, 8Y) — (ms +j)}, if B is long
(X5, ® tmstiyketl ) =0, s >0, kg = max{0, (A, 8Y) —2(ms +j)}, if B is short
max{0, (A, 8Y) —1/2(ms+ 1)}, if 8 =2aq, « is short

We will prove case by case that the generator of W'()) satisfies the relations in ([5.3]). For long roots
the proof is similar to the other cases by using Lemma So let 8 be a short root and <X,(£3E,j ®
tmsti X%y1 ® ™5+ g ; @ t™5+7) the Lie algebra which is isomorphic to €(A$?) by Lemma We
consider the submodule U(Q(Aéz))).w,\ C WT(X), which is trivially a quotient of the Aéz)—Weyl module
WE((\, BY)w). In Section [[ Theorem [Z.0.1] we prove (independent of Section 1-6) that W ((\, BY)w) =
D(1/2, (), 8Y)w). The proof is finished with the observation, that the defining relations for A§2)—Demazure
module D(1/2, (A, 8Y)w) contain the relations

(XIB_)] ® tmerj)max{O,()\,ﬁv>72(ms+l)}+l.w =0, (X2_,8)1 ® tmerl)max{O,l/Q(()\,Bv)7(ms+1))}+1.w —0.
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5.1. Fundamental Weyl modules. In the previous section we have seen that Weyl modules are iso-
morphic to certain Demazure modules. Since most of the Demazure modules have a nice tensor product
decomposition, see Theorem 3] we can transfer this result to most Weyl modules (only the Ag) case
needs more work). Using this decomposition, to compute the dimension and character of Weyl modules

it is enough to describe the gg decomposition of fundamental Weyl modules W' (w;).

Theorem 5.1.1. Let wq, -+ ,w; be the fundamental weights in PO‘L . Viewed as a gp-module the funda-
mental Weyl modules decomposes into the direct sum of irreducible go-modules as follows:
e if g is of type Ag)

W (wi) =V (wy),

W (2w) =2V (2w)

e if g is of type A2l 1

1%

W (w;) @ V(sjwi+ -+ + 8i_owi_2 + siw;),where i € {0,1} and i =i mod 2

s;+4s;=1

e if g is of type Dl(i)l

Wr(wi) = @ V(slwl + -4 siwi), ) }é l
s1t-+s;<1

Wr(wl) = V(wl)
e if g is of type Eé2)

Wr(wl) V(swq)

D

W (w2) 2 V(0) & V(1) & V(wn) & V()
W (ws) 2 V(0)P2 @ V()P @V (w2)® @ V()P @V (2w1) ® V(w4 ws) @ V(ws)
Wr(w4) = @ V(s1w1 + sqwy)

s1+s4<1

e if g is of type Df)

W w) 2 V(0)®V(w) ® V(w)®?

2) = @ V(SWQ)

s<1

Proof. If g is of type A 1 or Dl( +)1 the decomposition rule is immediate from Theorem[5.0.21and Theorem
(3)

2 in [FLO6]. By same reasons the theorem is true for i = 2 if g is of type D, and for i = 1,4 in type

Eé2). For 7 = 1 one can check t_,,, = wpsos2515250 and therefore with the Demazure character formula

we get

Dy

(€20) = Dy (€7 + 22 + 1) = W (w1) 2V, (e™) =g, V(0) @ V(w1) @ V(wa)®?,

which proves the claim for type D(g)

2)

So it remains to consider the nodes i = 2,3 in type Eé and the general case in type Ag). In [CMOG]
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Kirillov-Reshetikhin modules K R(sw;) respectively K R (sw;) for the twisted version are defined. By in-
specting the defining relations it follows that KR-modules of level 1 (e.g. s = 1) are precisely fundamental

Weyl modules, in particular
W(w;) = KR(w;) and W (w;) =2 KR (w;).

Since the decomposition of KR-modules are known as g respectively go-modules (see [K1e9§],[Cha01],[HKO™02]
or [CMO06] for instance) we obtain the predicted decomposition for i = 2,3 in type Eéz) and for the general
case in type Ag).

It remains to consider W (2w;), so let (Xiﬁj Rt X @t he, ;@™ s €N,0 < j < m—1)c

be the Lie algebra which is by Lemma isomorphic to Qﬁ(A§2)). Then we obtain a surjective homo-

morphism
W (2w) = U(€(AD)).waw, € W (2w)).

In Section [7 we will show that the A§2)—Weyl module WT(2w) is an irreducible slp-module and hence
(X0 @ t2)waw, = (Xygp, 1 @ t)waw, = (X, | @ t).way, = 0. So W' (2w;) is isomorphic to the Kirillov-
Reshetikhin module K R?(2w;), hence the decomposition is known by [CMO06]. O

Such a similar decomposition is already known for the untwisted fundamental Weyl modules W (w;), see
[Cha01] or [FLO6] for instance. This fact motivates us to compare the dimension of twisted and untwisted
fundamental Weyl modules. For notational reasons, we have to extend certain linear functions hy — C
to functions on h. So let u € Py (with p(a)’) € 2Zx if g is of type Ay). We define the extension, by

abuse of notation also denoted by u, on a basis of h by:

wlay) if g is not of type Ay
(1-— %’Z)u(a\/) if g is of type Ag;

Since there might be a confusion in notation in the Ag; and the [-th fundamental weight case only, we

will use this identification in the remaining of the paper without further comment.

Lemma 5.1.1. Let wy,--- ,w; be the fundamental weights in Py". We set € = (1+0;,) if g is of type Az

and € = 1 else, then we obtain
dim W (ew;) = dim W (ew;), 1 < i <.

Proof. Using Theorem .1l Theorem 2 in [FL0OG] and Lecture 24 in [FH91], we obtain the following
straightforward calculations:

« if s of type Al (8. 90) = (Az, By):

2+ 1

7

dim W (ew;) = ( ) = dim(V(w;)) = dim W (ew;)

o if § is of type AL | (g,90) = (Az1_1,C)):

s

i—

w25 2) (2 () mam

J
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e if g is of type Dl(i)l, (g,90) = (Di41, By):

i W (w;) { 2, ifi=1 { 21, ifi=1
im w; = ; . _ = i '
1 + Zj:l (2 _;rl)7 v ;é l ijzo (piligzj)v ? 7é l
di ifi =1
_ . im Vg (wy), if ' — dim W (w;)
dim (Vg (wi) @ Vg(wi—2) @ - @ Vg(wp,)), i #1

o if § is of type ES”), (g,90) = (Es, Fy):

dim W (wy) = 27 = dim Vg (wq) = dim W (wy)
dim W' (wp) =378 =dim( €D Vi (sawz + sews)) = dim W (ws)

So+sg=1

dim W (w3) = 3732 = dim(V4(0) @ Vg(wa)®? @ V(w1 + we) © Vg(ws)) = dim W (ws)
dim W (wy) = 79 = dim( @D Vy(saws)) = dim W (ws)

s4<1
o if § is of type DY, (g,80) = (D, Ga):

dim W (wy) = 29 = dim (Vg (w1) @ V4(0)) = dim W (wy)
dim W (wg) = 8 = dim(V(w2)) = dim W (ws)

6. CONNECTION BETWEEN TWISTED AND UNTWISTED WEYL MODULES

In this section we will show that the Weyl modules W ()) can be realized as associated graded modules
of certain untwisted Weyl modules for the loop algebra g ® C[t,t71]. So consider for a € C* the Lie

algebra homomorphism ¢, defined as follows:
0o :9QC[t] — g@C[t], zt" =2z (t+a)".

For a g ® C[t]-module W we denote by W, be the module obtained by pulling back W through ¢, i.e.
T ®t* acts by z ® (t + a)®. Further we denote by W be the module W considered as a €(g)-module,
obtained by the embedding

¢(g) — g C[t].

We will prove:

Theorem 6.0.2. Let A\ = Elizl m;w; be a dominant go-weight. If g is a twisted Kac-Moody algebra not

of type Ag) we get an isomorphism of €(g)-modules:
WEN) = gr(Wa (V).

If g is of type Ag) and A = \; + A2 € P;F, such that m; and A2(y’) are odd we get an isomorphism of
¢(g)-modules:

WEN) =2 er(Wa () @ WE(\2)).
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Proof. Let g be not of type Ag), by combining [FKKS] and [CES0S] it follows, that W, (\) is a cyclic
€(g) module. Therefore the associated graded is again cyclic and it remains to observe, that the image

of the highest weight generator W satisfies for j € {0,...,m — 1} and h; € b; the relations
(hj @ ™) W =0, (s,§) # (0,0)
(ho ® )W = A(ho)W.
Thus we obtain a surjective homomorphism
(6.1) W) = gr(Wa (X))

In order to compare the dimension of these modules we exploit the tensor product decomposition of
WT(A) as a go-module by combining Theorem (.0.2 and Proposition 3.1l We obtain the following :

(6.2) WE) =2 W (w)®™ @ - @ W (w)®™ as go-modules.

An analogue decomposition was proven in [FL07] for untwisted Weyl modules for the current algebra of
a simply-laced simple Lie algebra and is generalized in [Nao| for the non simply-laced case. From this it

follows immediately
1

dim gr(W, (X)) = dim W(A) = [ [ (dim W (w;))™.
i=1
Hence by Lemma [B.T.1] we check that (G.1) is in fact an isomorphism.

From now on, we assume that g is of type Ag). Since W, (A1) and WT()\2) are cyclic €(g)-modules it
follows with the usual arguments of [FKKS| and the Chinese remainder theorem, that the tensor product

is cyclic as well. Therefore we obtain similar to (6I) a surjective homomorphism
(6.3) WE(A) = gr(Wa (M) @ W (X)),

With the aim to compare the dimension on both sides we notice

l
dim gr(Wo(A) @ W (A2)) = dim W (M) dim W () = [ (dim W (w;))™ @) dim W ().
i=1

Our goal now is to prove the following tensor product decomposition:
(6.4) W) 2 WHw)®™ @ @ W (wi1) ™ @ W (20)* ! @ W (w1),

where m; = 2k — 1 since the proposition is a immediate consequence of (6.4) and Lemma [ET1l To prove
([6.4) we investigate the character of W1 ()\). By Theorem B5.0.2] and Theorem [L.2.1] we obtain

Char W' (\) = Char Vioots—w, (A1) = Dusgty ., (e).

Suppose that V' (u) is a irreducible Bj-module, such that the coefficient n; is even, whereby pu = Zli:1 N;Wj.
The first step will be to show that Char V(u) is stable under the Demazure operators D;, i = 0,...,1.
The character of a finite dimensional go-module is stable under the Weyl group W and hence stable
under D;, i = 1,...,1. It remains to consider the case i = 0. Note that ag = 6 — 20 = § — 6 where
0 = ai+- - -+aqy is the highest short root of B;. We define maps s3 : (ho)* — (ho)*, sz(A) = )\—)\(5\/)5 and
s0: (ho)* = (Bo)*, se(X) = A—A(6Y)6. Since 9 = 20y +... 4/ )+ and 0¥ = ay +.. .+ )+ 1)
we get clearly sy = sp. Thus v is a weight in V(1) if and only if s¢(v) is a weight. Assume v € (ho)* is a
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weight, hence v = i — QF and therefore (v, ) = (v, (6 — 0)V) = (v, —0") € Z. We have proved that Dy
can be defined on Char V(1) and Dy = D_y. We obtain

Do(Char V() = D_g(Char V(u)) = Char V(u)

In a second step we prove that the characters are the same by using induction on Zi;i m; + (k—1). So

if the sum is 1 we have to show
D, (M) = Char WF (w; +w;) = ez Char (Vo (wi) ® Vo (wr)), @ <1

Disgta,,, (€M) = Char W (3w;) = e3 Char (Vy, (2w1) ® Vg, (wr)).

In other words, we have to figure out the go-module decomposition of W' (w; +w;) respectively W (3w;).
By Lemma [L.5.1(2) we already know that there exists such a decomposition and since the modules are
finite-dimensional every go-submodule is a direct summand. So our assignment is to find all highest
weight vectors, first beginning with the highest weight vectors living in W' (w; +w;)[1]. Suppose a € @1,
such that (X a1 ® t).w is a highest weight vector, i.e. the element is non-zero and the upper triangular
part of go acts by zero. We want to restrict the choice of o to one possible case. Note that « is
of the form a; + -+ + oy or 2(aj + -+ y), 1 < j < [ or of the form ap + --- + a4 respectively
ap+ -+ ago1+2(aqg+- -+ ), p,g <1—1. If ais a short root, we obtain from Lemma B.0.2]

65) W ((wi +wi,a¥)w) - UUXE, @ t™H X5 | @™ hej @ 754 )¢ 2 €(AP)) 0,

whereby W' ((w; + wy, a¥)w) is the Weyl module for type A§2). So if j > i in the representation of «
as a sum of simple roots we get (w; + w;,a¥) = 1. In Section [1 it is shown that W' (w) is irreducible
and therefore (X, ; ®t)w = (X5, ; ®t).w = 0. Now assume j < i and (X, | .o, ®@t)w #0is a
highest weight vector. Hence 0 = (on+---+a¢71,0 ® 1)(X(;j+m+al)1 ®t).w = (XOZ+,,,+O”)1 ® t).w, which
is a contradiction to ([G3). In almost the same manner one sees that (Xiaj+---+al),1 ® t).w cant’t be a
highest weigth vector. If « is a long root, we get with Lemma

W (Wi + wi, @V Yw) = Ul(slay,o @ C[t]).w,

whereby W ((w; +w;, a¥)w) is the Weyl module for the current algebra sly @ C[t]. So if o = ap + -+ -+
we obtain again (w; +wj,a") <1 and therefore (X, ®t).w = 0. Let a be of the form aj, +- -+ 41 +
2(ag + -+ + ), such that ¢ > p and (X, ; ® t).w is a non-zero highest weight vector. Therefore the

upper triangular part acts by zero, especially

—(x+ + -
0= (Xaq-i-»»»—l-az,O ® 1)(Xap+~»+a¢71,0 ® 1)(Xap+---+aq,1+2(aq+»~+al),1 ® t).w

—(x*t - (X~

= (X a0 ® DX oo a(mpttana @0 = (Xa a1 @)W,

which is again a contradiction to (6:3]). Hence the only possibility to get a highest weight vector of degree
one is to apply (X, ;... 14,1 ®1t) on w. Clearly we have by Section[ (X, ... 4q,.1 ®t)2w = (Xt 1®
25w = (X7 4 0, 098).w = 0for s > 1, because in (6.5 we have (w;+wi, (o +. . .+a)") = 3. Thus
one can check that (X . ., ; ®t).w satisfies the relations ({4, ([{3) in Definition 4] and has weight
w;—1 4wy with respect to ho. Hence the calculations above show on the one hand that (XOZ+,,,+O”)1 ®t).w

is really a highest weight vector but on the other hand we get more than this, namely a surjective map

W (Wit +wi) = UC(AS) (X T 1oy @ 1w
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Since W (w; 4+ wi)[1] =g, Voo (wim1 +wi) = U(90) (X5 4. a1 @1).w we obtain W (w; +w;) = U(go).w®

U(@(A(Q)))(X;ﬂL o @ ) g Voo (wi + wi) @ W (w1 + wi)/1, for some ideal I. Using (6.3) one

can check that the ideal is zero and therefore by induction we prove our claim, because for i =1 we get

Char (Vigt,, (A1) = Viggsesy..s (A1) = Dwy Do - - .Dy(eM) = Dy, (eM + Mo .. i man g pideny
= e3%0 Char (Vg, (w1 + wi) @ Vg, (wr)) = e22°Char (Vg, (1) ® Vg, (wr))

Exactly the same way one can prove the existence of a surjective map
WE(wim1 +w) — U(CAS ) (X, @ t).w

Furthermore a more simple calculation shows W' (3w;)[1] 24, Vg, (wi—1+wi) = U(go) (X, ; ®t).w. Hence
W (3w;) gy Vo (2wi) @ Vi, (wr), which proves finally the initial step. So let Zi;} m; + (k—1) > 1 and
m;, © <l or k— 1 such that one of them is bigger or equal to 1. Using Proposition L.2.1] we get in the

first case

Doty (€M) = Dy, Dty ., (€™)
— Dy (¥ Char (Vay (1)™ -+ & Vg ()™ 71 @ -+ @ Vi, (26) & Vo (w2)
= Char (Vj, ()" ® - ® Vao W)™l ® Vao (2w1)k71)DtWi (e%AOChar (Vo (wr1)))
= e Char (Vo (W1)®™ @ -+ - @ Vg (wi)Z™ @ -+ - @ Vg (201) 71 @ Vo (w1)).

In the second we obtain

Dwotz(kfl)wz (eAl) = D—tzwl Dw0t2(k—2)wl ( ) D_ t2w, (eQAOChar( go (2wl)®k_2 ® Vgo (Wl)))
= Char (Vg (2w1)®"2)D_y,, (22 Char (Vg, (w1))) = 2 Char (Vg, (20)®* 1 @ Vg, (w0)).

O

As an immediate consequence of Theorem [6.0.2] and its proof we obtain explicit dimension formulas
for Weyl modules. Such formulas for Weyl modules, as already mentioned, were previously known for
untwisted current algebras (see [CL0O6],[FLO7] or [Nad]).

Corollary 6.0.1. Let A\ = Zé:l miw; be a decomposition of a dominant weight A € Pyt
(1) If g is a twisted affine Kac-Moody algebra not of type Ag) (I1>1), then
! 1
dim W) = [ [(dim W" (w;))™ = [ [ (dim W (w;))™
i=1 i=1
(2) If g is of type AS) and m; = 2k — 1, then

=1 -1 1
dim W' (A) = H(dlm W (W)™ (dim W (2w))* 1 dim W' (w;) H (2l ; 1> <2l N 1) 2

. , l
=1 =1
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6.1. Constructions from arbitrary local Weyl modules. In the previous section we investigate the
connection between untwisted and twisted Weyl modules. We have seen that the twisted ones can be
realized as associated graded modules of certain untwisted Weyl modules located in a single point. In

this section we generalize this result using untwisted Weyl modules located in a finite number of points.

Let W1, ..., WF be finite-dimensional, graded and cyclic modules with cyclic vectors w, ..., wy for the
current algebra and further let W be a given cyclic graded €(g)-module (possibly trivial) with cyclic

vector w.

Proposition 6.1.1. Let a; € C*,1 <i < k be non-zero complex numbers, such that ai* # a3 fori # j,
then Wl ®---@ Wk @ W is a cyclic U(C(g))-module, particulary we get

Wi - @Wk oW =U(®).(wew)
Proof. As W are finite-dimensional and graded, there exists a sufficiently large N; such that x ® t° acts
trivially for s > N;. Thus the ideal J; := g ® (t — a;)VC[t] acts trivially on W . We define n : C* — N,
a; — N;, then Supp 7 do not contain two points in the same I'-orbit and therefore similar to the proof of

Theorem we obtain that Wl @ --- ® Wk is a cyclic U(€(g))-module. The rest is a application of

the Chinese remainder theorem. O

Remark 6.1.1. We can consider arbitrary g-modules V(\;),\; € PT, 1 < i < k as graded and cyclic
g ® C[t]-modules, where the action is given by

@ f(t)v=f(0)zw, zeg, feClt.

Hence if W' = V();), it is already shown in [Laul0] or in a more general setting of equivariant map
algebras in [NSS], that the tensor product in Proposition [6.1.1] is irreducible. Moreover it is known that

all finite—dimensional irreducible modules are tensor products of evaluation modules.

In [FKKS] local Weyl modules for equivariant map algebras were defined and a tensor product property

was proven. It was shown that if W* is an untwisted graded Weyl module, then W¢. is an local Weyl

module for €(g) supported in the point a;. The tensor product property gives that Wy, (A1) ®---@W,,_.(A,)
is a local Weyl module for €(g). It was shown that every local Weyl module of €(g) can be obtained in
this way. The following corollary, in Ag) again the odd-case is considered only, shows that the dimension

and go character is independent of the support of the local Weyl module.

Corollary 6.1.1. Let A = A1 +---+ A be a decomposition of a dominant weight A € POJr into dominant
weights and let ai, ... ,a, € C* s.t. af" # al* fori#j.

(1) If g is a twisted affine Kac-Moody algebra not of type Ag), then we have an isomorphism of
&(g)-modules:
WEON) 2 gr(Wa, (\) @ @ Wa, (A))
(2) If g is of type Ag) and N\i(o)') € 2Z>, for 1 < i < r—1 and M\ (o)) is odd, then we get an
isomorphism of €(g)-modules:

WF(/\) 2gr(We, (M) @ @Wa, (A1) ® Wr()‘r))

Proof. By Proposition [T the right hand side in (1) respectively (2) is cyclic. Hence it is easy to obtain
a surjecive map of €(g)-modules, which is by Theorem [6.0.2 clearly an isomorphism. g
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Remark 6.1.2. As mentioned in the introduction, Weyl modules are defined in [FKKS| in a more
general way, with support in C. And they are parametrized by finitely supported functions from C to
P*. With this corollary we have shown in all cases except the even case in Ag), that the dimension and
go character of a local Weyl module depends only on its gg maximal weight and NOT on the support of
its parametrizing function. Concluding one might be able to show that the global Weyl module is a free

module for a certain algebra, which might be part of a forthcoming publication.

Remark 6.1.3. The same construction of an associated graded module out of finite-dimensional, graded
and cyclic g ® C[t]-modules is defined in [FL99] and is called the fusion product. In the twisted case the

same construction fails, since for this, one would need a pullback map like

=

m— m—1
z; @t ) e €@ o Y (1 @ (E+a)™ ) ¢ ().
j:0 j=0

Therefore we have constructed in our results associated graded €(g)-modules out of modules coming from

g ® CJt], which represent an analogue of fusion products.

6.2. Summary of the results. As a conclusion we summarize our results: Let A = mjwy + -+ - + mywy

be a dominant weight of go and € = 0 if [ is odd and € =1 else, then

e if g is of type Ag2) (n is odd)

®R(k—1)

W (nw) 2= gr(W (wr) @ W (W) 2= Viyeg, . (A1)

e if g is of type Ag) (my is odd)

®@my_1 ®(k—1)

W) 2 (W (wr) @@ W(wi1) ® W(wr) @ W (W) = Vit ., (A1)

®ml) ~ Visots (Mo), if my +3ms+---+ (I — €)my_ is even
Viots_w, (A1), else

e if g is of type Dl(i)l

m Vwo A A ) f i
WY = gr(W(w:) ® -® W(w[)® e { tx(Ao), if my is even

Visots o, (A1), else

e if g is of type Eé2)

e if g is of type Df)
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2
7. PROOFS FOR THE TYPE A

In this section our attention is dedicated to the twisted Kac-Moody algebra Ag). In the previous sections
we claim that the results hold already for Ag2), so to complete our work it misses to verify the follwing

main result of this section.

Theorem 7.0.1. Let n be an odd integer, then the Weyl module W (nw) is isomorphic to the Demazure
module D(1/2,nw) = Vi, ), (A1)
7.1. Properties of W' (nw) and minimal powers.

Lemma 7.1.1. Let I be the left ideal in U(C(Aéz))) generated by n; @ t/C[t"], (hao @ t*7), (ha1 @
t2r—1),r >1,0<j<m—1. Then for every k € Ny there exists a non-zero scalar cy, ¢, € C such that

(1)

X, otk dI°, ifkis odd
(r.) (Xt @)™ 1 (Xp oty = Foa OF) mod 7, ks o
’ ’ ck(Xoo®t%) mod I7, if kis even
(2)
(72) (X2+a,1 ® t)kil(XQ_a,l ® t)k = CNk(XZ_a,l ® t2k71) mod 17
Proof. The first equation is a simple reformulation of Lemma 3.3 (iii) in [CES08]. We will prove the
second equation by induction. For k = 1 we get trivially ¢ = 1. Suppose that (2) is already true for all
p < k, then
(X2+a,1 ® t)k(Xga,l ® t)k+1 = (X2+a,1 ® t)(XgLa,l ® t)k_l(X;a,l ® t)k(Xga,l ® t)

(X @) (Xopq @ F ) (Xopy @) + (Xoy ®1)I(X5e 1 ® 1), for some J € I°

1
= —50(hao ® ") (X3, ®t) mod I7
= 26,( X501 ® 21y mod I°
O

Corollary 7.1.1. Let n € N, such that n = 2k if n is even and n = 2k — 1 if n is odd. Then we have
(1) (Xgq1 @ t)*wn =0
2) (Xo0 @ tMw, = (X5 @ " w, =0, if kis even
(Xoo @ " w, = (X7, @ tF)w, =0, if kis odd
(3) (Xga1 @ Hwyn =0

Proof. Clearly part (2) and (3) are deductions of Lemma [L.T.Tland part (1). Assume now (X, ; ® t)*w,
is non-zero element in W' (nw)[k] of weight —2kw if n is even and (—2k — 1)w if n is odd and recall that
WY (nw)[k] is an integrable sly-module, i.e. Proposition 5. 1lis applicable. That means W (nw)[k]akw # 0
respectively W' (nw)[k](2k41)0 # 0, but both are impossible, which proves part (1). O

Corollary 7.1.2. For all n € N the modules WY (nw) are finite-dimensional.
Proof. Proposition IL5.1] implies that W' (nw),, # 0 only if 4 € nw — QF and suppose that

W (nw) = @ V(u)™

MEP(;r
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is the decomposition of W' (nw) into irreducible go-modules. Note that the number of elements in Py
with the property p € nw — QBL is finite. The corollary follows if we prove that dim W (nw) u < 00, since
this implies n,, < co. That the dimension can‘t be infinity is a direct consequence of Corollary [.T.1l O

As in the other cases we show that the Weyl modules are in connection with certain associated graded

modules:

Proposition 7.1.1. Let n € N, such that n = 2k if n is even and n = 2k — 1 if n is odd. Then we get a

surjective map respectively an isomorphism of U(Q(Aéz)))—modules

W (nw) — gt(Wa, (1) @ - ® Wo, (w1)), if n is even
= or(Wo, (w1) ® -+ @ We,_, (w1) @ WH(w)), if nis odd
The map is given by wy — Wy, @ -+ @ Wy, if N 1S even and Wy — Wy, @ -+ @ Wy, QW,, otherwise.
—

—_——
k k—1

Remark 7.1.1. We will proof the isomorphism claimed in the odd case in Section and remind that
the surjectivity of the maps in Proposition [Z.1.] follows by weight reasons.

Corollary 7.1.3. We obtain,

n . .
32, if nis even

dim W (nw) > [
372, ifnisodd

In Corollar [[.T.1] we proved that we can explicitly specify an integer, such that the elements with higher
powers of t act by zero. In the next we will refute the question, if there exists a smaller integer with
same property. To show this one can use the help of associated graded modules defined in Section [6] and
Proposition [T

Lemma 7.1.2. Let n € N like in Corollar[7.1.1] Then we have,

(X0 @t wp #0,(X5, @t T Hw, #0, for all r < k if k is even
(Xoo @t wn # 0, (X5, @2 w, #0, for all r < B s < EZLif kis odd
(Xo01 @ w, # 0, ifr<k—1

Before we are in position to prove our main result of this section we will formulate another necessary

proposition:
Proposition 7.1.2. Let n € N as in Corollar [7.1.1] then we have surjective homomorphisms

U(@(Af)))(X;l @ tF " Vw,, if kis even

T
W ((n —2)w) —» { U(@(AQQ)))(X;O ® tk_l)wn if k is odd

W ((n — 4)w) — U(EAP)) (Xg01 @ 2wy,

Proof. The proof is straightforward with Corollary [Z.T.11 O
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7.2. Proof of Theorem [7.0.1l

Proof. Note that Proposition [[.T.1lis a direct consequence of Theorem [[.0.1] and the Demazure character

formula (see Theorem L2.T]), since this provides us

dim W (nw) = dim Vit (1o (A1) = dim (slso)%%l(Al) =3l312,

We already know by Corollary E5.1] that the Demazure module D(1/2,nw) is a quotient of the Weyl
module W (nw). So by Corollary EL3.1] it remains to show that the following relations holds:

(73) (X;,O ® t2r)mam{0,n—4r}+lwn =0
(74) (Xoj,l ® t2r+l)maw{O,n—2(2r+l)}+lwn -0
(75) (X2_a,1 ® t2r+1)maz{0,kfr71}+1wn —=0.

By Corollary [[.T.1] we can assume that the maximums are non-zero and further suppose that (X a0 ®
g2y Artly, %0, hence W (nw) (n—a(n—ar+1))w(2r(n — 47 + 1)] # 0. By Proposition [Z.1.2 and Proposi-
tion [L57] (1) we get that
Wr(nw)(n_zj)w []=0
for all [ with
1>{ (k=1) 4t (k= j) = jk = 20378, if0<j<k
(h=1)+ -+ (k= (n =) = (n— )k - ZDG=DE i g < j <

Hence,
gk — L, it0<j<h

2r(n —4r+1) < 2 )
( ) {(n_j)k_ma)((;nm, fk<j<n

with j = (n — 4r + 1), which contradicts 2r < k. Exactly the same argumentation shows also (7.4) and
@3) 0

Remark 7.2.1. An inspection of the proof of Theorem [Z.0.1] shows, that the condition, n is odd, is
not needed. Thus the relations (T3), (T4), (Z3) holds also in W (2kw), but it is easy that they are
not enough. For instance in W' (6w) we have already (X, ® t*)*ws = 0, while relation (Z.3) gives
(Xo.0 @ t%)2ws = 0.
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