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PBW FILTRATION AND BASES FOR IRREDUCIBLE

MODULES IN TYPE An

EVGENY FEIGIN, GHISLAIN FOURIER AND PETER LITTELMANN

Abstract. We study the PBW filtration on the highest weight rep-
resentations V (λ) of sln+1. This filtration is induced by the standard
degree filtration on U(n−). We give a description of the associated
graded S(n−)-module grV (λ) in terms of generators and relations. We
also construct a basis of grV (λ). As an application we derive a graded
combinatorial character formula for V (λ), and we obtain a new class of
bases of the modules V (λ) conjectured by Vinberg in 2005.

Introduction

Let g be a simple Lie algebra and let g = n+ ⊕ h ⊕ n− be a Cartan de-
composition. For a dominant integral λ we denote by V (λ) the irreducible
g-module with highest weight λ. Fix a highest weight vector vλ ∈ V (λ).
Then V (λ) = U(n−)vλ, where U(n−) denotes the universal enveloping alge-
bra of n−. The degree filtration U(n−)s on U(n−) is defined by:

U(n−)s = span{x1 . . . xl : xi ∈ n−, l ≤ s}.

In particular, U(n−)0 = C and grU(n−) ≃ S(n−), where S(n−) denotes the
symmetric algebra over n−. The filtration U(n−)s induces a filtration V (λ)s
on V (λ):

V (λ)s = U(n−)svλ.

We call this filtration the PBW filtration. In this paper we study the asso-
ciated graded space grV (λ) for g of type An.

So from now on we fix g = sln+1. Note that grV (λ) = S(n−)vλ is a cyclic
S(n−)-module, so we can write

grV (λ) ≃ S(n−)/I(λ),

for some ideal I(λ) ⊂ S(n−). For example, for any positive root α the power

f
(λ,α)+1
α of a root vector fα ∈ n−−α belongs to I(λ) since f

(λ,α)+1
α vλ = 0

in V (λ). To describe I(λ) explicitly, consider the action of the opposite
subalgebra n+ on V (λ). It is easy to see that n+V (λ)s →֒ V (λ)s, so we
obtain the structure of an U(n+)-module on grV (λ) as well. We show:

Theorem A. I(λ) = S(n−)
(

U(n+) ◦ span{f
(λ,α)+1
α , α > 0}

)

.
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Theorem A should be understood as a commutative analogue of the well-
known description of V (λ) as the quotient

V (λ) ≃ U(n−)/〈f (λ,α)+1
α , α > 0〉

(see for example [H]).
Our second problem (closely related to the first one) is to construct a

monomial basis of grV (λ). The elements
∏

α>0 f
sα
α vλ with sα ≥ 0 obviously

span grV (λ) (recall that the order in
∏

α>0 f
sα
α is not important since fα

are considered as elements of S(n−)). For each λ we construct a set S(λ) of
multi-exponents s = {sα}α>0 such that the elements

f svλ =
∏

α>0

f sα
α vλ, s ∈ S(λ)

form a basis of grV (λ). To give a precise definition of S(λ) we need to
introduce the notion of a Dyck path, which occurs already in Vinberg’s con-
jecture:

Let α1, . . . , αn be the set of simple roots for sln+1. Then all positive roots
are of the form αp,q = αp + · · · + αq for some 1 ≤ p ≤ q ≤ n. We call a
sequence

p = (β(0), β(1), . . . , β(k)), k ≥ 0,

of positive roots a Dyck path (or simply a path) if it satisfies the following
conditions: either k = 0, and then p = (αi) for some simple root αi, or
k ≥ 1, and then β(0) = αi, β(k) = αj for some 1 ≤ i < j ≤ n and the
elements in between obey the following recursion rule:

if β(s) = αp,q then β(s+ 1) = αp,q+1 or β(s + 1) = αp+1,q.

Denote by D the set of all Dyck paths. For a dominant weight λ =
∑n

i=1 miωi

let P (λ) ⊂ R

1
2
n(n+1)

≥0 be the polytope

(0.1) P (λ) :=

{

(rα)α>0 |
∀p ∈ D : If β(0) = αi, β(k) = αj , then
rβ(0) + · · · + rβ(k) ≤ mi + · · ·+mj

}

,

and let S(λ) be the set of integral points in P (λ). We show:

Theorem B. The set of elements f svλ, s ∈ S(λ), forms a basis of grV (λ).

For s ∈ S(λ) define the weight

wt(s) :=
∑

1≤j≤k≤n

sj,kαj,k.

As an important application we obtain

Corollary.

i) For each s ∈ S(λ) fix an arbitrary order of factors fα in the product
∏

α>0 f
sα
α . Let f s =

∏

α>0 f
sα
α be the ordered product. Then the

elements f svλ, s ∈ S(λ), form a basis of V (λ).
ii) dimV (λ) = ♯S(λ).

iii) charV (λ) =
∑

s∈S(λ) e
λ−wt(s).
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We note that the order in the corollary above is important since we are
back to the action of the (in general) not commutative enveloping algebra.
We thus obtain a family of bases for irreducible sln+1-modules. Motivated
by a different background, the existence of these bases (with the same in-
dexing set) was conjectured by Vinberg (see [V]). Using completely different
arguments, he proved the conjecture for sl4, for sp4 and G2. Note also that
the data labeling the basis vectors is similar to that for the Gelfand-Tsetlin
patterns (see [GT]). However, these bases are very different from the GT
basis.

Example 0.1. For g = sl3(C), there are only three Dyck paths, the two of
length 1 corresponding to the simple roots, and the path which involves all
positive roots. In the following we write the elements of P (λ) in a triangular
form, where we put r1 = rα1 and r2 = rα2 in the first row and r12 = rα1+α2

in the second row. For λ = m1ω1 +m2ω2 the associated polytope is

P (λ) =

{
r1 r2
r12

∈ R
3
≥0 |

0 ≤ r1 ≤ m1, 0 ≤ r2 ≤ m2,
r1 + r2 + r12 ≤ m1 +m2

}

,

For the set of integral points we get for example

S(ω1) =

{
0 0
0

,
1 0
0

,
0 0
1

}

, S(ω2) =

{
0 0
0

,
0 1
0

,
0 0
1

}

.

and

S(2ω1 + ω2) =

{
0 0
0

,
1 0
0

,
2 0
0

,
0 0
1

,
0 0
2

,
0 0
3

,
1 0
1

,
1 0
2

,

2 0
1

,
0 1
0

,
1 1
0

,
2 1
0

,
0 1
1

,
0 1
2

,
1 1
1

}

.

We finish the introduction with several remarks. The PBW filtration for
representations of affine Kac-Moody algebras was considered in [FFJMT],
[F1], [F2]. It was shown that it has important applications in the represen-
tation theory of current and affine algebras and in mathematical physics.

There exist special representations V (λ) such that the operators f s consist
only of mutually commuting root vectors, even before passing to grV (λ).
These modules can be described via the theory of abelian radicals and turned
out to be important in the theory of vertex operator algebras (see [GG],
[FFL], [FL]).

Let Vw(λ) →֒ V (λ) be a Demazure module for some element w from the
Weyl group. For special choices of w there exists a basis of Vw(λ) similar to
the one given in Theorem B. We conjecture that this should be true for all
w ∈ W and we will discuss this elsewhere.

Finally we note that grV (λ) carries an additional grading on each weight
space V (λ)µ of V (λ):

grV (λ)µ =
⊕

s≥0

grsV (λ)µ =
⊕

s≥0

V (λ)µs /V (λ)µs−1.
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The graded character of the weight space is the polynomial

pλ,µ(q) :=
∑

s≥0

(dimV (λ)µs /V (λ)µs−1)q
s.

Define the degree deg(s) :=
∑

1≤j≤k≤n sj,k for s ∈ S(λ), and let S(λ)µ be

the subset of elements such that µ = λ− wt(s). Then

Corollary. pλ,µ(q) =
∑

s∈S(λ)µ q
deg s.

We note that our filtration is different from the Brylinski-Kostant filtra-
tion (see [Br], [K]).

Our paper is organized as follows:
In Section 1 we introduce notations and state the problems. Sections 2 and
3 are devoted to the proof of Theorem B (see Theorem 1.5). In Section 2
we prove the spanning property and in Section 3 the linear independence.
In Section 4 we summarize our constructions and prove Theorem A (see
Theorem 4.5).

1. Definitions

Let R+ be the set of positive roots of sln+1. Let αi, ωi i = 1, . . . , n be
the simple roots and the fundamental weights. All roots of sln+1 are of the
form αp+αp+1+ · · ·+αq for some 1 ≤ p ≤ q ≤ n. In what follows we denote
such a root by αp,q, for example αi = αi,i.

Let sln+1 = n+ ⊕ h ⊕ n− be the Cartan decomposition. Consider the
increasing degree filtration on the universal enveloping algebra of U(n−):

(1.1) U(n−)s = span{x1 . . . xl : xi ∈ n−, l ≤ s},

for example, U(n−)0 = C · 1.
For a dominant integral weight λ = m1ω1 + · · · +mnωn let V (λ) be the

corresponding irreducible highest weight sln+1-module with a highest weight
vector vλ. Since V (λ) = U(n−)vλ, the filtration (1.1) induces an increasing
filtration V (λ)s on V (λ):

V (λ)s = U(n−)svλ.

We call this filtration the PBW filtration and study the associated graded
space grV (λ). In the following lemma we describe some operators acting on
grV (λ). Let S(n−) denotes the symmetric algebra of n−.

Lemma 1.1. The action of U(n−) on V (λ) induces the structure of a S(n−)-
module on grV (λ) and

gr(V (λ)) = S(n−)vλ.

The action of U(n+) on V (λ) induces the structure of a U(n+)-module on
grV (λ).

Proof. The first statement is obviously true by the definition of the filtrations
U(n−)s and V (λ)s. The inclusions U(n+)V (λ)s →֒ V (λ)s imply the second
statement. �
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Our aims are:

• to describe grV (λ) as an S(n−)-module, i.e. describe the ideal
I(λ) →֒ S(n−) such that grV (λ) ≃ S(n−)/I(λ);

• to find a basis of grV (λ).

The description of the ideal will be given in the last section. To describe the
basis we recall the definition of the Dyck paths:

Definition 1.2. A Dyck path (or simply a path) is a sequence

p = (β(0), β(1), . . . , β(k)), k ≥ 0

of positive roots satisfying the following conditions:

i) If k = 0, then p is of the form p = (αi) for some simple root αi;
ii) If k ≥ 1, then

a) the first and last elements are simple roots. More precisely,
β(0) = αi and β(k) = αj for some 1 ≤ i < j ≤ n;

b) the elements in between obey the following recursion rule: If
β(s) = αp,q then the next element in the sequence is of the
form either β(s+ 1) = αp,q+1 or β(s + 1) = αp+1,q.

Example 1.3. Here is an example for a path for sl6:

p = (α2, α2 + α3, α2 + α3 + α4, α3 + α4, α4, α4 + α5, α5).

For a multi-exponent s = {sβ}β>0, sβ ∈ Z≥0, let f
s be the element

f s =
∏

β∈R+

f
sβ
β ∈ S(n−).

Definition 1.4. For an integral dominant sln+1-weight λ =
∑n

i=1 miωi let

S(λ) be the set of all multi-exponents s = (sβ)β∈R+ ∈ Z
R+

≥0 such that for all
Dyck paths p = (β(0), . . . , β(k))

(1.2) sβ(0) + sβ(1) + · · ·+ sβ(k) ≤ mi +mi+1 + · · ·+mj,

where β(0) = αi and β(k) = αj.

In the next two sections we prove the following theorem.

Theorem 1.5. The set f svλ, s ∈ S(λ), form a basis of grV (λ).

Proof. In Section 2 we show that the elements f svλ, s ∈ S(λ), span grV (λ),
see Theorem 2.4. In Section 3 we show that the number ♯S(λ) is smaller
than or equal to dimV (λ) (see Theorem 3.11), which finishes the proof of
Theorem 1.5. �

2. The spanning property

The space grV (λ) is endowed with the structure of a cyclic S(n−)-module,
i.e. grV (λ) = S(n−)vλ and hence grV (λ) = S(n−)/I(λ), where I(λ) is some
ideal in S(n−). Our goal in this section is to prove that the elements f svλ,
s ∈ S(λ), span grV (λ).
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Let λ = m1ω1 + · · · + mnωn. The strategy is as follows: f
(λ,α)+1
α vλ = 0

in V (λ) for all positive roots α, so for α = αi + · · ·+ αj, i ≤ j we have the
relation

f
mi+···+mj+1
αi+···+αj

∈ I(λ).

In addition we have the operators eα acting on grV (λ), and I(λ) is stable

with respect to eα. By applying the operators eα to f
mi+···+mj+1
αi+···+αj

, we obtain

new relations. We prove that these relations are enough to rewrite any
vector f tvλ as a linear combination of f svλ with s ∈ S(λ).

We start with some notations. For 1 ≤ i < j ≤ n set

αi,j = αi + · · ·+ αj, si,j = sαi,j
, fi,j = fαi,j

,

and for convenience we set αi,i = αi, si,i = sαi
and fi,i = fαi

.
By the degree deg s of a multi-exponent we mean the degree of the corre-

sponding monomial in S(n−), i.e. deg s =
∑

si,j.
We are going to define a monomial order on S(n−). To begin with, we

define a total order on the set of generators fi,j, 1 ≤ i ≤ j ≤ n. We say that
(i, j) ≻ (k, l) if i > k or if i = k and j > l. Correspondingly we say that
fi,j ≻ fk,l if (i, j) ≻ (k, l), so

fn,n ≻ fn−1,n ≻ fn−1,n−1 ≻ fn−2,n ≻ . . . ≻ f2,3 ≻ f2,2 ≻ f1,n ≻ . . . ≻ f1,1.

We use the associated homogeneous lexicographic ordering on the set of
monomials in these generators of S(n−).

We use the “same” total order on the set of multi-exponents, i.e. s ≻ t

if and only if f s ≻ f t. More explicitly: for two multi-exponents s and t we
write s ≻ t:

• if deg s > deg t,
• if deg s = deg t and there exist 1 ≤ i0 ≤ j0 ≤ n such that si0j0 >
ti0j0 and for i > i0 and (i = i0 and j > j0) we have si,j = ti,j.

Proposition 2.1. Let p = (p(0), . . . , p(k)) be a Dyck path with p(0) = αi

and p(k) = αj . Let s be a multi-exponent supported on p, i.e. sα = 0 for
α /∈ p. Assume further that

k∑

l=0

sp(l) > mi + · · ·+mj.

Then there exist some constants ct labeled by multi-exponents t such that

(2.1) f s +
∑

t<s

ctf
t ∈ I(λ)

(t does not have to be supported on p).

Remark 2.2. We refer to (2.1) as a straightening law because it implies

f s = −
∑

t<s

ctf
t in S(n−)/I(λ) ≃ grV (λ).
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Proof. We start with the case p(0) = α1 and p(k) = αn (so, k = 2n − 2).
This assumption is just for convenience. In the general case one has p with

p(0) = αi, p(k) = αj and one would start with the relation f
mi+···+mj+1
i,j ∈

I(λ) instead of the relation fm1+···+mn+1
1,n ∈ I(λ) below.

So from now on we assume without loss of generality that p(0) = α1 and
p(k) = αn. Let S+(h⊕ n+) ⊂ S(h⊕ n+) be the maximal homogeneous ideal
of polynomials without constant term. The adjoint action of U(n+) on g

induces an action of U(n+) on S(g) and hence on

S(n−) ≃ S(g)/S(n−)S+(h⊕ n+).

In the following we use the differential operators ∂α defined by

∂αfβ =

{

fβ−α, if β − α ∈ △+,

0, otherwise.

The operators ∂α satisfy the property

∂αfβ = cα,β(ad eα)(fβ),

where cα,β are some non-zero constants. In the following we use very often
the following consequence: if fβ1 . . . fβl

∈ I(λ), then for any α1, . . . , αs

∂α1 . . . ∂αsfβ1 . . . fβl
∈ I(λ).

Since fm1+···+mn+1
1,n vλ = 0 in grV (λ), it follows that

f
sp(0)+···+sp(k)
1,n ∈ I(λ).

Write ∂i,j for ∂αi,j
. For instance, we have

(2.2) ∂1,if1,j = fi+1,j, ∂j,nfi,n = fi,j−1 for 1 ≤ i < j ≤ n.

For i, j = 1, . . . , n set

s•,j =

j
∑

i=1

si,j, si,• =
n∑

j=i

si,j.

We consider first the vector

(2.3) ∂
s•,n−1
n,n ∂

s•,n−2

n−1,n . . . ∂
s•,1
2,n f

sp(0)+···+sp(k)
1,n ∈ I(λ).

Because of the formulas in (2.2) we get:

∂
s•,1
2n f

sp(0)+···+sp(k)
1,n = c1f

sp(0)+···+sp(k)−s
•,1

1,n f
s•,1
1,1

for some nonzero constant c1, and

∂
s•,2
3n ∂

s•,1
2n f

sp(0)+···+sp(k)
1,n = c2f

sp(0)+···+sp(k)−s•1−s•2
1,n f s•1

1,1 f
s•2
1,2

for some nonzero constant c2 etc. Summarizing, the vector (2.3) is propor-
tional (with a nonzero constant) to

f
s•,1
1,1 f

s•,2
1,2 . . . f

s•,n
1,n ∈ I(λ).
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To prove the proposition, we apply more differential operators to the mono-
mial f

s•,1
1,1 f

s•,2
1,2 . . . f

s•,n
1,n . Consider the following element in I(λ) ⊂ S(n−):

(2.4) A = ∂
s2,•
1,1 ∂

s3,•
1,2 . . . ∂

sn,•

1,n−1f
s•,1
1,1 f

s•,2
1,2 . . . f

s•,n
1,n .

We claim:

(2.5) A =
∑

t≤s

ctf
t for some cs 6= 0.

Now A ∈ I(λ) by construction, so the claim proves the proposition.

Proof of the claim: In order to prove the claim we need to introduce some
more notation. For j = 1, . . . , n− 1 set

(2.6) Aj = ∂
sj+1,•

1,j ∂
sj+2,•

1,j+1 . . . ∂
sn,•

1,n−1f
s•,1
1,1 f

s•,2
1,2 . . . f

s•,n
1,n ,

so A1 = A. To start an inductive procedure, we begin with An−1:

An−1 = ∂
sn,•

1,n−1f
s•,1
1,1 f

s•,2
1,2 . . . f

s•,n
1,n .

Now sn,• = sn,n and ∂1,n−1f1,j = 0 except for j = n, so

(2.7) An−1 = cf
s•,1
1,1 f

s•,2
1,2 . . . f

s•,n−sn,n

1,n f
sn,n
n,n ,

for some nonzero constant c.
The proof will now proceed by decreasing induction. Since the induction

procedure is quite involved and the initial step does not reflect the prob-
lems occurring in the procedure, we discuss for convenience the case An−2

separately.
Consider An−2, up to a nonzero constant we have:

An−2 = ∂
sn−1,•

1,n−2 f
s•,1
1,1 f

s•,2
1,2 . . . f

s•,n−sn,n

1,n f
sn,n
n,n .

Now ∂1,n−2f1,j = 0 except for j = n− 1, n, and ∂1,n−2fn,n = 0, so

An−2 =

sn−1,•∑

ℓ=0

cℓf
s•,1
1,1 f

s•,2
1,2 . . . f

s•,n−1−sn−1,•+ℓ
1,n−1 f

s•,n−sn,n−ℓ
1,n f

sn−1,•−ℓ
n−1,n−1 f

ℓ
n−1,nf

sn,n
n,n .

We need to control which powers f ℓ
n−1,n can occur. Recall that s has support

in p. If αn−1 6∈ p, then sn−1,n−1 = 0 and sn−1,• = sn−1,n, so f
sn−1,n

n−1,n is the
highest power occurring in the sum. Next suppose αn−1 ∈ p. This implies
αj,n 6∈ p unless j = n− 1 or n. Since s has support in p, this implies

s•,n = s1,n + . . .+ sn−1,n + sn,n = sn−1,n + sn,n,

and hence again the highest power of fn−1,n which can occur is f
sn−1,n

n−1,n , and
the coefficient is nonzero. So we can write
(2.8)

An−2 =

sn−1,n∑

ℓ=0

cℓf
s•,1
1,1 . . . f

s•,n−1−sn−1,•+ℓ
1,n−1 f

s•,n−sn,n−ℓ
1,n f

sn−1,•−ℓ
n−1,n−1 f

ℓ
n−1,nf

sn,n
n,n .

For the inductive procedure we make the following assumption:



PBW FILTRATION AND BASES 9

Aj is a sum of monomials of the form

(2.9) f
s•,1
1,1 . . . f

s•,j
1,j f

s•,j+1−∗

1,j+1 . . . f
s•,n−∗

1,n
︸ ︷︷ ︸

X

f
tj+1,j+1

j+1,j+1f
tj+1,j+2

j+1,j+2 . . . f
tn−1,n

n−1,n f
tn,n
n,n

︸ ︷︷ ︸

Y

having the following properties:

i) With respect to the homogeneous lexicographic ordering, all the
multi-exponents of the summands, except one, are strictly smaller
than s.

ii) More precisely, there exists a pair (k0, ℓ0) such that k0 ≥ j + 1,
sk0ℓ0 > tk0ℓ0 and skℓ = tkℓ for all k > k0 and all pairs (k0.ℓ) such
that ℓ > ℓ0.

iii) The only exception is the summand such that tℓ,m = sℓ,m for all
ℓ ≥ j + 1 and all m.

The calculations above show that this assumption holds for An−1 and An−2.
We come now to the induction procedure and we consider Aj−1 = ∂

sj,•
1,j−1Aj .

Note that ∂1,j−1f1,ℓ = 0 except for ℓ ≥ j, and in this case we have ∂1,j−1f1,ℓ =
fj,ℓ. Furthermore, ∂1,j−1fk,ℓ = 0 for k ≥ j + 1, so applying ∂1,j−1 to a sum-
mand of the form in (2.9) does not change the Y -part in (2.9). Summarizing,
applying ∂

sj,•
1,j−1 to a summand of the form in (2.9) gives a sum of monomials

of the form
(2.10)

f
s•,1
1,1 . . . f

s•,j−1

1,j−1 f
s•,j−∗

1,j . . . f
s•,n−∗

1,n
︸ ︷︷ ︸

X′

f
tj,j
j,j . . . f

tj,n
j,n

︸ ︷︷ ︸

Z

f
tj+1,j+1

j+1,j+1f
tj+1,j+2

j+1,j+2 . . . f
tn,n
n,n

︸ ︷︷ ︸

Y

.

We have to show that these summands satisfy again the conditions i)–iii)
above (but now for the index (j − 1)). If we start in (2.9) with a summand
which is not the maximal summand, but such that i) and ii) hold for the
index j, then the same holds obviously also for the index (j − 1) for all
summands in (2.10) because the Y -part remains unchanged.

So it remains to investigate the summands of the form (2.10) obtained by
applying ∂

sj,•
1j−1 to the only summand in (2.9) satisfying iii).

To formalize the arguments used in the calculation for An−2 we need the
following notation. Let 1 ≤ k1 ≤ k2 ≤ · · · ≤ kn ≤ n be numbers defined by

ki = max{j : αi,j ∈ p}.

For convenience we set k0 = 1.

Example 2.3. For p = (α11, α12, . . . , α1n, α2n, . . . , αn,n) we have ki = n for
all i = 1, . . . , n.

Since s is supported on p we have

(2.11) si,• =

ki∑

ℓ=ki−1

si,ℓ, s•,ℓ =
∑

i: ki−1≤ℓ≤ki

si,ℓ.
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Suppose now that we have a summand of the form in (2.10) obtained by
applying ∂

sj,•
1j−1 to the only summand in (2.9) satisfying iii). Since the Y -part

remains unchanged, this implies already tn,n = sn,n, . . . , tj+1,j+1 = sj+1,j+1.
Assume that we have already shown tj,n = sj,n, . . . , tj,ℓ0+1 = sj,ℓ0+1, then
we have to show that tj,ℓ0 ≤ sj,ℓ0.

We consider five cases:

• ℓ0 > kj . In this case the root αj,ℓ0 is not in the support of p and
hence sj,ℓ0 = 0. Since ℓ0 > kj ≥ kj−1 ≥ . . . ≥ k1, for the same
reason we have si,ℓ0 = 0 for i ≤ j. Recall that the power of f1,ℓ0
in Aj−1 in (2.6) is equal to s•,ℓ0 . Now s•,ℓ0 =

∑

i>j si,ℓ0 by the

discussion above, and hence f
s•,ℓ0
1,ℓ0

has already been transformed

completely by the operators ∂1,i, i > j, and hence tj,ℓ0 = 0 = sj,ℓ0.
• kj−1 < ℓ0 ≤ kj . Since ℓ0 > kj−1 ≥ . . . ≥ k1, for the same reason
as above we have si,ℓ0 = 0 for i < j, so s•,ℓ0 =

∑

i≥j si,ℓ0 . The
same arguments as above show that for the operator ∂1,j−1 only

the power f
sj,ℓ0
1,ℓ0

is left to be transformed into a power of fj,ℓ0, so

necessarily tj,ℓ0 ≤ sj,ℓ0.
• kj−1 = ℓ0 = kj . In this case sj,• = sj,ℓ0 and thus the operator

∂
sj,•
1,j−1 = ∂

sj,ℓ0
1,j−1 can transform a power f∗

1,ℓ0
in Aj only into a power

f q
j,ℓ0

with q at most sj,ℓ0.

• kj−1 = ℓ0 < kj . In this case sj,• = sj,ℓ0 + sj,ℓ0+1 + . . . + sj,kj .

Applying ∂
sj,•
1,j−1 to the only summand in (2.9) satisfying iii), the

assumption tj,n = sj,n, . . . , tj,ℓ0+1 = sj,ℓ0+1 implies that one has to

apply ∂
sj,kj
1,j−1 to f∗

1,kj
and ∂

sj,kj−1

1,j−1 to f∗
1,kj−1 etc. to get the demanded

powers of the root vectors. So for f∗
1,ℓ0

only the operator ∂
sj,ℓ0
1,j−1 is

left for transformations into a power of fj,ℓ0 and hence tj,ℓ0 ≤ sj,ℓ0.
• ℓ0 < kj−1. In this case sj,ℓ0 = 0 because the root is not in the
support. Since tj,ℓ = sj,ℓ for ℓ > ℓ0 and sj,ℓ = 0 for ℓ ≤ ℓ0 (same
reason as above) we obtain

∂
sj,•
1,j−1 = ∂

∑
ℓ>ℓ0

sj,ℓ
1,j−1 .

But by assumption we know that ∂
sj,ℓ
1,j−1 is needed to transform the

power f
sj,ℓ
1,ℓ into f

sj,ℓ
j,ℓ for all ℓ > ℓ0, so no power of ∂1,j−1 is left and

thus tj,ℓ0 = 0 = sj,ℓ0.

It follows that all summands except one satisfy the conditions i),ii) above.
The only exception is the term where the powers of the operator ∂

sj,•
1,j−1 are

distributed as follows:

f
s•,1
1,1 ...f

s•,j−1

1,j−1 (∂
sj,j
1,j−1f

s•,j
1,j )(∂

sj,j+1

1,j−1 f
s•,j+1−∗

1,j+1 )...(∂
sj,n
1,j−1f

s•,n−∗

1,n )f
sj+1,j+1

j+1,j+1 ...f
sn,n
n,n .

By construction, this term is nonzero and satisfies the condition iii), which
finishes the proof of the proposition. �

Theorem 2.4. The elements f svλ with s ∈ S(λ) span the module grV (λ).
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Proof. The elements f svλ, s arbitrary multi-exponent, span S(n−)/I(λ) ≃
grV (λ). We use now the equation (2.1) in Proposition 2.1 as a straightening
algorithm to express f tvλ, t arbitrary, as a linear combination of elements
f svλ such that s ∈ S(λ).

Let λ =
∑n

i=1miωi and suppose s /∈ S(λ), then there exists a Dyck path
p = (p(0), . . . , p(k)) with p(0) = αi, p(k) = αj such that

k∑

l=0

sp(l) > mi + · · ·+mj.

We define a new multi-exponent s′ by setting

s′α =

{

sα, α ∈ p,

0, otherwise.

For the new multi-exponent s′ we still have

k∑

l=0

s′p(l) > mi + · · ·+mj.

We can now apply Proposition 2.1 to s′ and conclude

f s′ =
∑

s′>t′

ct′f
t′ in S(n−)/I(λ).

We get f s back as f s = f s′
∏

β /∈p f
sβ
β . For a multi-exponent t′ occurring in

the sum with ct′ 6= 0 set f t = f t′
∏

β /∈p f
sβ
β and ct = ct′ . Since we have a

monomial order it follows:

(2.12) f s = f s′
∏

β /∈p

f
sβ
β =

∑

s>t

ctf
t in S(n−)/I(λ).

The equation (2.12) provides an algorithm to express f s in S(n−)/I(λ) as
a sum of elements of the desired form: if some of the t are not elements of
S(λ), then we can repeat the procedure and express the f t in S(n−)/I(λ)
as a sum of f r with r < t. For the chosen ordering any strictly decreasing
sequence of multi-exponents is finite, so after a finite number of steps one
obtains an expression of the form f s =

∑
crf

r in S(n−)/I(λ) such that
r ∈ S(λ) for all r. �

3. The linear independence

In the following let Ri denote the subset

Ri = {α ∈ R+ | (ωi, α) = 1}.

We define for a dominant weight λ ∈ P+

Rλ = {α ∈ R+ | (λ, α) > 0}.
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Recall that we use αi,j as an abbreviation for αi+αi+1+ . . .+αj (see Section
2). The set Ri can then be described as

Ri = {αj,k | 1 ≤ j ≤ i ≤ k ≤ n}.

We say a path p has color i if ∃ j s.t. β(j) ∈ Ri. Note that a path can have
several different colors.

To simplify the notation we often just write (j, k) for the root αj,k (if no
confusion is possible).

Let λ =
∑n

j=1mjωj and let i be minimal such that mi 6= 0. For s ∈ S(λ),
we denote

Rs
i = {(j, k) ∈ Ri | sj,k 6= 0}.

We define two different orders on R, a partial order “≤”:

(j1, k1) ≤ (j2, k2) ⇔ (j1 ≤ j2 ∧ k1 ≤ k2),

and a total order “≪”:

(j1, k1) ≪ (j2, k2) ⇔ if (k1 < k2) or (k1 = k2 ∧ j1 < j2).

By definition, “≪” covers “≤”.

Example 3.1. For g = sl4 and i = 2, the minimal element of Ri with respect
to both orders is (1, 2) = α1,2 = α1 +α2. Note that α1 +α2 +α3 ≪ α2, but
the two are not comparable with respect to “≤”.

A tuple s ∈ S(λ) will be considered as an ordered tuple with respect to
the order “≪”:

s = (s1,1, s1,2, s2,2, s1,3, s2,3, s3,3, . . . , sn,n).

The induced lexicographic order on S(λ) is a total order which we again
denote by “≪”.

Remark 3.2. The total order ≪ is different from the order ≺ used in Sec-
tion 2.

Example 3.3. For g = sl4 let s be defined by

s13 = 1, s22 = 1 and sj,k = 0 otherwise,

and let t be defined by

t12 = 1, t23 = 1 and tj,k = 0 otherwise.

Then s = (0, 0, 1, 1, 0, 0) and t = (0, 1, 0, 0, 1, 0), and so s ≪ t.

Definition 3.4. For s ∈ S(λ) denote by M s
i the set of minimal elements in

Rs
i with respect to ≤. We denote by ms

i the tuple mj,k = 1 if (j, k) ∈ M s
i

and mj,k = 0 otherwise.

Example 3.5. 1) If Rs
i = Ri, then M s

i = {α1,i}.
2) If Rs

i = {αi,i, αi−1,i+1, . . . , αi−ℓ,i+ℓ} for some ℓ ≤ i, then M s
i = Rs

i .
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Remark 3.6. 1). For any multi-exponent s we have

M s
i = {αjl,kl | l = 1, . . . ,m}

for some m, and the indices have the property

1 ≤ j1 < j2 < . . . < jm ≤ i ≤ km < · · · < k2 < k1 ≤ n.

If s ∈ S(ωi), then for the associated tuple ms
i we get: ms

i = s.
2). The sets M s

i satisfy the following important property: any Dyck path
contains at most one element of M s

i , because the elements of a Dyck path
are linearly ordered with respect to “≥”.

Proposition 3.7. For s ∈ S(λ) let M s
i be the minimal set. Then ms

i ∈
S(ωi), and if s′ is such that s = s′ +ms

i , then s′ ∈ S(λ− ωi).

Proof. Note that ms
i ∈ S(ωi) by Remark 3.6. Let s′ be such that s = s′+ms

i .
We claim that s′ ∈ S(λ − ωi). Let λ =

∑n
j=imjωj . For a Dyck path p let

qλp =
∑

j color ofpmj be the upper bound for the defining inequality (1.2) of

S(λ) associated to p.
If p is a Dyck path such that i is not a color, then qλp = qλ−ωi

p and sβ = s′β
for β 6∈ Ri, so s′ satisfies the defining inequality for S(λ− ωi) given by p.

Let p be a Dyck path of color i, so qλ−ωi
p = qλp − 1. If p ∩M s

i 6= ∅, then
∑

(j,k)∈p s
′
j,k =

∑

(j,k)∈p sj,k − 1 ≤ qλp − 1 = qλ−ωi
p , so s′ satisfies the defining

inequality for S(λ− ωi) given by p.
Suppose now that p is a Dyck path of color i but p ∩ M s

i = ∅. Recall
that the elements in suppp are linearly ordered. Let αl,m be the minimal
element in Rs

i ∩ suppp. Since i is minimal such that mi > 0, note that
sβ = 0 for all β ∈ suppp be such that β < αl,m. By assumption, αl,m 6∈ M s

i ,
so let αr,t ∈ M s

i such that αr,t < αl,m. Let p̃ be the Dyck path

(αr,r, αr,r+1, . . . , αr,t, αr,t+1, . . . , αr,m, αr+1,m, . . . , αl,m, β1, . . . , βN ),

where {β1, . . . , βN} are the elements in suppp such that βj > αl,m. Since
αr,t ∈ supp p̃ we know:

∑

(j,k)∈p

sj,k <
∑

(j,k)∈p̃

sj,k ≤ qλp

and hence
∑

(j,k)∈p sj,k =
∑

(j,k)∈p s
′
j,k ≤ qλp − 1 = qλ−ωi

p . �

For s ∈ S(λ) we define a mutation of s as follows:

Definition 3.8. Let

β =
∑

(j,k)∈R

sj,kαj,k

and suppose

β =
∑

(j,k)∈R

tj,kαj,k
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where

tj,k = 0 if (j, k) /∈ Rλ ; tj,k ≥ 0 if (j, k) ∈ Rλ,

for some t = (tj,k) /∈ S(λ). Then we call t a mutation of s.

Example 3.9. Let g = sl3 and λ = ω2. Define

s by s1,3 = 1, s2,2 = 1 and si,j = 0 else,

and

t by t1,2 = 1, t2,3 = 1 and ti,j = 0 else.

Then t is a mutation of s.

Proposition 3.10. For s ∈ S(λ) let M s
i be the minimal set. If t1 is a

mutation of ms
i , t = t2 + t1 ∈ S(λ) and t1j,k ≥ 0, then ms

i ≪ mt
i .

Proof. Recall (see Remark 3.6) that M s
i = {(jl, kl) | l = 1, . . . ,m} with

1 ≤ j1 < · · · < jm ≤ i ≤ km < · · · < k1.

Let t1 be a mutation of ms
i , so t1j,k = 0 for (j, k) /∈ Ri. Then there exists

σ ∈ Sm\{id} such that if t1p,q 6= 0, then (p, q) = (jl, kσ(l)) for some 1 ≤ l ≤ m.
We can even assume that σ(l) 6= l for all l, because otherwise (jl, kl) is not
mutated and appears in ms

i and t1.

It is clear that mt1

i ≪ mt
i (or equal), so it suffices to show that ms

i ≪ m
t1
i .

Let x = σ−1(m), we claim that M t
i ⊂ {(j1, kσ(1)), . . . , (jx, kσ(x))}. Let l > x,

then jx < jl and km > kσ(l) (since σ(l) 6= m). So (jx, km) < (jl, kσ(l)) for all
l > x. �

Theorem 3.11. Let λ =
∑

j mjωj ∈ P+. For each s ∈ S(λ) fix an arbitrary

order of factors fα in the product
∏

α>0 f
sα
α . Let f s =

∏

α>0 f
sα
α be the

ordered product in U(n−). Then the elements f svλ, s ∈ S(λ), form a basis
of V (λ).

Proof. We will prove the claim by induction on m =
∑n

j=1mj. By Theo-

rem 2.4 we know that the f svλ span the representation V (λ), so dimV (λ) ≥
♯S(λ). For the initial step m = 1 the description of S(ωi) in Remark 3.6
shows that the tuples have all different weights and hence the f svωi

are also
linearly independent, which proves the claim for the fundamental represen-
tations.

We assume that the claim holds for λ, we want to prove it for λ + ωi.
We may assume again that i is minimal such that mi 6= 0. The highest
weight vector vλ ⊗ vωi

generates V (λ + ωi) ⊂ V (λ) ⊗ V (ωi). We assume
in the following that the roots are ordered in such a way that the fα with
α ∈ Ri are at the beginning. Every element s ∈ S(λ + ωi) defines a vector
of f s(vλ⊗ vωi

) ∈ V (λ+ωi). We want to show that these vectors are linearly
independent, so we have to show

(3.1)
∑

s∈S(λ+ωi)

asf
s(vλ ⊗ vωi

) = 0 ⇒ as = 0 ∀ s ∈ S(λ+ ωi).
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We may assume without loss of generality that all s have the same weight,
say s ∈ S(λ+ωi)

µ. By Proposition 3.7 we can split an element in S(λ+ωi)
such that s = s2 +ms

i , where s2 ∈ S(λ). Assume that we have a non-trivial
linear dependence relation in (3.1). Fix s̄ ∈ S(λ + ωi)

µ such that as̄ 6= 0
in this relation and at = 0 for all t such that ms̄

i ≪ mt
i . Consider first

s̄ = s̄2 +ms̄
i , so we have

(3.2) f s̄(vλ ⊗ vωi
) = cms̄

i
f s̄2vλ ⊗ fms̄

ivωi
+ other terms,

where cms̄

i
is a nonzero constant (product of binomial coefficients).

All the terms occurring in the linear dependence relation (3.1) can be
rewritten as sums of terms of the form f r2vλ ⊗ f r1vωi

. So in order to prove
that necessarily as = 0 for all terms in (3.1), it is sufficient to show that that
the terms f r2vλ ⊗ f r1vωi

satisfying wt(r2) = wt(s̄2) and wt(r1) = wt(ms̄
i )

are linearly independent.
Let us first consider the possible terms in (3.2) occurring among the other

terms. It is a sum of elements f r2vλ⊗f r1vωi
, where r2+r1 = s̄ and r1 6= ms̄

i .
If wt(r1) = wt(ms̄

i ), then either r1 ∈ S(ωi), but then r1 = ms̄
i for weight

reasons, or r1 6∈ S(ωi). In the latter case the entries in r1 are zero for all
αk,ℓ 6∈ Ri because of the special choice of the ordering, and hence r1 has

to be a mutation of ms̄
i . Then by Proposition 3.10, ms̄

i ≪ mr1+r2
i = ms̄

i
which is a contradiction. So the other terms consist only of tensors of the
form f r2vλ⊗ f r1vωi

, where wt(r2) 6= wt(s̄2) and wt(r1) 6= wt(ms̄
i ), hence for

proving linear independence we can neglect these terms.
To obtain a non-trivial linear combination such that at 6= 0 for some

t 6= s̄, one needs an element t ∈ S(λ+ωi)
µ which can be splitted t = t2+ t1

such that wt(t2) = wt(s̄2), wt(t1) = wt(ms̄
i ), and f t2vλ 6= 0, f t1vωi

6= 0.
Suppose that one has such a t = t2 + t1 and t1 /∈ S(ωi). By the same

arguments as above, t1 is a mutation of ms̄
i and hence by Proposition 3.10,

ms̄
i ≪ mt

i . But in this case we have by assumption at = 0, contradicting
the fact at 6= 0.

It follows t1 ∈ S(ωi) and hence, by weight arguments, t1 = ms̄
i and

t = t2 +ms
i , where t2 6= s2.

So if a term of the form f t2vλ⊗ f t1vωi
wt(t2) = wt(s̄2), wt(t1) = wt(ms̄

i )
occurs in the linear dependence relation (3.1), then necessarily t1 = ms̄

i .
Hence, by Proposition 3.7, t2 ∈ S(λ). Since the possible t2 are different

from s̄ and by induction the terms {f t2vλ⊗ fms̄

ivωi
| t2 ∈ S(λ)} are linearly

independent, it follows as̄ = 0, contradicting the assumption as̄ 6= 0.
Summarizing, we have shown that for the order fixed at the beginning

of the proof the f svλ+ωi
, s ∈ S(λ + ωi), are linearly independent and form

a basis. This implies in particular that ♯S(λ + ωi) = dimV (λ + ωi). Now
by Theorem 2.4 we know that the f svλ+ωi

, s ∈ S(λ + ωi), span V (λ + ωi)
for any chosen total order. So, for dimension reason, they also have to be
linearly independent for any chosen order. �
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4. Proof of Theorem A and applications

In this section we collect some immediate consequences of the construc-
tions in Sections 2 and 3. The proof of Theorem 3.11 shows:

Corollary 4.1.

dimV (λ) = #S(λ) = number of integral points in the polytope P (λ).

By the defining inequalities (see 0.1) for the polytope P (λ) it is obvious
that for two dominant integral weights λ, µ we have P (λ)+P (µ) ⊆ P (λ+µ),
and hence for the integral points we have S(λ) + S(µ) ⊆ S(λ+ µ), too. In
fact, the reverse implication is also true:

Proposition 4.2. S(λ) + S(µ) = S(λ+ µ).

Proof. Set ν = λ+µ and write ν =
∑

kiωi as a sum of fundamental weights.
Proposition 3.7 provides an inductive procedure to write an element s in

S(ν) as a sum s =
∑n

i=1

∑ki
j=1mi,j such that mi,j ∈ S(ωi) for all 1 ≤ i ≤ n,

1 ≤ j ≤ ki. This sum can be reordered in such a way that s = s1 + s2,
s1 ∈ S(λ), s2 ∈ S(µ), so s ∈ S(λ) + S(µ). �

As an interesting application we obtain a combinatorial character formula
for the representation V (λ). Let P be the weight lattice and for s ∈ S(λ)
define the weight

wt(s) :=
∑

1≤j≤k≤n

sj,kαj,k.

Let S(λ)µ be the subset of elements such that µ = λ−wt(s) and let S(λ)µ :=
#{s ∈ S(λ) | µ = λ − wt(s)} be the number of elements of this set. We
obtain as a consequence of Theorem 1.5:

Proposition 4.3.

charV (λ) =
∑

µ∈P

S(λ)µe
µ.

The big advantage of our approach is that it provides also a combinatorial
formula for the graded character. Recall that grV (λ) carries an additional
grading on each weight space V (λ)µ of V (λ):

grV (λ)µ =
⊕

s≥0

grsV (λ)µ =
⊕

s≥0

V (λ)µs /V (λ)µs−1.

The graded character of the weight space is the polynomial

pλ,µ(q) :=
∑

s≥0

(dimV (λ)µs /V (λ)µs−1)q
s

and the graded character of V (λ) is

charq(V (λ)) =
∑

µ∈P

pλ,µ(q)e
µ.

We have a natural notion of a degree for the multi-exponents:
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Definition 4.4.

deg(s) :=
∑

1≤j≤k≤n

sj,k.

As an immediate consequence of Theorem 1.5 we get

Corollary. pλ,µ(q) =
∑

s∈S(λ)µ q
deg s and

charq(V (λ)) =
∑

s∈S(λ)

eλ−wt(s)qdeg(s).

Finally, we note that the results of Sections 2 and 3 imply the description
of the annihilating ideal I(λ).

Theorem 4.5.

(4.1) I(λ) = S(n−)
(

U(n+) ◦ span{f (λ,α)+1
α , α > 0}

)

.

Proof. Since f
(λ,α)+1
α vλ = 0 in V (λ) for all positive roots α, the right hand

side of (4.1) belongs to I(λ). Section 2 shows that the relations in the RHS
of (4.1) are enough to rewrite any element of grV (λ) in terms of the basis
element f svλ, s ∈ S(λ). This proves our theorem. �
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Weyertal 86-90, D-50931 Köln,Germany
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