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PBW FILTRATION AND BASES FOR SYMPLECTIC LIE

ALGEBRAS

EVGENY FEIGIN, GHISLAIN FOURIER AND PETER LITTELMANN

Abstract. We study the PBW filtration on the highest weight rep-
resentations V (λ) of sp2n. This filtration is induced by the standard
degree filtration on U(n−). We give a description of the associated
graded S(n−)-module grV (λ) in terms of generators and relations. We
also construct a basis of grV (λ). As an application we derive a graded
combinatorial formula for the character of V (λ) and obtain a new class
of bases of the modules V (λ).

Introduction

In this paper we continue the study of the PBW filtration on irreducible
representations of simple Lie algebras initiated in [FFoL]. The goal of this
paper is to develop the theory of PBW-graded modules for symplectic Lie
algebras sp2n. We start with recalling the definition of the PBW filtration.

Let g be a simple Lie algebra and let g = n+ ⊕ h ⊕ n− be a Cartan de-
composition. For a dominant integral λ we denote by V (λ) the irreducible
g-module with highest weight λ. Fix a highest weight vector vλ ∈ V (λ).
Then V (λ) = U(n−)vλ, where U(n−) denotes the universal enveloping alge-
bra of n−. The degree filtration U(n−)s on U(n−) is defined by:

U(n−)s = span{x1 . . . xl : xi ∈ n−, l ≤ s}.

In particular, U(n−)0 = C and grU(n−) ≃ S(n−), where S(n−) denotes the
symmetric algebra over n−. The filtration of U(n−) by the subspaces U(n−)s
induces a filtration of V (λ) by the subspaces V (λ)s:

V (λ)s = U(n−)svλ.

We call this filtration the PBW filtration. The central objects of our paper
are the associated graded spaces grV (λ) as S(n−)-modules for g of type Cn.

We note that grV (λ) = S(n−)vλ is a cyclic S(n−)-module. So one has

grV (λ) ≃ S(n−)/I(λ),

for some ideal I(λ) ⊂ S(n−). For example, for any simple root αi the power

f
(λ,αi)+1
αi of a root vector fαi

∈ n−−αi
belongs to I(λ) since f

(λ,αi)+1
αi vλ = 0 in

V (λ). To describe I(λ) explicitly, we prepare some notations. All positive
1
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roots of sp2n can be divided into two groups:

αi,j = αi + αi+1 + · · ·+ αj, 1 ≤ i ≤ j ≤ n,

αi,j = αi + αi+1 + . . .+ αn + αn−1 + . . . + αj, 1 ≤ i ≤ j ≤ n.

In particular, α1,1 is the highest root. Consider the action of the opposite

subalgebra n+ on V (λ). It is easy to see that n+V (λ)s →֒ V (λ)s, so we
obtain the structure of an U(n+)-module on grV (λ) as well. We show:

Theorem A. The ideal I(λ) is generated as S(n−)-module by the subspace

U(n+) ◦ span{f
(λ,αi,j)+1
αi,j , 1 ≤ i ≤ j ≤ n− 1, f

(λ,αi,n)+1
αi,i

, 1 ≤ i ≤ n}.

Theorem A should be understood as a commutative analogue of the well-
known description of V (λ) as the quotient

V (λ) ≃ U(n−)/〈f (λ,αi)+1
αi

, 1 ≤ i ≤ n〉

(see for example [H]).
Our second problem (closely related to the first one) is to construct a

monomial basis of grV (λ). The elements
∏

α>0 f
sα
α vλ with sα ≥ 0 obviously

span grV (λ) (recall that the order in
∏

α>0 f
sα
α is not important since fα

are considered as elements of S(n−)). For each λ we construct a set S(λ) of
multi-exponents s = {sα}α>0 such that the elements

f svλ =
∏

α>0

f sα
α vλ, s ∈ S(λ)

form a basis of grV (λ). To give a definition of S(λ) we need the notion of
a symplectic version of Dyck path, which is precisely defined in Section 1,
Definition 1.2. The definition is similar to the one for usual Dyck paths,
see for example [FFoL]). In short, a Dyck path p = (p(0), . . . , p(k)) is a
sequence of positive roots starting at a simple root αi, ending at a root αj

or αj,j, j ≥ i and obeying some recursion rules. We denote by D the set of
all Dyck paths.

For a dominant weight λ we introduce a polytope P (λ) ⊂ R
n2

≥0:

P (λ) :=

{

(sα)α>0 | ∀p ∈ D :

If p(0) = αi, p(k) = αj, then
sp(0) + · · · + sp(k) ≤ (λ, αi,j),
if p(0) = αi, p(k) = αj,j, then

sp(0) + · · · + sp(k) ≤ (λ, αi,n)

}

.

Let S(λ) be the set of integral points in P (λ).
We show:

Theorem B. The set of elements f svλ, s ∈ S(λ), forms a basis of grV (λ).

For s ∈ S(λ) define the weight

wt(s) :=
∑

1≤j≤k≤n

sαj,k
αj,k +

∑

1≤j≤k<n

sα
j,k
αj,k.

As an important application we obtain:



PBW FILTRATION AND BASES 3

Corollary 0.1.
i) For each s ∈ S(λ) fix an arbitrary order of factors fα in the product

∏

α>0 f
sα
α . Let f s =

∏

α>0 f
sα
α be the ordered product. Then the

elements f svλ, s ∈ S(λ), form a basis of V (λ).
ii) dimV (λ) = ♯S(λ).

iii) charV (λ) =
∑

s∈S(λ) e
λ−wt(s).

We note that the order in the corollary above is important since we are
back to the action of the (in general) not commutative enveloping algebra.
We thus obtain a family of bases for irreducible sp2n-modules. The existence
of these bases (with the same indexing set) was proved by Vinberg for sp4
(see [V]).

The modules grV (λ) have one more nice property. Namely, given two
dominant integral weights λ and µ, consider the subspace grV (λ, µ) →֒
grV (λ) ⊗ grV (µ) generated from the product of highest weight vectors:
grV (λ, µ) = S(n−)(vλ ⊗ vµ). We prove that grV (λ, µ) ≃ grV (λ + µ)
as n−-modules. This is an analogue of the corresponding classical result.
In type A this statement was proved in [FFoL]. Dualizing the embedding
grV (λ + µ) →֒ grV (λ) ⊗ grV (µ), one obtains an algebra structure on the
space

⊕

λ(grV (λ))∗. The projective spectrum of this algebra is a certain
deformation of the symplectic flag variety. In type A it was studied in [F3].

Remark 0.2. The data labeling the basis vectors is similar to that for the
symplectic Gelfand-Tsetlin patterns (see [GT], [BZ]). However, these bases
are very different from the symplectic GT basis. On the combinatorial side
the connection with the Gelfand-Tsetlin patterns was recently clarified by
Ardila, Bliem and Salazar [ABS]. Generalizing a result of Stanley, they
show that for every partition λ there exists a marked poset (P,A, λ) such
that the Gelfand-Tsetlin polytope coincides with the corresponding marked
order polytope and our polytope P (λ) coincides with the corresponding
marked chain polytope. Note that both polytopes have the same Ehrhart
polynomials [ABS].

We finish the introduction with several remarks. The PBW filtration for
highest weight representations was considered in [FFoL], [Kum], [FFJMT],
[F1], [F2], [F3]. It was shown that it has important applications in alge-
braic geometry, representation theory of current and affine algebras and in
mathematical physics.

There exist special representations V (λ) such that the operators f s consist
only of mutually commuting root vectors, even before passing to grV (λ).
These modules can be described via the theory of abelian radicals and turned
out to be important in the theory of vertex operator algebras (see [GG],
[FFL], [FL]).
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Finally we note that grV (λ) carries an additional grading on each weight
space V (λ)µ of V (λ):

grV (λ)µ =
⊕

s≥0

grsV (λ)µ =
⊕

s≥0

V (λ)µs /V (λ)µs−1.

The graded character of the weight space is the polynomial

pλ,µ(q) :=
∑

s≥0

(dimV (λ)µs /V (λ)µs−1)q
s.

Define the degree

deg(s) :=
∑

1≤j≤k≤n

sαj,k
+

∑

1≤j≤k<n

sα
j,k

for s ∈ S(λ), and let S(λ)µ be the subset of elements such that µ = λ−wt(s).
Then

Corollary. pλ,µ(q) =
∑

s∈S(λ)µ q
deg s.

We note that our filtration is different from the Brylinski-Kostant filtra-
tion (see [Br], [Kos]).

Our paper is organized as follows:
In Section 1 we introduce notations and state the problems. Sections 2 and
3 are devoted to the proof of Theorems A and B. In Section 2 we prove the
spanning property of our basis and in Section 3 we finalize the proof.

1. Definitions

Let R+ be the set of positive roots of sp2n. For each α ∈ R+ we fix a
non-zero element fα ∈ n−−α. Let αi, ωi i = 1, . . . , n be the simple roots and
the fundamental weights. All positive roots of sp2n can be divided into two
groups:

αi,j = αi + αi+1 + · · ·+ αj, 1 ≤ i ≤ j ≤ n,

αi,j = αi + αi+1 + . . . + αn + αn−1 + . . .+ αj , 1 ≤ i ≤ j ≤ n

(note that αi,n = αi,n). We will use the following short versions

αi = αi, αi = αi,i, fi,j = fαi,j
, fi,j = fαi,j

.

We recall the usual order on the alphabet J = {1, . . . , n, n− 1, . . . , 1}

1 < 2 < . . . < n− 1 < n < n− 1 < . . . < 1.

Let sp2n = n+ ⊕ h ⊕ n− be the Cartan decomposition. Consider the
increasing degree filtration on the universal enveloping algebra of U(n−):

(1.1) U(n−)s = span{x1 . . . xl : xi ∈ n−, l ≤ s},

for example, U(n−)0 = C · 1.
For a dominant integral weight λ = m1ω1 + · · · +mnωn let V (λ) be the

corresponding irreducible highest weight sp2n-module with a highest weight
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vector vλ. Since V (λ) = U(n−)vλ, the filtration (1.1) induces an increasing
filtration V (λ)s on V (λ):

V (λ)s = U(n−)svλ.

We call this filtration the PBW filtration and study the associated graded
space grV (λ). In the following lemma we describe some operators acting on
grV (λ). Let S(n−) denotes the symmetric algebra of n−.

Lemma 1.1. The action of U(n−) on V (λ) induces the structure of a S(n−)-
module on grV (λ) and

gr(V (λ)) = S(n−)vλ.

The action of U(n+) on V (λ) induces the structure of a U(n+)-module on
grV (λ).

Our aims are:

• to describe grV (λ) as an S(n−)-module, i.e. describe the ideal
I(λ) →֒ S(n−) such that grV (λ) ≃ S(n−)/I(λ);

• to find a basis of grV (λ).

The description of the ideal is given in the introduction (see Theorem A).
To describe the basis we introduce the notion of the symplectic Dyck paths:

Definition 1.2. A symplectic Dyck path (or simply a path) is a sequence

p = (p(0), p(1), . . . , p(k)), k ≥ 0

of positive roots satisfying the following conditions:

a) the first root is simple, p(0) = αi for some 1 ≤ i ≤ n;
b) the last root is either simple or the highest root of a symplectic

subalgebra, more precisely p(k) = αj or p(k) = αj for some i ≤ j ≤
n;

c) the elements in between obey the following recursion rule: If p(s) =
αr,q with r, q ∈ J then the next element in the sequence is of the
form either p(s + 1) = αr,q+1 or p(s + 1) = αr+1,q. where x + 1
denotes the smallest element in J which is bigger than x.

To give a visual interpretation of the notion of a Dyck-path for sp8, ar-
range the positive roots in the form of a triangle. In this picture, a Dyck
path is a path in the directed graph, starting at a simple root root and
ending at one of the edges.

α1,1 → α1,2 → α1,3 → α1,4 → α1,3 → α1,2 → α1,1

↓ ↓ ↓ ↓ ↓
α2,2 → α2,3 → α2,4 → α2,3 → α2,2

↓ ↓ ↓
α3,3 → α3,4 → α3,3

↓
α4,4
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Denote by D the set of all Dyck-paths. For a dominant weight λ =
∑n

i=1miωi let P (λ) ⊂ R
n2

≥0 be the polytope

(1.2) P (λ) :=

{

(sα)α>0 | ∀p ∈ D :

If p(0) = αi, p(k) = αj , then
sp(0) + · · ·+ sp(k) ≤ mi + · · ·+mj ,
if p(0) = αi, p(k) = αj, then

sp(0) + · · ·+ sp(k) ≤ mi + · · ·+mn

}

,

and let S(λ) be the set of integral points in P (λ).

For a multi-exponent s = {sβ}β>0, sβ ∈ Z≥0, let f
s be the element

f s =
∏

β∈R+

f
sβ
β ∈ S(n−).

In the next two sections we prove the following theorem (Theorem B from
the introduction), which immediately implies Corollary 0.1.

Theorem 1.3. The set f svλ, s ∈ S(λ), forms a basis of grV (λ).

Proof. In Section 2 we show that the elements f svλ, s ∈ S(λ), span grV (λ),
see Theorem 2.4. In Section 3 we show that the elements are linear inde-
pendent in grV (λ) (see Theorem 3.6), which finishes the proof. �

2. The spanning property

We start with writing down the powers of certain positive roots annihi-
lating a highest weight vector in an irreducible sp2n-module.

Lemma 2.1. Let λ =
∑n

i=1 miωi be the sp2n-weight and let V (λ) be the
corresponding highest weight module with highest weight vector vλ. Then

f
mi+···+mj+1
αi,j vλ = 0, 1 ≤ i ≤ j ≤ n− 1,(2.1)

fmi+···+mn+1
αi,i

vλ = 0, 1 ≤ i ≤ n.(2.2)

Proof. For each positive root α we have the corresponding sl2-triple {eα, hα,
fα}. Now the lemma follows immediately from the sl2-theory. �

In the following we use the differential operators ∂α defined by

∂αfβ =

{

fβ−α, if β − α ∈ △+,

0, otherwise.

As in the An-case (see [FFoL]), we have a natural action of U(n+) on S(n−)
coming from the natural action of U(n+) on S(g) and the identification
S(n−) ≃ S(g)/S(n−)S+(h⊕ n+). The operators ∂α satisfy the property

∂αfβ = cα,β(ad eα)(fβ),

where cα,β are some non-zero constants. In what follows we sometimes use
the equality αi,n = αi,n.
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Lemma 2.2. The only non-trivial vectors of the form ∂βfα, α, β > 0 are
as follows: for α = αi,j, 1 ≤ i ≤ j ≤ n

(2.3) ∂i,sfi,j = fs+1,j, i ≤ s < j, ∂s,jfi,j = fi,s−1, i < s ≤ j,

and for α = αi,j, 1 ≤ i ≤ j ≤ n

∂i,sfi,j = fs+1,j, i ≤ s < j, ∂i,sfi,j = fj,s+1, j ≤ s, ∂i,sfi,j = fj,s−1, j < s,
(2.4)

∂s+1,jfi,j = fi,s, i ≤ s < j, ∂j,s+1fi,j = fi,s, j ≤ s, ∂j,s−1fi,j = fi,s, j < s.
(2.5)

Let us illustrate this lemma by the following picture in type C5.

r r r r r r y b b

b b b b b b br

r r r r r

b b b

b

Here all circles correspond to the positive roots of the root system of
type C5 in the following way: in the upper row we have from left to right
α1,1, . . . , α1,5, α1,4, . . . , α1,1, in the second row we have from left to right
α2,2, . . . , α2,5, α2,4, . . . , α2,2, and the last line corresponds to the root α5,5.

Now let us take the root α1,3 (which corresponds to the fat circle). Then all
roots which can be obtained by applying the operators ∂β are depicted as
filled small circles.

The following remark will be important for us.

Remark 2.3. Formula (2.3) reproduces the picture in type An. Formulas
(2.3), (2.4) and (2.5) resemble the situation in type A2n−1. The difference
is that in the symplectic case the roots ∂βfα with fixed α do not form two
segments (as in type A), but three segments.

Our goal is to prove the following theorem.

Theorem 2.4. i) The vectors f svλ, s ∈ S(λ) span grV (λ).
ii) Let I(λ) be the ideal I(λ) = S(n−)(U(n+) ◦R), where

R = span{f
mi+···+mj+1
αi,j , 1 ≤ i ≤ j ≤ n− 1, fmi+···+mn+1

αi,i
, 1 ≤ i ≤ n}.

There exists a monomial order on S(n−) = C[fα | α > 0], denoted
by “ ≻”, such that for any s 6∈ S(λ) there exists a homogeneous
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expression (a straightening law) of the form

(2.6) f s −
∑

s≻t

ctf
t ∈ I(λ).

Remark 2.5. In the following we refer to (2.6) as a straightening law for
the polynomial ring S(n−) = C[fα | α > 0] with respect to the ideal I(λ).
Such a straightening law implies that in the quotient ring S(n−)/I(λ) we
can express f s for s 6∈ S(λ) as a linear combination of monomials which are
smaller in the monomial order than f s, but of the same total degree since
the expression in (2.6) is homogeneous.

We show first that ii) implies i):

Proof. [ii) ⇒i)] The elements in R obviously annihilate vλ ∈ grV (λ), and
so do the elements of U(n+) ◦ R, and hence so do the elements of the ideal
I(λ). As a consequence we get a surjective map S(n−)/I(λ) → grV (λ).

Suppose s 6∈ S(λ). We know by ii) that f s =
∑

s≻t
ctf

t in S(n−)/I(λ).
If some t with nonzero coefficient ct is not an element of S(λ), then we
can again apply a straightening law and replace f t by a linear combination
of smaller monomials. Since there are only finite number of monomials of
the same total degree, by repeating the procedure if necessary, after a finite
number of steps we obtain an expression of f s in S(n−)/I(λ) as a linear
combination of elements f t, t ∈ S(λ). It follows that the set {f t | t ∈ S(λ)}
is a spanning set for S(n−)/I(λ), and hence, by the surjection above, we get
a spanning set {f tvλ | t ∈ S(λ)} for grV (λ). �

To prove the second part we need to define the total order. We start by
defining a total order on the variables:

(2.7)

fn,n >
fn−1,n−1 > fn−1,n > fn−1,n−1 >

fn−2,n−2 > fn−2,n−1 > fn−2,n > fn−2,n−1 > fn−2,n−2 >

. . . > . . . > . . . >
f1,1 > f1,2 > . . . > f1,n−1 > f1,n > f1,n−1 > . . . > f1,2 > f1,1.

We use the same notation for the induced homogeneous lexicographic order-
ing on the monomials. Note that this monomial order > is not the order ≻.
To define the latter, we need some more notation. Let

s•,j =

j
∑

i=1

si,j, s•,j =

j
∑

i=1

si,j,

si,• =

n∑

j=i

si,j +

n−1∑

j=i

si,j.

Define a map d from the set of multi-exponents s to Z
n
≥0:

d(s) = (sn,•, sn−1,•, . . . , s1,•).
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So, d(s)i = sn−i+1,•. We say d(s) > d(t) if there exists an i such that

d(s)1 = d(t)1, . . . , d(s)i = d(t)i, d(s)i+1 > d(t)i+1.

Definition 2.6. For two monomials f s and f t we say f s ≻ f t if either

a) the total degree of f s is greater than the total degree of f t;
or b) both have the same total degree, but d(s) < d(t);
or c) both have the same total degree, d(s) = d(t), but f s > f t.

In words, if both have the same total degree, this definition says that f s

is greater than f t if d(s) is smaller than d(t), or d(s) = d(t) but f s > f t

with respect to the homogeneous lexicographic ordering on C[fα | α > 0].

Remark 2.7. It is easy to check that “≻” defines a monomial ordering, i.e.,
if f s ≻ f t and fm 6= 1, then

f sfm = f s+m ≻ f tfm = f t+m ≻ f t.

Slightly abusing notations, we use the same symbol ≻ also for the multi-
exponents: we write s ≻ t if and only if f s ≻ f t.

Proof of Theorem 2.4 ii). We discuss first some reduction steps. Let s
be a multi-exponent violating some of the Dyck paths condition from the
definition of S(λ) and let p be a corresponding Dyck path. We write s as a
sum s = s1 + s2, where s1 is defined as follows: s1α = sα if α ∈ p and s1α = 0
if α 6∈ p, so s1α has support (i.e. nonzero entries) only on p. Now obviously

we still have s1 6∈ S(λ). If we have a straightening law for f s1 :

f s
1
−

∑

s1≻t

ctf
t ∈ I(λ)

then multiplication by f s
2
gives a straightening law for f s = f s

1
f s

2
, because

≻ is a monomial order.
So it suffices to find a straightening law for those s 6∈ S(λ) which are

supported on a Dyck path p and s violates the Dyck path condition for
S(λ) for the path p.

Suppose first that the Dyck path p is such that p(0) = αi, p(k) = αj

for some 1 ≤ i ≤ j < n. We are going to show that in this case we get a
straightening law by the corresponding result for the Lie algebra sln from
[FFoL]. In fact, consider the Lie subalgebra M ⊂ sp2n generated by the
elements eαi,i

, fαi,i
, hαi,i

, 1 ≤ i < n. This subalgebra is isomorphic to sln.

Let M = n+M ⊕ hM ⊕ n−M be the Cartan decomposition obtained by setting

n+M = n+ ∩M , n−M = n− ∩M and hM = h ∩M . Let

RM = span{f
mi+···+mj+1
αi,j , 1 ≤ i ≤ j ≤ n− 1} ⊂ S(n−M ) ⊂ S(n−).

Then RM ⊂ R and U(n+M ) ◦ RM ⊂ U(n+) ◦ R. Set λM =
∑n−1

i=1 miωi and

let IM (λM ) be the ideal IM (λ) := S(n−M )(U(n+M ) ◦RM ) ⊂ S(n−M ).
We have an obvious inclusion IM (λM ) ⊂ I(λ). But note that the ideal

IM (λM ) is considered in [FFoL] for the sln-case (recall, M ≃ sln). Also the
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Dyck path considered here is an sln Dyck path, because all roots occurring
in the path are roots in the subroot-system associated to the Lie-subalgebra
M . It follows by [FFoL] that we have a straightening law

(2.8) f s −
∑

s>t

ctf
t ∈ IM (λM ) ⊂ I(λ).

It remains to show that in the sum above we can replace “>” by “≻”. For
this we need to recall the proof in the type A-case. Recall that we work now
with the subalgebra M ≃ sln ⊂ sp2n. To get the straightening law above,

one starts with the element f
sp(0)+···+sp(k)
1,i ∈ RM . Applying the ∂-operators

(see [FFoL]) one shows that

B = f
s•,1
1,1 f

s•,2
1,2 . . . f

s•,i
1,i ∈ RM .

One applies then the following ∂-operators to B to get

(2.9) A = ∂
s2,•
1,1 ∂

s3,•
1,2 . . . ∂

si,•
1,i−1B ∈ RM

(since s is supported on p and p(k) = αj, j < n, we have sl,• =
∑n−1

j=l sl,j).

We show in [FFoL] that

(2.10) A =
∑

t≤s

ctF
t

for some cs 6= 0, which gives rise to the straightening law in (2.8). Now in
this special case Lemma 2.2 implies that the application of the ∂-operators
in (2.9) produces only summands such that d(s) = d(t) for any t occurring
in the sum with a nonzero coefficient. Hence we can replace “>” by “≻” in
(2.8), which finishes the proof of the theorem in this case.

Now assume p(0) = αi,i and p(k) = αj,j for some j ≥ i. We include the
case j = n by writing αn,n = αn,n. We proceed by induction on n. For
n = 1 we have sp2 = sl2, so we can refer to [FFoL]. Now assume we have
proved the existence of a straightening law for all symplectic algebras of rank
strictly smaller than n. If i > 1, then the Dyck path is also a Dyck path for
the symplectic subalgebra L ≃ sp2n−2(i−1) generated by eαk,k

, fαk,k
, hαk,k

,

i ≤ k ≤ n. Let n+L , n
−
L etc. be defined by the intersection of n+, n− etc. with

L and set λL =
∑n

k=imkωk. It is now easy to see that the straightening law

for f s viewed as an element in S(n−L ) with respect to IL(λL) defines also a
straightening law for f s viewed as an element in S(n−) with respect to I(λ).

So from now on we fix p(0) = α1 and p(k) = αi,i for some i ∈ {1, . . . , n}.
For a multi-exponent s supported on p, set

Σ =
k∑

l=0

sp(l) > m1 + · · · +mn.
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We have obviously fΣ
1,1̄

∈ I(λ). We consider now two operators

∆1 := ∂
s
•,̄i+si,•

1,i−1 ∂
s•,i

i+1,i+1
. . . ∂

s•,n−1

n,n̄
︸ ︷︷ ︸

δ3

∂
s•,n−1+s•,n
1,n−1 . . . ∂

s•,i+s
•,i+1

1,i
︸ ︷︷ ︸

δ2

∂
s•,i−1

1,̄i
. . . ∂

s•,2
1,3̄

∂
s•,1
1,2̄

︸ ︷︷ ︸

δ1

(so ∆1 := ∂
s
•,̄i+si,•

1,i−1 δ3δ2δ1) and

∆2 := ∂
s2,•
1,1 ∂

s3,•
1,2 . . . ∂

si−1,•

1,i−2 .

We will show that

(2.11) ∆2∆1f
Σ
1,1̄ = csf

s +
∑

s≻t

ctf
t

with complex coefficients cs, ct, where cs 6= 0. Since ∆2∆1f
Σ
1,1̄

∈ I(λ), the

proof of (2.11) finishes the proof of the theorem. A first step in the proof of
(2.11) is the following lemma.

Recall the alphabet J = {1, . . . , n, n− 1, . . . , 1}. Let q1, . . . , qi ∈ J be a
sequence of increasing elements defined by

qk = max{l ∈ J : αk,l ∈ p}.

For example, qi = i. The roots of p are then of the form

α1,1, . . . , α1,q1 , α2,q1 , . . . , α2,q2 , . . . , αi,qi−1 , . . . , αi,qi .

Lemma 2.8. Set f s′ = f
s•,1
1,1 f

s•,2
1,2 . . . f

s•,qi−1−si,qi−1

1,qi−1
f
si,qi−1

i,qi−1
. . . f

si,̄i

i,̄i
. Then

∆1f
Σ
1,1̄ is of the form

(2.12) ∆1f
Σ
1,1̄ = cs′f

s′ +
∑

s′≻t

ctf
t

such that cs′ 6= 0. In addition, if f t, t 6= s′, is a monomial occurring in this
sum, then one of the following statements holds:

• there exists an index j such that d(t)j > 0 for some j ∈ {1, 2, ..., n− i},
• d(t)j = 0 for all j ∈ {1, 2, ..., n − i} and d(t)n−i+1 > si,•,

• d(t) = d(s′) and f
ti,i
i,i f

ti,i+1

i,i+1 · · · f
ti,̄i

i,̄i
< f

si,i
i,i f

si,i+1

i,i+1 · · · f
si,̄i

i,̄i

Before proving the lemma, we explain in the following corollary the reason
why we need the lemma. The corollary is proved after the proof of the
lemma.

Corollary 2.9. If f t 6= f s′ is a monomial occurring in (2.12), then ∆2f
t

is a sum of monomials fk such that f s ≻ fk.

Proof of the lemma. One sees easily by induction that

δ1(f
Σ
1,1̄) = f

s•,1
1,1 f

s•,2
1,2 . . . f

s•,i−1

1,i−1 f
Σ−s•,1−s•,2−...−s•,i−1

1,1̄
.
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Since α1,j − α1,ℓ, 1 ≤ j < i, i < ℓ ≤ n, and α1,j − αℓ,ℓ̄, 1 ≤ j < i, i < ℓ ≤ n,
and α1,j − α1,i−1, 1 ≤ j < i, are never positive roots, all factors of δ2 and
δ3, as well as ∂1,i−1, annihilate the vector

fx = f
s•,1
1,1 f

s•,2
1,2 . . . f

s•,i−1

1,i−1 .

Therefore

∆1(f
Σ
1,1̄) = fx∂

s
•,̄i+si,•

1,i−1 δ3δ2(f
Σ−s•,1−s•,2−...−s•,i−1

1,1̄
).

To visualize the following procedure, one should think of the variables fi,j
as being arranged in a triangle like in the picture after Lemma 2.2, or in the
following example (type C4):

(2.13)

f11f12f13f14f13̄f12̄f11̄
f22f23f24f23̄f22̄

f33f34f33̄
f44

With respect to the ordering “>”, the largest element is in the bottom row
and the smallest element is in the top row on the left side. We enumerate
the rows and columns like the indices of the variables, so the top row is the
1-st row, the bottom row the n-th row, the columns are enumerated from
left to right, so we have the 1-st column on the left side and the most right
one is the 1̄-st column.

The operator ∂1,q, 1 ≤ q ≤ n − 1, kills all f1,j for 1 ≤ j ≤ q, ∂1,q(f1,j) =
fq+1,j for j = q + 1, . . . , q + 1, ∂1,q(f1,j̄) = fj,q+1 for j = 1, . . . , q, and δ1,q
kills all fk,ℓ for k ≥ 2. Because of the set of indices of the operators occurring

in δ2, the operator applied to f
Σ−s•,1−s•,2−...−s•,i−1

1,1̄
never increases the zero

entries in the first row, column ī up to column 2̄. As a consequence, the
application of δ2 produces the monomial

fxf
s•,i+s

•,i+1

1,i+1
· · · f

s•,n−2+s
•,n−1

1,n−1
f
s•,n−1+s•,n
1,n f

s
•,̄i

1,1̄
+

∑

ckf
k,

where the monomials fk occurring in the sum are such that the correspond-
ing triangle (see (2.13)) has at least one non-zero entry in one of the rows
between the (i + 1)-th row and the n-th row (counted from top to but-
tom). This implies d(k)j > 0 for some j = 1, . . . , n − i. The operators

δ3 and ∂
s
•,̄i+si,•

1,i−1 do not change this property, because (in the language of

the scheme (2.13) above) the operators ∂j,j̄ used to compose δ3 either kill a
monomial or, in the language of the scheme (2.13), they subtract from an
entry in the j̄-th column, k-th row and add to the entry in the same row,
but (j− 1)-th column. The operator ∂1,i−1 subtracts from the entries in the
top row. Since the entries in the top row, column i− 1 up to 2̄, are zero,
it adds to the entries in the i-th row. The only exception is ∂1,i−1 applied

to f1,1̄, the result is f1,̄i. It follows that the monomials fk′

occurring in

∂
s
•,̄i+si,•

1,i−1 δ3f
k have already the desired properties, because we have just seen

that d(k′)j > 0 for some j = 1, . . . , n − i.
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So to finish the proof of the lemma, it suffices to look at

fx∂
s
•,̄i+si,•

1,i−1 δ3f
s•,i+s

•,i+1

1,i+1
· · · f

s•,n−2+s
•,n−1

1,n−1
f
s•,n−1+s•,n
1,n f

s
•,̄i

1,1̄
(2.14)

= fx∂
s
•,̄i+si,•

1,i−1 f
s•,i
1,i f

s•,i+1

1,i+1 · · · f
s•,n
1,n f

s
•,n−1

1,n−1
· · · f

s
•,i+1

1,i+1
f
s
•,̄i

1,1̄
(2.15)

Note that the operator ∂1,i−1 being applied to any variable in (2.15) but
to f1,1̄, increases the degree with respect to the variables fi,∗ or gives zero.
We note also that ∂1,i−1f1,1 = f1,̄i. So (2.14) written as a linear combi-

nation
∑

ckf
k of monomials such that d(k)j = 0 for j = 1, . . . , n − i and

d(k)n−i+1 ≥ si,•.
It remains to consider the case where d(k)n−i+1 = si,•. This is only

possible if ∂1,i−1 is applied s•,̄i+si,•-times to f
s
•,̄i

1,1 , in which case d(k) has only

two non-zero entries: d(k)n = Σ− si,• and d(k)n−i+1 = si,•, so d(k) = d(s′).

If k 6= s′, then necessarily f
ti,i
i,i f

ti,i+1

i,i+1 · · · f
ti,̄i
i,̄i

< f
si,i
i,i f

si,i+1

i,i+1 · · · f
si,̄i
i,̄i

. �

Proof of the corollary. The operators used to compose ∆2 do not change
anymore the entries of d(t) for the first n− i+ 1 indices.

Suppose first t is such that there exists an index j such that d(t)j > 0
for some j ∈ {1, 2, ..., n − i} or d(t)n−i+1 > si,•. By the description of the

operators occurring in ∆2, every monomial fk occurring with a nonzero
coefficient in ∆2f

t has this property too and hence f s ≻ fk.

Next assume d(t) = d(s′) and f
ti,i
i,i f

ti,i+1

i,i+1 · · · f
ti,̄i
i,̄i

< f
si,i
i,i f

si,i+1

i,i+1 · · · f
si,̄i
i,̄i

. Re-

call that t1,i−1 = . . . = t1,1 = 0. It follows that the operators occurring
in ∆2 always only subtract from one of the entries in the top row and add
to the entry in the same column and a corresponding row (of index strictly
smaller than i). It follows that all monomials fk occurring in ∆2(f

t) have

the property: d(k) = d(s). Since f
ti,i
i,i f

ti,i+1

i,i+1 · · · f
ti,̄i

i,̄i
< f

si,i
i,i f

si,i+1

i,i+1 · · · f
si,̄i

i,̄i
, it

follows that f s > fk and hence f s ≻ fk. �

Continuation of the proof of Theorem 2.4 ii). We have seen that to prove
Theorem 2.4 ii), it suffices to prove (2.11). By Lemma 2.8 and Corollary 2.9,

it remains to prove for f s′ that ∆2f
s′ is a linear combination of f s with a

non trivial coefficient and monomials strictly smaller than f s. The following
lemma proves this claim and hence finishes the proof of the theorem. �

The following lemma completes the proof of part ii) of Theorem 2.4.

Lemma 2.10. The operator ∆2 := ∂
s2,•
1,1 ∂

s3,•
1,2 . . . ∂

si−1,•

1,i−2 applied to the mono-

mial f s′ is a linear combination of f s and smaller monomials:

(2.16) ∆2f
s
′

= cf s +
∑

s≻t

ctf
t, where c 6= 0.

Proof. First note that all monomials fk occurring in ∆2f
s′ have the same

total degree. Recall that s′
1,i−1

= . . . = s′
1,1

= 0. It follows that the operators

occurring in ∆2 always only subtract from one of the entries in the top row
and add to the entry in the same column and a corresponding row (of index
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strictly smaller than i and strictly greater than 1). Thus all monomials fk

occurring in ∆2(f
s′) have the same multi-degree. In fact, we will see below

that f s is a summand and hence d(k) = d(s).
So in the following we can replace the ordering ≻ by > since, in this

special case, the latter implies the first.
The elements fi,j and fi,j̄, 2 ≤ i ≤ j ≤ n, are in the kernel of the

operators ∂1,k for all 1 ≤ k ≤ n, and so are the variables f1,j, j ≤ k in the
first k columns.

The operator ∂1,k, 1 ≤ k ≤ n, “moves” the variables f1,j, k + 1 ≤ j ≤ n
from the first row to the variable fk+1,j in the same column.

The operator ∂1,k, 1 ≤ k ≤ n “moves” the variables f1,j̄, k + 1 ≤ j ≤ n
from the first row to the variable fk+1,j̄ in the same column. For j ≤ k, the
operator makes the variables switch also the column, it moves the variable
f1,j̄ to the variable fj,k+1 in the j-th row and (k + 1)-th column.

If i = 1, 2, then ∆2 is the identity operator, f s = f s′ and hence the lemma
is trivially true. Now assume i ≥ 3. We note that the monomial

f
s1,1
1,1 . . . f

s1,q1
1,q1

· (∂
s2,q1
1,1 f

s2,q1
1,q1

. . . ∂
s2,q2
1,1 f

s2,q2
1,q2

) · . . .

. . . · (∂
si−1,qi−2

1,i−2 f
si−1,qi−2

1,qi−2
. . . ∂

si−1,qi−1

1,i−2 f
si−1,qi−1

1,qi−1
)(f

si,qi−1

i,qi−1
. . . f

si,̄i

i,̄i
)

is proportional to f s and appears as a summand in ∆2f
s
′

. Our goal is to
show that all other monomials in ∆2f

s
′

are less than f s.

All monomials share the common factor (f
si,qi−1

i,qi−1
. . . f

si,̄i
i,̄i

). The maximal

variable smaller that the ones occurring in this factor is the variable fi−1,qi−1 .
Note that if j < i − 1 then for any q ∈ J the variable ∂1,jf1,q lies in the
(j+1)-th row and j+1 < i. The operator ∂1,i−2 is applied si−1,• times and

the unique maximal monomial in the sum expression of ∂
si−1,•

1,i−2 f
s′ is

f
s•,1
1,1 f

s•,2
1,2 . . . f

s•,qi−2−si−1,qi−2

1,qi−2
(f

si−1,qi−2

i−1,qi−2
. . . f

si−1,qi−1

i−1,qi−1
)(f

si,qi−1

i,qi−1
. . . f

si,̄i
i,̄i

).

In fact, applying the operator ∂1,i−2 to any of the variables f1,j such that j 6=
qi−2, . . . , qi−1, one gets a monomial smaller in the order >. The exponents
si−1,j, j = qi−2, . . . , qi−1, are the maximal powers such that ∂1,i−2 can be
applied to f y

1,j because either qi−2 < j < qi−1, and then y = s•,j = si−1,j, or

j = qi−1, then si−1,qi−1 is the power with which the variable occurs in f s
′

,
or j = qi−2, then only the power si−1,qi−2 of the operator is left.

Repeating the arguments for the operators ∂1,i−3 etc. we complete the
proof of the lemma. �

3. Main Theorem

Recall that in [ABS] the equality #S(λ) = dimV (λ) is proved using
purely combinatorial tools. Combining this result with Theorem 2.4 we
obtain Theorems A and B from the introduction. However in this section we
present a representation theoretical proof of the equality #S(λ) = dimV (λ)
by showing that the vectors f s, s ∈ S(λ), are linearly independent in grV (λ).
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The advantage of our proof is that in the course of the proof we obtain the
following important statement: the subspace of grV (λ)⊗ grV (µ) generated
from the product of highest weight vectors is isomorphic to grV (λ+µ) (see
Theorem 3.6, (iii)).

3.1. Fundamental weights and minimal sets. In this subsection we
study the case λ = ωi. The following lemma follows from the definition of
S(ωi).

Lemma 3.1. S(ωi) consists of all s such that sα ≤ 1 and the support of s
is given by the set

M s = {αjl,kl
| l = 1, . . . , p} ∪ {αtl,rl | l = 1, . . . , q}

with the following conditions

1 ≤ j1 < j2 < . . . < jp ≤ i ; 1 ≤ k1 < k2 < . . . < kp,

jp < t1 < t2 . . . < tq ≤ i ≤ r1 < . . . < rq ≤ n.

Remark 3.2. We note that ♯M s ≤ i and every path contains at most one
element from M s, since the roots on a path are ordered with respect to the
order >.

Lemma 3.3. For every fundamental weight ωi we have

♯S(ωi) = dimV (ωi)

Proof. Follows from [ABS] or by establishing a bijection with Kashiwara-
Nakashima tableaux or by showing that

♯S(ωi) + ♯S(ωi−2) + · · · =

(
2n

i

)

(compare with ΛiV (ω1) = V (ωi)⊕ V (ωi−2)⊕ . . . , see [FH]). �

We set

Ri = {β ∈ R+ | (ωi, β) 6= 0}.

Let λ =
∑

mjωj ∈ P+ and s ∈ S(λ). We set

Rs

i = {β ∈ Ri | sβ 6= 0}.

From now on let i be the minimal index, s.t. mi 6= 0.

Definition 3.4. For s ∈ S(λ) denote by M s

i the set of minimal elements in
Rs

i with respect to the order > (see (2.7)). Denote by ms

i the tuple mβ = 1
if β ∈ M s

i and 0 otherwise.

Lemma 3.5. Let λ =
∑

miωi and i minimal with mi 6= 0. If s ∈ S(λ) then
ms

i ∈ S(ωi) and s−ms

i ∈ S(λ− ωi).
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Proof. We first note that the statement ms

i ∈ S(ωi) follows from Remark
3.2. Let us prove that s − ms

i ∈ S(λ − ωi). For this we need to show
that the conditions from (1.2) for s −ms

i are satisfied for all paths p. Let

p = (p(0), . . . , p(k)). Let p(0) = αa. Then we know that
∑k

l=0 sp(l) ≤
ma + · · · +mb, where p(k) = αb if b < n and p(k) = αj,j if b = n (j ≥ a).
The cases b < i or a > i are trivial. So we assume a ≤ i and b ≥ i. If
M s

i ∩ p 6= ∅, then

k∑

l=0

(s−ms

i )p(l) ≤ ma + · · ·+mb − 1.

Now assume that M s
i ∩ p = ∅. Let l be the minimal number such that

sp(l) > 0. Then there exists α ∈ M s
i such that α < p(l). Therefore there

exists a path p′ containing α, p(l), . . . , p(k). We note that

mi + · · · +mb ≥
∑

l≥0

sp′(l) >
∑

l≥0

sp(l).

Therefore,
∑

l≥0(s−ms
i )p(l) ≤ mi + · · ·+mb. �

3.2. Proof of the main theorem. In the following we write V a(λ) for the
associated graded module grV (λ). Denote by V a(λ, µ) →֒ V a(λ) ⊗ V a(µ)
the S(n−)-submodule generated by the tensor product vλ⊗vµ of the highest
weight vectors.

Theorem 3.6. i) The vectors f svλ, s ∈ S(λ) form a basis of V a(λ),
ii) Let V a(λ) = S(n−)/I(λ). Then I(λ) = S(n−)(U(n) ◦R), where

R = span{f
mi+···+mj+1
αi,j , 1 ≤ i ≤ j ≤ n− 1, fmi+···+mn+1

αi,i
, 1 ≤ i ≤ n}.

iii) The S(n−) modules V a(λ, µ) and V a(λ+ µ) are isomorphic.

The proof of the theorem is by an inductive procedure. We know that
part i) of the theorem holds for all fundamental weights. For a dominant
weight λ =

∑

i aiωi denote by |λ| =
∑

ai the sum of the coefficients. A first
step in the proof is the following proposition:

Let λ be a dominant weight, and let i be the minimal number such that
(λ, αi) 6= 0.

Proposition 3.7. The vectors f s(vλ−ωi
⊗ vωi

), s ∈ S(λ), are linearly inde-
pendent in V a(λ − ωi) ⊗ V a(ωi), and the vectors f s(vλ), s ∈ S(λ), form a
basis for V a(λ).

Proof. The proof is by induction on |λ|. If λ is a fundamental weight, then
the first part of the claim makes no sense and the second part is true.

So assume now |λ| ≥ 2 and assume that the second part of the proposition
holds for all dominant weights µ such that |µ| < |λ|. We prove now the first
part of the proposition for λ.
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Assume that there exists some vanishing linear combination

(3.1)
∑

s∈S(λ)

csf
s(vλ−ωi

⊗ vωi
) = 0.

We will prove that cs = 0 for all s.
Recall first that we have an order ≻ on the set of Cn-multi-exponents (see

Definition 2.6) such that if t /∈ S(λ) then

f tvλ =
∑

t≻s

s∈S(λ)

dsf
svλ.

Another important ingredient will be the elements ms
i (Definition 3.4). Re-

call that i is minimal such that (λ, αi) 6= 0, ms
i ∈ S(ωi) and s − ms

i ∈
S(λ− ωi).

The proof is by contradiction. Assume that cs 6= 0 for some s. In the
following we fix such an element s ∈ S(λ) and we assume without loss of
generality that ct = 0 for all t ≻ s.

The vector space V a(λ − ωi) ⊗ V a(ωi) has a basis given by the elements
favλ−ωi

⊗fbvωi
, a ∈ S(λ−ωi), b ∈ S(ωi). For all t ∈ S(λ) such that ct 6= 0

in (3.1) we express f t(vλ−ωi
⊗ vωi

) as a linear combination of these basis
elements, i.e., we will write

f t(vλ−ωi
⊗ vωi

) =
∑

a∈S(λ−ωi)
b∈S(ωi)

Kt

a,bf
avλ−ωi

⊗ fbvωi
.

In the next step we show that Kt

s−ms

i ,m
s

i
= 0 for all t 6= s and Ks

s−ms

i ,m
s

i
6= 0.

Using the rules for the action on a tensor product we see:
(3.2)

f s(vλ−ωi
⊗ vωi

) = Cf s−ms

ivλ−ωi
⊗ fms

ivωi
+

∑

r1+r2=s

pr1,r2f
r1vλ−ωi

⊗ f r2vωi
,

where C is a nontrivial constant (a product of binomial coefficients) and
r1 6= s−ms

i , r2 6= ms

i . The elements f r1vλ−ωi
, f r2vωi

need not to be basis
elements, we discuss the several possible cases separately. First assume that
r2 ∈ S(ωi) \ {m

s

i}. Then f r1vλ−ωi
⊗ f r2vωi

is a sum of basis elements of the
form favλ−ωi

⊗ f r2vωi
where (a, r2) 6= (s−ms

i ,m
s

i ). For the same reason, if
r1 ∈ S(λ−ωi) \ {s−ms

i}, then f r1vλ−ωi
⊗ f r2vωi

is a sum of basis elements
of the form f r1vλ−ωi

⊗ fbvωi
where (r1,b) 6= (s−ms

i ,m
s
i ). If r1 /∈ S(λ−ωi)

and r2 /∈ S(ωi), then

f r1vλ−ωi
=

∑

r1≻a

a∈S(λ−ωi)

eaf
avλ−ωi

and f r2vωi
=

∑

r2≻b

b∈S(ωi)

dbf
bvωi

with some constants ea, db. But among the pairs (a,b) the pair (s−ms

i ,m
s

i )
can not appear, because

(s−ms

i ) +ms

i = s = r1 + r2 ≻ a+ b.
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Therefore the expression of f s(vλ−ωi
⊗ vωi

) as a sum of the basis elements
is of the form

Cf s−m
s

ivλ−ωi
⊗ fm

s

ivωi
+

∑

a∈S(λ−ωi),b∈S(ωi)
(a,b)6=(s−ms

i ,m
s

i )

pa,bf
avλ−ωi

⊗ fbvωi

and hence Ks

s−ms

i ,m
s

i
6= 0.

Now let us consider a term f t(vλ−ωi
⊗ vωi

), t 6= s, such that ct 6= 0 in
(3.1). We write again

(3.3) f t(vλ−ωi
⊗ vωi

) =
∑

r1+r2=t

pr1,r2f
r1vλ−ωi

⊗ f r2vωi
,

and express each of the terms f r1vλ−ωi
⊗f r2vωi

as a sum of the basis elements

f r1vλ−ωi
⊗ f r2vωi

=
∑

a∈S(λ−ωi),b∈S(ωi)

qa,bf
avλ−ωi

⊗ fbvωi
.

Recall that a is less than or equal to r1, and b is less than or equal to
r2. We claim that none of the couples (a,b) occurring with a nonzero
coefficient qa,b is equal to (s − ms

i ,m
s

i ). The proof is by contradiction:
If (a,b) = (s − ms

i ,m
s

i ), then r1 + r2 = t is greater than or equal to
a + b = s − ms

i + ms

i = s, which is not possible, because ct = 0 if t ≻ s.
Hence Kt

s−ms

i ,m
s

i
= 0 for all t 6= s.

It follows that if we express each of the summands in (3.1) as a linear
combination of the basis elements favλ−ωi

⊗ fbvωi
, a ∈ S(λ − ωi),b ∈

S(ωi), then the term f s−ms

ivλ−ωi
⊗ fms

ivωi
occurs only once with a non-zero

coefficient, which is not possible unless cs = 0 in (3.1). Hence all coefficients
vanish in the expression in (3.1), proving the linear independence.

To prove the second part of the proposition recall the degree filtration
U(n−)s on U(n−):

U(n−)s = span{x1 . . . xl : xi ∈ n−, l ≤ s},

and recall that for a dominant weight µ we set

V (µ)s = U(n−)svµ.

Then V a(µ) is the associated graded S(n−)-module. The tensor product
V a(λ− ωi)⊗ V a(ωi) of the graded modules with grading

V a(λ− ωi)⊗ V a(ωi) =
⊕

k≥0

(
⊕k=ℓ+m (V a(λ− ωi))ℓ ⊗ (V a(ωi))m

)

is the associated graded module for the filtration
(
V (λ− ωi)⊗ V (ωi)

)

k
=

∑

k=ℓ+m

V (λ− ωi)ℓ ⊗ V (ωi)m.

Recall the total order on the set of positive roots. We write f s ∈ U(n−) for
s ∈ S(λ) for the ordered product of the corresponding root vectors. The
linear independence of the vectors f s(vλ−ωi

⊗ vωi
), s ∈ S(λ), in V a(λ −
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ωi)⊗ V a(ωi) implies the linear independence of the vectors f s(vλ−ωi
⊗ vωi

),
s ∈ S(λ), in V (λ − ωi) ⊗ V (ωi). Since these vectors are all contained in
the Cartan component V (λ) →֒ V (λ−ωi)⊗V (ωi), we obtain the inequality
|S(λ)| ≤ dimV (λ). We know already that the vectors f s(vλ), s ∈ S(λ), span
V a(λ) (section 2, the straightening law, so |S(λ)| ≥ dimV a(λ) = dimV (λ)
and hence:

|S(λ)| = dimV a(λ).

It follows that the vectors f s(vλ), s ∈ S(λ), are in fact a basis for V a(λ). �

Using the straightening law in section 2 we get as an immediate conse-
quence:

Corollary 3.8. Let V a(λ) = S(n−)/I(λ). Then I(λ) = S(n−)(U(n) ◦ R),
where

R = span{f
mi+···+mj+1
αi,j , 1 ≤ i ≤ j ≤ n− 1, fmi+···+mn+1

α
i,i

, 1 ≤ i ≤ n}.

Using the defining relations for V a(λ), it is easy to see that we have a
canonical surjective map V a(λ) → V a(λ− ωi, ωi) sending vλ to vλ−ωi

⊗ vωi
.

By Proposition 3.7 we know that the image of basis {f s(vλ), s ∈ S(λ)} ⊂
V a(λ) remains linearly independent and hence:

Corollary 3.9. The S(n−) modules V a(λ − ωi, ωi) and V a(λ) are isomor-
phic.

Proof. (of Theorem 3.6) The first and second part of the theorem follow from
Proposition 3.7 and Corollary 3.8. It remains to prove the third part. As
above, it is easy to see that we have a canonical surjective map V a(λ+µ) →
V a(λ, µ) sending vλ+µ to vλ ⊗ vµ.

The corollary above says that our theorem holds if µ = ωi. Iterating, we
obtain that both V a(λ, µ) and V a(λ+ µ) sit inside the tensor product

V a(ω1)
⊗(λ+µ,α1) ⊗ . . . ⊗ V a(ωn)

⊗(λ+µ,αn)

as highest components (generated from the tensor product of highest weight
vectors). This proves the theorem. �
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