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THE SPHERICITY OF THE PHAN GEOMETRIES

OF TYPE Bn AND Cn

AND

THE PHAN-TYPE THEOREM OF TYPE F4

RALF GRAMLICH AND STEFAN WITZEL

Abstract. We adapt and refine the methods developed in [Abr96] and [DGM]
in order to establish the sphericity of the Phan geometries defined in [BGHS07]
(type Bn) and [GHS03] (type Cn), and their generalizations. As applications
of this sphericity we determine the topological finiteness length of the unitary
form of the group Sp

2n
(F

q2 [t, t−1]) (Theorem 7.1) and give the first pub-

lished proof of the Phan-type theorem of type F4 (Theorem 7.11). Apart from
that we reproduce the topological finiteness length of the group Sp

2n
(F

q2 [t])
and the Phan-type theorems of types Bn and Cn. In the theory of arith-
metic groups our result on the topological finiteness length of the unitary form
of Sp

2n
(F

q2 [t, t−1]) is another example supporting the rank conjecture, see

[Beh98, p. 80]. Within the revision of the classification of the finite simple
groups this publication of the Phan-type theorem of type F4 concludes the
revision of Phan’s theorems [Pha77a], [Pha77b] and their extension to the
non-simply laced diagrams; cf. [AB08, Section 14.2] on page 656 and [GLS05]
on page 333.

1. Introduction

In this paper we prove the following theorem (for the exact statement see The-
orem 4.1).

Main Theorem. A generalized Phan geometry of type Bn or Cn is (n−1)-spherical
provided the defining field is sufficiently large. In fact, it is even Cohen-Macaulay.

As the name suggests, the class of generalized Phan geometries contains the
class of Phan geometries. These have been introduced in [BGHS07] (type Bn) and
[GHS03] (type Cn) in order to prove Phan-type theorems, that is, analogs of Phan’s
group-theoretic recognition results in [Pha77a] and [Pha77b]. The Phan-type theo-
rems state that the unitary forms of the groups Sp2n(Fq2) and Spin2n+1(Fq2), i.e.,
their subgroups fixed by the involution that acts as the field involution on Fq2 and
takes Fq-rational group elements to their transpose inverse, are the universal en-
veloping group of the amalgam of their fundamental subgroups of rank one and two.
Using Tits’ Lemma [Tit86, Corollaire 1] this amalgamation result follows from the
simple connectedness of the corresponding Phan geometries, which was established
in [BGHS07] and [GHN07] in the case Bn and in [GHS03] and [GHN06] in the case
Cn. This article provides alternative proofs of the Phan-type theorems of type Bn

and Cn and, based on the local-to-global approach via the filtration described in
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[DM07], gives a much shorter alternative to the unpublished proof of the Phan-type
theorem of type F4 by Gramlich, Hoffman, Mühlherr, and Shpectorov.

Another class of geometries contained in the class of generalized Phan geome-
tries are the geometries opposite one fixed chamber in a spherical building. The
sphericity of these geometries (in spherical buildings of classical type) has been
established by Abels and Abramenko in [AA93], [Abr96] in order to determine the
topological finiteness lengths of certain arithmetic subgroups of affine Kac-Moody
groups which are commensurable to the Borel lattice described in [CG99], [Rém99];
cf. [Abe91], [Abr96].

Our strategy is an adaption and generalization of that work. One of our main
motivations for this article is to determine the finiteness length of unitary forms
of certain affine Kac-Moody groups which are commensurable to the flip lattice
described in [Gra]. Concretely, if G is a semisimple algebraic group scheme of

spherical type Xn, then G(Fq2 [t, t−1]) acts on a twin building (∆+, ∆−) of type X̃n,

see [AB08, Chapter 11]. Let θ be the map that takes g to (gσ)−T , where σ acts as
the field involution on Fq2 and exchanges t and t−1. We are interested in the group
K(Fq2 [t, t−1]) of θ-fixed elements of G(Fq2 [t, t−1]). The group K(Fq2 [t, t−1]) is an
arithmetic subgroup of G(Fq2 (t)) whose local rank over Fq2((t)) or, equivalently,
Fq2((t−1)) equals n. So, according to the rank conjecture, see [Beh98, p. 80], the
group K(Fq2 [t, t−1]) should be of finiteness type Fn−1, but not FPn, which we
confirm in the present article.

The group K(Fq2 [t, t−1]) naturally acts on the subcomplex ∆θ of the building
∆+ of chambers that are mapped to opposite ones by θ. We use a filtration (∆i)i

of ∆+ with ∆0 = ∆θ from [DM07], whose relative links will turn out (Theorem 6.8)
to be generalized Phan geometries (cf. [DGM, Fact 5.1]). The types of generalized
Phan geometries that occur are the types of spherical residues of the building. So by
showing the sphericity of generalized Phan geometries, we show that the filtration
preserves a certain degree of connectedness. Brown’s criterion [Bro87, Corollary
3.3] then allows us to determine the topological finiteness length of K(Fq2 [t, t−1]).

Generalized Phan geometries of type An have been investigated by Devillers,
Gramlich, and Mühlherr in [DGM]. Since all irreducible spherical residues of

a building of type Ãn are of type Am, the procedure described above allowed
the authors of loc. cit. to determine the finiteness length of the unitary form of
SLn+1(Fq2 [t, t−1]). The Main Result of [DGM] together with our Main Result al-
lows us to determine the finiteness length of the unitary form of Sp2n(Fq2 [t, t−1]),
see Theorem 7.1. Both results affirm the rank conjecture in their respective cases.

The paper is organized as follows: The definition of generalized Phan geometries
of type Bn and Cn is given in Section 2. In Section 3 we recall and collect some
topological facts that are used later. Section 4 contains the precise statement of the
Main Theorem and a proof of how it can be deduced from some technical lemmas.
These technical lemmas are then proved in Section 5. In Section 6 we will show
that generalized Phan geometries occur as relative links in the filtration mentioned
above. Finally, Section 7 contains two applications, namely the computation of
the topological finiteness length of the unitary form of Sp2n(Fq2 [t, t−1]) mentioned
above, and the local recognition of groups that admit a weak Phan system of type
F4 (Theorem 7.11).

Acknowledgements: The authors thank Bernhard Mühlherr for many very
helpful discussions on how to properly define generalized Phan geometries. They



THE SPHERICITY OF PHAN GEOMETRIES OF TYPE Bn AND Cn 3

also point out that the original unpublished proof of the Phan-type theorem of type
F4 was found by Gramlich, Hoffman, Mühlherr, and Shpectorov during an RiP stay
in Oberwolfach during the summer of 2005.

2. Generalized Phan geometries of type Bn and Cn

In this section we give the precise definition of the central objects of study of
this paper, the generalized Phan geometries. In order to do so, we need to recall
the notion of transversality.

Let V be a vector space over a field F. For U, W ≤ V , we say that U is
transversal to W and write U ⋔ W , if U ∩ W = 0 or 〈U, W 〉 = V . Note that
U ⋔ W if and only if dim(U ∩ W ) = max{0, dimU + dimW − dimV }. For a flag
F = (0 = V0 ≤ . . . ≤ Vk = V ) and a subspace U ≤ V we say that U is transversal
to F and write U ⋔ F , if U ⋔ Vi for 0 ≤ i ≤ k. This is the case if and only if
〈U, VkU

〉 = V where kU = min{i | U ∩ Vj 6= {0}}.
Given a flag F = (0 = V0 ≤ . . . ≤ Vk = V ) we call a family (ωi)1≤i≤k of

σ-hermitian forms ωi : Vi × Vi → F compatible with F if Radωi = Vi−1.

Definition 2.1. Let F be as above and let ω = (ωi)i be a family of compatible
σ-hermitian forms. For U ≤ V we say that U is transversal to (F, ω), if U is
transversal to F and U ∩ VkU

is ωkU
-non-degenerate. In this case we write U ⋔

(F, ω).

Definition 2.2. Let V be a vector space of dimension 2n + 1 equipped with a
non-degenerate symmetric bilinear form (·, ·) of Witt index n. Let F = (0 = V0 ≤
. . . ≤ Vk = V ) be a flag satisfying F⊥ = F . Let ω be a family of σ-hermitian forms
compatible with F and assume that there is an ωk-non-isotropic vector that is (·, ·)-
isotropic. The generalized Phan-geometry of type Bn defined by (F, ω) consists of
all subspaces U of V that are totally (·, ·)-isotropic and transversal to (F, ω).

Definition 2.3. Let V be a vector space of dimension 2n equipped with a non-
degenerate alternating bilinear form (·, ·). Let F = (0 = V0 ≤ . . . ≤ Vk = V )
be a flag satisfying F⊥ = F . Let ω be a family of σ-hermitian forms compatible
with F and assume that there is an ωk-non-isotropic vector. The generalized Phan-
geometry of type Cn defined by (F, ω) consists of all subspaces U of V that are
totally (·, ·)-isotropic and transversal to (F, ω).

Remark 2.4. (1) A non-zero σ-hermitian form over an F-vector space admits
a non-isotropic vector unless σ = id and F has characteristic 2. So the
technical condition that there be an ωk-non-isotropic vector in the above
definitions is actually quite weak.

(2) A closer look reveals that half of the forms ωi actually do not play any role
because a totally isotropic subspace U that is transversal to F cannot meet
any of the Vi with dim Vi ≤ n. However, taking this into account would
not simplify anything in the present article, but would instead make the
definition of a generalized Phan geometry even more cumbersome.

3. Basics

We now recall and collect some topological facts, that we will need later. For an
introduction to CW complexes we refer the reader to [Bre93, Section IV.9] and for
a discussion of simplicial complexes to [Spa66, Chapter 3].
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In particular we use the following notions. If K is a simplicial complex, |K| is its
realization. If s ∈ K is a simplex, we then the star of s is st s = {t ∈ K | t∪s ∈ K}.
The link of s is the subcomplex lk s = {t ∈ st s | t ∩ s = ∅}. The subcomplex
generated by a subset T ⊆ K is the complex T = {s ∈ K | s ≤ t for some t ∈ T }.

We denote the boundary {s} \ {s} of a simplex s by ∂s. If L is another simplicial
complex, then K ∗ L denotes the join of the two, i.e. the complex with simplices
s⊔ t, s ∈ K, t ∈ L. This corresponds to the topological join in so far that |K ∗ L| is
naturally homeomorphic to |K| ∗ |L|.

The n-sphere Sn is the space {x ∈ Rn+1 | ‖x‖ = 1} (with the induced topology)
where ‖·‖ is the standard Euclidean norm. Similarly, the n-disc Dn is the space
{x ∈ Rn | ‖x‖ ≤ 1}. A space X is said to be n-connected for n ≥ −1, if every
map Sk → X extends to a map Dk+1 → X for k ≤ n (note that S−1 is the empty
set, so (−1)-connected means non-empty). This is equivalent to saying that X is
non-empty and πk(X) = 1 for k ≤ n.

By the Hurewicz Theorem [Bre93, Chapter VII, Theorem 10.7], a space X is n-
connected for n ≥ 1 if and only if it is simply connected and Hk(X) = 0 for k ≤ n.
An n-dimensional CW complex is n-spherical if it is (n−1)-connected. It is properly
n-spherical, if it is n-spherical and πn(X) 6= 1. Again by the Hurewicz Theorem a
space is properly n-spherical for n ≥ 2, if it is n-spherical and Hn(X) 6= 0.

A regular CW complex is a CW complex in which the characteristic maps of the
cells can be chosen to be homeomorphisms. The realization of a simplicial complex
is clearly a regular CW complex. We will make repeated use of the following fact.

Proposition 3.1. Let X be a regular CW complex that can be written as X =
B ∪

⋃

A where B and A ∈ A are subcomplexes. Assume that B is m-connected,
that A is m-connected, that B ∩ A is (m − 1)-connected, and that A ∩ A′ ≤ B for
A, A′ ∈ A, A 6= A′. Then X is m-connected.

Proof. By [Bjö95, Lemma 10.2] each of the spaces B∪A, A ∈ A, is m-connected. So
we can apply [Bjö95, Theorem 10.6] to the family (B ∪A)A∈A in order to conclude
that X is m-connected if and only if the nerve is. But the nerve of this family is a
simplex, hence contractible. �

Proposition 3.2. Let X be k-connected and Y be l-connected. Then X ∗ Y is
(k + l + 1)-connected.

Proof. It is clear that X ∗ Y is path-connected. We have to see that X ∗ Y is
simply connected, if X and Y both are path-connected or X is non-empty and Y is
simply-connected. Since X ∗Y and S(X ∧Y ) are homotopy equivalent (see [Hat01,
Chapter 0, exercise 24]) it suffices to see that X ∧ Y is connected in the two cases
above. This is not hard. Now the result follows from [Bjö95, (9.12)] taking into
account our remarks above. �

We also need to fix some notation concerning buildings and twin buildings. Since
we study topological properties of buildings and their sub-geometries, we consider
buildings as simplicial complexes as introduced for example [AB08, Chapter 4].

If ∆ is a building of type I, then the chamber systems of st s and lk s are
isomorphic and describe the residue of type I \ typ(s) of any chamber in st s.
However lk s is the more natural model in so far as it is the simplicial complex
naturally obtained from the chamber system. On the other hand st s has the virtue
that its chambers actually are (and not only correspond to) chambers of K. This
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simplifies notation when dealing with projections. We will therefore consider both
complexes as residues and make the correspondence implicit.

4. The Main Theorem

In this section we show how the following theorem, which is the exact statement
of our Main Theorem, can be deduced from four rather technical lemmas that will
be proven in the following section.

Theorem 4.1. Let m, n > 0 be integers, let F be a field, and let σ be an automor-
phism of F of order 1 or 2. If F is finite, assume that |F| ≥ 4n−12m, if σ = id,
and that |F| ≥ 4n−1(q + 1)m, if F = Fq2 and σ 6= id. For any family (Γj)1≤j≤m

of σ-hermitian generalized Phan geometries, all of type Bn or Cn defined over F,
their intersection Γ =

⋂

j Γj is (n − 1)-spherical.

Let V be a vector space equipped with a bilinear form (·, ·) and let Γ be a
generalized Phan geometry of type Bn or Cn given by a flag F = (0 = V0 � . . . �

Vk = V ) and a family ω = (ωi)i of σ-hermitian forms ωi : Vi × Vi → F.
We use the following strategy due to Abramenko [Abr96, Chapter II] to prove the

theorem. Let p be a one-dimensional space that is non-degenerate with respect to
ωk. Let Z = {U ∈ Γ | 〈p, U〉 ⋔ (F, ω)}. Let Y0 = {U ∈ Z | U∩p⊥,

〈

U ∩ p⊥, p
〉

∈ Γ}.
For 1 ≤ i ≤ n let

Yi = Yi−1 ∪ {U ∈ Z | dim(U) = i}

and for n + 1 ≤ i ≤ 2n let

Yi = Yi−1 ∪ {U ∈ Γ | dim(U) = 2n + 1 − i} .

We are going to show inductively that each Yi is (n − 1)-spherical. For this
purpose it suffices (see Proposition 3.1) to show that the residue of a U ∈ Yi \ Yi−1

in Yi is (n − 2)-spherical. This in turn will follow if we can prove the following
lemmas. Let U ∈ Γ be of dimension k.

Lemma 4.2. If U ∈ Yi \ Yi−1 for 1 ≤ i ≤ n, then Y >U
i := {W ∈ Yi | W > U} =

{W ∈ Y0 | W > U} is an intersection of at most four generalized Phan geometries
of type Bn−k respectively Cn−k.

Lemma 4.3. If U ∈ Yi \ Yi−1 for n + 1 ≤ i ≤ 2n, then Y >U
i = {W ∈ Yi | W >

U} = {W ∈ Γ | W > U} is a generalized Phan geometry of type Bn−k respectively
Cn−k.

Lemma 4.4. The set Y <U
i := {W ∈ Yi | W < U} = {W ∈ Z | W < U} is an

intersection of at most two generalized Phan geometries of type Ak−1.

Lemma 4.5. Let Γ be the intersection of m generalized Phan geometries, all of
type either B1 or C1, defined over F by σ-hermitian forms. If F is finite, assume
that |F| ≥ 2m, if σ = id, and that |F| ≥ (q + 1)m, if σ 6= id and F = Fq2 . Then Γ
contains at least one point.

Proof. (Proof of Theorem 4.1) To simplify notation define C := 2 in case σ = id
and C := q + 1 in case σ 6= id, so that the condition on the field in the statement
of the theorem can be written as |F| ≥ 4n−1Cm.

We proceed by an induction on n. To be 0-spherical, the space has to be (−1)-
connected, i.e. non-empty, so the induction basis is just Lemma 4.5. Assume that
the statement is true for all k < n and consider the filtration (Yi)i described above.
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We now proceed by an induction on i. The geometry Y0 is contractible because
U 7→ U ∩ p⊥ 7→

〈

U ∩ p⊥, p
〉

7→ p is a deformation retraction to one point.
We want to apply Proposition 3.1 to the setup X = |Yi|, B = |Yi−1|, and

A = {|stYi
(U)| | U ∈ Yi \ Yi−1}. The space |Yi| is (n − 1)-spherical by induction.

To see that |stYi
(U)| ∩ |stYi

(U ′)| ⊆ |Yi−1|, let W ∈ stYi
(U) ∩ stYi

(U ′), i.e., W is
incident with U and U ′. Then its dimension is not dim(U) = dim(U ′), whence
W ∈ Yi−1. The space |stYi

(U)| is clearly contractible, as it is a cone over |lkYi
(U)|.

So it remains to see that, for U ∈ Yi \Yi−1 of dimension k, the space |st(U) ∩ Yi−1|
is (n − 2)-spherical.

In order to do so, we remark that st(U) ∩ Yi−1 = Y <U
i ∗ Y >U

i . Now by Lemma

4.4, the complex Y <U
i is the intersection of at most 2m generalized Phan geometries

of type Ak−1. Since 2k−1C2m ≤ 4n−1Cm ≤ q, the Main Theorem from [DGM]
implies that Y <U

i is (k − 1)-spherical. Similarly, Lemmas 4.2 or 4.3 imply that

Y >U
i is an intersection of at most 4m generalized Phan geometries of type Bn−k or

Cn−k. Now 4k−2C4m ≤ 4n−1Cm ≤ q, so by induction Y >U
i is (n−k−1)-spherical.

Hence Y <U
i ∗ Y >U

i is (n − 1)-spherical by Proposition 3.2. �

5. Proof of the lemmas

Before proceeding to the proof of the lemmas let us first recall some notions from
multilinear algebra. For an F-vector space V , an automorphism σ : F → F of order
1 or 2, and ε ∈ {−1, 1}, a form (·, ·) : V × V → F is called (σ, ε)-hermitian, if it is
biadditive and (λx, µy) = λµσ(x, y) and (x, y) = ε(y, x)σ for all x, y ∈ V , λ, µ ∈ F,
x, y ∈ V . It is σ-hermitian, if it is (σ, 1)-hermitian. Clearly symmetric bilinear,
σ-hermitian and alternating forms are (σ, ε)-hermitian for some σ, ε. The form is
non-degenerate if V ⊥ = 0.

Lemma 5.1. Let V be a vector space and let A, B and C be subspaces.

(1) Then dim(〈A, B〉) = dim(A) + dim(B) − dim(A ∩ B).

(2) Let (·, ·) be a (σ, ε)-hermitian form. Then A⊥ ∩ B⊥ = 〈A, B〉⊥. If in
addition (·, ·) is non-degenerate, then also A⊥⊥ = A, and

〈

A⊥, B⊥
〉

=

(A ∩ B)⊥.

We start with the proof of the induction basis, Lemma 4.5. Here is a restatement
(in fact a slightly stronger version) that is obtained by unfolding the definitions.

Lemma 5.2 (restatement of Lemma 4.5). Let F be a field and

(1) V be an F-vector space of dimension 2 and (·, ·) be a non-degenerate alter-
nating bilinear form (case C1), or

(2) V be an F-vector space of dimension 3 and (·, ·) be a non-degenerate sym-
metric bilinear form of Witt index 1 (case B1).

Let ωi, 1 ≤ i ≤ m, be σ-hermitian forms. If F is finite, assume that |F| > 2m, if
σ = id, and q2 > (q + 1)m, if F = Fq2 and σ 6= id. Assume that for every i there
is a vector that is (·, ·)-isotropic and ωi-non-isotropic. Then there is a vector that
is (·, ·)-isotropic and ωi-non-isotropic for 1 ≤ i ≤ m.

Proof. We proceed by induction on the number of maps. The induction basis holds
by hypothesis. Assume the statement to be true up to m − 1.

Case C1: First we consider the alternating case. The condition that a vector be
(·, ·)-isotropic is empty, so we are left with the condition on the forms ωi. Assume
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that σ = id and let y, z form a basis for V . If y is non-isotropic with respect to all of
the ωi, then there is nothing to prove. Otherwise, consider the vectors uα = αy + z
with α ∈ F. Then

(5.1) ωi(uα, uα) = α2ωi(y, y) + ωi(z, z) + 2αωi(y, z) , 1 ≤ i ≤ m,

are non-zero polynomials in α that are at most quadratic, and at least one of the
polynomials (the one with ωi(y, y) = 0) is at most linear. Each polynomial has
at most two zeroes (and the one with ωi(y, y) = 0 has at most one zero), so if
|F| ≥ 2m, there exists an α such that ωi(uα, uα) 6= 0 for all i.

Now assume that σ 6= id. If F is infinite, let Fσ denote the field of its σ-fixed
elements. Let V ′ be the Fσ-span of an F-basis of V . Then V ′ is a 2-dimensional
Fσ-vector space on which the ωi are symmetric bilinear. By the argument above
there exists a vector u ∈ V ′ that is ωi-non-isotropic.

If F = Fq2 and σ 6= id, then ασ = αq for α ∈ F. The argument now works as
above with (5.1) replaced by

(5.2) ωi(uα, uα) = αq+1ωi(y, y) + ωi(z, z) + (α + αq)ωi(y, z) , 1 ≤ i ≤ m .

The condition becomes that |F| ≥ (q + 1)m.
Case B1: Now assume that (·, ·) is a non-degenerate symmetric bilinear form of

Witt index 1 on a vector space of dimension 3. By [Cam91, Theorem 6.3.1] the space
(V, (·, ·)) is the direct sum of a 2-dimensional hyperbolic space and a 1-dimensional
non-degenerate space. The same is true of (V, ξ(·, ·)) where ξ is a non-square. Since
we are only interested in whether or not vectors are (·, ·)-isotropic, it does not
matter which of the two forms we consider. One of them – we assume without loss
of generality, that it be (·, ·) – has Gram matrix





1
1

1





with respect to a basis e, f, x. The vectors f and e − β2/2f + βx with β ∈ F are
up to scalar multiples all isotropic vectors of (·, ·).

Again we consider first the case where σ = id. If e is non-isotropic with respect
to all ωi, then there is nothing to prove. Otherwise, we consider u = e−β2/2f +βx
for β ∈ F. As before, ωi(u, u) is a non-zero polynomial of degree at most 2 in β, so
it has at most 2 zeroes. And if ωi(e, e) = 0 then it has at most one zero. As before
we find that if |F| ≥ 2m we find a vector that is (·, ·)-isotropic but ωi-non-isotropic
for 1 ≤ i ≤ m.

The case σ 6= id can be derived from the σ = id-case just as in the C1-case. �

Next we prove Lemmas 4.2, 4.3, and 4.4. Throughout this section, we assume
that (V, (·, ·)) is a vector space of dimension 2n respectively 2n+1 equipped with a
non-degenerate alternating, respectively symmetric bilinear form (·, ·) of Witt index
n. Furthermore, we assume that the flag F = (V0 ≤ . . . ≤ Vk) and the compatible
family ω = (ωi)1≤i≤k of forms satisfy the Definitions 2.2, resp. 2.3 of a generalized
Phan geometry of type Bn or Cn.

We start with the proof of Lemma 4.4 as this is essentially contained in [DGM].

Lemma 5.3. Let F = (0 = V0 � . . . � Vk = V ) be a flag and let ω = (ωi)i be
σ-hermitian forms compatible with F . Let U ⋔ F and let p be a one-dimensional
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ωk-non-degenerate space such that p 6≤ U . Then there is a flag F ′ of U and a family
of forms ω′ = (ω′

i)i compatible with F ′ such that

〈p, W 〉 ⋔ (F, ω) if and only if W ⋔ (F ′, ω′)

for W < U .

Proof. This can be read off the proof of [DGM, Lemma 4.11]. �

Proof. (Proof of Lemma 4.4) Since U is totally isotropic with respect to (·, ·), any
W < U is also totally isotropic with respect to (·, ·). Hence {W ∈ Z | W < U}
consists of all W < U such that W ⋔ (F, ω) and 〈p, W 〉 ⋔ (F, ω). Let F1 =
(Vi ∩ U)m≤i≤k, ω1 = (ωi|U )m≤i≤k where m = max{i | Vi ∩ U = 0}. Moreover,
let (F2, ω2) be the restriction to U of the flag whose existence is guaranteed by
Lemma 5.3. Then {W ∈ Z | W < U} is the intersection of the two generalized
Phan geometries defined on U by (F1, ω1) and (F2, ω2). �

Now we proceed to the proof of Lemma 4.3.

Lemma 5.4. Let F be a flag such that F = F⊥ and let U be transversal to F .
Then U⊥ is also transversal to F .

Proof. By Lemma 5.1 (2) the equality 〈U, Vi〉 = V is equivalent to U⊥ ∩ V ⊥
i = 0

and the equality U ∩ Vi = 0 is equivalent to
〈

U⊥, V ⊥
i

〉

= V . �

Lemma 5.5. Let V be a vector space, F = (0 = V0 ≤ . . . ≤ Vk = V ) be a flag and
ω = (ωi)i be a family of σ-hermitian forms compatible with F . Let U � U ′ ≤ V

and assume that U ⋔ (F, ω), U ′ ⋔ F . Let mU ′

U = max{i | 〈Vi, U〉 ∩ U ′ = U} and

MU ′

U = min{i | 〈Vi, U〉 ∩ U ′ = U ′}. Let A = (U ∩ VMU′

U
)
⊥ω

MU′

U ∩ U ′.

The flag F ′ = (V ′

mU′

U

≤ . . . ≤ V ′

MU′

U

) with V ′
i = (〈Vi, U〉 ∩ U ′)/U and forms

ω′
i(x + U, y + U) = ωi(x, y) for x, y ∈ A satisfies

W ⋔ (F, ω) if and only if W/U ⋔ (F ′, ω′)

for U < W ≤ U ′ where ω′ = (ωi)i. Moreover ω′ is compatible with F ′.

Proof. Note that MU ′

U = min{i | 〈Vi, U〉 = V }: If 〈Vi, U〉 = V , then trivially
〈Vi, U〉 ∩ U ′ = U ′. Conversely, if 〈Vi, U〉 ∩ U ′ = U ′, then 〈Vi, U〉 ≥ U ′, Vi. But
U ′ ⋔ F , so Vi∩U ′ 6= 0 (which holds because U ′  U) implies 〈Vi, U〉 ≥ 〈U ′, Vi〉 = V .

As a consequence kU = MU ′

U or kU = MU ′

U + 1. Similarly, using U ⋔ F one sees

that mU ′

U = max{i | Vi ∩ U ′ = 0}, hence mU ′

U = kU ′ − 1.
Note that A is a complement for U ∩VMU′

U
in U ′ because U ∩VMU′

U
is ωMU′

U
-non-

degenerate and 〈U, VMU′

U
〉∩U ′ = U ′. Note also that U ′ ∩Vi = (A∩Vi)⊕ωi

(U ∩Vi)

for every mU ′

U ≤ i ≤ MU ′

U : indeed, either U∩Vi = 0 and Vi∩U ′ ≤ Rad ωkU
∩U ′ ≤ A

or i = kU and U ′ ∩ VkU
= (U ∩ VkU

) ⊕ωkU
A.

We show first that W is transversal to F if and only if W/U is transversal to

F ′. If i ≥ MU ′

U , i.e., 〈U, Vi〉 = V , then 〈W, Vi〉 = V and 〈W, (Vi + U) ∩ U ′〉 = U ′.

Similarly, if i ≤ mU ′

U , i.e. U ′ ∩ Vi = 0, then W ∩ Vi = 0 and W ∩ 〈Vi, U〉 = U . So it

suffices, indeed, to restrict attention to the cases mU ′

U ≤ i < MU ′

U .
If W ∩ Vi = 0, then W/U ∩ 〈Vi, U〉 /U = U/U . If 〈W, Vi〉 = V , then also

〈W/U, (〈Vi, U〉 ∩ U ′)/U〉 = U ′/U . Conversely, if W/U ∩ 〈Vi, U〉 /U = U/U , then
W ∩ Vi ≤ U ∩ Vi = 0 (because W  U). And if W/U ∩ (〈Vi, U〉 ∩ U ′)/U 6= U/U
and 〈W/U, (〈Vi, U〉 ∩ U ′)/U〉 = U ′/U , then 〈Vi, U

′〉 ≥ Vi, U
′. As U ′ is transversal
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to Vi and U ′ ∩ Vi 6= 0, we get that 〈U ′, Vi〉 = V . The preceding discussion shows
also that kW = k′

W/U .

Now we show that W ∩ VkW
is ωkW

-non-degenerate if and only if W/U ∩ V ′
kW

is

ω′
kW

-non-degenerate. Let x ∈ (W ∩ VkW
) ∩ (W ∩ VkW

)
⊥ωkW . We write x = u + a

with u ∈ U ∩ VkW
and a ∈ A ∩ VkW

. For y ∈ W ∩ VkW
∩ A we then have

ω′
kW

(x + U, y + U) = ωkW
(a, y) = ωkW

(x, y) = 0

where the second equality holds because u ∈ U ∩ VkW
and y ∈ A ∩ VkW

. Hence
x + U ∈ Radω′

kW
.

Conversely, assume that x ∈ W ∩ VkW
∩ A is such that ω′

kW
(x + U, y + U) = 0

for all y ∈ W ∩ VkW
∩ A. Then, for z ∈ W ∩ VkW

and writing z = u + w with
u ∈ U ∩ VkW

and y ∈ VkW
∩ A, we get

ωkW
(x, z) = ωkW

(x, u) + ωkW
(x, y) = ω′

kW
(x + U, y + U) = 0,

since x ∈ VkW
∩ A and u ∈ VkW

∩ U . Hence x ∈ RadωkW
.

To show that Rad ω′
kW

≤ V ′
kW −1 let a ∈ A∩VkW

such that a+U ∈ Rad ω′
kW

and
let y ∈ VkW

be arbitrary. We can write y = b + u with b ∈ A ∩ VkW
, u ∈ U ∩ VkW

and have

0 = ω′
kW

(a + U, b + U) = ωkW
(a, b) = ωkW

(a, b) + ωkW
(a, u) = ωkW

(a, y) ,

so a ∈ RadωkW
= VkW −1 and, thus, a + U ∈ V ′

kW −1.
Conversely, assume that x + U ∈ V ′

kW −1 and write x = a + u for a ∈ A ∩ VkW
,

u ∈ U ∩ VkW
. Then, for b ∈ A ∩ VkW

, we have

0 = ωkW
(x, b) = ωkW

(a, b) + ωkW
(u, b) = ωkW

(a, b) = ω′
kW

(a + U, b + U) ,

whence x + U = a + U ∈ Rad ω′
kW

. �

Lemma 5.6. Let V be a vector space equipped with a non-degenerate alternating or
σ-hermitian form (·, ·). Let U ≤ U ′ ≤ V and assume that there is an H ≤ V such
that dim(U ′∩H)−dim(U∩H) = dim(U ′)−dim(U) and such that U ′∩H ≤ (U∩H)⊥.
Let A be a complement for U in U ′ and define (·, ·)′ on U ′/U by

(a + U, b + U)′ = (a, b) .

Then (
〈

W⊥, U
〉

∩ U ′)/U = ((〈W, U〉 ∩ U ′)/U)⊥
′

.

Proof. We have to show that (W ∩A)⊥∩A = W⊥∩A. The inclusion ≥ is trivial, so
it suffices to show the converse. By the dimension condition, A is also a complement
for U ∩H in U ′ ∩H so we may just as well assume that U ′ ≤ U⊥. So assume that
a ∈ A is such that (a, b) = 0 for b ∈ W ∩ A. Let x ∈ W be arbitrary and write
x = b + u with b ∈ W ∩ A and u ∈ U . Then

(a, x) = (a, b) + (a, u) = (a, b)

because a ∈ U ′ ≤ U⊥ and u ∈ U . �

Proof. (Proof of Lemma 4.3) The data of Lemma 5.5 by Lemma 5.6 defines a
generalized Phan geometry of type Bn−k or Cn−k. �

For the proof of Lemma 4.2 we will need a somewhat refined version of Lemma
5.5. Namely, we have to weaken the assumptions that U and U ′ be transversal to
F and instead allow deviations by one dimension.
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Definition 5.7. A space U is said to be almost transversal to F , if U ∩ Vi 6=
0 implies that 〈U, Vi〉 has codimension at most 1. And U is said to be almost
transversal to (F, ω), if it is almost transversal and U ∩VkU

is ωkU
-non-degenerate.

A space U is said to be nearly transversal to F , if 〈U, Vi〉 6= V implies that U ∩ Vi

has dimension at most 1.

Lemma 5.8. Let V be a vector space, F = (0 = V0 ≤ . . . ≤ Vk = V ) be a flag and
ω = (ωi)i be a family of σ-hermitian forms compatible with F . Let U � U ′ ≤ V
and assume that U is almost transversal to (F, ω) and U ′ is nearly transversal to F .

Let mU ′

U = max{i | 〈Vi, U〉∩U ′ = U} and MU ′

U = min{i | 〈Vi, U〉∩U ′ = U ′}. There
is an A such that U ′ ∩ Vi = A∩ Vi ⊕ωi

U ∩ Vi. The flag F ′ = (V ′

mU′

U

≤ . . . ≤ V ′

MU′

U

)

with V ′
i = (〈Vi, U〉 ∩ U ′)/U and forms ω′

i(x + U, y + U) = ωi(x, y) for x, y ∈ A
satisfies

W ⋔ (F, ω) if and only if W/U ⋔ (F ′, ω′)

for U < W < U ′ where ω′ = (ωi)i. Moreover ω′ is compatible with F ′.

Proof. Note that, if dim U ′ − dimU ≤ 1, the statement is trivial because there is
no W with U < W < U ′. So we may and do assume for the rest of the proof that
dimU ′ − dim U ≥ 2.

The points at which we used that U ⋔ F in the preceding proof are the following:

(1) the construction of A,

(2) mU ′

U = max{i | Vi ∩ U ′ = 0},
(3) if W/U ∩ (〈Vi, U〉 ∩ U ′)/U = U/U , then W transversal F .

The following construction of A works without any assumptions on the transver-
sality of U to F . Let A1 be an ω1-orthogonal complement for U ∩ V1 in U ′ ∩ V1.
Note that A1 ≤ Radω2, so A1 is ω2-orthogonal to U ∩ V2 and can be extended to
an ω2-orthogonal complement of U ∩ V2 in U ′ ∩ V2. Iterating this process we get
finally that A = AMU′

U
is as desired.

To see that (2) is still true under the new hypotheses, assume that 〈Vi, U〉∩U ′ =
U . Then Vi ∩ U ′ ≤ U . If Vi ∩ U 6= 0, then 〈Vi, U〉 would have codimension at
most 1, hence 〈Vi, U〉 ∩ U ′ would have codimension at most 1 in U ′. But U has
codimension 2 in U ′, hence 〈Vi, U〉 ∩ U ′ 6= U contradicting the assumption. So we
see that in fact Vi ∩ U = 0.

For (3) we only have to show that, if W ∩ 〈Vi, U〉 = U , then W is transversal to
F . As before we have that W ∩ Vi = U ∩ Vi. If W ∩ Vi = 0, then there is nothing
to show, so we may assume U ∩ Vi 6= 0 (i.e. i = kU ). Then, since U is almost
transversal to F , we know that 〈U, Vi〉 has codimension at most 1. So W  U and
W ∩ 〈Vi, U〉 = U imply 〈Vi, W 〉 = V .

Note, however, that in this new situation kW and k′
W/U may be distinct. Namely,

it may happen that k′
W/U = MU ′

U , but kW = kU (and that MU ′

U 6= kU ). But we

have also seen that, if this is the case, then 〈U, VkU
〉 is a hyperplane, kW = kU

and W ∩ VkU
= U ∩ VkU

. By assumption U ∩ VkU
is ωkU

-non-degenerate, so W is
transversal to (F, ω). And W/U , being a complement for the codimension-1-radical
of ω′

kU
, is ω′

kU
-non-degenerate, whence transversal to (F ′, ω′).

The points at which we used that U ′ ⋔ F in the preceding proof are the following:

(1) MU ′

U = min{i | 〈Vi, U〉 = V },
(2) if W/U∩(〈Vi, U〉 /U) 6= U/U and 〈W/U, 〈Vi, U〉 /U〉 = U ′/U , then 〈W, Vi〉 =

V .
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To see that (1) is still true under the new hypotheses, assume that U ′ = 〈Vi, U〉∩
U ′ = 〈U, Vi ∩ U ′〉. Since dimU ′ − dim U > 1, we see that Vi ∩ U ′ must have
dimension at least two. So 〈Vi, U

′〉 = V , because U ′ is nearly transversal to F .
For (2) assume that W/U∩〈Vi, U〉 /U 6= U and 〈W/U, 〈Vi, U〉 /U〉 = U ′/U . Then

〈W, Vi〉 ≥ Vi, U
′. So, if 〈W, Vi〉 6= V , then dim(U ′ ∩ Vi) = 1. But this means that

W ∩ Vi = U ′ ∩ Vi. Together with 〈W, Vi〉 this implies W = U ′, a contradiction.
Hence 〈W, Vi〉 = V . �

Lemma 5.9. Let V be a finite-dimensional vector space, and let U, U ′ be subspaces
such that U � U ′. Let H be a hyperplane of V such that U 6≤ H. There is an
isomorphism of vector spaces φ : U ′/U → (U ′ ∩ H)/(U ∩ H) such that

φ(W/U) = (W ∩ H)/(U ∩ H)

for U ≤ W ≤ U ′. Similarly, let p be a one-dimensional subspace of V such that
p 6≤ U ′.

There is an isomorphism of vector spaces φ : U ′/U → 〈U ′, p〉 / 〈U, p〉 such that

φ(W/U) = 〈W, p〉 / 〈U, p〉

for U ≤ W ≤ U ′.

Proof. Let s be a complement for H ∩ U in U and let b1 be a vector that spans
s. Let b1, . . . , bk be a basis for U and let b1, . . . , bl be a basis for U ′. Then bk+1 +
U, . . . , bl + U is a basis for U ′/U and bk+1 + (U ∩ H), . . . , bl + (U ∩ H) is a basis
for (U ′ ∩ H)/(U ∩ H). The map φ that takes bi + U to bi + (U ∩ H) for k < i ≤ l
works. �

Proof. (Proof of Lemma 4.2) Note that U ≤ p⊥ and U ∈ Z imply U ∈ Y0. Hence
U 6≤ p⊥. For the same reason, every W in

ΓY0

>U = {W ∈ Y0 | W > U}

= {U < W < U⊥ | W ∈ Γ, W ∩ p⊥ ∈ Γ,
〈

W ∩ p⊥, p
〉

∈ Γ, 〈p, W 〉 ⋔ (F, ω)}

satisfies W 6≤ p⊥. Note that W ≤ U⊥ implies that W ∩ p⊥ is singular if and only if
W =

〈

W ∩ p⊥, U
〉

is singular. Furthermore, note that W∩p⊥ is singular if and only

if
〈

W ∩ p⊥, p
〉

is singular. Hence ΓY0

>U consists of the spaces W with U < W < U⊥

that are totally isotropic such that

(1) W ⋔ (F, ω),
(2) 〈W, p〉 ⋔ (F, ω),
(3) W ∩ p⊥ ⋔ (F, ω),
(4)

〈

W ∩ p⊥, p
〉

⋔ (F, ω).

Let A be any complement for U in U⊥ and define (·, ·)′ on U⊥/U by

(a + U, b + U)′ = (a, b)

for a, b ∈ A. We want to show that, if W satisfies U < W < U⊥, then W is totally
isotropic with respect to (·, ·) if and only if W/U is totally isotropic with respect
to (·, ·)′ (which is the case precisely if W ∩ A is totally isotropic with respect to
(·, ·)). It is clear that, if W is totally isotropic, then W ∩A is also totally isotropic.
Conversely, assume that W ∩ A is totally isotropic. Let x ∈ W be arbitrary and
write x = a + u with a ∈ A and u ∈ U . Then, for y ∈ W written as y = b + v,
b ∈ A, v ∈ U , we have

(x, y) = (a, b) + (a, v) + (u, b) + (u, v) = (a + U, b + U) = 0
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where the terms with u or v vanish, because u, v ∈ U and W ≤ U⊥. This shows, in
particular, that—although the form (·, ·)′ depends on the choice of the complement
A—whether or not a space W ≥ U is totally isotropic with respect to (·, ·)′ does
not depend on A.

Let us collect some properties of the spaces mentioned above. Clearly, U and
〈U, p〉 are transversal to (F, ω), because U ∈ Z. So by Lemma 5.4 the spaces U⊥

and U⊥ ∩ p⊥ are transversal to F . As a consequence we find that
〈

U⊥, p
〉

is nearly

transversal to F , and that U ∩ p⊥ is almost transversal to (F, ω). Similarly, we see
that

〈

U⊥ ∩ p⊥, p
〉

is nearly transversal to F , and that
〈

U ∩ p⊥, p
〉

= 〈U, p〉 ∩ p⊥ is
almost transversal to (F, ω).

So, by applying Lemma 5.8 to the pairs (Ui, U
′
i)1≤i≤4 = ((U, U⊥), (〈U, p〉 ,

〈

U⊥, p
〉

),

(U ∩ p⊥, U⊥ ∩ p⊥), (
〈

U ∩ p⊥, p
〉

,
〈

U⊥ ∩ p⊥, p
〉

)), we obtain flags (F ′
i , ω

′
i) on U ′

i/Ui

such that W ⋔ (F, ω) if and only if W ⋔ (F ′
i , ω

′
i) for Ui < W < U ′

i .
Using the isomorphisms from Lemma 5.9 we obtain flags (Fi, ωi) on U⊥/U such

that

(1) W/U ⋔ (F1, ω1) if and only if W ⋔ (F, ω),
(2) W/U ⋔ (F2, ω2) if and only if 〈W, p〉 ⋔ (F ′

2, ω
′
2) if and only if 〈W, p〉 ⋔ (F, ω),

(3) W/U ⋔ (F3, ω3) if and only if W ∩ U⊥ ⋔ (F ′
3, ω

′
3) if and only if W ∩ U⊥ ⋔

(F, ω), and
(4) W/U ⋔ (F4, ω4) if and only if

〈

W ∩ U⊥, p
〉

⋔ (F ′
4, ω

′
4) if and only if

〈

W ∩ U⊥, p
〉

∩ U⊥ ⋔ (F, ω).

It remains to see that the flags indeed define generalized Phan geometries of type
Bn, respectively Cn. More precisely, we have to see that Fi = F⊥

i for 1 ≤ i ≤ 4.
This follows from Lemma 5.6 using an arbitrary complement of p as H . �

6. Flip-flop systems and generalized Phan geometries

The aim of this section is to show that generalized Phan geometries arise quite
naturally from flip-flop systems. Although it is possible to develop this theory over
arbitrary fields, in view of our applications we will concentrate on flip-flop systems
over finite fields of square order. This restriction allows us to take some shortcuts
that would otherwise not be possible.

The setting is as follows. Let q be a prime power, let ∆ = (∆+, ∆−, δ∗) be a
Moufang twin building arising from a group with an Fq2 -locally split root group
datum considered as a vertex-colored simplicial complex, and let (W, S) be the type
of ∆, i.e., the associated Coxeter system. We say that ∆ is defined over Fq2 .

Definition 6.1. A flip θ is a simplicial involutory permutation of ∆+ ∪ ∆− such
that

(1) θ(∆+) = ∆− (and thus also θ(∆−) = ∆+),
(2) δε(c, d) = δε̄(c

θ, dθ) for (ε, ε̄) ∈ {(+,−), (−, +), (∗, ∗)}, and
(3) for every panel st p of ∆+ there exists a chamber c ∈ st p such that

coprojst p cθ 6= c.

The theory of flips of (twin) buildings is currently developing rapidly. In partic-
ular, there does not yet exist a uniform notion of a flip in the literature. We refer to
[Hor08] for a concise account on different types of flips and their properties. Flips
as defined above were introduced in [DM07].

For a chamber c ∈ ∆+ we denote by δθ(c), the θ-codistance of c, the element
δ∗(c, c

θ) of W . Note that, if R ≤ ∆+ is a spherical residue parallel to its image Rθ,
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then (R, Rθ, δ′∗) is a twin building in a natural way. In this case δ′∗(c, c
θ) equals

δ∗(c, c
θ) for c ∈ R if and only if R and Rθ are opposite in ∆. A Phan chamber with

respect to a flip θ is a chamber c with δθ(c) = 1. The numerical θ-codistance of c
is defined as lθ(c) := l(δθ(c)).

We start with some folklore, which we include for the sake of completeness of
our arguments.

Lemma 6.2. Let θ be a flip. Let c be a chamber and w = δθ(c). If s ∈ S is
such that l(sw) < l(w), then there exists a chamber d that is s-adjacent to c with
lθ(d) < lθ(c). In particular, the flip θ admits Phan chambers.

Proof. Consider the s-panel st p of c. Note that w, being a θ-codistance, is an
involution, so that sw = ws. A chamber d ≥ p can have θ-codistance w, sw or sws
where w is attained and either l(sws) = l(w) − 2 or sws = w. So δ∗(st p, st pθ) =
w. By (3) of Definition 6.1 there is a chamber d with coprojst p dθ 6= d, so that
in particular δθ(d) 6= w. Hence lθ(d) < lθ(c). The last statement follows by
induction. �

The following fact essentially states that every flip of a building of type An,
Bn, or Cn defined over a field is represented by a hermitian form. Its proof is a
straightforward application of classical building theory, using SL2 theory, the fun-
damental theorem of projective geometry (e.g., [Art57, Theorem 2.26]) and [Tit74,
Theorem 8.6, (II)].

Proposition 6.3. Let V be a vector space over a field F equipped with a building
geometry of type An, Bn, or Cn and let θ be a flip. There is an involutory F-
automorphism σ and a σ-hermitian form ω on V such that U is opposite Uθ if and
only if U is ω-non-degenerate.

For later reference we also record the following special case.

Lemma 6.4. Let F be a finite field and let V be a two-dimensional F-vector space.
Let θ be an involutory automorphism of the Moufang set arising from the geometry
P(V ) of type A1.

If there exists a ∈ V with 〈a〉θ 6= 〈a〉, then there is an involutory F-automorphism
σ and a σ-hermitian form ω such that a point of P(V ) is θ-fixed if and only if it
is ω-isotropic. Furthermore, there are q + 1 points that are θ-fixed, if σ 6= id and
F = Fq2 , there are two or no θ-fixed points, if θ = id and char F 6= 2, and there is
one θ-fixed point, if θ = id and char F = 2.

Proof. Let b ∈ V be such that 〈b〉 = 〈a〉θ. Let X1 denote the Moufang set of
P(V ) with ∞ = 〈a〉 and 0 = 〈b〉 and X2 denote the Moufang set of P(V ) with
∞ = 〈b〉 and 0 = 〈a〉. Then θ can be seen as an isomorphism X1 → X2 that fixes
0 and ∞. So by [Hua49, Theorem 1] (see also [Kno05, Theorem 3.3.1]) there is an
F-automorphism σ such that

(6.1) 〈αa + βb〉θ = 〈βσµa + ασξb〉 .

Consider the σ-hermitian map ω with ω(a, a) = −µ, ω(b, b) = ξ and ω(a, b) = 0.
We have ω(αa + βb) = −µαασ + ξββσ which vanishes if and only if

(6.2) µαασ = ξββσ .
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Comparing this with (6.1) (and recalling that θ interchanges 〈a〉 and 〈b〉) one sees
that this is precisely the condition for 〈αa + βb〉 to be θ-stable. The number of θ-
fixed points can be obtained by counting the number of solutions of (6.2). (Whether
there are two or no solutions in the case char F 6= 2, σ = id depends on whether
µ/ξ is a square.) �

We now turn to some elementary abstract building theory in order to link flip-
flop systems with generalized Phan geometries. We start with the definition of a
flip-flop system.

Definition 6.5. Given a flip of ∆ = (∆+, ∆−, δ∗) and a residue R of ∆+ we denote
by Rθ the complex of chambers c of R for which lθ(c) is minimal. This is called the
flip-flop system of R.

If R and Rθ are parallel, such that (R, Rθ, δ′∗) is a twin building with a flip
θ|R∪Rθ , then Rθ consists of the Phan chambers with respect to δ′∗. If R and Rθ

are not parallel, the situation is described by the following proposition. The pre-
cise description of the relative links in Proposition 6.6 below is due to Bernhard
Mühlherr.

Proposition 6.6. Let R be a spherical residue of ∆+ and let Q = coprojR Rθ.
Then the map θ′ = coprojR ◦θ is a flip on the spherical twin building associated to
Q.

Moreover a chamber c of R is in Rθ if and only if the following conditions are
satisfied:

(1) c is opposite Q in R, and

(2) x = projQ(c) is opposite xθ′

in Q.

Proof. First let us see that θ′ is a flip on Q. Since θ is an isometry, we have
(coprojR cθ)θ = coprojRθ c, and coprojR coprojRθ c = projQ c. So θ′ is involutory
on Q.

Since Q is spherical, in order to verify property (2) it suffices to show that

δQ
+(c, d) = δQ

−(cθ′

, dθ′

) for c, d ∈ Q, i.e. that δ+(c, d) = w0δ+(cθ′

, dθ′

)w0 where w0

is the longest word in the Coxeter group of Q. Now

δ+(c, d) = δ∗(c, coprojRθ c)δ∗(coprojRθ c, d)

= δ∗(c, coprojRθ c)δ−(coprojRθ c, coprojRθ d)δ∗(coprojRθ d, d) .

Here δ∗(c, coprojRθ c) is the longest word of the Coxeter group of Q, because for
any e ∈ Q we have

l∗(c, e) = l∗(c, coprojQ c) − l−(coprojQ c, e).

So for l∗(c, coprojQ c) to be maximal, l−(coprojQ c, e) has to be maximal. Hence
δ∗(c, coprojRθ c) and δ∗(coprojRθ d, d) both are the longest word in the Coxeter
group of Qθ which is the same as that of Q.

The last condition for θ′ to be a flip is, that for every panel st p of Q there is a
chamber c ∈ st p such that projst p cθ′

6= c. But this follows immediately from the
fact that projp coprojR = coprojP .

Now we want to prove the characterization of Rθ. Let c ∈ R be arbitrary. Then

δ∗(c, c
θ) = δ∗(c, coprojRθ c)δ−(coprojRθ c, cθ)

= δ+(c, coprojR coprojRθ c)δ∗(coprojR coprojRθ c, coprojRθ c)δ−(coprojRθ c, cθ)
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c x

xθcoprojR cθ
cθ

coprojRθ c

R

Q

Rθ

Qθ

δ∗(R, Rθ)δ+(c, x)

δ−(coprojRθ c, cθ)

δ+(coprojR cθ, c)
δ+(x, xθ′

)
δ∗(c, c

θ)

Figure 1. l∗(c, c
θ) = l∗(R, Rθ) − 2l+(c, x) − l+(x, xθ′

)

(see Figure 1). Here δ∗(coprojR coprojRθ c, coprojRθ c) is independent of the cham-
ber c and we denote it just by δ∗(R, Rθ). Note that coprojR coprojRθ c = projQ c =:

x. We have δ−(coprojRθ c, cθ) = δ+(coprojR cθ, c) where coprojR cθ = coprojQ cθ =

xθ′

. And we can write δ+(coprojR cθ, c) as δ+(c, x)δ+(x, xθ′

). Putting this together
we get that

l∗(c, c
θ) = l∗(R, Rθ) − 2l+(c, x) − l+(x, xθ′

) .

We see that this number is minimal if and only if l+(c, x) and l+(x, xθ′

) are both
maximal among chambers x ∈ Q and c ∈ R. For one can first choose x so as to
maximize l+(x, xθ′

) and then c opposite x inside R. And the longest word of Q can

be obtained as l+(x, xθ′

) by Lemma 6.2. �

Lemma 6.7. Let ∆ be a twin building of irreducible type defined over a finite field
Fq2 and let θ be a flip of ∆. The involutory Fq2-automorphism σ whose existence is
guaranteed by Proposition 6.3 is the same for all spherical residues R of types An,
Bn, or Cn that are parallel to their image under θ.

Proof. Clearly, it suffices to distinguish between the cases σ = id and σ 6= id. Note
that it furthermore suffices to consider panels, because if R is a residue of higher
rank, we may take any Phan chamber c of (R, Rθ, δ′∗), take a panel P of c and
consider P and P θ instead of R and Rθ. It is clear, that the Fq2 -automorphism for
θ on P and on R is the same.

So let c be a chamber, let s ∈ S, and let R be the s-panel of c. Let (G, (Uα)α∈Φ, T )
be the twin root datum associated to ∆ (see [AB08, Section 8.5]). The flip in-
duces an automorphism of the Kac-Moody group G which we also denote by θ (see
[Hor08]). By [CM06, Corollary A], since the type is irreducible, θ splits as a product
of an inner, a diagonal, a graph, a field and a sign automorphism. In particular,
it acts with the same field automorphism on all subgroups it stabilizes. Let L be
a Levi factor of the stabilizer of the s-residue R of c and of Rθ (cf. [CM06, Propo-
sition 3.6]). Then θ|L is an automorphism of L, since θ stabilizes R ∪ Rθ. Note
that a chamber d ∈ R is in Rθ if and only if the root containing d is not θ-fixed.
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The action of L on R is equivalent to the action of SL2(F) on a projective line. In
[DMGH, Section 4] the automorphisms of SL2(F) are described. It is also described
that SL2(F)θ preserves a σ′-hermitian form where σ′ is the F-automorphism of θ.
From this it is clear that the σ′ is of order 2 if and only if the σ in Lemma 6.4 is of
order two. �

Theorem 6.8. Let ∆ be a twin building of irreducible type defined over a finite
field Fq2 and let θ be a flip of ∆. If R is a spherical residue of ∆+ of type An, Bn,
or Cn, then Rθ is isomorphic to a generalized Phan geometry of the respective type
defined over Fq2 .

Generalized Phan geometries of type An have been introduced in [DGM]. They
consists of the proper, non-trivial subspaces of a vector space V of dimension n +
1 that are transversal to (F, ω) where F is a flag of V and ω is a family of σ-
hermitian forms compatible with F . This theorem corresponds to [DGM, Fact 5.1]
and extends it to residues of types Bn and Cn.

Proof. The spherical residue R is isomorphic to

(1) the geometry of proper, non-trivial subspaces of a vector space V of dimen-
sion N = n + 1 over Fq2 , if R is of type An;

(2) the geometry of non-trivial, totally isotropic subspaces of vector space V
of dimension N = 2n + 1 over Fq2 that is equipped with a non-degenerate
bilinear form of Witt index n, if R is of type Bn; or

(3) the geometry of non-trivial, totally isotropic subspaces of vector space V
of dimension N = 2n over Fq2 that is equipped with a non-degenerate
alternating form, if R is of type Cn.

The residue Q = coprojR Rθ consists of chambers that contain a certain flag
F = (0 = V0 � . . . � Vl = V ). If R is of type Bn or Cn, this flag can be chosen to
satisfy F = F⊥.

Clearly, a chamber W0 � . . . � WN is opposite W θ
0 � . . . � W θ

N in Q if and
only if Wj/Vi is opposite W θ

j /Vi in Vi+1/Vi for Vi � Wj � Vi+1. By Proposition

6.3 there are forms ω′
i+1 on Vi+1/Vi such that U/Vi is opposite Uθ/Vi if and only

if U is ωi+1-non-degenerate for Vi ≤ U ≤ Vi+1. These induce forms ωi+1 on Vi+1

by ωi+1(v, v′) = ω′
i+1(v + Vi, v

′ + Vi). By Lemma 6.7 the F-automorphisms σi such
that ωi is σi-hermitian are all the same.

A chamber C = (U0 � . . . � UN ) of V is opposite Q if and only if every Uj is
transversal to F . The projection of C to Q is the chamber consisting of the spaces
〈Ui, VkUi

−1〉 ∩ VkUi
= 〈Ui ∩ VkUi

, Ui〉.
Proposition 6.6 gives two conditions that have to be satisfied for C to be in Rθ.

The first is, that C is opposite Q, that is Uj ⋔ Vi for every i, j. This is the case
if and only if Uj ⋔ VkUj

for every j. The second is that the projection of C to

Q is mapped to an opposite chamber in Q under θ′. If we translate this using
our discussion above and setting i = kUj

, we obtain that 〈Uj ∩ Vi, Vi−1〉 has to be
ωi-non-degenerate. �

Corollary 6.9. Let ∆ = (∆+, ∆−, δ∗) be the affine twin building associated to
G = SLn+1(Fq2 [t, t−1]) or to G = Sp2n(Fq2 [t, t−1]). Let θ be a flip of ∆. If R is an
irreducible spherical residue of ∆+, then Rθ is isomorphic to a generalized Phan
geometry of type Am or Cm defined over Fq2 .
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Proof. The residues of ∆+ are spherical buildings defined over F. Since all irre-

ducible residues of Ãn and C̃n are of type Am or Cm, the result follows from the
theorem. �

7. Applications

7.1. Finiteness length of the unitary form of a Kac-Moody group. Let σ
be the involutory automorphism of the ring Fq2 [t, t−1] that acts as the non-trivial
involution on Fq2 and exchanges t and t−1. Let G = Sp2n(Fq2 [t, t−1]), let θ be the

automorphism of G that maps g to (gσ)−T , and let K := Gθ := {g ∈ G | gθ = g}.
The aim of this section is to show how the topological finiteness length of K can

be established by using the Main Theorem.

Theorem 7.1. The group K is of type Fn−1 but not of type FPn provided 4n−1(q+
1) < q2.

Remark 7.2. (1) The group K is an arithmetic subgroup of Sp2n(Fq2(t)), cf.
[DGM, Remark 5.6], of local rank n. So Theorem 7.1 supports the rank
conjecture, cf. [Beh98, p. 80].

(2) The topological finiteness length of the group Sp2n(Fq2 [t]), which is another
arithmetic subgroup of Sp2n(Fq2(t)) of local rank n, has been established in
[Abr96]. Since the class of generalized Phan geometries contains the class of
geometries opposite a chamber, the proof of Theorem 7.1 below reproduces
that finiteness result.

Our main tool for establishing the finiteness length of K is Brown’s Criterion,
see [Bro87]. We give a version that is particularly well suited for our purpose, it
can be found in [Abr96] as Lemma 14.

Proposition 7.3 (Brown’s criterion). Let X be a CW complex. Let Γ act on X by
homeomorphisms that permute the cells. Assume that there exists an n ≥ 1 such
that the following conditions are satisfied

(1) X is n-connected.
(2) If σ is a cell of dimension d ≤ n, then the stabilizer Γσ is of type Fn−d.
(3) X =

⋃

j∈N
Xj with Γ-invariant subcomplexes Xj of X which are finite

complexes modulo Γ.
(4) Xj+1 = Xj ∪

⋃

a∈Aj
Sa,j with contractible subcomplexes Sa,j ⊆ Xj+1 satis-

fying
(a) Sa,j ∩ Sb,j ⊆ Xj for all j and a 6= b ∈ Ij ,
(b) Sa,j ∩ Xj is (n − 1)-spherical for all j and all a ∈ Ij ,

(c) There exist infinitely many j such that H̃n−1(Sa,j ∩ Xj) 6= 0 for at
least one a ∈ Ij.

Then Γ is of type Fn−1 and not of type FPn.

Recall that the group Sp2n(Fq2 [t, t−1]) admits a twin BN-pair that gives rise
to a twin building (∆+, ∆−, δ∗) (see [AB08, Section 6.12] for the An case). The
group G acts on the twin building by isometries, that is, δε(c, d) = δε(gc, gd) for
ε ∈ {+,−, ∗} and g ∈ G.

We use the following lemma, which is taken from [Hor08].

Lemma 7.4. The automorphism θ of G induces a flip of (∆+, ∆−, δ∗).
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In our case, where the residue field is finite and θ induces the non-trivial field
involution on the residue field, the flip θ also satisfies the following ascending version
of Lemma 6.2. (Recall from the preceding section that the θ-codistance δθ of c is
δ∗(c, c

θ) ∈ W and that the numerical θ-codistance of c is the integer l(δθ(c)). )

Lemma 7.5. For every panel st p of ∆+ there exists a chamber c ≥ p such that
coprojst p cθ = c. Thus if c is a chamber, st p is its s-panel, w = δθ(c), and s ∈ S is
such that l(sw) > l(w), then there is a chamber d ≥ p such that lθ(d) > lθ(c).

Proof. If coprojst p st pθ consists of only one chamber, there is nothing to show –

this chamber is as desired. So we may assume that coprojst p st pθ = st p. Then
θ′ := coprojst p ◦θ is a flip on st p. Lemma 6.4 shows that there is a chamber that

is θ′-fixed, i.e. satisfies coprojst p cθ = c. The second assertion is shown as in the
proof of Lemma 6.2. �

Note that (kc)θ = kθcθ = kcθ, so that δθ(kc) = δθ(c) for k ∈ K. In particular

K acts on the subcomplexes ∆j = {c ∈ C(∆+) | lθ(c) ≤ j} of ∆+. We claim that
the filtration (Xj)j∈N = (|∆j |)j∈N and the space X = |∆+| satisfy the conditions
of Brown’s Criterion (Proposition 7.3).

We take Aj to be the set of simplices which are in ∆j+1 but not in ∆j and all
whose proper faces are in ∆j . Moreover, we let Sa,j = |st∆j+1

a|.

Lemma 7.6. We have Xj+1 =
⋃

i∈Ij
Xj. More precisely every chamber c ∈ ∆j+1,

c /∈ ∆j has a unique face that is in Aj .

Proof. First let us see that, if b ≤ c is a face that is contained in ∆j , then there is
a facet (maximal proper face) p of c that contains b such that p is contained in ∆j .
Let d ≥ b be a chamber with lθ(d) < lθ(c). By [Hor08], there is a chamber c′ ≥ b
that is adjacent to c with lθ(c

′) < lθ(c). So p = c′ ∩ c is as desired.
So c∩∆j consists of (rather, is the complex generated by) facets p1, . . . , pk of c.

Let v1, . . . , vk be the vertices of c such that vi /∈ pi and let a be the simplex spanned
by v1, . . . , vk. Clearly a is in Aj . Conversely if a′ ∈ Aj , a′ ≤ c, then for every facet
pj there is a vertex vj of a′ not contained in pj (because otherwise a′ ≤ pj). If
there were another vertex, say v, then a′ \ v would not be in ∆j , hence a = a′. �

Lemma 7.7. Let j ∈ N, a ∈ Aj and set R = lk∆+
a. Then lk∆j+1

a = Rθ and
st∆j+1

a ∩ ∆j = lk∆j+1
a ∗ ∂a.

Proof. Note that chambers c ∈ st∆+
a satisfy lθ(c) ≥ j + 1 and are in st∆j+1

a if
and only if lθ(c) = j + 1. So these are precisely the chambers that have mini-
mal numerical θ-codistance among the chambers of st∆j+1

a. This shows the first
statement.

For the second we have to see that each chamber c ∈ st∆j+1
a is adjacent to a

chamber of strictly shorter numerical θ-codistance along every facet that does not
contain a. Let c be as above and let st p be a panel that does not contain a. Then
p ∩ a is a facet of a, so it is contained in ∆j . By the proof of the preceding lemma
there is a panel of c in ∆j , that contains p∩a. This panel, of course, cannot contain
a, so it is p. �

Lemma 7.8 (cf. [Abe91, Lemma 2.4]). Let j ∈ N and a, a′ ∈ Aj . Either a = a′ or
st∆j+1

a ∩ st∆j+1 a′ ⊆ ∆j.
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Proof. By the preceding lemma if b ∈ st∆j+1
a ∩ st∆j+1 a′, but b /∈ ∆j , then b ≥ a

and b ≥ a′. Let c be a chamber containing b. By Lemma 7.6 there is a unique face
of c that is one of the a, hence a = a′. �

Lemma 7.9. For every j ∈ N there is a j′ ≥ j, a chamber c ∈ ∆+ and an s ∈ S
such that w = δθ(c) satisfies that l(w) = j′, and l(tw) < l(w) for all t ∈ S \ {s}.
Moreover there is a chamber c′ that is s-adjacent to c with δθ(c

′) = w.

Proof. We start with a chamber c0 with lθ(c0) ≥ j, which is possible by Lemma
7.5. As long as possible, we take t from S \ {s} such that l(twj) > l(wj). By
Lemma 7.5, there is a chamber cj+1 with δθ(cj+1) = twj or δθ(cj+1) = twjt and
lθ(cj+1) > lθ(cj). We let wj+1 = δθ(cj+1). This process has to come to a halt
because S \ {s} is spherical, so at some point w := wj begins with the longest word
of S \ {s}. The chamber c := cj is as desired, see Lemma 6.2.

Now clearly l(sw) > l(w), because otherwise w would be a longest word of (W, S)
which does not exist. We consider the s-panel st p of c. Either all chambers in st p
have θ-codistance w or sw or they all have θ-codistance w or sws. If coprojst p(st pθ)
consists of just one chamber, any other chamber will have smaller numerical θ-
codistance, i.e. θ-codistance w. Since the building is thick, there is at least one
which is distinct from c. We pick one and take it to be c′. If coprojst p(st pθ) = st p,

we may take c′ to be coprojst p cθ. �

Proof. (Proof of Theorem 7.1) We verify the prerequisites of Brown’s Criterion
(Proposition 7.3). The first is clear by the Solomon-Tits Theorem ([Sol69, Theorem
1], see also [Bro89, Section IV.6], [AB08, Section 4.12]).

Now we want to verify condition (2). In fact we argue that the stabilizer StabK(a)
is finite for any (non-empty) simplex a of ∆+, which implies that StabK(a) is of
finiteness type F∞.

First we consider the case that a = c is a chamber. To do so, we use facts
from [AB08, Section 8.2]. Fix a twin apartment Σ = (Σ+, Σ−) that contains c and
cθ. By Proposition 8.15 and Proposition 8.19 of [AB08] the stabilizer of c ∪ cθ is
Uα1

· · ·Uαm
H where α1, . . . , αm is a certain ordering of the twin roots α of Σ with

c, cθ ∈ α, the group Uα is the root group of α, and H is the torus. So StabG(c∪ cθ)
is finite, since H and every of the Uα is. Hence StabK(c) is finite.

Now let a ∈ ∆+ be arbitrary and let c ≥ a be a chamber. Once we realize that
StabStabK(a)(c) is finite and that c has finite orbit under StabK(a), finiteness of
StabK(a) follows from the orbit-stabilizer formula. That StabStabK(a)(c) is finite is
clear from the above argument because StabStabK(a)(c) ≤ StabK(c). That the orbit
of c under StabK(a) is finite follows from the fact that ∆+ is locally finite.

We claim that K acts transitively on the chambers that have a given θ-codistance.
This immediately implies (3). Let T be the torus of diagonal matrices as an alge-
braic group scheme defined over the residue field Fq2 . Let (Σ+, Σ−) be the twin
apartment corresponding to T . Let c′ be an arbitrary chamber and let c ∈ Σ+ be
such that cθ ∈ Σ− and δθ(c) = δθ(c

′). Let (Σ′
+, Σ′

−) be a twin apartment such that

c′ ∈ Σ′
+, c′

θ ∈ Σ′
−. By strong transitivity there is a g ∈ G such that gΣ+ = Σ′

+

and gΣ− = Σ′
− and there is an h ∈ G normalizing (Σ′

+, Σ′
−) such that hgc = c′.

Then hgcθ is in Σ′
− and has Weyl-distance δθ(c

′) from c′, so hgcθ = c′
θ
. Now

(hg)−θhgc = (hg)−θc′ = ((hg)−1c′
θ
)θ = c
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and, similarly, (hg)−θhgcθ = cθ, so t = (hg)−θhg ∈ T (Fq2). Moreover tθ =

(hg)−1(hg)θ = t−1.
Let Fq2 denote the algebraic closure of Fq2 and note that T (Fq2) is connected

with respect to the Zariski topology. Let σ be the endomorphism of raising elements
of Fq2 to the qth power and note that the fixed points set of Fq2 under σ2 is exactly

Fq2 . The map θ : T (Fq2) → T (Fq2), g 7→ g−σ is an endomorphism of algebraic

groups, which satisfies gθ2

= gσ2

, so that s ∈ T (Fq2) if and only if s = sθ2

for

s ∈ T (Fq2).

Consequently T (Fq2)θ ⊆ T (Fq2)θ2 = T (Fq2) is finite and so by Lang’s Theorem

[Lan56, Corollary to Theorem 1] there is an s ∈ T (Fq2) such that s−θs = t. Now

sθ2

= (st−1)θ = sθt = s ,

so s ∈ T (Fq2). Hence the element hgs lies in K and it maps c to c′. Therefore K
acts transitively on the chambers that have a given θ-codistance.

Property (4a) follows from Lemma 7.8. As for (4b) we know by Lemma 7.7 that
Sa,j ∩ Xj = |(lk∆+

a)θ| ∗ |∂a|, where lk∆+
a is a residue of type An or Cn. If a has

dimension d, then by Corollary 6.9 (lk∆+
a)θ is isomorphic to a generalized Phan

geometry of type An−d or Cn−d. Using the Main Theorem we get that (lk∆+
a)θ

is (n − d − 1)-spherical in the Cn case. In the An case apply the Main Theorem
of [DGM]. Since ∂a is a (d − 1)-sphere, |(lk∆+

a)θ| ∗ |∂a| is (n − 1)-spherical by
Proposition 3.2.

The condition (4c) follows from Lemma 7.9 as follows: Let j ∈ N be arbitrary
and let c, c′, j′ and s be as in the Lemma. Let st p be the s-panel of c. Then p
is in Aj′ , because for every t ∈ S \ {s} by Lemma 6.2 there is a chamber d that
is t-adjacent to c with lθ(d) < lθ(c). Now (lk∆+

p)θ contains at least two vertices,
namely c \ p and c′ \ p. So |(lk∆+

p)θ| ∗ |∂p| is the join of an (n − 2)-sphere with a
space that is properly 0-spherical, hence properly (n − 1)-spherical. �

7.2. Phan theory.

Theorem 7.10. Let Fq2 be a finite field of square order and let σ be the non-trivial
Fq2-involution. Let X be an irreducible diagram of rank at least 3 all irreducible
rank 3-residues of which are of type A3, B3, or C3. Assume that q2 ≥ 16(q + 1).
Let ∆ be a twin building of type X defined over Fq2 with a flip θ that induces σ on
Fq2 in the sense of Lemma 6.7.

Then ∆θ = {c ∈ C(∆+) | δθ(c) = 1} is 2-simply connected.

Proof. The geometry of ∆+ is 2-simply connected, see [Tit81, Theorem 3]. We want
to use (the proof of) [DM07, Theorem 3.14] to see that ∆θ is 2-simply connected if
and only if ∆+ is. To do so, we have to show that the residues of rank 3 are simply
connected and the residues of rank 2 are connected. But this is true by Theorem
6.8 and Theorem 4.1, respectively [DGM, Main Theorem]. �

The following result has been published in [BGHS07], [GHN07] in the case
Bn and [GHS03], [GHN06] in the case Cn. For the F4 case Gramlich, Hoffman,
Mühlherr, and Shpectorov found a proof in Oberwolfach in summer 2005, which
because of its length and its tedious case distinctions they did not publish. Our
proof here logically depends on the same result as the original 2005 proof, such as
[DM07], [Dun05], [Tit86], but is much shorter as the concept of generalized Phan
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geometries allowed us to get rid of all case distinctions except the distinction of the
Dynkin diagrams.

Theorem 7.11 (Gramlich, Hoffman, Mühlherr, Shpectorov 2005; unpublished).
Let n ≥ 3, let q ≥ 17, let X ∈ {Bn, Cn, F4}, and let K be a group with a weak Phan
system of type X over Fq2 . Then K is a central quotient of Spin2n+1(q), Sp2n(q),
or the simply connected version of F4(q), respectively.

Proof. By Theorem 7.10, ∆θ is 2-simply connected, so in particular it is simply
connected. Tits’ Lemma [Tit86, Corollaire 1] then implies that K is the universal
enveloping group of the weak Phan amalgam in K, cf. [Dun05]. The amalgams
that can occur have been classified in [BS04], [Gra04], [Dun05] and they are unique
up to passage to quotients. �
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