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ON OLIVER’S p-GROUP CONJECTURE: II

DAVID J. GREEN, LÁSZLÓ HÉTHELYI, AND NADIA MAZZA

Abstract. Let p be an odd prime and S a finite p-group. B. Oliver’s conjec-
ture arises from an open problem in the theory of p-local finite groups. It is
the claim that a certain characteristic subgroup X(S) of S always contains the
Thompson subgroup. In previous work the first two authors and M. Lilienthal
recast Oliver’s conjecture as a statement about the representation theory of
the factor group S/X(S). We now verify the conjecture for a wide variety of
groups S/X(S).

1. Introduction

Let p be an odd prime and S a finite p-group. An open question in the theory
of p-local finite groups asks whether there is a unique centric linking system
associated to every fusion system (see the survey article [4] by Broto, Levi and
Oliver). Bob Oliver derived in [13] a purely group-theoretic conjecture which
would imply existence and uniqueness of the linking system, at least at odd
primes. He constructed a characteristic subgroup X(S), and conjectured that
it always contains the Thompson subgroup J(S) generated by the elementary
abelian subgroups of greatest rank. The first two authors and M. Lilienthal
studied Oliver’s conjecture in [8] and recast it as a question about the quotient
group G = S/X(S).

In this paper we shall use methods from the area of finite group theory known
as Thompson factorization (see §32 in Aschbacher’s book [2]) to study the prop-
erties of certain faithful FpG-modules which arise in this reformulation of Oliver’s
conjecture. This allows us to prove the conjecture for a wide variety of quotient
groups G. Our main result is as follows:

Theorem 1.1. Suppose that p is an odd prime and S is a p-group such that
S/X(S) satisfies any of the following conditions

(1) its (nilpotence) class is at most four;
(2) it is metabelian;
(3) it is of maximal class;
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(4) its p-rank is at most p.

Then Oliver’s conjecture J(S) ≤ X(S) holds for S.

Remark. Alperin showed that every regular 3-group is metabelian [1]. So Oliver’s
conjecture also holds if S/X(S) is a regular 3-group.

Remark. Every p-group G does indeed occur as such a quotient G = S/X(S), by
Lemma 2.3 of [8]. A computation using GAP [6] shows that the iterated wreath
product group G = C3 ≀ C3 ≀ C3 satisfies none of the above conditions. This
group has order 313 and class 9, so it is neither class ≤ 4 or maximal class. The
derived subgroup has class 3, so it is not metabelian. And the “double diagonal”
subgroup shows that the rank is at least 9.

Theorem 1.1 follows by translating the following two module-theoretic results
back into the original language of Oliver’s conjecture. The notions of “quadratic
element” and “F -module” are recalled in §2 and §4, respectively.

Theorem 1.2. Suppose that G is a p-group and V is a faithful FpG-module such
that Ω1(Z(G)) has no quadratic elements. If G satisfies either of the following
conditions

(1) G has class at most four;
(2) G is metabelian;

then V cannot be an F -module.

Notice that the assumption that there are no quadratic elements in Ω1(Z(G))
implies that the prime p has to be odd. Recall now that the rank of an elementary
abelian p-group is its dimension as Fp-vector space, and that the p-rank of a finite
group is the maximum of the ranks of its elementary abelian p-subgroups.

Theorem 1.3. Suppose that p is an odd prime, that G is a p-group, and that V
is a faithful FpG-module such that every non-identity element of Ω1(Z(G)) acts
with minimal polynomial Xp − 1. If G satisfies either of the following conditions

(1) G is of maximal class;
(2) the p-rank of G is at most p;

then V cannot be an F -module.

A key step in the proof of Theorem 1.2 is the following result. We recall the term
“offender” in §4 below.

Theorem 1.4. Let G be a p-group and V a faithful FpG-module such that there
are no quadratic elements in Ω1(Z(G)).

(1) If A is an abelian normal subgroup of G, then A does not contain any
offender.

(2) Suppose that E is an offender. Then [G′, E] 6= 1.
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Proof of Theorem 1.1. The condition in Theorem 1.3 on the minimal polynomial
of each non-identity element of Ω1(Z(G)) is condition (PS) of [8]. Since p > 2,
this condition implies that there are no quadratic elements in Ω1(Z(G)). Now
combine our Theorems 1.2 and 1.3 with Theorem 1.2 of [8]. �

Proof of Theorem 1.2. Theorem 5.2 deals with the case of class at most four, and
Theorem 6.2 treats the metabelian case. �

Proof of Theorem 1.3. Theorem 8.1 handles the case p-rank(G) ≤ p. Lemma 7.1
shows that groups of maximal class have p-rank at most p. �

For sake of completeness, we remind the reader that the Oliver subgroup X(S) is
the largest normal subgroup of S that has a Q-series; that is, there are an integer
n ≥ 1 and a series 1 = Q0 ≤ Q1 ≤ · · · ≤ Qn = X(S) of normal subgroups Qi of
S and such that [Ω1(CS(Qi−1)), Qi; p − 1] = 1, for all 1 ≤ i ≤ n.

Structure of the paper In §2 we comment on a few commutator relations in a
semidirect product and introduce some handy notation for these. In the short §3
we recall a lemma of Meierfrankenfeld and Stellmacher. We prove Theorem 1.4
in §4, after recalling Timmesfeld’s replacement theorem. In §5 we derive a result
(Lemma 5.1) about offenders and central series and apply this to the case of class
at most four. We treat the metabelian case in §6, and show in §7 that every
group of maximal class has p-rank at most p. Finally, §8 is concerned with the
case of a finite p-group of p-rank at most p of Theorem 1.3.

2. Two notational conventions

Throughout the paper, G denotes a finite p-group, for an odd prime p. We
adopt the usual notation and conventions from the group theory literature (see
for example [5]). In addition, if V is a right FpG-module, we also view V as an
elementary abelian p-group, written additively, and form the semidirect product
Γ := G ⋉ V , with V the normal subgroup. The group multiplication in Γ is

(g, v)(h, w) = (gh, v ∗ h + w) ,

where we use ∗ to denote the module action of FpG on V .
Our second convention regards the commutators. For any a, b ∈ G, we set

[a, b] := a−1b−1ab and [a1, a2, . . . , an+1] = [[a1, . . . , an], an+1] .

Inductively, we define [a, b; 1] = [a, b] and [a, b; n] = [[a, b; n − 1], b], for all n ≥ 2.
In particular, g ∈ G identifies with (g, 0) ∈ Γ and v ∈ V with (1, v) ∈ Γ. Hence,
the commutator [v, g] can be written as

[(1, v), (g, 0)] = (1,−v)(g−1, 0)(1, v)(g, 0)

= (1,−v)(1, v ∗ g) = (1, v ∗ g − v) = (1, v ∗ (g − 1)) .

That is,

[v, g] = v ∗ (g − 1) . (1)
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In particular, [v, gp] = v ∗ (gp − 1) = v ∗ (g − 1)p = [v, g; p], and so

[v, gp] = [v, g; p] . (2)

By identifying G and V with the corresponding subgroups of Γ, one obtains

CV (H) = {v ∈ V | ∀h ∈ H v ∗ h = v} = V H

for a subgroup H ≤ G, and

CG(V ) = {g ∈ G | ∀v ∈ V v ∗ g = v} E G .

Note that the FpG-module V is faithful if and only if CG(V ) = 1. In this paper
we will only be interested in faithful modules.

Definition. Let G be a p-group and V a faithful FpG-module. A non identity
element g ∈ G is called quadratic on V if [V, g, g] = 0. If there is no confusion
for V , we simply say that g is quadratic. Since [V, gp] = [V, g; p], faithfulness
implies that quadratic elements must have order p.

3. A lemma of Meierfrankenfeld and Stellmacher

Definition ([12] 2.3). Let G be a finite group and V a faithful FpG-module. For
a subgroup H ≤ G one sets

jH(V ) :=
|H| |CV (H)|

|V |
∈ Q .

Note that j1(V ) = 1.

Lemma 3.1 (Lemma 2.6 of [12]). Let A be an abelian group and V a faithful
FpA-module. Let H, K be two subgroups of A. Then

jHK(V )jH∩K(V ) ≥ jH(V )jK(V ) ,

with equality if and only if CV (H ∩ K) = CV (H) + CV (K).

Proof. Since 〈H, K〉 = HK, we have an equality CV (HK) = CV (H) ∩ CV (K).
In addition, CV (H ∩ K) ⊇ CV (H) + CV (K). Therefore,

jHK(V )jH∩K(V ) = |HK||CV (HK)||H∩K||CV (H∩K)|

|V |2
≥

≥ |HK||H∩K||CV (H)||CV (K)|

|V |2
= jH(V )jK(V ) ,

because |HK| |H ∩ K| = |H| |K|. �

4. Offenders and abelian normal subgroups

Notation. Let G be a finite group and p a fixed prime number. We denote by
E (G) the poset of non-trivial elementary abelian p-subgroups of G.
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Definition ([7] 26.5). Let G be a finite group and V a faithful FpG-module. A
subgroup E ∈ E (G) is an offender of G on V if jE(V ) ≥ 1. If there is no confusion
on G and V , we simply say that E is an offender . If V has an offender, then V
is called an F -module. An offender E is quadratic on V (or simply quadratic) if
[V, E, E] = 0. Define

P(G, V ) := {E ≤ G | E ∈ E (G) and jE(V ) ≥ jF (V ) ∀ 1 ≤ F ≤ E} .

Consequently every E ∈ P(G, V ) is an offender, and every minimal1 offender
lies in P(G, V ).

Note that V is an F -module if and only if P(G, V ) is nonempty. The subgroups
in P(G, V ) are sometimes called best offenders.

We shall assume that the reader is familiar with Chermak’s treatment [5] of
Timmesfeld’s replacement theorem [14].

Lemma 4.1. Let V be a faithful FpG-module and E ∈ P(G, V ). Then there is
a quadratic offender F ∈ P(G, V ) which satisfies jF (V ) = jE(V ) and F ≤ E.

Proof. This is Timmesfeld’s replacement theorem ([5, Theorem 2]), applied with
F = CE([V, E]). The construction of F implies [V, F, F ] = 0. �

Remark. Note that Timmesfeld’s replacement theorem also gives the decomposi-
tion CV (F ) = [V, E] + CV (E) .

Lemma 4.2. Let G be a p-group and V a faithful FpG-module such that there
are no quadratic elements in Ω1(Z(G)). Then E ∩ Z(G) = 1 for every quadratic
offender E. In particular, a quadratic offender does not contain any non-trivial
normal subgroup of G.

Proof. Let E be a quadratic offender. We have E ∩Z(G) = E ∩Ω1(Z(G)). Now,
every non-trivial element of E is quadratic, whereas no element of Ω1(Z(G))
is. Hence, E ∩ Z(G) = 1. The last statement follows from the fact that every
non-trivial normal subgroup meets Z(G). �

We are now ready to show Theorem 1.4.

Proof of Theorem 1.4. We first show the implication (1) ⇒ (2). Let E be an
offender. Then Z(G′E) is an abelian normal subgroup of G, since G′E E G. By
part (1), this means that E � Z(G′E). Since E is abelian, this can only happen
if [G′, E] 6= 1.

For part (1), suppose that A does contain an offender E. Note that E lies
in the elementary abelian subgroup C := Ω1(A). Of course, V is faithful as an
FpC-module. Set

j0 := max{jE(V ) | E ∈ E (C)}

1That is, a minimal element of the set of offenders, partially ordered by inclusion.
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Choose E ∈ E (C) with jE(V ) = j0. Note that every such E lies in P(G, V ). By
Lemma 4.1 we may assume that E is quadratic. Among the quadratic offenders
in A (and hence in C) with jE(V ) = j0, let us pick E of minimal order. We claim
that E is a T.I. subgroup of G, that is E ∩Eg = 1, for all g ∈ G−NG(E). Note
that since C is normal in G, then all the G-conjugates of E lie in C. Observe
also that E lies in M (C, V ), in the terminology of [5, Lemma 1], since C is
elementary abelian and we chose jE(V ) maximal. So every G-conjugate of E lies
in M (C, V ). By Lemma 1 of [5], the intersection of any family of conjugates of E
lies in M (C, V ), and hence, the minimality assumption on the order of E forces
any such intersection to be trivial, whenever it is a proper subgroup of E. So E
is a T.I. subgroup of G, as claimed.

Now E 5 G by Lemma 4.2. Hence 1 is an intersection of conjugates of E.
This implies that j0 = j1(V ) = 1. Let F be a G-conjugate of E, with F 6= E,
and hence F ∩ E = 1, since E is a T.I. subgroup of G. Moreover, we have
equalities jE(V ) = jF (V ) = j1(V ) = 1, and also jEF (V ) ≤ j0 = 1, as EF ≤ C
is elementary abelian. So from Lemma 3.1 we deduce that jEF (V ) = 1 and that
V = CV (1) = CV (E) + CV (F ). So Lemma 4.3 shows that [V, E] ⊆ CV (H),
where H ≤ A is the normal closure of E in G. The same argument shows that
[V, F ] ⊆ CV (H) for every conjugate F of E. We therefore deduce that

[V, H ] ⊆ CV (H) . (3)

Now, H ∈ E (C), since E ∈ E (C) and C is a normal elementary abelian subgroup
of G. So H is itself a quadratic offender, by Eqn. (3). But H is also normal in G,
so H contradicts Lemma 4.2. �

Lemma 4.3. Let A be an abelian subgroup of a p-group G such that [A, B] = 1
for every G-conjugate B of A. Let V be an FpG-module such that [V, A, A] = 0
and V = CV (A)+CV (B) for every conjugate B 6= A of A. Then [V, A] ≤ CV (H),
where H is the normal closure of A in G.

Proof. It suffices to show that [V, A] ≤ CV (B) for every G-conjugate B of A, since
CV (H) is the intersection of all the CV (B). For B = A, we have [V, A, A] = 0,
by assumption. For B 6= A, let v ∈ V , a ∈ A and b ∈ B. By hypothesis, there is
a decomposition v = u + w with u ∈ CV (A) and w ∈ CV (B). Thus,

[v, a, b] = [u, a, b] + [w, a, b] = [w, a, b] = w ∗ (a − 1)(b − 1) = w ∗ (b − 1)(a − 1) ,

and so [v, a, b] = [w, b, a] = 0, as was left to be shown. �

5. Central series

Recall the following terminology. Given a finite group G, the ascending central
series is defined inductively by Z0(G) = 1 and Zr+1(G) is the normal subgroup
of G containing Zr(G) and such that Zr+1(G)/Zr(G) = Z(G/Zr(G)), for all
r ≥ 1. The descending central series is given by K1(G) = G and inductively
Kr+1(G) = [Kr(G), G], for all r ≥ 1. The class n of G is the smallest number
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such that Zn(G) = G. This is also the smallest number such that Kn+1(G) = 1.
Note that if the class is n, then

Kn+1−r(G) ≤ Zr(G) (0 ≤ r ≤ n). (4)

Further details are given in [9, III.1], or also [2, (8.7)], where Kr(G) is denoted
by Lr(G). From the Three Subgroups Lemma ([2, (8.7)]), we have

[Kr(G), Ks(G)] ≤ Kr+s(G) . (5)

We shall make repeated use of the following lemma from [8]:

[8], Lemma 4.1. Suppose that p is an odd prime, that G 6= 1
is a finite p-group, and that V is a faithful FpG-module. Suppose
that A, B ∈ G are such that C := [A, B] is a non-trivial element
of CG(A, B). If C is non-quadratic, then so are A and B.

Lemma 5.1. Let G be a p-group of class n, let V be a faithful FpG-module,
and suppose that E is a quadratic offender. If 2r ≥ n and Kr+1(G) contains no
quadratic elements, then

[Kr(G), E] = 1 .

In particular if n ≥ 4 and there are no quadratic elements in Ω1(Z(G)), then

[Kn−2(G), E] = 1 .

Remark. The last part has no meaning for n ≤ 2, and the example discussed in
[8, §5] shows that it is false for n = 3.

Proof. We prove the first part by induction, starting with r = n and working
downwards. We have [Kn(G), E] ≤ Kn+1(G) = 1, by Equation (5), and so the
claim holds for r = n. Now, let n

2
≤ r < n and suppose that [Kr+1(G), E] = 1. If

[Kr(G), E] 6= 1, then there are a ∈ Kr(G) and e ∈ E with c := [a, e] 6= 1. Since
c ∈ Kr+1(G), we have [c, a] ∈ [Kr+1(G), Kr(G)] ≤ K2r+1(G) ≤ Kn+1(G) = 1.
Moreover, [c, e] = 1 since c ∈ Kr+1(G) and the inductive hypothesis states that
[Kr+1(G), E] = 1. In other words, we have 1 6= c = [a, e] with e quadratic and
[c, a] = [c, e] = 1. But then, [8, Lemma 4.1] says that c is quadratic, which
contradicts the assumption that no quadratic element lies in Kr+1(G).

For the second part, if n ≥ 4, we have 2r ≥ n for r = n−2. So, it is enough to
show that Kn−1(G) contains no quadratic element. As recalled above, there is an
inclusion Kn−1(G) ≤ Z2(G). By [8, Lemma 4.1], since Ω1(Z(G)) does not contain
any quadratic elements, there are no quadratic elements in Z2(G) either. �

Theorem 5.2. Suppose that G is a p-group and V is a faithful FpG-module
such that Ω1(Z(G)) has no quadratic elements. If G has class at most four then
V cannot be an F -module.

Proof. Recall that V is an F -module if and only if P(G, V ) is not empty. By
definition of P(G, V ), every offender contains an element of P(G, V ), and by
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Timmesfeld’s replacement theorem (Lemma 4.1), every offender contains a qua-
dratic offender which lies in P(G, V ). It therefore suffices to prove that there
are no quadratic offenders. Let E ∈ E (G). From part (2) of Theorem 1.4, we
have [G′, E] 6= 1 if E is a quadratic offender.

If G has class three or less, then [G′, E] ≤ Z(G). Since Ω1(Z(G)) contains
no quadratic elements, neither does the setwise commutator [G′, E]. Thus, [8,
Lemma 4.1] shows that E is not a quadratic offender.

Now assume the class is four. In this case we have G′ = K2(G) = K4−2(G)
and so [G′, E] = 1 by Lemma 5.1. So, E is not a quadratic offender. �

6. Metabelian groups

Recall that a group is metabelian if and only if its derived subgroup is abelian.
In this section we will need the following well-known result:

Lemma 6.1. Suppose that G is a finite group and that A is an abelian normal
subgroup such that G/A is cyclic, generated by the coset xA of x ∈ G. Then
G′ = {[a, x] | a ∈ A}.

Proof. This is Lemma 4.6 of Isaacs’ book [10], or more precisely the equality
θ(A) = G′ in the proof. It is also Aufgabe 2 a) on p. 259 of Huppert’s book [9]. �

Theorem 6.2. Suppose that G is a p-group and V is a faithful FpG-module such
that Ω1(Z(G)) has no quadratic elements. If the derived subgroup G′ is abelian,
then V cannot be an F -module.

Proof. As noted in the proof of Theorem 5.2, if V is an F -module then there is
a quadratic offender E. From Part (2) of Theorem 1.4, we then have [G′, E] 6= 1.
So, there is an a ∈ E with [G′, a] 6= 1. The subgroup K := G′〈a〉 of G is
a non-abelian normal subgroup of G. In particular, K ′ ∩ Ω1(Z(G)) > 1. Let
c ∈ K ′∩Ω1(Z(G)) be a non-identity element. By Lemma 6.1 there is an element
b ∈ G′ with c = [b, a]. So c must be quadratic by [8, Lemma 4.1], since a is
quadratic and c is central. But that cannot be, for c lies in Ω1(Z(G)) and is
therefore non-quadratic by assumption. �

Corollary 6.3. Suppose that G is a p-group and V is a faithful FpG-module such
that Ω1(Z(G)) has no quadratic elements. Suppose that G has an abelian normal
subgroup A E G such that G/A is abelian too. Then V cannot be an F -module.

Proof. As G/A is abelian, we have G′ ≤ A and hence G′ is abelian. �

7. Maximal class

Lemma 7.1. Let G be a finite p-group of maximal class. Then the p-rank of G
is at most p. Moreover, if p is odd, only the wreath product Cp ≀Cp has p-rank p.
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Remark. This fact does not appear to be generally known. However, we believe
that it is remarked in passing by Berkovich [3].

Let us also point out that the definition of p-groups of maximal class may vary.
Indeed, in [9], Huppert allows abelian groups of order p2 to be of maximal class,
whereas in [11] Leedham-Green and McKay stipulate that groups of maximal
class have order at least p4. We follow Huppert’s conventions.

Proof. Let G be a finite p-group of order pn and maximal class n − 1. First we
consider the small cases with n ≤ p + 1. An abelian group of order p2 has p-rank
at most two. A nonabelian group of order 8 can have 2-rank at most two. If
p is odd and G is nonabelian with an elementary abelian subgroup of rank p,
then its order must be at least pp+1. So to finish off the cases with n ≤ p + 1,
we just need to consider the case where p is odd, n = p + 1 and G contains an
elementary abelian subgroup V of rank p. As G is not abelian, the p-rank of
G is p. As V has index p in G, it is normal and the factor group G/V has order
p. Since G has class p, the group G/V acts on V as one (p × p)-Jordan block
with eigenvalue 1. Let a ∈ G \ V . Then, a acts on V with minimal polynomial
(x−1)p and G = 〈V, a〉. Note that ap ∈ V lies in the one-dimensional eigenspace,
i.e. the center Z(G) of G. So replacing a by ab for a suitably chosen element
b of the set-theoretic difference V \ [V, a], we may assume that ap = 1. Hence the
extension splits, and G is isomorphic to the wreath product Cp ≀ Cp.

From now on we assume that |G| = pn with n ≥ p + 2, and we appeal to the
following results of [9, III]. By 14.16 Satz, we have that G1 = CG(K2(G)/K4(G))
is regular, and that |G1 : ℧1(G1)| = pp−1, and so, by 10.7 Satz, |Ω1(G)| = pp−1.
Thus, if G contains an elementary abelian subgroup V of rank p, then V contains
some g ∈ G \G1. It is hence enough to show that no element of order p in G \G1

has a centralizer of p-rank greater than p − 1. By 14.6 Hauptsatz b), G is not
exceptional, as n ≥ p+2. Recall that by 14.5 Definition, exceptional groups arise
for n ≥ 5, whence this result is relevant only for n ≥ p + 2 and for p odd. Now,
we apply 14.13 Hilfsatz b), which states that if g ∈ G \ G1, then |CG(g)| = p2.
Consequently, G has at most rank p − 1. �

8. Rank p

Theorem 8.1. Suppose that p is odd, that G is a p-group, and that V is a faithful
FpG-module such that every non-identity element of Ω1(Z(G)) acts with minimal
polynomial Xp−1. If the p-rank of G is at most p, then V cannot be an F -module.

Recall that the condition that every element of Ω1(Z(G)) acts with minimal
polynomial Xp − 1 is condition (PS) of [8].

Proof. Suppose that V is an F -module. By Lemma 4.1, P(G, V ) contains a
quadratic offender E. Since E ∩ Z(G) = 1 and G has rank p, the rank of E can
be at most p−1. So by Lemma 8.2 below, the rank of E is exactly p−1. Moreover,
the normal closure F of E in NG(NG(E)) is elementary abelian of rank p, since
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it is strictly larger than E. Pick h ∈ NG(NG(E)) \ NG(E). Then Eh 6= E, so
F = 〈E, Eh〉. Moreover E ∩ Eh must have size at least pp−2 and is therefore
nontrivial. Pick 1 6= c ∈ Eh ∩ E. By Lemma 8.2 Eqn. (6), this means that
CV (E) = CV (c) = CV (Eh) and therefore CV (F ) = CV (E). So given that jE(V ) =
1, the definition of jF means that jF (V ) = p. But this contradicts Timmesfeld’s
replacement theorem (Lemma 4.1), as there is no quadratic offender H with
jH(V ) = p. �

Lemma 8.2. Suppose that p is odd, that G is a p-group, and that V is a faithful
FpG-module such that every non-identity element of Ω1(Z(G)) acts with minimal
polynomial Xp − 1.

(1) If E ∈ E (G) is an offender, then its rank is at least p − 1.
(2) If E ∈ E (G) is a rank p− 1 offender, then E is a quadratic offender and

lies in P(G, V ). Moreover, jE(V ) = 1; we have

CV (g) = CV (E) for every 1 6= g ∈ E; (6)

and the normal closure F of E in NG(NG(E)) is elementary abelian with
F > E.

Proof. Every offender contains an element of P(G, V ), which in turn contains a
quadratic offender. So minimal elements of the poset of offenders are quadratic
and lie in P(G, V ). So it is enough to consider the case of a quadratic offender E.

For all g ∈ E the subspace CV (g) of V is Z(G)-invariant: if z ∈ Z(G) and
v ∈ CV (g) then

[v ∗ z, g] = v ∗ z ∗ (g − 1) = v ∗ (g − 1) ∗ z = 0 .

Now choose a non-identity element g ∈ E, and let i be the smallest integer such
that [V, Z(G); i] ⊆ CV (g). We claim that [V, Z(G); i] ⊆ CV (gh) for every h ∈ G.
To see this, note that [V, Z(G); i] is an invariant subspace of V , and therefore
[V, Z(G); i] ∗ h−1 = [V, Z(G); i]. Hence

[[V, Z(G); i], gh] = [V, Z(G); i] ∗ h−1 ∗ (g − 1) ∗ h = [V, Z(G); i] ∗ (g − 1) ∗ h = 0 .

This means that [V, Z(G); i] ⊆ CV (H), where H is the normal closure of 〈g〉 in G.
So H∩Ω1(Z(G)) 6= 1, and for any z ∈ H∩Ω1(Z(G)) we have that [V, z; i+1] = 0.
The minimal polynomial assumption on Ω1(Z(G)) therefore implies that i+1 ≥ p:
and so the definition of i means that |V : CV (g)| ≥ pp−1. As CV (E) ⊆ CV (g), it
follows that |V : CV (E)| ≥ pp−1. But |E| = jE(V ) |V : CV (E)|, and jE(V ) ≥ 1
since E is an offender. This proves the first part.

Second part: If E is a rank p − 1 offender, then it is minimal in the poset of
offenders, therefore quadratic and a member of P(G, V ). The proof of the first
part shows Eqn. (6). It also shows that jE(V ) = 1 and that |V : CV (E)| = pp−1.

Set N = NG(E). Observe that NG(N) > N , since E 5 G by Lemma 4.2. This
shows that F > E. Pick g, h ∈ NG(N) with Ng 6= Nh. Then Eg, Eh ≤ N ; and as
NG(Eg) = NG(E)g = N , we see that Eg, Eh normalize each other. If they always
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centralize each other, then F is indeed elementary abelian, since it is generated
by all such Eg. So suppose a ∈ Eg, b ∈ Eh have nontrivial commutator c = [a, b].
As Eg, Eh normalize each other, we have c ∈ Eg∩Eh. Since Eg, Eh are rank p−1
offenders, it follows by Eqn. (6) that CV (a) = CV (c) = CV (b). So [a, b] = 1 by
Lemma 8.3 below, a contradiction. �

Lemma 8.3. Let G be a p-group and V is a faithful FpG-module. Suppose that
a, b ∈ G satisfy either of the following conditions:

(1) a, b are quadratic, and CV (a) = CV (b); or
(2) [V, a] ⊆ CV (b) and [V, b] ⊆ CV (a).

Then [a, b] = 1.

Proof. Recall that [V, a] ⊆ CV (a), for any quadratic element a ∈ G. So [V, a] ⊆
CV (b) and [V, b] ⊆ CV (a) do hold if a, b are quadratic and have the same central-
izer in V . That is, the first case is a consequence of the second one.

In the second case we have [V, a, b] = [V, b, a] = 0, using additive notation in
the FpG-module V . Hence, a routine computation yields [V, [a, b]] = 0. Since V
is faithful, we deduce that [a, b] = 1, as claimed. �
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