
ar
X

iv
:0

81
2.

13
63

v3
  [

m
at

h.
A

P
]  

6 
S

ep
 2

00
9

Semigroup analysis of structured parasite populations
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Abstract. Motivated by structured parasite populations in aquaculture we consider a class of1

size-structured population models, where individuals maybe recruited into the population with2

distributed states at birth. The mathematical model which describes the evolution of such a pop-3

ulation is a first-order nonlinear partial integro-differential equation of hyperbolic type. First, we4

use positive perturbation arguments and utilise results from the spectral theory of semigroups to5

establish conditions for the existence of a positive equilibrium solution of our model. Then, we6

formulate conditions that guarantee that the linearised system is governed by a positive quasicon-7

traction semigroup on the biologically relevant state space. We also show that the governing linear8

semigroup is eventually compact, hence growth properties of the semigroup are determined by the9

spectrum of its generator. In the case of a separable fertility function, we deduce a characteristic10

equation, and investigate the stability of equilibrium solutions in the general case using positive11

perturbation arguments.12
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1. Introduction15

In this paper, we study the following partial integro-differential equation16

∂

∂t
p(s, t) +

∂

∂s
(γ(s, P (t))p(s, t)) = −µ(s, P (t))p(s, t) +

∫ m

0

β(s, y, P (t))p(y, t) dy, (1.1)

γ(0, P (t))p(0, t) = 0, (1.2)

p(s, 0) = p0(s), P (t) =

∫ m

0

p(s, t) ds. (1.3)

Here the functionp = p(s, t) denotes the density of individuals of size (or other developmental17

stage)s at timet with m being the finite maximal size any individual may reach in its lifetime.18

Vital ratesµ ≥ 0 andγ ≥ 0 denote the mortality and growth rates of individuals, respectively, and19

both depend on both sizes and on the total population sizeP (t). It is assumed that individuals20

may have different sizes at birth and thereforeβ(s, y, · ) denotes the rate at which individuals of21

sizey give rise to individuals of sizes. The non-local integral term in (1.1) represents reproduction22

of the population without external driving of the population through immigration. We make the23

following general assumptions on the model ingredients24

µ ∈ C1([0, m] × [0,∞)), β ∈ C1([0, m] × [0, m] × [0,∞))

β, µ ≥ 0, γ ∈ C1([0, m] × [0,∞)), γ > 0. (1.4)

Our motivation to investigate model (1.1)-(1.3) is the modelling of structured parasite popu-25

lations in aquaculture. In particular we are interested in parasites of farmed and wild salmonid26

fish that have particular relevance both industrially and commercially to the UK. These species27

are subject to parasitism from a number of copepod (crustacean) parasites of the family Caligi-28

dae. These sea louse parasites are well studied with a large literature: below we draw attention to29

some recent key review papers. Sea lice cause reduced growthand appetite, wounding, and sus-30

ceptibility to secondary infections [5], resulting in significant damage to crops and therefore they31

are economically important. For salmon, louse burden in excess of 0.1 lice per gram of fish can32

be considered pathogenic [5]. The best studied species isLepeophtheirus salmonis, principally a33

parasite of salmonids and frequent parasite on British Atlantic salmon (Salmo salar) farms [22]. It34

also infects sea trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss). The life history of35

the parasite is direct, with no requirement for intermediate hosts. It involves a succession of ten36

distinct developmental stages, separated by moults, from egg to adult. Initialnaupliar andcope-37

podid stages are free living and planktonic. Following attachment of the infectious copepodid to38
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a host, the parasite passes through fourchalimusstages that are firmly attached to the host, before39

entering sexually dimorphicpre-adultandadult stages where the parasite can once again move40

over the host surface and transfer to new hosts.41

The state of the art for population-level modelling ofL. salmonisis represented by Revieet42

al. [20]. These authors presented a series of delay-differential equations to model different life-43

history stages and parameterised the model using data collected at Scottish salmon farms. A similar44

compartmental model was proposed by Tuckeret al. [21]. The emphasis of these papers was not45

however, in analytical study, but on numerical simulation and parameterisation using field [20] and46

laboratory [21] data. An earlier model by Heuch & Mo [13] investigated the infectivity, in term of47

L. salmonisegg production, posed by the Norwegian salmon industry, using a simple deterministic48

model. Other authors have considered the potential for long-distance dispersal of mobile parasite49

stages through sea currents [18], looking at Loch Shieldaigin NW Scotland, a long-term study site50

for sea louse research.51

In this paper, we focus on the dynamics of inviduals at the chalimus to adult stages. Though52

individuals pass through a series of discrete growth stagesby moulting, this outward punctuated53

growth disguises a physiologically more smooth growth process in terms of the accumulation of54

energy, and by ‘size’ in this paper we presume accumulation of energy, rather than physical dimen-55

sion. Sea lice reproduce sexually; however at the chalimus stage individuals are not yet sexually56

differentiated. Fertility rates thus must be considered asapplying to the population as a whole,57

rather than as is usually the case the female fraction of the population. Individuals entering the58

first chalimus stage from the non-feeding planktonic stagesare distributed over different sizes,59

hence we have the zero influx boundary condition (1.2) and therecruitment term in (1.1). Our60

aim here is to present a preliminary step towards the analysis of the more complex problem of61

modelling the whole life cycle of sea lice by giving a mathematical treatment of a quite general62

scramble competition model with distributed states-at-birth. We use the term scramble competition63

to describe the scenario where individuals have equal chance when competing for resources such64

as food (see e.g. [6]). Therefore all vital rates, i.e. growth, fertility and mortality depend on the65

total population size of competitors. In other populations, such as a tree population or a cannibalis-66

tic population, there may be a natural hierarchy among individuals of different sizes, which results67

in mathematical models incorporating infinite-dimensional nonlinearities, see e.g. [10, 11]. The68

analysis presented in this paper could be extended to these type of models and also to other models69

such as those that involve a different type of recruitment term.70

Here, we consider the asymptotic behaviour of solutions of model (1.1)-(1.3). Our analysis71

is based on linearisation around equilibrium solutions (see e.g. [10, 19]) and utilises well-known72
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results from linear operator theory that can be found for example in the excellent books [1, 4, 9].73

We also utilise some novel ideas on positive perturbations of linear operators. For basic concepts74

and results from the theory of structured population dynamics we refer the interested reader to75

[6, 14, 17, 23].76

Traditionally, structured population models have been formulated as partial differential equa-77

tions for population densities. However, the recent unifiedapproach of Diekmannet al., making78

use of the rich theory of delay and integral equations, has been resulted in significant advances.79

The Principle of Linearized Stability has been proven in [7,8] for a wide class of physiologically80

structured population models formulated as delay equations (or abstract integral equations). It is81

not clear yet whether the models formulated in [7, 8] as delayequations are equivalent to those82

formulated as partial differential equations.83

In the remarkable paper [3], Calsina and Saldaña studied the well-posedness of a very general84

size-structured model with distributed states-at-birth.They established the global existence and85

uniqueness of solutions utilising results from the theory of nonlinear evolution equations. Model86

(1.1)-(1.3) is a special case of the general model treated in[3], however, in [3] qualitative questions87

were not addressed. In contrast to [3], our paper focuses on the existence and local asymptotic88

stability of equilibrium solutions of system (1.1)-(1.3) with particular regards to the effects of89

distributed states-at-birth compared to more simple models we addressed previously, e.g. in [10].90

First, we establish conditions in Theorem 6 that guarantee the existence of equilibrium solutions,91

in general. Then, we show in Theorem 8 that a positive quasicontraction semigroup describes92

the evolution of solutions of the system linearized at an equilibrium solution. Next, we establish93

a further regularity property in Theorem 12 for the governing linear semigroup, which allows94

one to investigate the stability of positive equilibrium solutions of (1.1)-(1.3). We use rank-one95

perturbations of the general recruitment term to arrive at stability/instability conditions for the96

equilibria. Finally we briefly discuss the positivity of thegoverning linear semigroup.97
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2. Existence of equilibrium solutions98

Model (1.1)-(1.3) admits the trivial solution. If we look for positive time-independent solutions of99

(1.1)-(1.3) we arrive at the following integro-differential equation100

γ(s, P∗)p
′
∗(s) +

(
γs(s, P∗) + µ(s, P∗)

)
p∗(s) =

∫ m

0

β(s, y, P∗)p∗(y) dy (2.1)

γ(0, P∗)p∗(0) = 0, P∗ =

∫ m

0

p∗(s) ds. (2.2)

2.1. Separable fertility function101

In the special case of102

β(s, y, P ) = β1(s, P )β2(y), s, y ∈ [0, m], P ∈ (0,∞), (2.3)

where the distribution of offspring sizes is dependent uponthe level of competitionP , but the103

mature size at which individuals reproduce is not, equation(2.1) reduces to104

γ(s, P∗)p
′
∗(s) +

(
γs(s, P∗) + µ(s, P∗)

)
p∗(s) = β1(s, P∗)P ∗, (2.4)

where105

P ∗ =

∫ m

0

β2(y)p∗(y) dy.

The solution of (2.4) satisfying the initial condition in (2.2) is readily obtained as106

p∗(s) = P ∗F (s, P∗)

∫ s

0

β1(y, P∗)

F (y, P∗)γ(y, P∗)
dy, (2.5)

where107

F (s, P∗) = exp

{
−

∫ s

0

γs(y, P∗) + µ(y, P∗)

γ(y, P∗)
dy

}
.

Multiplying equation (2.5) byβ2 and integrating from0 to m yields the following necessary con-108

dition for the existence of a positive equilibrium solution109

1 =

∫ m

0

β2(s)F (s, P∗)

∫ s

0

β1(y, P∗)

F (y, P∗)γ(y, P∗)
dy ds. (2.6)

5
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Therefore we define a net reproduction functionR as follows110

R(P ) =

∫ m

0

∫ s

0

β1(y, P )β2(s)

γ(s, P )
exp

{
−

∫ s

y

µ(z, P )

γ(z, P )
dz

}
dy ds. (2.7)

It is straightforward to show that for every positive valueP∗ for which R(P∗) = 1 holds, formula111

(2.5) yields a unique positive stationary solutionp∗, whereP ∗ may be determined from equation112

(2.5) as113

P ∗ =
P∗∫ m

0
F (s, P∗)

∫ s

0
β1(y,P∗)
F (y,P∗)

dy ds
.

Then it is straightforward to establish the following result.114

Proposition 1. Assume that the fertility functionβ satisfies(2.3)and that the following conditions115

hold true116

β(s, y, 0) > µ(s, 0), s, y ∈ [0, m], P ∈ (0,∞);

∫ m

0

exp

{
−

∫ s

0

µ(y, 0)

γ(y, 0)
dy

}
ds < m − 1,

(2.8)
∫ m

0

β1(s, P ) ds → 0 as P → ∞, and 0 < γ∗ ≤ γ(s, P ), s ∈ [0, m], P ∈ (0,∞).

(2.9)

Then model(1.1)-(1.3)admits at least one positive equilibrium solution.117

Proof. Condition (2.8) implies118

R(0) =

∫ m

0

exp

{
−

∫ s

0

µ(y, 0)

γ(y, 0)
dy

}∫ s

0

β2(s)β1(y, 0)

γ(y, 0)
exp

{∫ y

0

µ(z, 0)

γ(z, 0)
dz

}
dy ds

>

∫ m

0

exp

{
−

∫ s

0

µ(y, 0)

γ(y, 0)
dy

}∫ s

0

(
exp

{∫ y

0

µ(z, 0)

γ(z, 0)
dz

})′

dy ds

> 1. (2.10)

Condition (2.9) and the growth behaviour of the functions in(2.7) imply that119

lim
P→+∞

R(P ) = 0,

hence the claim holds true on the grounds of the IntermediateValue Theorem. 2120
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2.2. The general case121

For a fixedP ∈ (0,∞) we define the operatorBP by122

BP u = −
∂

∂s
(γ(·, P )u)− µ(·, P )u +

∫ m

0

β(·, y, P )u(y) dy,

Dom(BP ) =
{
u ∈ W 1,1(0, m) | u(0) = 0

}
. (2.11)

Our goal is to show that there exists aP∗ such that the operatorBP∗
has eigenvalue0 with a123

corresponding unique positive eigenvector. To this end, first we establish thatBP is the generator of124

a positive semigroup. Then we determine conditions that guarantee that it generates an irreducible125

semigroup. We also establish that the governing linear semigroup is eventually compact, which126

implies that the Spectral Mapping Theorem holds true for thesemigroup and its generator, and the127

spectrum of the generator may contain only isolated eigenvalues of finite algebraic multiplicity (see128

e.g. [9]). It then follows that the spectral bound is a dominant (real) eigenvalueλP of geometric129

mulitplicity one with a corresponding positive eigenvector [4, Chapter 9]. Finally we need to130

establish conditions which imply that there exist aP+ ∈ (0,∞) such that the spectral bound131

s(BP+) is negative and therefore the dominant eigenvalueλP+ = s(BP+) is also negative; and a132

P− ∈ (0,∞) such that this dominant eigenvalueλP− = s(BP−) is positive. Then it follows from133

standard perturbation results on eigenvalues (see e.g. [15]) that there exists a zero eigenvalue. A134

similar strategy was employed in [2] to establish the existence and uniqueness of an equilibrium135

solution of a cyclin structured cell population model.136

Lemma 2. For everyP ∈ (0,∞) the semigroupT (t) generated by the operatorBP is positive.137

Proof. We rewrite (2.11) as,BP = AP + CP , where138

AP u = −
∂

∂s
(γ(·, P )u) − µ(·, P )u

Dom(AP ) =
{
u ∈ W 1,1(0, m) | u(0) = 0

}
,

CP u =

∫ m

0

β(·, y, P )u(y) dy,

Dom(CP ) = L1(0, m). (2.12)

For0 ≤ f ∈ L1(0, m) the solution of the resolvent equation139

(λI −AP )u = f,

7
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is140

u(s) =

∫ s

0

exp

{
−

∫ s

y

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
f(y)

γ(y, P∗)
dy.

This shows that the resolvent operatorR(λ,AP ) is a positive bounded operator, henceAP gene-141

rates a positive semigroup. SinceCP is a positive and bounded operator, the statement follows.2142

143

Lemma 3. The linear semigroupT (t) generated by the operatorBP is eventually compact.144

Proof. We note thatAP generates a nilpotent semigroup, while it is easily shown that CP is a145

compact operator if conditions (1.4) hold true. (For more details see also Theorem 12.) 2146

Lemma 4. Assume that for everyP ∈ (0,∞) there exists anε0 > 0 such that for all0 < ε ≤ ε0147

∫ ε

0

∫ m

m−ε

β(s, y, P ) dy ds > 0. (2.13)

Then the linear semigroupT (t) generated by the operatorBP is irreducible.148

Proof. We only need to show that under condition (2.13) for everyp0 ∈ L1
+(0, m) there exists at0149

such that150

supp T (t0)p0 = [0, m],

for all t ≥ t0. Sinceγ > 0, there existt∗ such that151

supp T (t)p0 ∩ supp β(s, · ) 6= ∅

for every t∗ ≤ t and everys ∈ (0, ε]. By assumption (2.13),T (t)p0(s) > 0 for t∗ ≤ t and152

s ∈ (0, ε]. After this, eventually the support of the solutionT (t0)p0 will cover the entire size space153

[0, m]. 2154

Lemma 5. Assume that there exists aβ−(s, y, P ) = β−
1 (s, P )β−

2 (y) and aP− ∈ (0,∞) such that155

β−
1 (s, P−)β−

2 (y) ≤ β(s, y, P−), s, y ∈ [0, m], (2.14)

and156

∫ m

0

∫ s

0

β−
1 (y, P−)β−

2 (s)

γ(y, P−)
exp

{
−

∫ s

y

γs(z, P
−) + µ(z, P−)

γ(z, P−)
dz

}
dy ds > 1, (2.15)

8
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and aβ+(s, y, P ) = β+
1 (s, P )β+

2 (y) and aP+ ∈ (0,∞) such that157

β(s, y, P +) ≤ β+
1 (s, P+)β+

2 (y), (2.16)

and158

∫ m

0

∫ s

0

β+
1 (y, P +)β−

2 (s)

γ(y, P +)
exp

{
−

∫ s

y

γs(z, P
+) + µ(z, P+)

γ(z, P+)
dz

}
dy ds < 1. (2.17)

Then the operatorBP− has a dominant real eigenvalueλP− > 0 and the operatorBP+ has a159

dominant real eigenvalueλP+ < 0, with corresponding positive eigenvectors.160

Proof. First assume that there exists aβ−(s, y, P ) = β−
1 (s, P )β−

2 (y) and aP− such that conditions161

(2.14) and (2.15) hold true. LetB−
P−

denote the operator that corresponds to the fertilityβ− and162

the constantP−. The solution of the eigenvalue problem163

B−
P−

u = λu, u(0) = 0 (2.18)

is164

u(s) =

∫ m

0

β−
2 (s)u(s) ds

∫ s

0

β−
1 (y, P−)

γ(y, P−)
exp

{
−

∫ s

y

λ + γs(z, P
−) + µ(z, P−)

γ(z, P−)
dz

}
dy.

(2.19)

We multiply equation (2.19) byβ−
2 and integrate from0 tom to arrive at the characteristic equation165

1 =

∫ m

0

β−
2 (s)

∫ s

0

β−
1 (y, P−)

γ(y, P−)
exp

{
−

∫ s

y

λ + γs(z, P
−) + µ(z, P−)

γ(z, P−)
dz

}
dy ds. (2.20)

Equation (2.20) admits a unique dominant real solutionλ−
P−

> 0 if condition (2.15) holds true.166

SinceB−
P−

is a generator of a positive semigroup and(BP− − B−
P−

) is a positive (and bounded)167

operator by condition (2.14), it follows thatBP− has a dominant real eigenvalueλP− ≥ λ−
P−

> 0,168

see e.g. [9, Corollary VI.1.11].169

In a similar way, let us assume that there exists aβ+(s, y, P ) = β+
1 (s, P )β+

2 (y) and aP+ such170

that condition (2.16) and (2.17) hold true. LetB+
P+ denote the operator which corresponds to the171

fertility β+ and the constantP+. The solution of the eigenvalue problem172

B+
P+u = λu, u(0) = 0 (2.21)

9



J. Z. Farkas et al. Semigroup analysis of structured parasite populations

is now173

u(s) =

∫ m

0

β+
2 (s)u(s) ds

∫ s

0

β+
1 (y, P +)

γ(y, P +)
exp

{
−

∫ s

y

λ + γs(z, P
+) + µ(z, P+)

γ(z, P+)
dz

}
dy.

(2.22)

We multiply equation (2.22) byβ+
2 and integrate from0 tom to arrive at the characteristic equation174

1 =

∫ m

0

β+
2 (s)

∫ s

0

β+
1 (y, P +)

γ(y, P +)
exp

{
−

∫ s

y

λ + γs(z, P
+) + µ(z, P+)

γ(z, P+)
dz

}
dy ds. (2.23)

Equation (2.23) admits a unique dominant real solutionλ+
P+ < 0 if condition (2.17) holds true.175

SinceBP+ is a generator of a positive semigroup and(B+
P+ − BP+) is a positive operator by176

condition (2.16), it follows thatBP+ has a dominant real eigenvalueλP+ ≤ λ+
P+ < 0.177

In both cases, the positivity of the corresponding eigenvector follows from the irreducibility of178

the semigroupT (t), see [4, Theorem 9.11]. 2179

Theorem 6. Assume that conditions(2.13), (2.14)-(2.17) are satisfied. Then system(1.1)-(1.3)180

admits at least one positive equilibrium solution.181

Proof. Let P ∗ > 0 be such thats(B∗
P ) = 0. Then, since the spectrum consists only of isolated182

eigenvalues we haveλP ∗ = s(BP ∗) = 0 and there exists a corresponding positive eigenvectorp∗.183

Then P ∗

||p∗||1
p∗ is the desired equilibrium solution with total population sizeP ∗. 2184

3. The linearised semigroup and its regularity185

Here, when we use the term ‘linearised semigroup’, we refer to the linear semigroup governing186

the linearised system. However, since it was proved in [3] that model (1.1)-(1.3) is well-posed,187

there exists a semigroup of nonlinear operatorsΣ(t)t≥0 defined viaΣ(t)p(s, 0) = p(s, t). It was188

proven in [8] that if the nonlinearities are smooth enough (namely, the vital rates are differentiable)189

then this nonlinear semigroupΣ(t) is Frechét differentiable and the Frechét derivative around an190

equilibrium solutionp∗ defines a semigroup of bounded linear operators. In this section we will191

establish the existence of this semigroup and at the same time arrive at a condition which guarantees192

that it is positive.193

Given a positive stationary solutionp∗ of system (1.1)-(1.3), we introduce the perturbation194

u = u(s, t) of p by making the ansatzp = u+p∗. A Taylor series expansion of the vital rates gives195

10
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the linearised problem (see e.g. [10])196

ut(s, t) = −γ(s, P∗) us(s, t) − (γs(s, P∗) + µ(s, P∗)) u(s, t)

− (γsP (s, P∗) p∗(s) + µP (s, P∗) p∗(s) + γP (s, P∗) p∗
′(s)) U(t)

+

∫ m

0

u(y, t)

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz

)
dy, (3.1)

γ(0, P∗)u(0, t) = 0 (3.2)

where we have set197

U(t) =

∫ m

0

u(s, t) ds. (3.3)

Eqs. (3.1)–(3.2) are accompanied by the initial condition198

u(s, 0) = u0(s). (3.4)

Our first objective is to establish conditions which guarantee that the linearised system is governed199

by a positive semigroup. To this end, we cast the linearised system (3.1)-(3.4) in the form of an200

abstract Cauchy problem on the state spaceX = L1(0, m) as follows201

d

dt
u = (A + B + C + D) u, u(0) = u0, (3.5)

where202

Au = −γ(·, P∗) us with domain Dom(A) =
{
u ∈ W 1,1(0, m) | u(0) = 0

}
, (3.6)

Bu = − (γs(·, P∗) + µ(·, P∗)) u onX , (3.7)

Cu = − (γsP (·, P∗) p∗ + µP (·, P∗) p∗ + γP (·, P∗) p′∗)

∫ m

0

u(s) ds

= −ρ∗(·)

∫ m

0

u(s) ds onX , (3.8)

Du =

∫ m

0

u(y)

(
β(·, y, P∗) +

∫ m

0

βP (·, z, P∗)p∗(z) dz

)
dy onX , (3.9)

whereρ∗ is defined via equation (3.8). Our aim is to establish that thelinear operatorA + B + C + D203

is a generator of a quasicontraction semigroup. To this end first we recall (see e.g. [1, 4, 9]) some204

basic concepts from the theory of linear operators acting onBanach spaces. LetO be a linear205

operator defined on the real Banach spaceY with norm ||.||. O is called dissipative if for every206

11
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λ > 0 andx ∈ Dom(O),207

||(I − λO)x|| ≥ ||x||.

Furthermore, a functionf : Y → R is called sublinear if208

f(x + y) ≤ f(x) + f(y), x, y ∈ Y

f(λx) = λf(x), λ ≥ 0, x ∈ Y .

If also f(x) + f(−x) > 0 holds true forx 6= 0 thenf is called a half-norm onY . The linear209

operatorO is calledf -dissipative if210

f(x) ≤ f(x − λOx), λ ≥ 0, x ∈ Dom(O).

An operatorO which isp-dissipative with respect to the half norm211

p(x) = ||x+||,

is called dispersive, wherex+ = x ∨ 0 (andx− = (−x)+). Finally aC0 semigroup{T (t)}t≥0 is212

called quasicontractive if213

||T (t)|| ≤ eωt, t ≥ 0,

for someω ∈ R, and it is called contractive ifω ≤ 0. We recall the following characterization214

theorem from [4].215

Theorem 7. LetY be a Banach lattice and letO : Dom(O) → Y be a linear operator. Then, the216

following statements are equivalent.217

(i) O is the generator of a positive contraction semigroup.218

(ii) O is densely defined, Rg(λI −O) = Y for someλ > 0, andO is dispersive.219

We also recall thatO is dispersive if for everyx ∈ Dom(O) there existsφ ∈ Y∗ with 0 ≤ φ,220

||φ|| ≤ 1 and(x, φ) = ||x+|| such that(Ox, φ) ≤ 0, where(· , ·) is the natural pairing between221

elements ofY and its dualY∗.222

Theorem 8. The operatorA+ B + C +D generates a positive strongly continuous (C0 for short)223

quasicontraction semigroup{T (t)}t≥0 of bounded linear operators onX if the following condition224

holds true225

ρ∗(s) ≤ β(s, y, P∗) +

∫ m

0

βP (s, y, P∗)p∗(y) dy, s, y ∈ [0, m], (3.10)
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whereρ∗ is defined via equation(3.8).226

Proof. Our aim is to apply the previous characterization theorem for the perturbed operator227

A + B + C + D − ωI, for someω ∈ R. To this end, for everyu ∈ Dom(A + B + C + D − ωI)228

we defineφu ∈ X ∗ by229

φu(s) =
u+(s)

|u(s)|
, s ∈ [0, m], u(s) 6= 0, (3.11)

if u(s) = 0 then letφu(s) = 0. Then230

||φu||∞ ≤ 1,

and clearly231

(u, φu) =

∫ m

0

u(s)φu(s) ds = ||u+||1.

Making use of condition (3.10) we obtain the following estimate.232

((A + B + C + D − ωI)u, φu)

= −

∫ m

0

1u+(s)
(
γ(s, P∗)u(s)

)
s
ds −

∫ m

0

1u+(s) µ(s, P∗)u(s) ds −

∫ m

0

1u+(s) ω u(s) ds

+

∫ m

0

1u+(s)

∫ m

0

u(y)

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz − ρ∗(s)

)
dy ds

≤ −

∫ m

0

1u+(s)
(
γ(s, P∗)u(s)

)
s
ds − ω||u+||1 − inf

s∈[0,m]
µ(s, P∗) ||u

+||1

+ ||u+||1

∣∣∣∣∣

∣∣∣∣∣ sup
y∈[0,m]

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz − ρ∗(s)

)∣∣∣∣∣

∣∣∣∣∣
∞

≤ −ω||u+||1 − (γ(m, P∗)u(m))1u+(m)

+ ||u+||1

∣∣∣∣∣

∣∣∣∣∣ sup
y∈[0,m]

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz − ρ∗(s)

)∣∣∣∣∣

∣∣∣∣∣
∞

≤ 0, (3.12)

for someω ∈ R large enough, hence the operatorA + B + C + D−ωI is dispersive. The operator233

A + B + C + D − ωI is clearly densely defined. We observe that the equation234

(λI −A) u = h (3.13)
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for h ∈ X andλ > 0 sufficiently large has a unique solutionu ∈ Dom(A), given by235

u(s) = exp

{
−

∫ s

0

λ

γ(y, P∗)
dy

}∫ s

0

exp

{∫ y

0

λ

γ(z, P∗)
dz

}
h(y)

γ(y, P∗)
dy. (3.14)

The fact thatu ∈ Dom(A) is well defined by (3.14) follows from236

|u′(s)| ≤

∣∣∣∣
h(s)

γ(s, P∗)

∣∣∣∣+
λ

γ(s, P∗)

∫ m

0

exp

{
−

∫ s

y

λ

γ(z, P∗)
dz

}
|h(y)|

γ(y, P∗)
dy

≤

∣∣∣∣
h(s)

γ(s, P∗)

∣∣∣∣+ Mλ,

for λ large enough for someMλ < ∞, that isu ∈ W 1,1(0, m). SinceB + C + D−ωI is bounded,237

the range condition is satisfied. Theorem 7 gives thatA + B + C + D−ωI is a generator of a pos-238

itive contraction semigroup. Since the operatorωI is positive (clearly if the dispersivity estimate239

holds true with anω < 0 then it holds true with any otherω∗ > ω) a well-known perturbation result240

(see e.g. [9]) yields thatA + B + C + D is a generator of a positive quasicontraction semigroupT241

which obeys242

‖T (t)‖ ≤ eωt, t ≥ 0.

2243

Remark 9. The proof of Theorem 7 shows that if244

inf
s∈[0,m]

µ(s, P∗) >

∣∣∣∣∣

∣∣∣∣∣ sup
y∈[0,m]

(
β(s, y, P∗) +

∫ m

0

βP (s, z, P∗)p∗(z) dz − ρ∗(s)

)∣∣∣∣∣

∣∣∣∣∣
∞

holds, then the growth boundω0 of the semigroup is negative, hence the semigroup{T (t)}t≥0245

is uniformly exponentially stable (see e.g. [9]), i.e. the equilibrium p∗ is locally asymptotically246

stable.247

Remark 10. We note that the operatorA + B + C + D is in general a generator of aC0 quasicon-248

traction (but not positive) semigroup. The proof of this would utilise the Lumer-Phillips Theorem249

(see e.g. [1, 4, 9]) and goes along similar lines, obtaining adissipativity estimate in terms ofu250

rather thanu+, see e.g. [11]. This implies that the linearized problem(3.1)-(3.2) is well-posed.251
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Remark 11. Note that ifβ = β(s, y), µ = µ(s), γ = γ(s), i.e. model(1.1)-(1.3) is a linear one,252

then the biologically relevant conditionsµ, β ≥ 0 andγ > 0 imply that it is governed by a positive253

quasicontraction semigroup.254

Theorem 12. The semigroup{T (t)}t≥0 generated by the operatorA + B + C + D is eventually255

compact.256

Proof. C is a rank-one operator. Hence it is compact onX = L1(0, m). D is linear and bounded.257

Hence in view of the Fréchet-Kolmogorov compactness criterion in Lp we need to show that258

lim
t→0

∫ m

0

|Du(t + s) −Du(s)| ds = 0, uniformly in u,

for u ∈ B, whereB is the unit sphere ofL1(0, m). But this follows from the regularity assumptions259

we made onβ based on the following estimate260

|Du(s1) −Du(s2)| ≤ ||u||1

×

∣∣∣∣
∣∣∣∣β(s1, y, P∗) +

∫ m

0

βP (s1, z, P∗)p∗(z) dz − β(s2, y, P∗) +

∫ m

0

βP (s2, z, P∗)p∗(z) dz

∣∣∣∣
∣∣∣∣
∞

.

Therefore, it suffices to investigate the operatorA + B. To this end, we note that the abstract261

differential equation262
d

dt
u = (A + B) u (3.15)

corresponds to the partial differential equation263

ut(s, t) + γ(s, P∗) us(s, t) + (γs(s, P∗) + µ(s, P∗)) u(s, t) = 0, (3.16)

subject to the boundary condition (3.2). We solve easily equation (3.16) using the method of264

characteristics. Fort > Γ(m) we arrive at265

u(s, t) = u(0, t− Γ(s)) exp

{
−

∫ s

0

γs(y, P∗) + µ(y, P∗)

γ(y, P∗)
dy

}
= 0, (3.17)

where266

Γ(s) =

∫ s

0

1

γ(y, P∗)
dy.

This means that the semigroupT (t) generated byA + B is nilpotent. In particular it is compact267
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for t > Γ(m) and the claim follows. 2268

Remark 13. Theorem 12 implies that the Spectral Mapping Theorem holds true for the semigroup269

{T (t)}t≥0 with generatorA + B + C + D and that the spectrumσ(A + B + C + D) contains only270

isolated eigenvalues of finite multiplicity (see e.g. [9]).271

4. (In) Stability272

Here, we consider the stability of positive equilibrium solutions by studying the point spectrum of273

the linearised operatorA + B + C + D. The main difficulty is that the eigenvalue equation274

(A + B + C + D − I)λ = 0,

cannot be solved explicitly, since in general, the operatorD has infinite rank. We encountered275

this problem previously with hierarchical size-structured population models [11, 12]. In [11] and276

[12] we used the dissipativity approach, presented in the previous section, to establish conditions277

which guarantee that the spectral bound of the linearized semigroup is negative. However, as we278

can see from Remark 9 this approach gives a rather restrictive stability condition. Therefore, here279

we devise a different approach, which uses positive perturbation arguments.280

Theorem 14. Assume that there exists anε > 0 such that281

β(s, y, P∗) − ρ∗(s) − ε +

∫ m

0

βP (s, y, P∗)p∗(y) dy ≥ 0, s, y ∈ [0, m], (4.1)

and282

ε

∫ m

0

exp

{
−

∫ s

0

γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}∫ s

0

exp
{∫ y

0
γs(σ,P∗)+µ(σ,P∗)

γ(σ,P∗)
dσ
}

γ(y, P∗)
dy ds > 1. (4.2)

Then the stationary solutionp∗(s) of model(1.1)-(1.3) is linearly unstable.283

Proof. Let ε > 0, and define the operatorFε onX as284

Fεu = ε

∫ m

0

u(s) ds = εū.
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We first find the solution of the eigenvalue equation285

(A + B + Fε)u = λu

as286

u(s) = ε ū exp

{
−

∫ s

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}

×

∫ s

0

1

γ(y, P∗)
exp

{∫ y

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
dy. (4.3)

Next we integrate the solution (4.3) over[0, m] to obtain287

ū = ε ū

∫ m

0

[
exp

{
−

∫ s

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}

×

∫ s

0

1

γ(y, P∗)
exp

{∫ y

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
dy

]
ds. (4.4)

We note that, ifū = 0 then equation (4.3) shows thatu(s) ≡ 0, hence we have a non-trivial288

eigenvector if and only if̄u 6= 0 andλ satisfies the following characteristic equation289

1 = K(λ)
def
= ε

∫ m

0

[
exp

{
−

∫ s

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}

×

∫ s

0

1

γ(y, P∗)
exp

{∫ y

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
dy

]
ds. (4.5)

It is easily shown that290

lim
λ→+∞

K(λ) = 0,

therefore it follows from condition (4.2), on the grounds ofthe Intermediate Value Theorem, that291

equation (4.5) has a positive (real) solution. Hence we have292

0 < s(A + B + Fε).

Next, for a fixed0 ≤ f ∈ X , we obtain the solution of the resolvent equation293

(λI − (A + B + Fε))u = f,
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as294

u(s) = exp

{
−

∫ s

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}

×

∫ s

0

exp

{∫ y

0

λ + γs(σ, P∗) + µ(σ, P∗)

γ(σ, P∗)
dσ

}
εū + f(y)

γ(y, P∗)
dy. (4.6)

We integrate equation (4.6) from0 to m to obtain295

ū =

∫ m

0
exp

{
−
∫ s

0
λ+γs(σ,P∗)+µ(σ,P∗)

γ(σ,P∗)
dσ
}∫ s

0
exp

{∫ y

0
λ+γs(σ,P∗)+µ(σ,P∗)

γ(σ,P∗)
dσ
}

f(y)
γ(y,P∗)

dy

1 − ε
∫ m

0
exp

{
−
∫ s

0
λ+γs(σ,P∗)+µ(σ,P∗)

γ(σ,P∗)
dσ
}∫ s

0

exp{
R y

0
λ+γs(σ,P∗)+µ(σ,P∗)

γ(σ,P∗)
dσ}

γ(y,P∗)
dy

(4.7)

It follows from the growth behaviour of the exponential function and from assumptions (1.4), that296

ū is well-defined and non-negative for any0 ≤ f ∈ X andλ large enough. Hence the resolvent297

operator298

R(λ,A + B + Fε) = (λ − (A + B + Fε))
−1

is positive, forλ large enough, which implies thatA + B + Fε generates a positive semigroup (see299

e.g. [9]).300

Finally, we note that condition (4.1) guarantees that the operatorC + D − Fε is positive, hence301

we have for the spectral bound (see e.g. Corollary VI.1.11 in[9])302

0 < s(A + B + Fε) ≤ s(A + B + Fε + C + D − Fε) = s(A + B + C + D),

and the result follows. 2303

Next we show that for a separable fertility function we can indeed explicitly characterize the304

point spectrum of the linearised operator.305

Theorem 15. Assume thatβ(s, y, P ) = β1(s, P )β2(y), s, y ∈ [0, m], P ∈ (0,∞). Then for any306

λ ∈ C, we haveλ ∈ σ(A + B + C + D) if and only ifλ satisfies the equation307

Kβ (λ) = det

(
1 + a1(λ) a2(λ)

a3(λ) 1 + a4(λ)

)
= 0, (4.8)
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where308

a1(λ) = −

∫ m

0

F (λ, s, P∗)

∫ s

0

g(y)

F (λ, y, P∗)
dy ds,

a2(λ) = −

∫ m

0

F (λ, s, P∗)

∫ s

0

β1(y, P∗)

γ(y, P∗)F (λ, y, P∗)
dy ds,

a3(λ) = −

∫ m

0

β2(s)F (λ, s, P∗)

∫ s

0

g(y)

F (λ, y, P∗)
dy ds,

a4(λ) = −

∫ m

0

β2(s)F (λ, s, P∗)

∫ s

0

β1(y, P∗)

γ(y, P∗)F (λ, y, P∗)
dy ds, (4.9)

and309

g(s) =

β1P
(s, P∗)

∫ m

0

β2(y)p∗(y) dy − ρ∗(s)

γ(s, P∗)
, s ∈ [0, m],

F (λ, s, P∗) = exp

{
−

∫ s

0

λ + γs(y, P∗) + µ(y, P∗)

γ(y, P∗)
dy

}
, s ∈ [0, m].

Proof. To characterize the point spectrum ofA + B + C + D we consider the eigenvalue problem310

(A + B + C + D − λI)U = 0, U(0) = 0. (4.10)

The solution of (4.10) is found to be311

U(s) =UF (λ, s, P∗)

∫ s

0

g(y)

F (λ, y, P∗)
dy + ŨF (λ, s, P∗)

∫ s

0

β1(y, P∗)

γ(y, P∗)F (λ, y, P∗)
dy, (4.11)

where312

U =

∫ m

0

U(s) ds, Ũ =

∫ m

0

β2(s)U(s) ds.

We integrate equation (4.11) from zero tom and mulitply equation (4.11) byβ2(s) and then inte-313

grate from zero tom to obtain314

U(1 + a1(λ)) + Ũa2(λ) = 0, (4.12)

Ua3(λ) + Ũ(1 + a4(λ)) = 0. (4.13)

If λ ∈ σ(A + B + C + D) then the eigenvalue equation (4.10) admits a non-trivial solution U315

hence there exists a non-zero vector(U, Ũ) which solves equations (4.12)-(4.13). However, if316
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(U, Ũ) is a non-zero solution of equations (4.12)-(4.13) for someλ ∈ C then (4.11) yields a317

non-trivial solutionU . This is because the only scenario forU to vanish would yield318

UF (λ, s)

∫ s

0

g(y)

F (λ, y)
dy = −ŨF (λ, s)

∫ s

0

β1(y, P∗)

γ(y, P∗)F (λ, y)
dy, s ∈ [0, m].

This however, together with equations (4.12)-(4.13) wouldimply U = Ũ = 0, a contradiction,319

hence the proof is completed. 2320

Theorem 16. Assume that condition(3.10)holds true for some stationary solutionp∗. Moreover,321

assume that there exists a functionβ̃(s, y, P ) = β1(s, P )β2(y) such thatβ(s, y, P∗) ≤ β̃(s, y, P∗)322

for s, y ∈ [0, m] and the characteristic equationKeβ (λ) = 0 does not have a solution with non-323

negative real part. Then the equilibrium solutionp∗ is linearly asymptotically stable.324

Proof. We need to establish that the spectral bound of the linearised operatorA + B + C + D is325

negative. To this end, we rewrite the operatorD as a sum of two operators, namelyD = G + Hβ,326

where327

Gu =

∫ m

0

u(y) dy

∫ m

0

βP (·, z, P∗)p∗(z) dz, on X ,

Hβu =

∫ m

0

u(y)β(·, y, P∗) dy, on X .

Condition (3.10) guarantees thatA + B + C + G+Hβ is a generator of a positive semigroup, while328

the eventual compactness of the linearised semigroup assures that the spectrum ofA + B + C + G+329

Heβ contains only eigenvalues and that the Spectral Mapping Theorem holds true. SinceHeβ −Hβ330

is a positive and bounded operator we have331

s(A + B + C + G+Hβ) ≤ s(A + B + C + G+Hβ +Heβ −Hβ) = s(A + B + C + G+Heβ) < 0,

(4.14)

and the proof is completed. 2332

Example 17. As we can see from equations(4.8)-(4.9) the characteristic functionKeβ(λ) is rather333

complicated, in general. Therefore, here we only present a special case when it is straightforward334

to establish that the point spectrum of the linear operatorA + B + C + G + Heβ does not contain335
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any element with non-negative real part. In particular, we make the following specific assumption336

β2(·) ≡ β2.

In this case we can cast the characteristic equation(4.8) in the simple form337

∫ m

0

∫ s

0

exp

{
−

∫ s

y

λ + γs(r, P∗) + µ(r, P∗)

γ(r, P∗)
dr

}(
g(y)γ(y, P∗) + β1(y, P∗)β2

γ(y, P∗)

)
dy ds = 1.

(4.15)

We note that, if338

g(y)γ(y, P∗) + β1(y, P∗)β2 ≥ 0, y ∈ [0, m],

which is equivalent to the positivity condition(3.10), then equation(4.15) admits a dominant339

unique (real) solution. On the other hand, it is easily shownthat this dominant eigenvalue is340

negative if341

∫ m

0

∫ s

0

exp

{
−

∫ s

y

γs(r, P∗) + µ(r, P∗)

γ(r, P∗)
dr

}(
g(y)γ(y, P∗) + β1(y, P∗)β2

γ(y, P∗)

)
dy ds < 1.

(4.16)

It is easy to see, making use of equation(2.7), that (4.16)is satisfied if342

∫ m

0

1

γ(s, P∗)

∫ s

0

exp

{
−

∫ s

y

µ(z, P∗)

γ(z, P∗)
dz

}
g(y) dy ds < 0,

holds true. In this case, we obtain for the growth bound of thesemigroupω0343

ω0 = s(A + B + C + G + Heβ) < 0,

see e.g. Theorem 1.15 in Chapter VI of [9], which implies thatthe equilibrium solution is linearly344

stable.345

5. Concluding remarks346

In this paper, we analysed the asymptotic behaviour of a size-structured scramble competition347

model using linear semigroup methods. We are motivated by the modelling of structured macro-348

parasites in aquaculture, specifically the population dynamics of sea lice on Atlantic salmon pop-349

ulations. First we studied existence of equilibrium solutions of our model. In the case when350

the fertility function is separable, we easily establishedmonotonicity conditions on the vital rates351
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which guarantee the existence of a steady state (Proposition 1). In the general case we used posi-352

tive perturbation arguments to establish criteria that guarantee the existence of at least one positive353

equilibrium solution. Next, we established conditions forthe existence of a positive quasicontrac-354

tion semigroup which governs the linearized problem. Then we established a further regularity355

property of the governing linear semigroup which in principle allows to study stability of equilib-356

ria via the point spectrum of its generator. In the special case of separable fertility function we357

explicitly deduced a characteristic function in equation (4.8) whose roots are the eigenvalues of358

the linearized operator. Then we formulated stability/instability results, where we used once more359

finite rank lower/upper bound estimates of the very general recruitment term. It would be also360

straightforward to formulate conditions which guarantee that the governing linear semigroup ex-361

hibits asynchronous exponential growth. However, this is not very interesting from the application362

point of view, since the linearised system is not necessarily a population equation anymore.363

Characterization of positivity using dispersivity resulted in much more relaxed conditions than364

those obtained in [10] for a more simple size-structured model with a single state-at-birth by char-365

acterizing positivity via the resolvent of the semigroup generator. This is probably due to the366

different recruitment terms in the two model equations. Positivity is often crucial for our stability367

studies, as was demonstrated in Section 3. Indeed, more relaxed positivity conditions result in the368

much wider applicability (i.e. for a larger set of vital rates) of our analytical stability results.369

Due to the fact that the positive cone ofL1 has an empty interior, characterizations of positivity370

such as the positive minimum principle (see e.g. [1]) do not apply. However, there is an alternative371

method, namely the generalized Kato inequality (see e.g. [1]). In our setting the abstract Kato-372

inequality reads373

Su (A + B + C + D)u ≤ (A + B + C + D)|u|, (5.1)

for u ∈ Dom(A + B + C + D), whereSu is the signum operator, that is374

Su =
u

|u|
.

Inequality (5.1) requires375

Su

∫ m

0

u(y)

(
β(s, y, P∗) +

∫ m

0

β(s, z, P∗)p∗(z) dz − ρ∗(s)

)
dy

≤

∫ m

0

|u(y)|

(
β(s, y, P∗) +

∫ m

0

β(s, z, P∗)p∗(z) dz − ρ∗(s)

)
dy, s ∈ [0, m], (5.2)

which holds true for everyu ∈ Dom(A + B + C + D) indeed when condition (3.10) is satisfied.376
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As we have seen previously in Section 3., since the linearised system is not a population model377

anymore, the governing semigroup is not positive unless some additional condition is satisfied.378

However, it was proven in [16] that every quasicontraction semigroup on anL1 space has a minimal379

dominating positive semigroup, called the modulus semigroup, which itself is quasicontractive.380

Hence, in principle, one can prove stability results even inthe case of a non-positive governing381

semigroup, by perturbing the semigroup generator with a positive operator such that the perturbed382

generator does indeed generate a positive semigroup.383

Acknowledgements384
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[8] O. Diekmann, Ph. Getto and M. Gyllenberg, Stability and bifurcation analysis of Volterra408

functional equations in the light of suns and stars,SIAM J. Math. Anal.39 (2007), 1023–409

1069.410

[9] K.-J. Engel and R. Nagel,One-Parameter Semigroups for Linear Evolution Equations,411

Springer, New York 2000.412

[10] J. Z. Farkas and T. Hagen, Stability and regularity results for a size-structured population413

model,J. Math. Anal. Appl.328(2007), 119-136.414

[11] J. Z. Farkas and T. Hagen, Asymptotic analysis of a size-structured cannibalism model with415

infinite dimensional environmental feedback, to appear inCommun. Pure Appl. Anal.416

[12] J. Z. Farkas and T. Hagen, Hierarchical size-structured populations: The linearized semigroup417

approach, to appear inDyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal.418

[13] P. A. Heuch and T. A. Mo, A model of salmon louse production in Norway: effects of419

increasing salmon production and public management measures,Dis. Aquat. Org.45 (2001),420

145-152.421

[14] M. Iannelli, Mathematical Theory of Age-Structured Population Dynamics, Giardini Editori,422

Pisa (1994).423

[15] T. Kato, Perturbation Theory for Linear Operators, Springer, New York, 1966.424

[16] Y. Kubokawa, Ergodic theorems for contraction semi-groups,J. Math. Soc. Japan27 (1975),425

184-193.426

[17] J. A. J. Metz and O. Diekmann,The Dynamics of Physiologically Structured Populations,427

Springer, Berlin, 1986.428

[18] A. G. Murray and P. A. Gillibrand, Modelling salmon licedispersal in Loch Torridon, Scot-429

land, Marine Pollution Bulletin53 (2006), 128–135.430

24



J. Z. Farkas et al. Semigroup analysis of structured parasite populations
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