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Abstract. Motivated by structured parasite populations in aquacellive consider a class of
size-structured population models, where individuals rnayrecruited into the population with
distributed states at birth. The mathematical model whietcdbes the evolution of such a pop-
ulation is a first-order nonlinear partial integro-diffetial equation of hyperbolic type. First, we
use positive perturbation arguments and utilise resutts fthe spectral theory of semigroups to
establish conditions for the existence of a positive eguiim solution of our model. Then, we
formulate conditions that guarantee that the linearisstesy is governed by a positive quasicon-
traction semigroup on the biologically relevant state sp&@e also show that the governing linear
semigroup is eventually compact, hence growth properfigseossemigroup are determined by the
spectrum of its generator. In the case of a separable fefiiinction, we deduce a characteristic
equation, and investigate the stability of equilibriumwimns in the general case using positive
perturbation arguments.
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1. Introduction

In this paper, we study the following partial integro-ditéatial equation

P10 5 O PO(s.) = —uls. POl )+ [ s, PDp(o. )y, (1)
7(0, P(t))p(0,t) = 0, (1.2)

p(5,0) = pols), P(t) = / " p(s, 1) ds. (1.3)

Here the functiorp = p(s,t) denotes the density of individuals of size (or other develeptal
stage)s at timet with m being the finite maximal size any individual may reach in iitstime.
Vital rates;, > 0 and~ > 0 denote the mortality and growth rates of individuals, resipely, and
both depend on both sizeand on the total population size(¢). It is assumed that individuals
may have different sizes at birth and therefofe, y, - ) denotes the rate at which individuals of
sizey give rise to individuals of size. The non-local integral term ifL(1.1) represents repradact
of the population without external driving of the populatithrough immigration. We make the
following general assumptions on the model ingredients

e CH[0,m] x [0,00)), B e C([0,m] x [0,m] x [0,0))
B, u>0, ~v€C[0,m]x[0,00)), ~>0. (1.4)

Our motivation to investigate modél (1.1)-(1L.3) is the mibidg of structured parasite popu-
lations in aquaculture. In particular we are interestedarapites of farmed and wild salmonid
fish that have particular relevance both industrially anchicrcially to the UK. These species
are subject to parasitism from a number of copepod (crustggearasites of the family Caligi-
dae. These sea louse parasites are well studied with a leegeure: below we draw attention to
some recent key review papers. Sea lice cause reduced gaodthppetite, wounding, and sus-
ceptibility to secondary infectionsl[5], resulting in sificant damage to crops and therefore they
are economically important. For salmon, louse burden iregexof 0.1 lice per gram of fish can
be considered pathogenid [5]. The best studied speciespisophtheirus salmoniprincipally a
parasite of salmonids and frequent parasite on BritishnAigasalmon Salmo salay farms [22]. It
also infects sea trouS@lmo truttd and rainbow trout@ncorhynchus mykissThe life history of
the parasite is direct, with no requirement for intermegiadsts. It involves a succession of ten
distinct developmental stages, separated by moults, figgrteadult. Initialnaupliar andcope-
podid stages are free living and planktonic. Following attachimoérthe infectious copepodid to
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a host, the parasite passes through fthalimusstages that are firmly attached to the host, before
entering sexually dimorphipre-adultand adult stages where the parasite can once again move
over the host surface and transfer to new hosts.

The state of the art for population-level modellinglofsalmonisis represented by Reviet
al. [20]. These authors presented a series of delay-diffialezquations to model different life-
history stages and parameterised the model using datateallat Scottish salmon farms. A similar
compartmental model was proposed by Tuakeal. [21]. The emphasis of these papers was not
however, in analytical study, but on numerical simulatiod parameterisation using field [20] and
laboratory [21] data. An earlier model by Heuch & Mo [13] istigated the infectivity, in term of
L. salmonisegg production, posed by the Norwegian salmon industrggusisimple deterministic
model. Other authors have considered the potential for-thsance dispersal of mobile parasite
stages through sea currerits|[18], looking at Loch Shielidel)V Scotland, a long-term study site
for sea louse research.

In this paper, we focus on the dynamics of inviduals at theiches to adult stages. Though
individuals pass through a series of discrete growth sthgesoulting, this outward punctuated
growth disguises a physiologically more smooth growth psscin terms of the accumulation of
energy, and by ‘size’ in this paper we presume accumulatienergy, rather than physical dimen-
sion. Sea lice reproduce sexually; however at the chaliragesndividuals are not yet sexually
differentiated. Fertility rates thus must be considerea@dying to the population as a whole,
rather than as is usually the case the female fraction of tpellption. Individuals entering the
first chalimus stage from the non-feeding planktonic staagesdistributed over different sizes,
hence we have the zero influx boundary conditionl(1.2) anddbrmiitment term in[(1]11). Our
aim here is to present a preliminary step towards the arsabfsihe more complex problem of
modelling the whole life cycle of sea lice by giving a matheical treatment of a quite general
scramble competition model with distributed states-afbMe use the term scramble competition
to describe the scenario where individuals have equal eévahen competing for resources such
as food (see e.gl[6]). Therefore all vital rates, i.e. ghoviertility and mortality depend on the
total population size of competitors. In other populatiaugh as a tree population or a cannibalis-
tic population, there may be a natural hierarchy among iddads of different sizes, which results
in mathematical models incorporating infinite-dimensiamanlinearities, see e.gl_[10,/11]. The
analysis presented in this paper could be extended to thes®t models and also to other models
such as those that involve a different type of recruitmembte

Here, we consider the asymptotic behaviour of solutions ofleh (1.1)41.8). Our analysis
is based on linearisation around equilibrium solutiong @g. [10[ 19]) and utilises well-known
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results from linear operator theory that can be found fonga in the excellent books][L} 4, 9].
We also utilise some novel ideas on positive perturbatidhisear operators. For basic concepts
and results from the theory of structured population dymamve refer the interested reader to
[6,14,[17[23].

Traditionally, structured population models have beemidated as partial differential equa-
tions for population densities. However, the recent unifipdroach of Diekmanat al., making
use of the rich theory of delay and integral equations, has bbesulted in significant advances.
The Principle of Linearized Stability has been proveriingJrfor a wide class of physiologically
structured population models formulated as delay equafijonabstract integral equations). It is
not clear yet whether the models formulated(in[[7, 8] as delmyations are equivalent to those
formulated as partial differential equations.

In the remarkable paper![3], Calsina and Saldafia studeed/éil-posedness of a very general
size-structured model with distributed states-at-birfiney established the global existence and
uniqueness of solutions utilising results from the thedrmanlinear evolution equations. Model
(@.1)-(1.3) is a special case of the general model treatfg],ihowever, in[[3] qualitative questions
were not addressed. In contrast(to [3], our paper focuseb@existence and local asymptotic
stability of equilibrium solutions of systemi (1.1)-(IL.3)thv particular regards to the effects of
distributed states-at-birth compared to more simple nsodel addressed previously, e.g.[in][10].
First, we establish conditions in Theoréin 6 that guarartteekistence of equilibrium solutions,
in general. Then, we show in Theorérn 8 that a positive quagi@ction semigroup describes
the evolution of solutions of the system linearized at anldggium solution. Next, we establish
a further regularity property in Theoreml12 for the govegnlimear semigroup, which allows
one to investigate the stability of positive equilibriumwamns of [1.1){1.B). We use rank-one
perturbations of the general recruitment term to arrivetalbibty/instability conditions for the
equilibria. Finally we briefly discuss the positivity of tigeverning linear semigroup.
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98 2. Existence of equilibrium solutions

99 Model (1.1)-(1.8) admits the trivial solution. If we lookrfpositive time-independent solutions of
100 (@.1)-(I1.3) we arrive at the following integro-differeatequation

2(5, PYBLS) + (vals, Po) + a5, P)p / B(s., P.)p.(y) dy (2.1)

(0, P)p.(0) =0, P, :/0 ps(s) ds. (2.2)

101 2.1. Separable fertility function

102 In the special case of

ﬁ(S,?J?P) - ﬁl(svp)ﬁZ(y)v S,y € [Ovm]v Pe (07 OO), (23)

103 where the distribution of offspring sizes is dependent ugi@nlevel of competition?, but the
104 mature size at which individuals reproduce is not, equafZoli) reduces to

V(s, Po)pl(s) + (vs(s, Po) + (s, P.))ps(s) = Bi(s, P.) P, (2.4)

P, = / " Bay)pa(y) dy

106 The solution of[(Z.}l4) satisfying the initial condition in.P} is readily obtained as

ﬁl (y7 P*) y
y, P)y(y, P)

105 where

p«(s) Z?*F(S,P*)/OS & (2.5)

107 where

F(s, ) = exp {_ /0 75(y; ];<)y +Pu)(y P,) dy} |

108 Multiplying equation[[2.6) by3, and integrating front) to m yields the following necessary con-
109 dition for the existence of a positive equilibrium solution

o " ° ﬁl(y7P*)
1_/0 ﬁg(s)F(s,P*)/O Fo Pt P W (2.6)
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110 Therefore we define a net reproduction functi®mas follows

" * ﬁl(y7 P)ﬁ?(s) { ’ ,U(Z, P)
R(P) = / / ————— " exp —/ dz » dyds. (2.7)
( ) 0 0 V(S,P) Y 7(27 P)
111 It is straightforward to show that for every positive valBefor which R(P,) = 1 holds, formula
112 (2.8) yields a unique positive stationary solution whereP, may be determined from equation

113 (2.8) as

_ P,
P

= m s ,Px :
Iy F(s, Py) [, i}((;P*)) dyds

114 Then itis straightforward to establish the following resul

115 Proposition 1. Assume that the fertility functigh satisfieg[2.3) and that the following conditions
116 hold true

1(y,0)
(,0)

3.0 > (5.0, sy e ol PeOoo [ e {= [A0Day b as <1,
0 : 2.8)
/mﬁl(s,P) ds—0 as P—oo, and 0<~" <~(s,P), se€[0,m], Pe(0,00).

: (2.9)

117 Then mode{l.I)(1.3) admits at least one positive equilibrium solution.

118 Proof. Condition [2.8) implies

o= [ et Sam ] S e e e o
et

> 1. (2.10)

=

119 Condition [2.9) and the growth behaviour of the function@ini) imply that

lim R(P)=0,

P—+00

120 hence the claim holds true on the grounds of the Intermetf&ites Theorem. O
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121 2.2. The general case

122 For afixedP € (0, c0) we define the operatdp by

Bpu_—%( (-, P)u) u+/ By, Pu(y) dy,
Dom(Bp) = {u € W"(0,m) | u(0) = (2.11)

123 Our goal is to show that there existsFa such that the operatdsp, has eigenvalu® with a
124 corresponding unigue positive eigenvector. To this enstire establish thdi» is the generator of
125 a positive semigroup. Then we determine conditions thataquee that it generates an irreducible
126 semigroup. We also establish that the governing linear gemp is eventually compact, which
127 implies that the Spectral Mapping Theorem holds true foisraigroup and its generator, and the
128 spectrum of the generator may contain only isolated eidaasaf finite algebraic multiplicity (see
129 e.g. [9]). It then follows that the spectral bound is a domin@eal) eigenvalue » of geometric
130 mulitplicity one with a corresponding positive eigenvacid, Chapter 9]. Finally we need to
131 establish conditions which imply that there exisPa € (0, c0) such that the spectral bound
132 s(Bp+) is negative and therefore the dominant eigenvalpe = s(Bp+) is also negative; and a
133 P~ € (0, 00) such that this dominant eigenvaldg- = s(Bp-) is positive. Then it follows from
134 standard perturbation results on eigenvalues (seele.}). tfiEs there exists a zero eigenvalue. A
135 similar strategy was employed inl [2] to establish the exristeand uniqueness of an equilibrium
136 solution of a cyclin structured cell population model.

137 Lemma 2. For everyP € (0, co) the semigrouf¥ (¢) generated by the operatdt, is positive.

138 Proof. We rewrite [2.111) as3p = Ap + Cp, Where

0
APUZ—%(V(wP)U)—M(wp)U
Dom(.Ap) {uEWll(O m) | u(0 —O}
Cpu—/ B(-y, Plu(y) dy,

Dom(Cp) = L'(0, m). (2.12)
139 For0 < f € L'(0,m) the solution of the resolvent equation

()\I — AP)U = f,
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This shows that the resolvent operafof)\, Ap) is a positive bounded operator, hendg gene-
rates a positive semigroup. SinCg is a positive and bounded operator, the statement follows.

Lemma 3. The linear semigrouf (¢) generated by the operatdi is eventually compact.

Proof. We note thatd, generates a nilpotent semigroup, while it is easily shovet @p is a
compact operator if conditionis (1.4) hold true. (For morailie see also Theorem|12.) O

Lemma 4. Assume that for everk € (0, co) there exists am, > 0 such that for all0 < ¢ < ¢

/5 /m B(s,y, P)dyds > 0. (2.13)
0 m—e

Then the linear semigroup (¢) generated by the operatdty is irreducible.

Proof. We only need to show that under conditién (2.13) for eygrg L’ (0, m) there exists &,
such that

Supp T(tO)pO = [07 m]v

forall t > t,. Sincey > 0, there exist, such that

supp T (t)po N supp B(s, - ) # 0

for everyt, < ¢ and everys € (0,e]. By assumption(2.13)7 (t)po(s) > 0 for t, < t and
s € (0,¢|. After this, eventually the support of the soluti@it,)p, will cover the entire size space
0, m]. 0

Lemma 5. Assume that there existsa (s, y, P) = 1 (s, P)35 (y) and aP~ € (0, 0o) such that

B (s, P7)By (y) < B(s,y, P7), s,y €[0,m], (2.14)

and

/Om /Os ﬁf(za(?i;)%_(s) exp {_ /s 7s(2, Jj(iji()z, P) dz} dyds > 1, (2.15)
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and ag™(s,y, P) = B3; (s, P)35 (y) and aP™ € (0, oo) such that

B(s,y, PT) < B{ (s, PT) 55 (y), (2.16)
and
61 y7P+ /62 ) /878(27P+)+:u(27p+)
/ / W P exp i 20 P dz p dyds < 1. (2.17)
Then the operatoB3p- has a dominant real eigenvalue-- > 0 and the operato3p+ has a

dominant real eigenvalugp+ < 0, with corresponding positive eigenvectors.

Proof. First assume that there existsa(s, y, P) = 3, (s, P)3; (y) and aP~ such that conditions
(2.13) and[(Z.T5) hold true. Léd,_ denote the operator that corresponds to the fertilityand
the constanP~. The solution of the eigenvalue problem

Bo_u = Au, u(0) =0 (2.18)

is

"o * By (y, P7) { / A+7s(2, P7) + plz, P7) }
s) = 16 susds/iexp— dz p dy.
)= [ ameteras [k A TEN S
(2.19)
We multiply equation{2.19) by, and integrate fror to m to arrive at the characteristic equation

1:/Omﬁ5(s) /Os%exp{—/y At (z Z’ if)“(z’P_) dz} dyds.  (2.20)

Equation [(2.2D) admits a unique dominant real solutign > 0 if condition (2.1%) holds true.
Since3,_ is a generator of a positive semigroup &t~ — B,_) is a positive (and bounded)
operator by conditiori(2.14), it follows th&,- has a dominant real eigenvaldg- > A,_ > 0,
see e.g/[[9, Corollary VI.1.11].

In a similar way, let us assume that there exists s, y, P) = 3 (s, P)35 (y) and aP* such
that condition[(2.16) and (2.117) hold true. L8t denote the operator which corresponds to the
fertility 5+ and the constan®®™. The solution of the eigenvalue problem

Biiu=\u, u(0) =0 (2.21)
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iS now

_ [ B (y, PY) A+ (2, PF) + plz, PT)
_/0 By (s)u / 1y,P+ p{—/y G P dz} dy.
(2.22)

We multiply equation(Z.22) by, and integrate fron to m to arrive at the characteristic equation

P+ X+ 7a(z, P+ p+
1_/ B (s /Bl y%m p{—/y +7(27(Z71;)“(z )dz} dyds.  (2.23)

Equation [Z.2B) admits a unique dominant real solutign < 0 if condition (ZIT) holds true.
Since Bp+ is a generator of a positive semigroup afi8l,, — Bp+) is a positive operator by
condition [2.18), it follows thal3,+ has a dominant real eigenvaliig+ < A7, < 0.

In both cases, the positivity of the corresponding eigetordollows from the irreducibility of
the semigroug (t), seel[4, Theorem 9.11]. O

Theorem 6. Assume that condition®.13) (2.14)(2.117)are satisfied. Then systef@.1)-(1.3)

admits at least one positive equilibrium solution.

Proof. Let P* > 0 be such that(B},) = 0. Then, since the spectrum consists only of isolated
eigenvalues we havep- = s(Bp-) = 0 and there exists a corresponding positive eigenvegtor
Then ﬁp* is the desired equilibrium solution with total populationesP*. O

3. The linearised semigroup and its regularity

Here, when we use the term ‘linearised semigroup’, we reféhé linear semigroup governing
the linearised system. However, since it was provedin [8} thodel [1.11){(13) is well-posed,
there exists a semigroup of nonlinear operatofy),~, defined viax(t)p(s,0) = p(s,t). It was
proven in[8] that if the nonlinearities are smooth enougingely, the vital rates are differentiable)
then this nonlinear semigrouy)t) is Frechét differentiable and the Frechét derivativeiatban
equilibrium solutionp, defines a semigroup of bounded linear operators. In thisoseate will
establish the existence of this semigroup and at the sareatinve at a condition which guarantees
that it is positive.

Given a positive stationary solutign of system [(1.1)E(1]3), we introduce the perturbation
u = u(s, t) of p by making the ansatz= u + p.. A Taylor series expansion of the vital rates gives

10
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the linearised problem (see e.q.][10])
ut(87 t) = _’Y<S7 P*) u8(87 t) - (78(87 P*) + :u<57 P*)) U(S, t)
— (Ysp(8, P) pu(s) + pup(s, Po) pu(s) +vp(s, Po) pi/(s)) U(t)
+ /o u(y, t) (ﬁ(s, y, P.) + /0 Bp (s, z, Po)p«(2) dz) dy, (3.1)

v(0, P)u(0,¢) =0 (3.2)

where we have set

U(t) = / u(s, t) ds. (3.3)
0
Egs. (3:1)4(312) are accompanied by the initial condition

u(s,0) = ug(s). (3.4)

Ouir first objective is to establish conditions which guagarthat the linearised system is governed
by a positive semigroup. To this end, we cast the linearigstem [3.1){(34) in the form of an
abstract Cauchy problem on the state sp#ce L'(0,m) as follows

ditu:(A+B+C+D)u, u(0) = wo, (3.5)
where

Au = —v(-, P.)u, withdomain DonfA) = {u € W"'(0,m)|u(0) =0}, (3.6)
Bu=—(vs(-, P.) + pu(-, P,)) v onkX, (3.7)

Cu == (Ysp(, P) pi + pp(, P) pi + vp (-, Po) L) /OmU(S) ds
= —p*(-)/omu(s) ds onAX, (3.8)
Du= [ ut) (6. P+ [ ez Pap)az) dy oni, 39)
wherep, is defined via equatiof (3.8). Our aim is to establish thalittear operatod + B + C + D

is a generator of a quasicontraction semigroup. To this esidWie recall (see e.d.l[1] 4, 9]) some
basic concepts from the theory of linear operators actindamach spaces. L& be a linear
operator defined on the real Banach spgceith norm||.||. O is called dissipative if for every

11
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A > 0 andx € Dom(O),
I(Z = AO)z[| = ||«]].

Furthermore, a functiorfi : ) — R is called sublinear if

flx+y) < fl@)+ fly), zyeY
fAz) =Af(z), A>0, ze).

If also f(z) + f(—x) > 0 holds true forz # 0 then f is called a half-norm o). The linear
operatorQ is called f-dissipative if

f(x) < f(x —AOx), A>0, x¢€Dom(Q).

An operator© which is p-dissipative with respect to the half norm

plx) = [z,
is called dispersive, where" = 2 v 0 (andz~ = (—x)"). Finally aC,, semigroup{7 (¢)}, IS
called quasicontractive if

1T <€, t=0,

for somew € R, and it is called contractive it < 0. We recall the following characterization
theorem from/[[4].

Theorem 7. Let) be a Banach lattice and [&0 : Dom(O) — ) be a linear operator. Then, the
following statements are equivalent.

() O isthe generator of a positive contraction semigroup.

(i) O is densely defined, RYZ — O) = Y for some\ > 0, andO is dispersive.

We also recall tha® is dispersive if for every: € Dom(O) there exists € Y* with 0 < ¢,
l|¢|l < 1and(z,¢) = ||z*]|| such that( Oz, ¢) < 0, where(-,-) is the natural pairing between
elements ofy and its dual)*.

Theorem 8. The operatotd + B + C + D generates a positive strongly continuot for short)
quasicontraction semigrou (¢) }:>, of bounded linear operators ofi if the following condition
holds true

p(s) < Bls,y P) + /O Bo(s,y, PIp.(y) dy, s,y € [0,m], (3.10)

12
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226 wherep, is defined via equatio(.8).

227 Proof. Our aim is to apply the previous characterization theoremttie perturbed operator
228 A+ B+ C+ D — wZ, for somew € R. To this end, for every, € Dom(A+ B +C + D — wZ)
229 we definep, € X* by

s € [0,m], wu(s)#0, (3.11)

230 if u(s) = 0thenletp,(s) = 0. Then
[|fulloe <1,

231 and clearly -
www:/‘mwm@Mwﬂmﬂn
0

232 Making use of conditior[{3.10) we obtain the following esdiie

(A+B+C+D—wlu, )

:_/Om1u+( ) (7(s, P)u(s) ds—/om *)u(s)ds—/0m1u+(s)wu(s)ds

+/Om1u+(s) /om (y )(ﬂ(s y, P / Bp(s,z, P)p.(2) dz — p.(s )) dy ds

<= [ 1) (. Puts)), ds —wllall — it s, P2 [
0 seE m

| s (362 + [ Bolssz Pp ()0 - 0,69

y€[0,m]

< —wlfut[l = (v(m, Pu(m)) 1+ (m)

+ [luT||L || sup (ﬁ(s,y,P*) +/ Bp(s, z, P)p«(z) dz—p*(s))
y€[0,m] 0

<0, (3.12)

233 forsomew € R large enough, hence the operatos B + C + D —wZ is dispersive. The operator
234 A+ B+ C+ D — wZis clearly densely defined. We observe that the equation

A —Au=h (3.13)

13
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for h € X and\ > 0 sufficiently large has a unique solutione Dom(.A), given by

o=l [ e w6

The fact that, € Dom(.A) is well defined by[(3.14) follows from

Il < ‘7(};(2* S,AP*) /om o {_ /y v(z,AP*) dz} vl(f;(’y}))l) dy
M?f) i

for X large enough for som&/), < oo, thatisu € W1(0,m). SinceB + C + D —wT is bounded,
the range condition is satisfied. Theorem 7 givesthat B + C + D — w7 is a generator of a pos-
itive contraction semigroup. Since the operatdris positive (clearly if the dispersivity estimate
holds true with av < 0 then it holds true with any other* > w) a well-known perturbation result
(see e.g.[]9]) yields thad + B + C + D is a generator of a positive quasicontraction semigrbup
which obeys

IT7@) <e, t>0.

Remark 9. The proof of Theorem 7 shows that if

inf p(s, Py) >

s€[0,m]

sup (ms y, P / Bp(s, 2 Ppa(2) dz — pa(s >)

y€[0,m]

[e.9]

holds, then the growth bound, of the semigroup is negative, hence the semigrpifx) },>o
is uniformly exponentially stable (see e.g! [9]), i.e. tlyuidibrium p. is locally asymptotically
stable.

Remark 10. We note that the operatot + B + C + D is in general a generator of &, quasicon-
traction (but not positive) semigroup. The proof of this Wioutilise the Lumer-Phillips Theorem
(see e.qg. [[1,14,19]) and goes along similar lines, obtainindissipativity estimate in terms af
rather thanu™, see e.g.[[11]. This implies that the linearized probl@d)(3.2)is well-posed.
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Remark 11. Note that if3 = 3(s,y), u = u(s), v = v(s), i.e. model.I)}(@.3)is a linear one,
then the biologically relevant conditiops 5 > 0 and~ > 0 imply that it is governed by a positive
guasicontraction semigroup.

Theorem 12. The semigroug 7 (t) }+>o generated by the operatot + B + C + D is eventually
compact.

Proof. C is a rank-one operator. Hence it is compact®nr= L' (0, m). D is linear and bounded.
Hence in view of the Fréchet-Kolmogorov compactnessroitein L? we need to show that

m

Pr% |Du(t + s) — Du(s)| ds =0, uniformly in u,
—rJo

foru € B, whereB is the unit sphere af! (0, m). But this follows from the regularity assumptions
we made ori based on the following estimate

[Du(s1) — Dulsz)| < lullx

Blsi.y. P) + / " Bo(s1 2 Ppa(z) dz — Bsny. P) + / " Bp(sn 7 Popa(2) dz

X

o0

Therefore, it suffices to investigate the operatbr- B. To this end, we note that the abstract
differential equation
d
oy = A
prC (A+ B)u (3.15)
corresponds to the partial differential equation
Ut(S, t) + 7(87 P*) uS<S7 t) + (78(57 P*) + M(S, P*)) U(S, t) = 07 (316)
subject to the boundary condition (B.2). We solve easilyatiqn [3.16) using the method of
characteristics. Far> I'(m) we arrive at
sy, ) + ply, P }
u(s,t) =u(0,t—1I'(s exp{—/ dy » =0, 3.17
(5.1) = u(0,t = T(s)) Ty Ll (3.17)
where s
I(s) = / 1 g
This means that the semigrodgt) generated byAd + B is nilpotent. In particular it is compact
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for ¢t > I'(m) and the claim follows. O

Remark 13. Theoreni IR implies that the Spectral Mapping Theorem haldsfor the semigroup
{7 (t)},>, with generatotd + B + C + D and that the spectrum(A + B + C + D) contains only
isolated eigenvalues of finite multiplicity (see elg. [9]).

4. (In) Stability

Here, we consider the stability of positive equilibriumwgains by studying the point spectrum of
the linearised operatod + B + C + D. The main difficulty is that the eigenvalue equation

(A+B+C+D—-I)A=0,

cannot be solved explicitly, since in general, the oper@tdras infinite rank. We encountered
this problem previously with hierarchical size-structipopulation models [11, 12]. In[11] and
[12] we used the dissipativity approach, presented in tkgipus section, to establish conditions
which guarantee that the spectral bound of the linearizedgeup is negative. However, as we
can see from RemalR 9 this approach gives a rather resérigtiability condition. Therefore, here

we devise a different approach, which uses positive peatio arguments.
Theorem 14. Assume that there exists an> 0 such that

86,0 P = pu(s) =<+ [ Belsn Popn) dy 20, syeloml, (@)
and

Y 'Ys(UvP*)JFM(UvP*) do-

m S s eXp 0—*
5/ exp {—/ 2s(0, P) + pilo, P.) da}/ { ’ Vo) } dyds > 1. (4.2)
0 0 0

v(o, Ps) Y(y, Ps)

Then the stationary solutign (s) of model(L.I)(T.3)is linearly unstable.

Proof. Lete > 0, and define the operat@. on X as

Fou = 6/ u(s) ds = eu.
0
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We first find the solution of the eigenvalue equation

(A+B+ F)u=u

as
_ 8)\+78<O—7P*>+M(07P*> }
u(s) =cu expq — do
© Y X+ (0, P.) + plo, P.) }
X exp / do » dy. 4.3
/0 V(Y Px) { 0 v(o, P.) Y (*:3)
Next we integrate the solution_(4.3) o\érm] to obtain

u:su/om [exp{_/os /\+7s(07a(f;i)PJ:)u(UaP*) da}

Sl [ [P Ao P) + plo, P } }
X/o (y,P*)e p{/O (0. ) do ¢ dy| ds. (4.4)

We note that, ifu = 0 then equation[(4]3) shows thats) = 0, hence we have a non-trivial
eigenvector if and only ifi ## 0 and\ satisfies the following characteristic equation

1= K\ d:efg/om [exp {_/0 AJF%(O;(?P;M(U’ P,) da}

[ s {/ Ty d“} dy} ds @9)

It is easily shown that
lim K(\) =0,

A—-+oo
therefore it follows from conditiof (412), on the groundstioé Intermediate Value Theorem, that
equation[(4.5) has a positive (real) solution. Hence we have

0<s(A+B+F).
Next, for a fixed) < f € X', we obtain the solution of the resolvent equation

AN — (A+B+F)u=T,
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as

ute) —exp { - [P AT EIEL |

v(o, Px)
s Y\ + (o, P,) + u(o, P,) e+ f(y)
) /0 o {/0 (o, P.) da} N AR o

We integrate equatiofi (4.6) frofnto m to obtain

me exp {_ os )\+“/s(<;,f:)P—i;§L(cr,P*) da} fOs exp { oy A5 (0,P ) +u(o,Py) da} ) dy

- v(o,Px) (Y, Px)
U= Avs(o,Px)+p(o,Px) (4'7)
m $ A7 (0,P) + (0, ) s exp{ J AT do}
1—- 5]0 exp {_ 0 v(a,P*/; da} 0 V(ZJ,P*) dy

It follows from the growth behaviour of the exponential ftioa and from assumptions(1.4), that
u is well-defined and non-negative for afy< f € X and\ large enough. Hence the resolvent
operator

RMNA+B+F)=N—(A+B+F))™

is positive, for) large enough, which implies that + B + F. generates a positive semigroup (see
e.g. [9]).

Finally, we note that conditiof (4.1) guarantees that trexatorC + D — F. is positive, hence
we have for the spectral bound (see e.g. Corollary VI.1.1@]in

0<s(A+B+F.)<s(A+B+F.+C+D—-F.)=s(A+B+C+D),

and the result follows. O
Next we show that for a separable fertility function we cateed explicitly characterize the
point spectrum of the linearised operator.

Theorem 15. Assume that(s, y, P) = B1(s, P)52(y), s,y € [0,m], P € (0,00). Then for any
A € C,we have\ € o(A + B+ C + D) if and only if A satisfies the equation

L4+ ai(A) as(N) > —0 (4.8)

Ky (3) = det ( as(\) T+ ai()

18
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308 where
/mFAsPLf—J&i—@m&
0 0 F()‘7y>P*)
" B Bi(y, Py)
F(\, s, P) / dy ds,
/Ov 0 7(?/7 ) ()‘ Y, )
" * gy
FOns, P | LY qyds,
/0 Pal8)F (.5 )/0 Fony, B V4
" ’ Bi(y, Ps)
Ba(s)F (A, s, Py / dy ds, (4.9)
- » )y 3w PIFO g P
309 and

&A&RJAm@@WAwdy—m@)

9(5) - 7(8, P*) , SE [O>m]>
F(\ s, P,) =exp {—/O At 78(%;5?;:)”(% ) dy} , s €0,m].

310 Proof. To characterize the point spectrumf+ 5 + C + D we consider the eigenvalue problem
(A+B+C+D—-X)U=0, U0 =0. (4.10)

311 The solution of[(4.10) is found to be

U(s) =UF(\, s, P,) /0 S#dwmﬁ(x,s,a) / T BWP) g a1

)‘7 Y, P*) 0 ’Y(?% P*)F()\u Y, P*)

U:/Omws)ds, ﬁ:/om@(s)U(s)ds

313 We integrate equatiofi (4.111) from zerotoand mulitply equation(4.11) by, (s) and then inte-
314 grate from zero ton to obtain

312 where

U(14 a1 (\) + Uas(N) = 0, (4.12)
Uaz(\) + U(1 4 as(N) = 0. (4.13)

315 If A € o(A+ B+ C + D) then the eigenvalue equatidn (4.10) admits a non-trivialtem U
316 hence there exists a non-zero vectdr, ) which solves equation§ (4J112)-(4113). However, if
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(U,U) is a non-zero solution of equatiors (4.12)-(4.13) for some C then [4.11) yields a
non-trivial solutionU. This is because the only scenario i6to vanish would yield

UF (), s) /08 Fg(g\y’)y) dy = —UF(),s) /OS v(y%%f(*;,y) dy, se€[0,m].

This however, together with equations (4.12)-(#.13) wdmgly U = U = 0, a contradiction,
hence the proof is completed. O
Theorem 16. Assume that conditiof@.10) holds true for some stationary solutipn. Moreover,

assume that there exists a funct@@,y, P) = pi(s, P)Ba(y) such that3(s, y, P,) < B(s, y, P,)
for s,y € [0,m] and the characteristic equatioi’; (A\) = 0 does not have a solution with non-
negative real part. Then the equilibrium solutipnis linearly asymptotically stable.

Proof. We need to establish that the spectral bound of the linehaperatord + B +C + D is
negative. To this end, we rewrite the operafbas a sum of two operators, namély= G + Hpg,
where

Gu = / u(y) dy / Bp(.z Pp.(z)dz, on X,

M= [ ul)sp.P)dy, on &,
0

Condition [3.10) guarantees that+ B + C + G+Hy is a generator of a positive semigroup, while
the eventual compactness of the linearised semigroupessthat the spectrumof + 5+ C + G+

H 3 contains only eigenvalues and that the Spectral MappingrEne holds true. Sinck; — H;

is a positive and bounded operator we have

S(A+B+C+G+Hs) <s(A+B+C+G+Hsz+Hz—Hp) =s(A+B+C+G+H;z) <0,
(4.14)
and the proof is completed. O

Example 17. As we can see from equatio@8)-(4.9) the characteristic functiork’5(\) is rather
complicated, in general. Therefore, here we only presempiegial case when it is straightforward
to establish that the point spectrum of the linear operator 5 + C + G + H; does not contain
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any element with non-negative real part. In particular, wake the following specific assumption

52(‘) = o

In this case we can cast the characteristic equati@@)in the simple form

/Om /0 exp {_/y A+73(r7,5t)]33ﬂ(7’7 k) dr} (g(y)v(y,Jiz)yjrpgl(yvp*w?) dyds = 1.
(4.15)

We note that, if
g(y)’}/(y, P*) + ﬁl(ya P*)ﬁ? 2 07 y 6 [07 m]a

which is equivalent to the positivity conditiqB.10) then equation(4.15) admits a dominant
unique (real) solution. On the other hand, it is easily shawat this dominant eigenvalue is
negative if

/Om /0 o {_ /y 7s(r, %():Pg(ﬁ P dr} (9(y)v(y71;’z;rpgl<y7p *)52) dyds < 1.
(4.16)

It is easy to see, making use of equat{@ni), that (4.16)is satisfied if

/om v(s,lm /0 o {‘ /y % dZ} 9(y) dyds <0,

holds true. In this case, we obtain for the growth bound ofsa@igroupy,

wo=s(A+B+C+7G+Hz) <0,

see e.g. Theorem 1.15 in Chapter VI[df [9], which implies thatequilibrium solution is linearly
stable.

5. Concluding remarks

In this paper, we analysed the asymptotic behaviour of astizetured scramble competition
model using linear semigroup methods. We are motivated éyrbdelling of structured macro-
parasites in aquaculture, specifically the population dyina of sea lice on Atlantic salmon pop-
ulations. First we studied existence of equilibrium sano$ of our model. In the case when
the fertility function is separable, we easily establishamhotonicity conditions on the vital rates
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which guarantee the existence of a steady state (Propuditidn the general case we used posi-
tive perturbation arguments to establish criteria thatguize the existence of at least one positive
equilibrium solution. Next, we established conditionstfoe existence of a positive quasicontrac-
tion semigroup which governs the linearized problem. Thenestablished a further regularity
property of the governing linear semigroup which in prineigllows to study stability of equilib-
ria via the point spectrum of its generator. In the speciakoaf separable fertility function we
explicitly deduced a characteristic function in equatidB] whose roots are the eigenvalues of
the linearized operator. Then we formulated stabilityabdity results, where we used once more
finite rank lower/upper bound estimates of the very genaaluitment term. It would be also
straightforward to formulate conditions which guarantes the governing linear semigroup ex-
hibits asynchronous exponential growth. However, thioisvery interesting from the application
point of view, since the linearised system is not necessandopulation equation anymore.

Characterization of positivity using dispersivity regaltin much more relaxed conditions than
those obtained ir [10] for a more simple size-structuredehwidth a single state-at-birth by char-
acterizing positivity via the resolvent of the semigroumeetor. This is probably due to the
different recruitment terms in the two model equations.itiaty is often crucial for our stability
studies, as was demonstrated in Section 3. Indeed, mosedepsitivity conditions result in the
much wider applicability (i.e. for a larger set of vital rajef our analytical stability results.

Due to the fact that the positive conelof has an empty interior, characterizations of positivity
such as the positive minimum principle (see €.¢. [1]) do ppiya However, there is an alternative
method, namely the generalized Kato inequality (see €]j. [t our setting the abstract Kato-
inequality reads

Su(A+B+C+Du<(A+B+C+D)|ul, (5.1)

for u € Dom(A + B + C + D), whereS,, is the signum operator, that is

Inequality [5.1) requires
S [t (s P+ [ Bz P02 = p(5))
< [Tt (s P+ [0 n Pz - p(9)) dy s€ o], (62
which holds true for every € Dom(.A + B + C + D) indeed when condition (3.10) is satisfied.
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As we have seen previously in Sectioh 3., since the linedggstem is not a population model
anymore, the governing semigroup is not positive unlessesadditional condition is satisfied.
However, it was proven in [16] that every quasicontractiemigroup on ari.' space has a minimal
dominating positive semigroup, called the modulus senigravhich itself is quasicontractive.
Hence, in principle, one can prove stability results evethacase of a non-positive governing
semigroup, by perturbing the semigroup generator with &ipe®perator such that the perturbed
generator does indeed generate a positive semigroup.
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