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PATCHING SUBFIELDS OF DIVISION ALGEBRASDAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENAbstrat. Given a �eld F , one may ask whih �nite groups areGalois groups of �eld extensions E/F suh that E is a maximalsub�eld of a division algebra with enter F . This question wasoriginally posed by Shaher, who gave partial results in the ase
F = Q. Using pathing, we give a omplete haraterization ofsuh groups in the ase that F is the funtion �eld of a urve overa omplete disretely valued �eld with algebraially losed residue�eld of harateristi zero, as well as results in related ases.1. IntrodutionIn this manusript we onsider a problem, posed by Shaher in[Sh68℄, that relates inverse Galois theory to division algebras. Givena �eld F , Shaher asked whih �nite groups G are admissible over F ,meaning that there is a G-Galois �eld extension E/F with the propertythat E is a maximal sub�eld of an F -division algebra D. Like theoriginal inverse Galois problem, this problem is generally open; butunlike the original problem, the set of groups that an arise in thismanner is often known to be quite restrited (even for F = Q).This problem is a natural one beause of the relationship betweenmaximal sub�elds of division algebras and rossed produt algebrasover a given �eld. Crossed produt algebras an be desribed expliitly,and are well understood. In those terms, the above problem an berephrased as asking for the set of groups G for whih there exists an

F -division algebra that is a rossed produt with respet to G.Past work on admissibility has onentrated on the ase of global�elds. In [Sh68℄, Shaher gave a riterion that is neessary for ad-missibility of a group over the �eld Q, and whih he onjetured is alsosu�ient:Date: Version of Otober 13, 2009. The authors were respetively supportedin part by NSF Grant DMS-0500118, the German National Siene Foundation(DFG), and an NSA Young Investigator's Grant.2000 Mathematis Subjet Classi�ation. Primary: 12F12, 16K20, 14H25; Se-ondary: 16S35, 12E30, 16K50.Key words : admissibility, pathing, division algebras, Brauer groups, Galois groups.1
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2 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENConjeture [Sh68℄Let G be a �nite group. Then G is admissible over Q if and only ifevery Sylow subgroup of G is metayli.Although still open in general, many partiular groups and types ofgroups satisfying this riterion have been shown in fat to be admissibleover Q; see for example [Son83, SS92, CS81, FF90, FV87, Fei93, Fei02,Fei04℄. Also, Corollary 10.3 of [Sh68℄ shows that admissible groupsover a global �eld of harateristi p have metayli Sylow subgroupsat the primes other than p.The main theorem of our paper is the following result (see Theo-rem 4.5):TheoremLet K be a �eld that is omplete with respet to a disrete valuationand whose residue �eld k is algebraially losed. Let F be a �nitelygenerated �eld extension of K of transendene degree one. Then a�nite group G with char(k) ∤ |G| is admissible over F if and only ifevery Sylow subgroup of G is abelian of rank at most 2.The forward diretion of this theorem (Proposition 3.5) is analogousto Shaher's results. As in [Sh68℄, a key ingredient is the equality ofperiod and index in the Brauer group. The onverse diretion to ourtheorem is proven using pathing methods from [HH07℄, an approahthat is not available in the ase of global �elds, and whih makes pos-sible a variety of results for funtion �elds as in the above theorem. Infat, the equality of period and index used in the forward diretion analso be proven by suh methods (see [HHK08℄).In the equal harateristi zero situation, the base �eld K is quasi-�nite (i.e. perfet with absolute Galois group Ẑ; see [Ser79℄, XIII.2),and F is thus analogous to a global �eld, viz. to a funtion �eld overa �nite �eld. In that situation, our main theorem provides a neessaryand su�ient ondition for an arbitrary �nite group to be admissibleover F .This manusript is organized as follows. Setion 2 provides bak-ground and introdues the notion of an element of the Brauer groupbeing �determined by rami�ation�. This notion is used in Setion 3to obtain a riterion (Theorem 3.3) that is then applied to prove theforward diretion of our main theorem. That setion onludes withtwo orollaries on admissibility for rational funtion �elds. Finally, Se-tion 4 realls ideas from [HH07℄ onerning pathing, and uses them toprove the onverse diretion of our main result, Theorem 4.5.



PATCHING SUBFIELDS OF DIVISION ALGEBRAS 3AknowledgmentsThe authors thank Max Lieblih, Danny Neftin, David Saltman,and Jak Sonn for helpful disussions during the preparation of thismanusript. We also extend our thanks for the espeially valuableomments that we reeived from the anonymous referee.2. Brauer Groups and RamifiationThe notions of admissibility and rossed produt algebras an beunderstood in terms of Brauer groups of �elds, and we review thatrelationship in this setion. In the ase of disretely valued �elds, wealso desribe properties of the rami�ation map, whih assoiates ayli �eld extension of the residue �eld to eah Brauer lass. Thisrami�ation map is an important tool in studying the Brauer group,and Proposition 2.3 below will play a key role in the next setion.First, we reall some standard fats about entral simple algebras and(entral) division algebras; for more detail see [Pie82℄, [Sal99℄, [Ja96℄or [GS06℄. The degree of a entral simple F -algebra A is the square rootof its F -dimension, and its (Shur) index is the degree of the divisionalgebra D suh that A ∼= Matr(D) for some r ≥ 1. Equivalently,the index is the degree of a minimal splitting �eld for A, i.e. a �eldextension E/F suh that A splits over E in the sense that A ⊗F E isa matrix algebra over F . In fat the index divides the degree of anysplitting �eld ([Pie82℄, Lemma 13.4). The Brauer group Br(F ) of Fonsists of the Brauer equivalene lasses of entral simple F -algebras,with the operation of tensor produt. Here two algebras are delaredequivalent if they have isomorphi underlying division algebras. Theorder of the lass [A] of A in Br(F ) is alled its period (or exponent),and perA | indA ([Pie82℄, Proposition 14.4b(ii)). We will also write
per(a) for the order of an element a in an arbitrary abelian group.The Brauer group of F may be expliitly identi�ed with the seondGalois ohomology group H2(F,Gm). Conretely, if E/F is a G-Galoisextension and c : G × G → E× is a 2-oyle with respet to thestandard ation of G on E×, there is an assoiated entral simple F -algebra ∆(E,G, c). As an E-vetor spae, this algebra has a basis uσin bijetion with the elements σ of the group G. Multipliation in thisalgebra is given by the formulas

uσuτ := c(σ, τ)uστ uσx := σ(x)uσfor σ, τ ∈ G, x ∈ E. We say that an F -algebra is a rossed produt ifit is isomorphi to an algebra of this form. This onstrution gives rise



4 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHEN([Sal99℄, Corollary 7.8) to an isomorphism
H2(F,Gm) → Br(F ),implying in partiular that every entral simple algebra is Brauer equiv-alent to a rossed produt algebra.If A is a entral simple F -algebra of degree n, then a ommutativeseparable F -subalgebra of A is maximal among all suh subalgebras ifand only if its dimension over F is n ([Gro68a℄, Proposition 3.2). In thease that E is a sub�eld, we will refer to E as amaximal sub�eld, follow-ing [Sh68℄. Note that �maximal sub�eld� therefore means not merelythat E is maximal as a sub�eld, but in fat that it is maximal as a om-mutative separable subalgebra. In partiular, if A = Mat2(C), then Ahas no maximal sub�elds, sine C has no proper algebrai extensions.In the ase that A is a division algebra, however, any ommutativeseparable subalgebra must atually be a �eld, and so the two notionsof maximality agree. (In [Pie82℄, �13.1, the term �stritly maximal� isused for what we all �maximal�; and the term �maximal� is used therein the weaker sense.)If A = ∆(E,G, c), then E must be a maximal sub�eld of A, sine

degA = [E : F ]. Conversely, if E is a maximal sub�eld of A, and Eis a G-Galois extension of F , then E is a splitting �eld for A ([Pie82℄,Theorem 13.3) and hene A = ∆(E,G, c) for some 2-oyle c ([Sal99℄,Corollary 7.3). Thus G is admissible over F if and only if there is arossed produt F -division algebra with respet to G.Now onsider a �eld F together with a disrete valuation v, om-pletion Fv, and residue �eld kv at v. Let Br(F )′ (resp. H1(kv,Q/Z)′)denote the subgroup of elements whose period is prime to char(kv)(so in partiular, Br(F )′ = Br(F ) et. if char(kv) = 0). Reall from[Sal99℄, Chapter 10, that there is a rami�ation map ramv : Br(F )′ →
H1(kv,Q/Z)′, whih fators through the orresponding map on Br(Fv)

′.More generally, if Ω is a set of disrete valuations on F , then we mayonsider the intersetion of the above subgroups of Br(F ), as v rangesover the elements of Ω. Below, the hoie of Ω will be lear from theontext, and we will simply write Br(F )′ for the intersetion. In thatsituation, for eah v ∈ Ω the map ramv : Br(F )′ → H1(kv,Q/Z)′ isde�ned on this intersetion.De�nition 2.1Let F be a �eld, Ω a set of disrete valuations on F , and α ∈ Br(F )′.We say that α is determined by rami�ation (with respet to Ω) if thereis some v ∈ Ω suh that
per(α) = per(ramv α).



PATCHING SUBFIELDS OF DIVISION ALGEBRAS 5Note that if ramv is injetive for some v ∈ Ω, then every lass in
Br(F )′ is determined by rami�ation. This rather speial situation isgeneralized in Proposition 2.3 below, whih will play an important rolein Setion 3. First we make a de�nition and introdue some notation.De�nition 2.2Let F be a �eld and Ω a set of disrete valuations on F . We de�ne theunrami�ed Brauer group of F (with respet to Ω), denoted by Bru(F )′,to be the kernel of

Br(F )′
Q

ramv //
∏

v∈ΩH
1(kv,Q/Z)′.For a prime p and an integer n, let np denote the largest power of

p that divides n. A Brauer lass α ∈ Br(F ) may be expressed as
α = αp + (α− αp) for some unique lass αp (viz. a prime-to-p multipleof α) satisfying per(αp) = (per(α))p and (per(α−αp))p = 1. Moreover,this lass satis�es ind(αp) = ind(α)p and (ind(α − αp))p = 1. (see[Pie82℄, �14.4, Primary Deomposition Theorem and its proof). Givena division algebra D, let Dp be the division algebra in the lass [D]p;i.e. [D]p = [Dp].Proposition 2.3Let F be a �eld, Ω a nonempty set of disrete valuations on F with
Bru(F )′ = 0, and suppose α ∈ Br(F ). Then for every prime p not equalto any residue harateristi of Ω, αp is determined by rami�ation.Proof. By de�nition, αp ∈ Br(F )′ for p as in the statement. By thehypothesis on the unrami�ed Brauer group, the map

Br(F )′
Q

ramv //
∏

v∈ΩH
1(kv,Q/Z)′is injetive. It follows that the image of αp under the map ∏

ramvhas order equal to per(αp) = per(α)p, a power of p. Sine the leastommon multiple of p-powers is their maximum, the order of the imageis the maximum value of per(ramv(αp)), for v ∈ Ω. Hene per(αp) =
per(ramv(αp)) for some v ∈ Ω. So αp is determined by rami�ation. �3. Admissibility CriteriaIn this setion, we give a riterion for a group to be admissible. It isbased on an auxiliary lemma together with an analysis of the rami�a-tion map de�ned in Setion 2. In Theorem 3.3, we give a rami�ationondition on a rossed produt algebra that implies that the Sylowsubgroups of the assoiated group are metayli, or even abelian of



6 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENrank at most two. We then desribe a situation in whih this ondi-tion is met (Proposition 3.5), thereby providing the forward diretionof the main result, Theorem 4.5. Finally, we state some orollaries for(retrat) rational varieties.We begin with the auxiliary lemma based on Kummer theory.Lemma 3.1Let E/F be a �nite Galois extension of omplete disretely valued �elds,with Galois group G and with yli residue �eld extension ℓ/k of har-ateristi not dividing |G|. Then:(a) The Galois group G is metayli.(b) Let e be the rami�ation index of E over F . Then G is abelian(of rank at most 2) if and only if F ontains a primitive e-throot of unity.Proof. (a) Let E0 be the maximal unrami�ed extension of F on-tained in E. Thus E/E0 is Galois and totally rami�ed ([Ser79℄, Corol-lary III.5.3), and it is tamely rami�ed sine char(k) 6 | [E : E0]. Heneits Galois group is equal to its inertia group, whih is yli ([Ser79℄,Corollaries 2 and 4 of IV.2). Note that ℓ is the residue �eld of E0.Sine the residue �eld extension ℓ/k is yli, Proposition I.7.20 andCorollary II.3.4 of [Ser79℄ imply that the unrami�ed extension E0/F isalso yli. Thus E/F is metayli.(b) We �rst show that E0 always ontains a primitive e-th root ofunity. Sine the tamely rami�ed extension E/E0 is totally rami�ed,its degree is equal to its rami�ation index e. By [Has02℄, Chapter 16,p. 249, E/E0 is a radial extension E = E0(z) for some z ∈ E with
f := ze ∈ E0. The onjugates of z over E0 are just the multiples of zby the primitive e-th roots of unity in a �xed algebrai losure of E.But E/E0 is Galois; so these onjugates and hene these roots of unitylie in E. Thus there is a primitive e-th root of unity in the residue�eld of E, or equivalently of E0 (sine E/E0 is totally rami�ed). ByHensel's Lemma, there is a primitive e-th root of unity ζ in E0.By the �rst part of the proof, the extensions E/E0 and E0/F areyli. Let σ be a generator of Gal(E/E0) for whih σ(z) = ζz, andlet τ ∈ G be a lift of a generator of Gal(E0/F ). Thus G is abelian ifand only if σ and τ ommute; and it su�es to show that this latterondition is equivalent to the assertion that ζ ∈ F .Sine E0/F is Galois, 〈σ〉 is normal, and thus τ−1στ = σi for some iprime to e with 1 ≤ i < e. Moreover τ(z)e = τ(f) ∈ E0, so σ(τ(z)) =
ζjτ(z) for some non-negative integer j < e. Hene r := τ(z)/zj is �xedby σ; so r ∈ E0.



PATCHING SUBFIELDS OF DIVISION ALGEBRAS 7Let v denote the disrete valuation on F , normalized so that thevaluation of a uniformizer is 1. We may extend v to a disrete valuationon E, taking values in 1
e
Z. Sine τ maps the maximal ideal of thevaluation ring of E to itself, it follows that v(τ(h)) = v(h) for h ∈ E.Also, v takes integral values on E0, beause E0 is unrami�ed over F .In partiular, v(f), v(r) ∈ Z. We have v(f) = v(ze) = v(τ(z)e) =

v(zjere) = v(f jre) = jv(f) + ev(r) ∈ jv(f) + eZ. But v(f) is primeto e sine E/E0 is totally rami�ed. So j = 1, i.e. σ(τ(z)) = ζτ(z). Itfollows that τ(ζ)iτ(z) = τ(ζ iz) = τσi(z) = στ(z) = ζτ(z), where thethird equality uses that τ−1στ = σi. That is, τ(ζ)i = ζ . Thus ζ ∈ F ifand only if i = 1; i.e. if and only if στ = τσ. �The next proposition makes it possible to verify the yliity of theresidue �eld extension required in the previous lemma, in ertain aseswhen the image of a Brauer lass under the rami�ation map beomestrivial upon an extension E/F . It uses the following onnetion be-tween 1-oyles and yli extensions:Consider a �eld k, with �xed separable losure ks and absolute Galoisgroup Gk := Gal(ks/k). An element ψ ∈ H1(k,Q/Z) = Hom(Gk,Q/Z)with per(ψ) = n de�nes an n-yli �eld extension k′ := (ks)kerψ of
k. Let ℓ be an algebrai �eld extension of k, viewed as a sub�eldof an algebrai losure of k ontaining ks. Then there is a naturalinlusion of Gℓ into Gk and hene a restrition map Hom(Gk,Q/Z) →
Hom(Gℓ,Q/Z). By Galois theory the image of ψ under this map de�nesthe ompositum k′ℓ/ℓ as a yli extension of ℓ.Proposition 3.2Let (E,w)/(F, v) be an extension of disretely valued �elds and let ℓ/kdenote the residue �eld extension. Let α ∈ Br(F )′ (with respet to
{v}), and suppose that per(ramv(α)) = [E : F ]. Let αE ∈ Br(E)′ bethe element indued by α. If ramw(αE) = 0 then ℓ is yli over k and
w is the only disrete valuation on E extending v.Proof. Let χ := ramv(α) ∈ H1(k,Q/Z)′ and let e := ew/v be the ram-i�ation index of w over v. By [Sal99℄, Theorem 10.4, there is a om-mutative diagram

Br(F )′
ramv //

��

H1(k,Q/Z)′

e·res

��
Br(E)′ ramw

// H1(ℓ,Q/Z)′



8 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENwhere the vertial map on the right is the omposition of the restritionmap with multipliation by e.Hene e res(χ) = ramw(αE) = 0. Let k′ be the yli extension of
k de�ned by eχ. Then sine res(eχ) = e res(χ) = 0, k′ℓ/ℓ is a trivialextension, i.e. k′ ⊆ ℓ. Moreover, [k′ : k] = per(eχ) ≥ per(χ)/e, andthus

[E : F ] = per(χ) ≤ [k′ : k] · e ≤ [ℓ : k] · e ≤ [E : F ].So the hain of inequalities is atually a hain of equalities and hene
ℓ = k′ is yli and [E : F ] = [ℓ : k] · e. Hene w is the only disretevaluation on E lying over v. �Reall the notation np and αp introdued before Proposition 2.3.Theorem 3.3Let F be a �eld, Ω a set of disrete valuations on F , and p a primeunequal to all of the residue harateristis of Ω. Let D be a rossedprodut division algebra over F with respet to a �nite group G. If
[D]p ∈ Br(F )′ is determined by rami�ation and (perD)p = (indD)p,then every p-Sylow subgroup P of G is metayli. If moreover Fontains a primitive |P |-th root of unity, then P is abelian of rankat most 2.Proof. By hypothesis there is a disrete valuation v ∈ Ω suh that
per([D]p) = per(ramv[D]p). Sine D is a rossed produt with respetto G, there is a maximal sub�eld L of D that is G-Galois over F .Moreover D is split by L ([Sal99℄, Corollary 7.3), i.e. DL := D⊗F L issplit.Let P be a p-Sylow subgroup of G, and let w1, . . . , wn denote theextensions of v to the �xed �eld LP . Then [LP : F ] =

n∑
i=1

ewi/vfwi/vwhere ewi/v (resp. fwi/v) is the rami�ation index (resp. residue degree)of wi over v. Sine p does not divide [LP : F ], there exists an index j forwhih p ∤ ewj/vfwj/v. Let w := wj, and let u be any disrete valuationon L extending w.Let β be the lass [D⊗F L
P ] in Br(LP ). In order to invoke Proposi-tion 3.2, we will show that the following three onditions are satis�ed:(i) β ∈ Br(LP )′ (with respet to {w});(ii) per(ramw β) = |P |;(iii) ramu(βL) = 0.For (i), the algebra D is split by L; hene the lass β = [D⊗F L

P ] issplit by L, whih is of degree |P | over LP . Consequently, per β | ind β |



PATCHING SUBFIELDS OF DIVISION ALGEBRAS 9
|P |. Hene per β is a power of p, whih is not the residue harateristiof w. Thus β ∈ Br(LP )′ as we wanted to show.For (ii), onsider the ommutative diagram ([Sal99℄, Theorem 10.4)

Br(F )′
ramv //

φ
��

H1(k,Q/Z)′

ew/v·res

��

Br(LP )′ ramw

// H1(ℓ,Q/Z)′where k and ℓ denote the respetive residue �elds. The vertial righthand map in the diagram is the omposition of multipliation by ew/vand the restrition map. Sine ew/v is prime to p, multipliation by ew/vis injetive on p-power torsion. Also, the degree of ℓ/k is prime to p,and the omposition of restrition and orestrition is multipliation bythat degree. So the restrition map is also injetive on p-power torsion.Hene the vertial right hand map in the above diagram is injetive on
p-power torsion.Now [Dp] = [D]p = r[D] for some r ∈ N that is prime to p, and so
[Dp ⊗F L

P ] = rβ. Thus [D]p is sent to rβ under the left hand vertialmap φ. Sine per β is a power of p, so is per(ramw β), and hene
per(ramw β) = per(ramw rβ) = per(ramw(φ([D]p)) = per(ramv([D]p).Reall that D is a rossed produt with respet to G, so ind(D)p =
|G|p = |P |, and this quantity equals per(D)p by hypothesis. Thus,using again that [D]p is determined by rami�ation at v, per(ramw β) =
per(ramv[D]p) = (perD)p = |P |, showing (ii).Finally, (iii) is immediate sine ramu(βL) = ramu([D ⊗F L]) = 0beause D splits over L.Now Proposition 3.2 (applied to the P -Galois extension L/LP ) im-plies that the residue �eld extension ℓ/k is yli and that u is theunique disrete valuation on L extending w on LP . Hene the ex-tension Lu/(L

P )w of the orresponding ompletions also has Galoisgroup P , and the onlusions of the theorem follow immediately fromLemma 3.1. �Corollary 3.4Let F be a �eld and let Ω be a nonempty set of disrete valuations on
F with Bru(F )′ = 0. Let p be a prime unequal to all of the residueharateristis of Ω, and assume that perαp = indαp for every α ∈
Br(F ). If G is admissible over F , then every Sylow p-subgroup P ismetayli. If moreover F ontains a primitive |P |-th root of unity,then P is abelian of rank at most two.



10 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENProof. Sine G is admissible over F , there is a rossed produt divi-sion algebra D over F with respet to G. By Proposition 2.3 and theassumption on Bru(F )′, it follows that [D]p ∈ Br(F )′ is determinedby rami�ation. By hypothesis, (per[D])p = per([D]p) = ind([D]p) =
(ind[D])p. So the onlusion follows from Theorem 3.3. �Using this orollary, we obtain the following proposition, whih pro-vides a neessary ondition for admissibility and implies the forwarddiretion of our main result, Theorem 4.5 below.Proposition 3.5Let K be a omplete disretely valued �eld with algebraially losedresidue �eld k, and let F be a �nitely generated �eld extension of Kof transendene degree one. Let G be a �nite group that is admissibleover F . Then for every p 6= char(k), the Sylow p-subgroups of G areeah abelian of rank at most two.Proof. Let p 6= char(k) be a prime that divides the order of G, and let
P be a Sylow p-subgroup of G. Let T denote the valuation ring of K,and hoose a regular onneted projetive T -urve X̂ with funtion �eld
F . (Given F , suh an X̂ always exists by resolution of singularities;f. [Abh69℄ or [Lip75℄.) Let Ω be the set of disrete valuations orre-sponding to the odimension 1 points of X̂. Thus p is not a residueharateristi of any valuation v in Ω. With respet to Ω we have
Bru(F )′ = 0, by results in [COP02℄ and [Gro68b℄. (Namely, Br(X̂) = 0by [COP02℄, Corollary 1.10(b) (Corollary 1.9(b) in the preprint), andthen Bru(F )′ = Br(X̂)′ = 0 by Proposition 2.3 of [Gro68b℄.)Sine p 6= char(k), it follows by Theorem 5.5 of [HHK08℄ (or by[Lie08℄, Theorem 5.3) that perαp = indαp for every α ∈ Br(F ). Againsine p 6= char(k), the algebraially losed residue �eld k ontains aprimitive |P |-th root of unity; thus by Hensel's Lemma, so does K andhene F . Thus the hypotheses of Corollary 3.4 hold, and therefore eahSylow p-subgroup of G is abelian of rank at most 2. �We onlude this setion with two orollaries (whih are not usedin the remainder of the paper). They use Theorem 3.3 to give anobstrution for a funtion �eld to be rational, or even retrat rational(whih is more general; see [Sal99℄, p.77).Corollary 3.6Let F be a retrat rational �eld extension of an algebraially losed�eld C. Suppose that there is an F -division algebra D with perD =
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indD, suh that D is a rossed produt for a group G with char(C) ∤
|G|. Then all Sylow subgroups of G are abelian of rank at most 2.Proof. Let p be a prime that divides the order ofG and let P be a Sylow
p-subgroup. Let Ω be the set of disrete valuations on F that are trivialon C. By Proposition 11.8 of [Sal99℄, Bru(F )′ is isomorphi to Br(C)′,the subgroup of Br(C) onsisting of elements of order not divisible by
char(C). (Note that Ω = RF in the notation in [Sal99℄.) But Br(C)and hene Br(C)′ is trivial, beause C is algebraially losed. Thus byProposition 2.3, [D]p ∈ Br(F )′ is determined by rami�ation. Sine
C is algebraially losed of harateristi unequal to p, it ontains aprimitive pr-th root of unity for all r ∈ N. Hene so does F . But
perD = indD by assumption, so Theorem 3.3 implies the assertion.

�Remark 3.7This should be ompared to a result of Saltman ([Sal90℄), stating that if
G is a �nite group with at least one Sylow subgroup that is not abelianof rank at most 2, then the enter of a generi rossed produt algebrawith group G is not rational.In the ase of a rational funtion �eld in two variables over an alge-braially losed �eld, the ondition on period and index is satis�ed by[dJ04℄; so from Corollary 3.6 we obtain the followingCorollary 3.8Suppose F = C(x, y) where C is algebraially losed. If G is admissibleover F with char(C) ∤ |G| then every Sylow subgroup of G is abelian ofrank at most 2. 4. Admissibility and pathingTo prove the onverse diretion of our main theorem, we �rst reallthe method of pathing over �elds as introdued in [HH07℄. Throughoutthis setion, T is a omplete disrete valuation ring with uniformizer t,fration �eld K, and residue �eld k. We onsider a �nitely generated�eld extension F/K of transendene degree one. Let X̂ be a regularonneted projetive T -urve with funtion �eld F suh that the re-dued irreduible omponents of its losed �ber X are regular. (Given
F , suh an X̂ always exists by resolution of singularities; f. [Abh69℄or [Lip75℄.) Let f : X̂ → P1

T be a �nite morphism suh that the inverse
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k ontains all the points of X at whih distint irre-duible omponents meet. (Suh a morphism exists by Proposition 6.6of [HH07℄.) We will all (X̂, S) a regular T -model of F .Following Setion 6 of [HH07℄, for eah point Q ∈ S as above we let

RQ be the loal ring of X̂ at Q, and we let R̂Q be its ompletion at themaximal ideal orresponding to the point Q. Also, for eah onnetedomponent U of X r S we let RU be the subring of F onsisting ofthe rational funtions that are regular at the points of U , and we let
R̂U denote its t-adi ompletion. If Q ∈ S lies in the losure Ū ofa omponent U , then there is a unique branh ℘ of X at Q lyingon Ū (sine Ū is regular). Here ℘ is a height one prime of R̂Q thatontains t, and we may identify it with the pair (U,Q). We write R̂℘for the ompletion of the disrete valuation ring obtained by loalizing
R̂Q at its prime ideal ℘. Thus R̂Q is naturally ontained in R̂℘.In the above situation, with ℘ = (U,Q), there is also a naturalinlusion R̂U →֒ R̂℘. To see this, �rst observe that the loalizationsof RU and of RQ at the generi point of Ū are the same; and thisloalization is naturally ontained in the t-adially omplete ring R̂℘.Thus so is RU and hene its t-adi ompletion R̂U .The inlusions of R̂U and of R̂Q into R̂℘, for ℘ = (U,Q), indue in-lusions of the orresponding fration �elds FU and FQ into the fration�eld F℘ of R̂℘. Let I be the index set onsisting of all U,Q, ℘ desribedabove. Via the above inlusions, the olletion of all Fξ, for ξ ∈ I, thenforms an inverse system with respet to the ordering given by setting
U ≻ ℘ and Q ≻ ℘ if ℘ = (U,Q).Under the above hypotheses, suppose that for every �eld extension
L of F , we are given a ategory A(L) of algebrai strutures over L(i.e. �nite dimensional L-vetor spaes with additional struture, e.g.assoiative L-algebras), along with base-hange funtors A(L) → A(L′)when L ⊆ L′. An A-pathing problem for (X̂, S) onsists of an objet
Vξ in A(Fξ) for eah ξ ∈ I, together with isomorphisms φU,℘ : VU ⊗FU

F℘ → V℘ and φQ,℘ : VQ ⊗FQ
F℘ → V℘ in A(F℘). These pathingproblems form a ategory, denoted by PPA(X̂, S), and there is a basehange funtor A(F ) → PPA(X̂, S). (Note that the above de�nitionof pathing problem is equivalent to that given in Setion 2 of [HH07℄for vetor spaes, sine the restrition of φU,℘ to VU ⊂ VU ⊗FU

F℘ isan FU -linear map that indues φU,℘ upon tensoring, and similarly for
φQ,℘.)If an objet V ∈ A(F ) indues a given pathing problem up toisomorphism, we will say that V is a solution to that pathing problem,



PATCHING SUBFIELDS OF DIVISION ALGEBRAS 13or that it is obtained by pathing the objets Vξ. We similarly speak ofobtaining a morphism over F by pathing morphisms in PPA(X̂, S).The next result is given by [HH07℄, Theorem 7.1(i,v,vi), in the on-text of Theorem 6.4 of that paper.Theorem 4.1Let K be a omplete disretely valued �eld with valuation ring T , andlet F/K be a �nitely generated �eld extension of transendene degreeone. Let (X̂, S) be a regular T -model of F . For a �eld extension L of
F , let A(L) denote any of the following ategories:(1) the ategory of �nite dimensional assoiative L-algebras,(2) the ategory of G-Galois L-algebras for some �xed �nite group

G, with G-equivariant morphisms, or(3) the ategory of entral simple L-algebras with algebra homomor-phisms.Then the base hange funtor A(F ) → PPA(X̂, S) is an equivaleneof ategories. In partiular, every A-pathing problem has a uniquesolution.Given a �nite group G, a subgroup H ⊆ G, and an H-Galois �eldextension L/F , there is an indued G-Galois F -algebra E = IndGH Lgiven by a diret sum of opies of L indexed by the left osets of H in
G; e.g. see [HH07℄, Setion 7.2. In partiular, if H = 1, then E is asplit extension of F ; i.e., E ∼= F⊕|G|.Following Shaher [Sh68℄, we say that a �nite �eld extension L/Fis adequate if there exists an F -entral division algebra D suh that L isisomorphi to a maximal sub�eld of D as an F -algebra. In partiular, if
L/F is an adequate Galois extension with groupG, thenG is admissibleover F . Note that F is adequate over itself.The following lemma shows that the objets in Theorem 4.1(2) and (3)may in a sense be pathed in pairs. Note that the ondition on the in-dies (G : HQ) implies that the subgroups HQ generate G, whih wouldsu�e to obtain a G-Galois �eld extension by pathing (f. [Ha87℄,Proposition 2.2, or the proof of [HH07℄, Theorem 7.3). In our set-up,however, a stronger ondition than generation is needed, due to therestrition on admissible groups given in Proposition 3.5.Lemma 4.2Let G be a �nite group, and let F and (X̂, S) be as in Theorem 4.1.Suppose that for eah Q ∈ S we are given a subgroup HQ ⊆ G andan HQ-Galois adequate �eld extension LQ/FQ suh that LQ ⊗FQ

F℘ is
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⊕|HQ|
℘ of F℘ for eah branh ℘ at Q. Assume thatthe greatest ommon divisor of the indies (G : HQ) is equal to 1.Then there exists an adequate G-Galois �eld extension E/F suh that

E ⊗F FQ ∼= EQ := IndGHQ
LQ for all Q ∈ S.Proof. We �rst desribe our setup for pathing. Let I be the set of allindies U,Q, ℘, as in the introdution to this setion. If ξ is either abranh ℘ of the losed �ber X at a point Q ∈ S or else a omponent UofXrS, let Lξ = Fξ and Hξ = 1 and let Eξ = IndGHξ

Lξ ∼= F
⊕|G|
ξ , a splitextension of Fξ. Thus for every ξ ∈ I, the Fξ-algebra Eξ = IndGHξ

Lξ isa G-Galois Fξ-algebra, in the sense of [DI71℄, Setion III.1. Let n = |G|and let nξ = (G : Hξ) for ξ ∈ I. Sine eah �eld extension Lξ/Fξ isadequate, we may hoose division algebras Dξ that ontain the �elds
Lξ as maximal sub�elds. Thus Dξ is a rossed produt Fξ-algebra withrespet to Hξ and Lξ; and Dξ is split over Lξ ([Sal99℄, Corollary 7.3).Let Aξ = Matnξ

(Dξ). In partiular, if ξ is a branh ℘ or a omponent
U then nξ = n, Dξ = Fξ, and Aξ = Matn(Fξ).For every ξ ∈ I, we laim that Eξ embeds as a maximal ommutativeseparable Fξ-subalgebra of Aξ. To see this, note that sine the entralsimple Lξ-algebra Dξ ⊗Fξ

Lξ is split, so is the Lξ-algebra Dξ ⊗Fξ
Eξ,in the sense of being a diret sum of matrix algebras over Lξ. It thenfollows from [DI71℄ (Theorem II.5.5 together with Proposition V.1.2and Corollary I.1.11) that Eξ is a maximal ommutative separable Fξ-subalgebra of some entral simple Fξ-algebra Bξ that is Brauer equiv-alent to Dξ. Suh an algebra is a matrix algebra over Dξ, neessarilyof degree n over Fξ; so Aξ and Bξ are eah matrix algebras of thesame degree, and hene are isomorphi. This shows the existene of an

Fξ-algebra embedding ιξ : Eξ → Aξ, proving the laim.The proof now proeeds in three steps. First, we want to use pathingto obtain a G-Galois (ommutative separable) F -algebra E. Observethat for a branh ℘ = (U,Q), we have isomorphisms LU ⊗FU
F℘ →

IndHU
1 F℘ and LQ ⊗FQ

F℘ → Ind
HQ

1 F℘; these yield isomorphisms φU,℘ :
EU ⊗FU

F℘ → E℘ and φQ,℘ : EQ ⊗FQ
F℘ → E℘. With respet tothe various maps φU,℘, φQ,℘, the G-Galois Fξ-algebras Eξ (for ξ ∈ I)may be pathed, by Theorem 4.1(2), to obtain a G-Galois F -algebra

E. That is, E ⊗F Fξ ∼= Eξ for all ξ ∈ I, ompatibly with the aboveisomorphisms.Next, we will also path the algebras Aξ, ompatibly with the inlu-sions ιξ. Let ℘ = (U,Q) be a branh at a point Q ∈ S, and let ξ = Uor Q. Sine Lξ ⊗Fξ
F℘ ∼= F

⊕|Hξ|
℘ , there is an embedding Lξ →֒ F℘ of
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Lξ-algebras by projeting onto the diret summand orresponding tothe identity element in Hξ. With respet to this embedding, we have
Dξ ⊗Fξ

F℘ ∼= (Dξ ⊗Fξ
Lξ) ⊗Lξ

F℘ ∼= Mat|Hξ|(Lξ) ⊗Lξ
F℘ ∼= Mat|Hξ|(F℘),sine Dξ ⊗Fξ

Lξ is a split entral simple Lξ-algebra. So there is anisomorphism ψ̃ξ,℘ : Aξ ⊗Fξ
F℘ → Matn(F℘) = A℘ of F℘-algebras. By[Ja96℄, Theorem 2.2.3(2), the F℘-algebra embedding ψ̃ξ,℘◦(ιξ⊗Fξ

F℘)◦

φ−1
ξ,℘ : E℘ → A℘ extends to an inner automorphism αξ,℘ of A℘. Then
α−1
ξ,℘ψ̃ξ,℘ ◦ (ιξ ⊗Fξ

F℘) = φξ,℘ : Eξ ⊗Fξ
F℘ → E℘ ⊆ A℘. Let ψξ,℘ =

α−1
ξ,℘ψ̃ξ,℘ : Aξ ⊗Fξ

F℘ → A℘. Hene if ξ is a point of X or a omponentof X r S, there is the following ommutative diagram:
Aξ ⊗Fξ

F℘
ψξ,℘ // A℘

Eξ ⊗Fξ
F℘

ιξ⊗Fξ
F℘

OO

φξ,℘

// E℘

ι℘

OO

By Theorem 4.1(3), we may path the algebras Aξ (for all ξ ∈ I)to obtain a entral simple F -algebra A. Furthermore, beause of theompatibility expressed in the above diagram, the morphisms ιξ pathto give a morphism ι : E → A. Therefore E is a ommutative separablesubalgebra of A, and its dimension over F equals the dimension n ofeah Eξ over Fξ. Thus E is maximal in A.Finally, we will show that A is a division algebra, whih implies that
E is a �eld and hene is an adequate G-Galois �eld extension of F . Forthis, note that

n/nξ = |Hξ| = [Lξ : Fξ] = deg(Dξ) = ind(Aξ) | ind(A),where the third equality holds beause Lξ is a maximal sub�eld ofthe rossed produt algebra Dξ ([Sal99℄, Corollary 7.3), and where thedivisibility follows from [Pie82℄, Proposition 13.4(v). Hene
deg(A) = n = lcm(n/nξ, ξ ∈ I) | ind(A) | deg(A),where the seond equality follows from the hypothesis on the indies

nξ = (G : Hξ) being relatively prime (even just for ξ = Q ∈ S), usingthat n = |G|. So deg(A) = n = ind(A), and hene A is a divisionalgebra. This �nishes the proof. �Consider a two-dimensional regular loal ring R, say with fration�eld F , and whose maximal ideal has generators f, t. Let w : F× → Zbe the f -adi disrete valuation on F , with valuation ring W = R(f).The ring R/fR is also a disrete valuation ring, with fration �eld
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W̄ = W/fW . The orresponding disrete valuation u : W̄× → Zis equal to the t̄-adi valuation on W̄ , where t̄ ∈ W̄ is the image of
t ∈ W under the anonial map η : W → W̄ . With Z × Z orderedlexiographially, there is a rank two valuation u ◦ w : F× → Z × Zde�ned by

(u ◦ w)(a) =
(
w(a), u(η(af−w(a)))

)
. (∗)Note that u ◦ w is the valuation whose assoiated plae is the ompo-sition of the plaes assoiated to the valuations u and w; this followsfrom the fat that both have valuation ring η−1(R/fR) = R + fW .(See [Bo72℄, Chapter VI, Setions 3-4, for a general disussion.)Lemma 4.3Let R be a omplete regular loal ring whose maximal ideal has genera-tors f, t; let n be a positive integer; and assume that the fration �eld Fof R ontains a primitive n-th root of unity ζ. Let D be the assoiative

F -algebra generated by elements Y, Z satisfying the relations
Y n =

f

f − t
, Zn =

f − t2

f − t− t2
, Y Z = ζZY.Then D is a division algebra over F .Proof. The F -algebra D is the symbol algebra over F with respet tothe n-th root of unity ζ and the elements a = f/(f − t) and b =

(f − t2)/(f − t− t2) of F×; see [Wad02℄, (0.3). This is a entral simple
F -algebra of degree n.Consider the rank two valuation v := u ◦ w : F× → Γ := Z × Z asabove, with respet to the generators f, t of the maximal ideal of R.Thus v is given by the expression (∗) above. Observe that v(a) =
(1,−1) and v(b) = (0, 1). Thus the images of v(a) and v(b) in Γ/nΓgenerate that group, whih has order n2. Sine F ontains a primitive
n-th root of unity, it then follows from [Wad02℄, Example 4.4, that Dis a division algebra over F . �The following result now provides the onverse diretion of our maintheorem (in fat in a more general situation):Proposition 4.4Let G be a �nite group whose Sylow subgroups are abelian of rank atmost 2. Let F be a �nitely generated �eld extension of transendenedegree one over a omplete disretely valued �eld K, and assume that Fontains a primitive |G|-th root of unity. Then G is admissible over F .



PATCHING SUBFIELDS OF DIVISION ALGEBRAS 17Proof. Let p1, . . . , pr be the prime numbers dividing the order of G.For eah i let Pi be a Sylow pi-subgroup of G. Let T be the valuationring of K. As in the introdution to this setion, there is a regular
T -urve X̂ suh that the redued irreduible omponents of the losed�ber X are regular. Choose distint losed points Q1, . . . , Qr ∈ Xat whih X is regular. Thus Qi lies on only one (regular) irreduibleomponent of X, and there is a unique branh ℘i of X at the point Qi.By Proposition 6.6 of [HH07℄, there is a �nite morphism f : X̂ → P1

Twhose �ber S = f−1(∞) ⊂ X ontains all the points Qi and all thepoints at whih two irreduible omponents of X meet.As above, let I be the set of all indies U,Q, ℘, and onsider theassoiated rings R̂ξ and their fration �elds Fξ for ξ ∈ I. To provethe result, it is enough to onstrut Pi-Galois adequate �eld extensions
Li = LQi

of FQi
, for i = 1, . . . , r, suh that Li ⊗FQi

F℘i
is a splitextension F⊕|Pi|

℘i of F℘i
. Namely, if this is done, then let HQ = 1 and

LQ = FQ for every point Q ∈ S other than Q1, . . . , Qr. Sine theindies of the subgroups HQi
:= Pi are relatively prime for i = 1, . . . , r,it follows that the indies of all the subgroups HQ (for Q ∈ S) arerelatively prime; and Lemma 4.2 will then imply the assertion.So �x i. By hypothesis, Pi is an abelian pi-group of rank at most 2,say Pi = Cq×Cq′ . Sine X̂ is regular and sine Qi is a regular point ofthe losed �ber X, the maximal ideal of the two-dimensional regularloal ring R̂i := R̂Qi

is generated by two elements fi and ti, where
ti ∈ R̂i de�nes the redued losed �ber of Spec(R̂i). (Thus t is a powerof ti multiplied by a unit in R̂i.) Consider the elements a = fi/(fi− ti)and b = (fi − t2i )/(fi − ti − t2i ) of FQi

, and let Li = FQi
(y, z) be the�eld extension of FQi

de�ned by the relations yq = a, zq′ = b. We willshow �rst that Li is a Pi-Galois adequate �eld extension of FQi
andthen show that Li ⊗FQi

F℘i
is a split extension of F℘i

.By the assumption on roots of unity, Kummer theory applies. Nei-ther a nor b is a d-th power in FQi
for any d > 1, so the extensions

FQi
(y) and FQi

(z) of FQi
are Galois with group Cq and Cq′, respetively.Here FQi

(y) is totally rami�ed over the prime (fi) of Spec(R̂i), whereas
FQi

(z) is unrami�ed there. So the intersetion of these two �elds equals
FQi

, showing that they are linearly disjoint over FQi
. Hene the Galoisgroup of their ompositum Li/FQi

is in fat Pi as laimed.Let ζ ∈ F be a primitive qq′-th root of unity; this exists sine qq′ =
|Pi| divides |G|. Consider the entral simple FQi

-algebra Di generatedby elements Y, Z satisfying the relations Y q′ = y, Zq = z, and Y Z =
ζZY . Thus Y qq′ = fi/(fi − ti) and Zqq′ = (fi − t2i )/(fi − ti − t2i ). By
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-division algebra of degree qq′. Indutively,one sees that Y Zq = ζqZqY and thus Y q′Zq = ζqq

′

ZqY q′ = ZqY q′.Consequently, yz = zy in Di; i.e. Li is a sub�eld of Di. But the degreeof Li/FQi
is qq′, so Li is a maximal sub�eld; i.e., Li is adequate.Finally, we show that Li⊗FQi

F℘i
is split. The above elements a and beah lie in the disrete valuation ring R̂℘i

, and in fat eah is ongruentto 1 modulo the maximal ideal (ti) of that ring. The redutions of aand b modulo ti are thus qq′-th powers in the residue �eld of R̂℘i
, andso Hensel's Lemma implies that a and b are eah qq′-th powers in R̂℘i(using that R̂℘i

is omplete t-adially and hene ti-adially). Tensoringover R̂℘i
with F℘i

, we have that Li ⊗FQi
F℘i

is a split extension of F℘i
,as desired. �Combining the above with Proposition 3.5 yields our main theorem:Theorem 4.5Let F be a �nitely generated �eld extension of transendene degreeone over a omplete disretely valued �eld K with algebraially losedresidue �eld k, and let G be a �nite group of order not divisible by

char(k). Then G is admissible over F if and only if eah of its Sylowsubgroups is abelian of rank at most 2.Proof. The forward diretion is given by Proposition 3.5. The onversefollows from Proposition 4.4, whih applies beause K (and hene F )ontains a primitive |G|-th root of unity by Hensel's Lemma, sine theresidue �eld k is algebraially losed of harateristi not dividing |G|.
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