
ar
X

iv
:0

90
4.

15
94

v2
  [

m
at

h.
R

A
] 

 2
3 

O
ct

 2
00

9

PATCHING SUBFIELDS OF DIVISION ALGEBRASDAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENAbstra
t. Given a �eld F , one may ask whi
h �nite groups areGalois groups of �eld extensions E/F su
h that E is a maximalsub�eld of a division algebra with 
enter F . This question wasoriginally posed by S
ha
her, who gave partial results in the 
ase
F = Q. Using pat
hing, we give a 
omplete 
hara
terization ofsu
h groups in the 
ase that F is the fun
tion �eld of a 
urve overa 
omplete dis
retely valued �eld with algebrai
ally 
losed residue�eld of 
hara
teristi
 zero, as well as results in related 
ases.1. Introdu
tionIn this manus
ript we 
onsider a problem, posed by S
ha
her in[S
h68℄, that relates inverse Galois theory to division algebras. Givena �eld F , S
ha
her asked whi
h �nite groups G are admissible over F ,meaning that there is a G-Galois �eld extension E/F with the propertythat E is a maximal sub�eld of an F -division algebra D. Like theoriginal inverse Galois problem, this problem is generally open; butunlike the original problem, the set of groups that 
an arise in thismanner is often known to be quite restri
ted (even for F = Q).This problem is a natural one be
ause of the relationship betweenmaximal sub�elds of division algebras and 
rossed produ
t algebrasover a given �eld. Crossed produ
t algebras 
an be des
ribed expli
itly,and are well understood. In those terms, the above problem 
an berephrased as asking for the set of groups G for whi
h there exists an

F -division algebra that is a 
rossed produ
t with respe
t to G.Past work on admissibility has 
on
entrated on the 
ase of global�elds. In [S
h68℄, S
ha
her gave a 
riterion that is ne
essary for ad-missibility of a group over the �eld Q, and whi
h he 
onje
tured is alsosu�
ient:Date: Version of O
tober 13, 2009. The authors were respe
tively supportedin part by NSF Grant DMS-0500118, the German National S
ien
e Foundation(DFG), and an NSA Young Investigator's Grant.2000 Mathemati
s Subje
t Classi�
ation. Primary: 12F12, 16K20, 14H25; Se
-ondary: 16S35, 12E30, 16K50.Key words : admissibility, pat
hing, division algebras, Brauer groups, Galois groups.1
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2 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENConje
ture [S
h68℄Let G be a �nite group. Then G is admissible over Q if and only ifevery Sylow subgroup of G is meta
y
li
.Although still open in general, many parti
ular groups and types ofgroups satisfying this 
riterion have been shown in fa
t to be admissibleover Q; see for example [Son83, SS92, CS81, FF90, FV87, Fei93, Fei02,Fei04℄. Also, Corollary 10.3 of [S
h68℄ shows that admissible groupsover a global �eld of 
hara
teristi
 p have meta
y
li
 Sylow subgroupsat the primes other than p.The main theorem of our paper is the following result (see Theo-rem 4.5):TheoremLet K be a �eld that is 
omplete with respe
t to a dis
rete valuationand whose residue �eld k is algebrai
ally 
losed. Let F be a �nitelygenerated �eld extension of K of trans
enden
e degree one. Then a�nite group G with char(k) ∤ |G| is admissible over F if and only ifevery Sylow subgroup of G is abelian of rank at most 2.The forward dire
tion of this theorem (Proposition 3.5) is analogousto S
ha
her's results. As in [S
h68℄, a key ingredient is the equality ofperiod and index in the Brauer group. The 
onverse dire
tion to ourtheorem is proven using pat
hing methods from [HH07℄, an approa
hthat is not available in the 
ase of global �elds, and whi
h makes pos-sible a variety of results for fun
tion �elds as in the above theorem. Infa
t, the equality of period and index used in the forward dire
tion 
analso be proven by su
h methods (see [HHK08℄).In the equal 
hara
teristi
 zero situation, the base �eld K is quasi-�nite (i.e. perfe
t with absolute Galois group Ẑ; see [Ser79℄, XIII.2),and F is thus analogous to a global �eld, viz. to a fun
tion �eld overa �nite �eld. In that situation, our main theorem provides a ne
essaryand su�
ient 
ondition for an arbitrary �nite group to be admissibleover F .This manus
ript is organized as follows. Se
tion 2 provides ba
k-ground and introdu
es the notion of an element of the Brauer groupbeing �determined by rami�
ation�. This notion is used in Se
tion 3to obtain a 
riterion (Theorem 3.3) that is then applied to prove theforward dire
tion of our main theorem. That se
tion 
on
ludes withtwo 
orollaries on admissibility for rational fun
tion �elds. Finally, Se
-tion 4 re
alls ideas from [HH07℄ 
on
erning pat
hing, and uses them toprove the 
onverse dire
tion of our main result, Theorem 4.5.
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ript. We also extend our thanks for the espe
ially valuable
omments that we re
eived from the anonymous referee.2. Brauer Groups and Ramifi
ationThe notions of admissibility and 
rossed produ
t algebras 
an beunderstood in terms of Brauer groups of �elds, and we review thatrelationship in this se
tion. In the 
ase of dis
retely valued �elds, wealso des
ribe properties of the rami�
ation map, whi
h asso
iates a
y
li
 �eld extension of the residue �eld to ea
h Brauer 
lass. Thisrami�
ation map is an important tool in studying the Brauer group,and Proposition 2.3 below will play a key role in the next se
tion.First, we re
all some standard fa
ts about 
entral simple algebras and(
entral) division algebras; for more detail see [Pie82℄, [Sal99℄, [Ja
96℄or [GS06℄. The degree of a 
entral simple F -algebra A is the square rootof its F -dimension, and its (S
hur) index is the degree of the divisionalgebra D su
h that A ∼= Matr(D) for some r ≥ 1. Equivalently,the index is the degree of a minimal splitting �eld for A, i.e. a �eldextension E/F su
h that A splits over E in the sense that A ⊗F E isa matrix algebra over F . In fa
t the index divides the degree of anysplitting �eld ([Pie82℄, Lemma 13.4). The Brauer group Br(F ) of F
onsists of the Brauer equivalen
e 
lasses of 
entral simple F -algebras,with the operation of tensor produ
t. Here two algebras are de
laredequivalent if they have isomorphi
 underlying division algebras. Theorder of the 
lass [A] of A in Br(F ) is 
alled its period (or exponent),and perA | indA ([Pie82℄, Proposition 14.4b(ii)). We will also write
per(a) for the order of an element a in an arbitrary abelian group.The Brauer group of F may be expli
itly identi�ed with the se
ondGalois 
ohomology group H2(F,Gm). Con
retely, if E/F is a G-Galoisextension and c : G × G → E× is a 2-
o
y
le with respe
t to thestandard a
tion of G on E×, there is an asso
iated 
entral simple F -algebra ∆(E,G, c). As an E-ve
tor spa
e, this algebra has a basis uσin bije
tion with the elements σ of the group G. Multipli
ation in thisalgebra is given by the formulas

uσuτ := c(σ, τ)uστ uσx := σ(x)uσfor σ, τ ∈ G, x ∈ E. We say that an F -algebra is a 
rossed produ
t ifit is isomorphi
 to an algebra of this form. This 
onstru
tion gives rise



4 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHEN([Sal99℄, Corollary 7.8) to an isomorphism
H2(F,Gm) → Br(F ),implying in parti
ular that every 
entral simple algebra is Brauer equiv-alent to a 
rossed produ
t algebra.If A is a 
entral simple F -algebra of degree n, then a 
ommutativeseparable F -subalgebra of A is maximal among all su
h subalgebras ifand only if its dimension over F is n ([Gro68a℄, Proposition 3.2). In the
ase that E is a sub�eld, we will refer to E as amaximal sub�eld, follow-ing [S
h68℄. Note that �maximal sub�eld� therefore means not merelythat E is maximal as a sub�eld, but in fa
t that it is maximal as a 
om-mutative separable subalgebra. In parti
ular, if A = Mat2(C), then Ahas no maximal sub�elds, sin
e C has no proper algebrai
 extensions.In the 
ase that A is a division algebra, however, any 
ommutativeseparable subalgebra must a
tually be a �eld, and so the two notionsof maximality agree. (In [Pie82℄, �13.1, the term �stri
tly maximal� isused for what we 
all �maximal�; and the term �maximal� is used therein the weaker sense.)If A = ∆(E,G, c), then E must be a maximal sub�eld of A, sin
e

degA = [E : F ]. Conversely, if E is a maximal sub�eld of A, and Eis a G-Galois extension of F , then E is a splitting �eld for A ([Pie82℄,Theorem 13.3) and hen
e A = ∆(E,G, c) for some 2-
o
y
le c ([Sal99℄,Corollary 7.3). Thus G is admissible over F if and only if there is a
rossed produ
t F -division algebra with respe
t to G.Now 
onsider a �eld F together with a dis
rete valuation v, 
om-pletion Fv, and residue �eld kv at v. Let Br(F )′ (resp. H1(kv,Q/Z)′)denote the subgroup of elements whose period is prime to char(kv)(so in parti
ular, Br(F )′ = Br(F ) et
. if char(kv) = 0). Re
all from[Sal99℄, Chapter 10, that there is a rami�
ation map ramv : Br(F )′ →
H1(kv,Q/Z)′, whi
h fa
tors through the 
orresponding map on Br(Fv)

′.More generally, if Ω is a set of dis
rete valuations on F , then we may
onsider the interse
tion of the above subgroups of Br(F ), as v rangesover the elements of Ω. Below, the 
hoi
e of Ω will be 
lear from the
ontext, and we will simply write Br(F )′ for the interse
tion. In thatsituation, for ea
h v ∈ Ω the map ramv : Br(F )′ → H1(kv,Q/Z)′ isde�ned on this interse
tion.De�nition 2.1Let F be a �eld, Ω a set of dis
rete valuations on F , and α ∈ Br(F )′.We say that α is determined by rami�
ation (with respe
t to Ω) if thereis some v ∈ Ω su
h that
per(α) = per(ramv α).



PATCHING SUBFIELDS OF DIVISION ALGEBRAS 5Note that if ramv is inje
tive for some v ∈ Ω, then every 
lass in
Br(F )′ is determined by rami�
ation. This rather spe
ial situation isgeneralized in Proposition 2.3 below, whi
h will play an important rolein Se
tion 3. First we make a de�nition and introdu
e some notation.De�nition 2.2Let F be a �eld and Ω a set of dis
rete valuations on F . We de�ne theunrami�ed Brauer group of F (with respe
t to Ω), denoted by Bru(F )′,to be the kernel of

Br(F )′
Q

ramv //
∏

v∈ΩH
1(kv,Q/Z)′.For a prime p and an integer n, let np denote the largest power of

p that divides n. A Brauer 
lass α ∈ Br(F ) may be expressed as
α = αp + (α− αp) for some unique 
lass αp (viz. a prime-to-p multipleof α) satisfying per(αp) = (per(α))p and (per(α−αp))p = 1. Moreover,this 
lass satis�es ind(αp) = ind(α)p and (ind(α − αp))p = 1. (see[Pie82℄, �14.4, Primary De
omposition Theorem and its proof). Givena division algebra D, let Dp be the division algebra in the 
lass [D]p;i.e. [D]p = [Dp].Proposition 2.3Let F be a �eld, Ω a nonempty set of dis
rete valuations on F with
Bru(F )′ = 0, and suppose α ∈ Br(F ). Then for every prime p not equalto any residue 
hara
teristi
 of Ω, αp is determined by rami�
ation.Proof. By de�nition, αp ∈ Br(F )′ for p as in the statement. By thehypothesis on the unrami�ed Brauer group, the map

Br(F )′
Q

ramv //
∏

v∈ΩH
1(kv,Q/Z)′is inje
tive. It follows that the image of αp under the map ∏

ramvhas order equal to per(αp) = per(α)p, a power of p. Sin
e the least
ommon multiple of p-powers is their maximum, the order of the imageis the maximum value of per(ramv(αp)), for v ∈ Ω. Hen
e per(αp) =
per(ramv(αp)) for some v ∈ Ω. So αp is determined by rami�
ation. �3. Admissibility CriteriaIn this se
tion, we give a 
riterion for a group to be admissible. It isbased on an auxiliary lemma together with an analysis of the rami�
a-tion map de�ned in Se
tion 2. In Theorem 3.3, we give a rami�
ation
ondition on a 
rossed produ
t algebra that implies that the Sylowsubgroups of the asso
iated group are meta
y
li
, or even abelian of



6 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENrank at most two. We then des
ribe a situation in whi
h this 
ondi-tion is met (Proposition 3.5), thereby providing the forward dire
tionof the main result, Theorem 4.5. Finally, we state some 
orollaries for(retra
t) rational varieties.We begin with the auxiliary lemma based on Kummer theory.Lemma 3.1Let E/F be a �nite Galois extension of 
omplete dis
retely valued �elds,with Galois group G and with 
y
li
 residue �eld extension ℓ/k of 
har-a
teristi
 not dividing |G|. Then:(a) The Galois group G is meta
y
li
.(b) Let e be the rami�
ation index of E over F . Then G is abelian(of rank at most 2) if and only if F 
ontains a primitive e-throot of unity.Proof. (a) Let E0 be the maximal unrami�ed extension of F 
on-tained in E. Thus E/E0 is Galois and totally rami�ed ([Ser79℄, Corol-lary III.5.3), and it is tamely rami�ed sin
e char(k) 6 | [E : E0]. Hen
eits Galois group is equal to its inertia group, whi
h is 
y
li
 ([Ser79℄,Corollaries 2 and 4 of IV.2). Note that ℓ is the residue �eld of E0.Sin
e the residue �eld extension ℓ/k is 
y
li
, Proposition I.7.20 andCorollary II.3.4 of [Ser79℄ imply that the unrami�ed extension E0/F isalso 
y
li
. Thus E/F is meta
y
li
.(b) We �rst show that E0 always 
ontains a primitive e-th root ofunity. Sin
e the tamely rami�ed extension E/E0 is totally rami�ed,its degree is equal to its rami�
ation index e. By [Has02℄, Chapter 16,p. 249, E/E0 is a radi
al extension E = E0(z) for some z ∈ E with
f := ze ∈ E0. The 
onjugates of z over E0 are just the multiples of zby the primitive e-th roots of unity in a �xed algebrai
 
losure of E.But E/E0 is Galois; so these 
onjugates and hen
e these roots of unitylie in E. Thus there is a primitive e-th root of unity in the residue�eld of E, or equivalently of E0 (sin
e E/E0 is totally rami�ed). ByHensel's Lemma, there is a primitive e-th root of unity ζ in E0.By the �rst part of the proof, the extensions E/E0 and E0/F are
y
li
. Let σ be a generator of Gal(E/E0) for whi
h σ(z) = ζz, andlet τ ∈ G be a lift of a generator of Gal(E0/F ). Thus G is abelian ifand only if σ and τ 
ommute; and it su�
es to show that this latter
ondition is equivalent to the assertion that ζ ∈ F .Sin
e E0/F is Galois, 〈σ〉 is normal, and thus τ−1στ = σi for some iprime to e with 1 ≤ i < e. Moreover τ(z)e = τ(f) ∈ E0, so σ(τ(z)) =
ζjτ(z) for some non-negative integer j < e. Hen
e r := τ(z)/zj is �xedby σ; so r ∈ E0.



PATCHING SUBFIELDS OF DIVISION ALGEBRAS 7Let v denote the dis
rete valuation on F , normalized so that thevaluation of a uniformizer is 1. We may extend v to a dis
rete valuationon E, taking values in 1
e
Z. Sin
e τ maps the maximal ideal of thevaluation ring of E to itself, it follows that v(τ(h)) = v(h) for h ∈ E.Also, v takes integral values on E0, be
ause E0 is unrami�ed over F .In parti
ular, v(f), v(r) ∈ Z. We have v(f) = v(ze) = v(τ(z)e) =

v(zjere) = v(f jre) = jv(f) + ev(r) ∈ jv(f) + eZ. But v(f) is primeto e sin
e E/E0 is totally rami�ed. So j = 1, i.e. σ(τ(z)) = ζτ(z). Itfollows that τ(ζ)iτ(z) = τ(ζ iz) = τσi(z) = στ(z) = ζτ(z), where thethird equality uses that τ−1στ = σi. That is, τ(ζ)i = ζ . Thus ζ ∈ F ifand only if i = 1; i.e. if and only if στ = τσ. �The next proposition makes it possible to verify the 
y
li
ity of theresidue �eld extension required in the previous lemma, in 
ertain 
aseswhen the image of a Brauer 
lass under the rami�
ation map be
omestrivial upon an extension E/F . It uses the following 
onne
tion be-tween 1-
o
y
les and 
y
li
 extensions:Consider a �eld k, with �xed separable 
losure ks and absolute Galoisgroup Gk := Gal(ks/k). An element ψ ∈ H1(k,Q/Z) = Hom(Gk,Q/Z)with per(ψ) = n de�nes an n-
y
li
 �eld extension k′ := (ks)kerψ of
k. Let ℓ be an algebrai
 �eld extension of k, viewed as a sub�eldof an algebrai
 
losure of k 
ontaining ks. Then there is a naturalin
lusion of Gℓ into Gk and hen
e a restri
tion map Hom(Gk,Q/Z) →
Hom(Gℓ,Q/Z). By Galois theory the image of ψ under this map de�nesthe 
ompositum k′ℓ/ℓ as a 
y
li
 extension of ℓ.Proposition 3.2Let (E,w)/(F, v) be an extension of dis
retely valued �elds and let ℓ/kdenote the residue �eld extension. Let α ∈ Br(F )′ (with respe
t to
{v}), and suppose that per(ramv(α)) = [E : F ]. Let αE ∈ Br(E)′ bethe element indu
ed by α. If ramw(αE) = 0 then ℓ is 
y
li
 over k and
w is the only dis
rete valuation on E extending v.Proof. Let χ := ramv(α) ∈ H1(k,Q/Z)′ and let e := ew/v be the ram-i�
ation index of w over v. By [Sal99℄, Theorem 10.4, there is a 
om-mutative diagram

Br(F )′
ramv //

��

H1(k,Q/Z)′

e·res

��
Br(E)′ ramw

// H1(ℓ,Q/Z)′



8 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENwhere the verti
al map on the right is the 
omposition of the restri
tionmap with multipli
ation by e.Hen
e e res(χ) = ramw(αE) = 0. Let k′ be the 
y
li
 extension of
k de�ned by eχ. Then sin
e res(eχ) = e res(χ) = 0, k′ℓ/ℓ is a trivialextension, i.e. k′ ⊆ ℓ. Moreover, [k′ : k] = per(eχ) ≥ per(χ)/e, andthus

[E : F ] = per(χ) ≤ [k′ : k] · e ≤ [ℓ : k] · e ≤ [E : F ].So the 
hain of inequalities is a
tually a 
hain of equalities and hen
e
ℓ = k′ is 
y
li
 and [E : F ] = [ℓ : k] · e. Hen
e w is the only dis
retevaluation on E lying over v. �Re
all the notation np and αp introdu
ed before Proposition 2.3.Theorem 3.3Let F be a �eld, Ω a set of dis
rete valuations on F , and p a primeunequal to all of the residue 
hara
teristi
s of Ω. Let D be a 
rossedprodu
t division algebra over F with respe
t to a �nite group G. If
[D]p ∈ Br(F )′ is determined by rami�
ation and (perD)p = (indD)p,then every p-Sylow subgroup P of G is meta
y
li
. If moreover F
ontains a primitive |P |-th root of unity, then P is abelian of rankat most 2.Proof. By hypothesis there is a dis
rete valuation v ∈ Ω su
h that
per([D]p) = per(ramv[D]p). Sin
e D is a 
rossed produ
t with respe
tto G, there is a maximal sub�eld L of D that is G-Galois over F .Moreover D is split by L ([Sal99℄, Corollary 7.3), i.e. DL := D⊗F L issplit.Let P be a p-Sylow subgroup of G, and let w1, . . . , wn denote theextensions of v to the �xed �eld LP . Then [LP : F ] =

n∑
i=1

ewi/vfwi/vwhere ewi/v (resp. fwi/v) is the rami�
ation index (resp. residue degree)of wi over v. Sin
e p does not divide [LP : F ], there exists an index j forwhi
h p ∤ ewj/vfwj/v. Let w := wj, and let u be any dis
rete valuationon L extending w.Let β be the 
lass [D⊗F L
P ] in Br(LP ). In order to invoke Proposi-tion 3.2, we will show that the following three 
onditions are satis�ed:(i) β ∈ Br(LP )′ (with respe
t to {w});(ii) per(ramw β) = |P |;(iii) ramu(βL) = 0.For (i), the algebra D is split by L; hen
e the 
lass β = [D⊗F L

P ] issplit by L, whi
h is of degree |P | over LP . Consequently, per β | ind β |
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|P |. Hen
e per β is a power of p, whi
h is not the residue 
hara
teristi
of w. Thus β ∈ Br(LP )′ as we wanted to show.For (ii), 
onsider the 
ommutative diagram ([Sal99℄, Theorem 10.4)

Br(F )′
ramv //

φ
��

H1(k,Q/Z)′

ew/v·res

��

Br(LP )′ ramw

// H1(ℓ,Q/Z)′where k and ℓ denote the respe
tive residue �elds. The verti
al righthand map in the diagram is the 
omposition of multipli
ation by ew/vand the restri
tion map. Sin
e ew/v is prime to p, multipli
ation by ew/vis inje
tive on p-power torsion. Also, the degree of ℓ/k is prime to p,and the 
omposition of restri
tion and 
orestri
tion is multipli
ation bythat degree. So the restri
tion map is also inje
tive on p-power torsion.Hen
e the verti
al right hand map in the above diagram is inje
tive on
p-power torsion.Now [Dp] = [D]p = r[D] for some r ∈ N that is prime to p, and so
[Dp ⊗F L

P ] = rβ. Thus [D]p is sent to rβ under the left hand verti
almap φ. Sin
e per β is a power of p, so is per(ramw β), and hen
e
per(ramw β) = per(ramw rβ) = per(ramw(φ([D]p)) = per(ramv([D]p).Re
all that D is a 
rossed produ
t with respe
t to G, so ind(D)p =
|G|p = |P |, and this quantity equals per(D)p by hypothesis. Thus,using again that [D]p is determined by rami�
ation at v, per(ramw β) =
per(ramv[D]p) = (perD)p = |P |, showing (ii).Finally, (iii) is immediate sin
e ramu(βL) = ramu([D ⊗F L]) = 0be
ause D splits over L.Now Proposition 3.2 (applied to the P -Galois extension L/LP ) im-plies that the residue �eld extension ℓ/k is 
y
li
 and that u is theunique dis
rete valuation on L extending w on LP . Hen
e the ex-tension Lu/(L

P )w of the 
orresponding 
ompletions also has Galoisgroup P , and the 
on
lusions of the theorem follow immediately fromLemma 3.1. �Corollary 3.4Let F be a �eld and let Ω be a nonempty set of dis
rete valuations on
F with Bru(F )′ = 0. Let p be a prime unequal to all of the residue
hara
teristi
s of Ω, and assume that perαp = indαp for every α ∈
Br(F ). If G is admissible over F , then every Sylow p-subgroup P ismeta
y
li
. If moreover F 
ontains a primitive |P |-th root of unity,then P is abelian of rank at most two.



10 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENProof. Sin
e G is admissible over F , there is a 
rossed produ
t divi-sion algebra D over F with respe
t to G. By Proposition 2.3 and theassumption on Bru(F )′, it follows that [D]p ∈ Br(F )′ is determinedby rami�
ation. By hypothesis, (per[D])p = per([D]p) = ind([D]p) =
(ind[D])p. So the 
on
lusion follows from Theorem 3.3. �Using this 
orollary, we obtain the following proposition, whi
h pro-vides a ne
essary 
ondition for admissibility and implies the forwarddire
tion of our main result, Theorem 4.5 below.Proposition 3.5Let K be a 
omplete dis
retely valued �eld with algebrai
ally 
losedresidue �eld k, and let F be a �nitely generated �eld extension of Kof trans
enden
e degree one. Let G be a �nite group that is admissibleover F . Then for every p 6= char(k), the Sylow p-subgroups of G areea
h abelian of rank at most two.Proof. Let p 6= char(k) be a prime that divides the order of G, and let
P be a Sylow p-subgroup of G. Let T denote the valuation ring of K,and 
hoose a regular 
onne
ted proje
tive T -
urve X̂ with fun
tion �eld
F . (Given F , su
h an X̂ always exists by resolution of singularities;
f. [Abh69℄ or [Lip75℄.) Let Ω be the set of dis
rete valuations 
orre-sponding to the 
odimension 1 points of X̂. Thus p is not a residue
hara
teristi
 of any valuation v in Ω. With respe
t to Ω we have
Bru(F )′ = 0, by results in [COP02℄ and [Gro68b℄. (Namely, Br(X̂) = 0by [COP02℄, Corollary 1.10(b) (Corollary 1.9(b) in the preprint), andthen Bru(F )′ = Br(X̂)′ = 0 by Proposition 2.3 of [Gro68b℄.)Sin
e p 6= char(k), it follows by Theorem 5.5 of [HHK08℄ (or by[Lie08℄, Theorem 5.3) that perαp = indαp for every α ∈ Br(F ). Againsin
e p 6= char(k), the algebrai
ally 
losed residue �eld k 
ontains aprimitive |P |-th root of unity; thus by Hensel's Lemma, so does K andhen
e F . Thus the hypotheses of Corollary 3.4 hold, and therefore ea
hSylow p-subgroup of G is abelian of rank at most 2. �We 
on
lude this se
tion with two 
orollaries (whi
h are not usedin the remainder of the paper). They use Theorem 3.3 to give anobstru
tion for a fun
tion �eld to be rational, or even retra
t rational(whi
h is more general; see [Sal99℄, p.77).Corollary 3.6Let F be a retra
t rational �eld extension of an algebrai
ally 
losed�eld C. Suppose that there is an F -division algebra D with perD =
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indD, su
h that D is a 
rossed produ
t for a group G with char(C) ∤
|G|. Then all Sylow subgroups of G are abelian of rank at most 2.Proof. Let p be a prime that divides the order ofG and let P be a Sylow
p-subgroup. Let Ω be the set of dis
rete valuations on F that are trivialon C. By Proposition 11.8 of [Sal99℄, Bru(F )′ is isomorphi
 to Br(C)′,the subgroup of Br(C) 
onsisting of elements of order not divisible by
char(C). (Note that Ω = RF in the notation in [Sal99℄.) But Br(C)and hen
e Br(C)′ is trivial, be
ause C is algebrai
ally 
losed. Thus byProposition 2.3, [D]p ∈ Br(F )′ is determined by rami�
ation. Sin
e
C is algebrai
ally 
losed of 
hara
teristi
 unequal to p, it 
ontains aprimitive pr-th root of unity for all r ∈ N. Hen
e so does F . But
perD = indD by assumption, so Theorem 3.3 implies the assertion.

�Remark 3.7This should be 
ompared to a result of Saltman ([Sal90℄), stating that if
G is a �nite group with at least one Sylow subgroup that is not abelianof rank at most 2, then the 
enter of a generi
 
rossed produ
t algebrawith group G is not rational.In the 
ase of a rational fun
tion �eld in two variables over an alge-brai
ally 
losed �eld, the 
ondition on period and index is satis�ed by[dJ04℄; so from Corollary 3.6 we obtain the followingCorollary 3.8Suppose F = C(x, y) where C is algebrai
ally 
losed. If G is admissibleover F with char(C) ∤ |G| then every Sylow subgroup of G is abelian ofrank at most 2. 4. Admissibility and pat
hingTo prove the 
onverse dire
tion of our main theorem, we �rst re
allthe method of pat
hing over �elds as introdu
ed in [HH07℄. Throughoutthis se
tion, T is a 
omplete dis
rete valuation ring with uniformizer t,fra
tion �eld K, and residue �eld k. We 
onsider a �nitely generated�eld extension F/K of trans
enden
e degree one. Let X̂ be a regular
onne
ted proje
tive T -
urve with fun
tion �eld F su
h that the re-du
ed irredu
ible 
omponents of its 
losed �ber X are regular. (Given
F , su
h an X̂ always exists by resolution of singularities; 
f. [Abh69℄or [Lip75℄.) Let f : X̂ → P1

T be a �nite morphism su
h that the inverse
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k 
ontains all the points of X at whi
h distin
t irre-du
ible 
omponents meet. (Su
h a morphism exists by Proposition 6.6of [HH07℄.) We will 
all (X̂, S) a regular T -model of F .Following Se
tion 6 of [HH07℄, for ea
h point Q ∈ S as above we let

RQ be the lo
al ring of X̂ at Q, and we let R̂Q be its 
ompletion at themaximal ideal 
orresponding to the point Q. Also, for ea
h 
onne
ted
omponent U of X r S we let RU be the subring of F 
onsisting ofthe rational fun
tions that are regular at the points of U , and we let
R̂U denote its t-adi
 
ompletion. If Q ∈ S lies in the 
losure Ū ofa 
omponent U , then there is a unique bran
h ℘ of X at Q lyingon Ū (sin
e Ū is regular). Here ℘ is a height one prime of R̂Q that
ontains t, and we may identify it with the pair (U,Q). We write R̂℘for the 
ompletion of the dis
rete valuation ring obtained by lo
alizing
R̂Q at its prime ideal ℘. Thus R̂Q is naturally 
ontained in R̂℘.In the above situation, with ℘ = (U,Q), there is also a naturalin
lusion R̂U →֒ R̂℘. To see this, �rst observe that the lo
alizationsof RU and of RQ at the generi
 point of Ū are the same; and thislo
alization is naturally 
ontained in the t-adi
ally 
omplete ring R̂℘.Thus so is RU and hen
e its t-adi
 
ompletion R̂U .The in
lusions of R̂U and of R̂Q into R̂℘, for ℘ = (U,Q), indu
e in-
lusions of the 
orresponding fra
tion �elds FU and FQ into the fra
tion�eld F℘ of R̂℘. Let I be the index set 
onsisting of all U,Q, ℘ des
ribedabove. Via the above in
lusions, the 
olle
tion of all Fξ, for ξ ∈ I, thenforms an inverse system with respe
t to the ordering given by setting
U ≻ ℘ and Q ≻ ℘ if ℘ = (U,Q).Under the above hypotheses, suppose that for every �eld extension
L of F , we are given a 
ategory A(L) of algebrai
 stru
tures over L(i.e. �nite dimensional L-ve
tor spa
es with additional stru
ture, e.g.asso
iative L-algebras), along with base-
hange fun
tors A(L) → A(L′)when L ⊆ L′. An A-pat
hing problem for (X̂, S) 
onsists of an obje
t
Vξ in A(Fξ) for ea
h ξ ∈ I, together with isomorphisms φU,℘ : VU ⊗FU

F℘ → V℘ and φQ,℘ : VQ ⊗FQ
F℘ → V℘ in A(F℘). These pat
hingproblems form a 
ategory, denoted by PPA(X̂, S), and there is a base
hange fun
tor A(F ) → PPA(X̂, S). (Note that the above de�nitionof pat
hing problem is equivalent to that given in Se
tion 2 of [HH07℄for ve
tor spa
es, sin
e the restri
tion of φU,℘ to VU ⊂ VU ⊗FU

F℘ isan FU -linear map that indu
es φU,℘ upon tensoring, and similarly for
φQ,℘.)If an obje
t V ∈ A(F ) indu
es a given pat
hing problem up toisomorphism, we will say that V is a solution to that pat
hing problem,
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hing the obje
ts Vξ. We similarly speak ofobtaining a morphism over F by pat
hing morphisms in PPA(X̂, S).The next result is given by [HH07℄, Theorem 7.1(i,v,vi), in the 
on-text of Theorem 6.4 of that paper.Theorem 4.1Let K be a 
omplete dis
retely valued �eld with valuation ring T , andlet F/K be a �nitely generated �eld extension of trans
enden
e degreeone. Let (X̂, S) be a regular T -model of F . For a �eld extension L of
F , let A(L) denote any of the following 
ategories:(1) the 
ategory of �nite dimensional asso
iative L-algebras,(2) the 
ategory of G-Galois L-algebras for some �xed �nite group

G, with G-equivariant morphisms, or(3) the 
ategory of 
entral simple L-algebras with algebra homomor-phisms.Then the base 
hange fun
tor A(F ) → PPA(X̂, S) is an equivalen
eof 
ategories. In parti
ular, every A-pat
hing problem has a uniquesolution.Given a �nite group G, a subgroup H ⊆ G, and an H-Galois �eldextension L/F , there is an indu
ed G-Galois F -algebra E = IndGH Lgiven by a dire
t sum of 
opies of L indexed by the left 
osets of H in
G; e.g. see [HH07℄, Se
tion 7.2. In parti
ular, if H = 1, then E is asplit extension of F ; i.e., E ∼= F⊕|G|.Following S
ha
her [S
h68℄, we say that a �nite �eld extension L/Fis adequate if there exists an F -
entral division algebra D su
h that L isisomorphi
 to a maximal sub�eld of D as an F -algebra. In parti
ular, if
L/F is an adequate Galois extension with groupG, thenG is admissibleover F . Note that F is adequate over itself.The following lemma shows that the obje
ts in Theorem 4.1(2) and (3)may in a sense be pat
hed in pairs. Note that the 
ondition on the in-di
es (G : HQ) implies that the subgroups HQ generate G, whi
h wouldsu�
e to obtain a G-Galois �eld extension by pat
hing (
f. [Ha87℄,Proposition 2.2, or the proof of [HH07℄, Theorem 7.3). In our set-up,however, a stronger 
ondition than generation is needed, due to therestri
tion on admissible groups given in Proposition 3.5.Lemma 4.2Let G be a �nite group, and let F and (X̂, S) be as in Theorem 4.1.Suppose that for ea
h Q ∈ S we are given a subgroup HQ ⊆ G andan HQ-Galois adequate �eld extension LQ/FQ su
h that LQ ⊗FQ

F℘ is
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⊕|HQ|
℘ of F℘ for ea
h bran
h ℘ at Q. Assume thatthe greatest 
ommon divisor of the indi
es (G : HQ) is equal to 1.Then there exists an adequate G-Galois �eld extension E/F su
h that

E ⊗F FQ ∼= EQ := IndGHQ
LQ for all Q ∈ S.Proof. We �rst des
ribe our setup for pat
hing. Let I be the set of allindi
es U,Q, ℘, as in the introdu
tion to this se
tion. If ξ is either abran
h ℘ of the 
losed �ber X at a point Q ∈ S or else a 
omponent UofXrS, let Lξ = Fξ and Hξ = 1 and let Eξ = IndGHξ

Lξ ∼= F
⊕|G|
ξ , a splitextension of Fξ. Thus for every ξ ∈ I, the Fξ-algebra Eξ = IndGHξ

Lξ isa G-Galois Fξ-algebra, in the sense of [DI71℄, Se
tion III.1. Let n = |G|and let nξ = (G : Hξ) for ξ ∈ I. Sin
e ea
h �eld extension Lξ/Fξ isadequate, we may 
hoose division algebras Dξ that 
ontain the �elds
Lξ as maximal sub�elds. Thus Dξ is a 
rossed produ
t Fξ-algebra withrespe
t to Hξ and Lξ; and Dξ is split over Lξ ([Sal99℄, Corollary 7.3).Let Aξ = Matnξ

(Dξ). In parti
ular, if ξ is a bran
h ℘ or a 
omponent
U then nξ = n, Dξ = Fξ, and Aξ = Matn(Fξ).For every ξ ∈ I, we 
laim that Eξ embeds as a maximal 
ommutativeseparable Fξ-subalgebra of Aξ. To see this, note that sin
e the 
entralsimple Lξ-algebra Dξ ⊗Fξ

Lξ is split, so is the Lξ-algebra Dξ ⊗Fξ
Eξ,in the sense of being a dire
t sum of matrix algebras over Lξ. It thenfollows from [DI71℄ (Theorem II.5.5 together with Proposition V.1.2and Corollary I.1.11) that Eξ is a maximal 
ommutative separable Fξ-subalgebra of some 
entral simple Fξ-algebra Bξ that is Brauer equiv-alent to Dξ. Su
h an algebra is a matrix algebra over Dξ, ne
essarilyof degree n over Fξ; so Aξ and Bξ are ea
h matrix algebras of thesame degree, and hen
e are isomorphi
. This shows the existen
e of an

Fξ-algebra embedding ιξ : Eξ → Aξ, proving the 
laim.The proof now pro
eeds in three steps. First, we want to use pat
hingto obtain a G-Galois (
ommutative separable) F -algebra E. Observethat for a bran
h ℘ = (U,Q), we have isomorphisms LU ⊗FU
F℘ →

IndHU
1 F℘ and LQ ⊗FQ

F℘ → Ind
HQ

1 F℘; these yield isomorphisms φU,℘ :
EU ⊗FU

F℘ → E℘ and φQ,℘ : EQ ⊗FQ
F℘ → E℘. With respe
t tothe various maps φU,℘, φQ,℘, the G-Galois Fξ-algebras Eξ (for ξ ∈ I)may be pat
hed, by Theorem 4.1(2), to obtain a G-Galois F -algebra

E. That is, E ⊗F Fξ ∼= Eξ for all ξ ∈ I, 
ompatibly with the aboveisomorphisms.Next, we will also pat
h the algebras Aξ, 
ompatibly with the in
lu-sions ιξ. Let ℘ = (U,Q) be a bran
h at a point Q ∈ S, and let ξ = Uor Q. Sin
e Lξ ⊗Fξ
F℘ ∼= F

⊕|Hξ|
℘ , there is an embedding Lξ →֒ F℘ of
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Lξ-algebras by proje
ting onto the dire
t summand 
orresponding tothe identity element in Hξ. With respe
t to this embedding, we have
Dξ ⊗Fξ

F℘ ∼= (Dξ ⊗Fξ
Lξ) ⊗Lξ

F℘ ∼= Mat|Hξ|(Lξ) ⊗Lξ
F℘ ∼= Mat|Hξ|(F℘),sin
e Dξ ⊗Fξ

Lξ is a split 
entral simple Lξ-algebra. So there is anisomorphism ψ̃ξ,℘ : Aξ ⊗Fξ
F℘ → Matn(F℘) = A℘ of F℘-algebras. By[Ja
96℄, Theorem 2.2.3(2), the F℘-algebra embedding ψ̃ξ,℘◦(ιξ⊗Fξ

F℘)◦

φ−1
ξ,℘ : E℘ → A℘ extends to an inner automorphism αξ,℘ of A℘. Then
α−1
ξ,℘ψ̃ξ,℘ ◦ (ιξ ⊗Fξ

F℘) = φξ,℘ : Eξ ⊗Fξ
F℘ → E℘ ⊆ A℘. Let ψξ,℘ =

α−1
ξ,℘ψ̃ξ,℘ : Aξ ⊗Fξ

F℘ → A℘. Hen
e if ξ is a point of X or a 
omponentof X r S, there is the following 
ommutative diagram:
Aξ ⊗Fξ

F℘
ψξ,℘ // A℘

Eξ ⊗Fξ
F℘

ιξ⊗Fξ
F℘

OO

φξ,℘

// E℘

ι℘

OO

By Theorem 4.1(3), we may pat
h the algebras Aξ (for all ξ ∈ I)to obtain a 
entral simple F -algebra A. Furthermore, be
ause of the
ompatibility expressed in the above diagram, the morphisms ιξ pat
hto give a morphism ι : E → A. Therefore E is a 
ommutative separablesubalgebra of A, and its dimension over F equals the dimension n ofea
h Eξ over Fξ. Thus E is maximal in A.Finally, we will show that A is a division algebra, whi
h implies that
E is a �eld and hen
e is an adequate G-Galois �eld extension of F . Forthis, note that

n/nξ = |Hξ| = [Lξ : Fξ] = deg(Dξ) = ind(Aξ) | ind(A),where the third equality holds be
ause Lξ is a maximal sub�eld ofthe 
rossed produ
t algebra Dξ ([Sal99℄, Corollary 7.3), and where thedivisibility follows from [Pie82℄, Proposition 13.4(v). Hen
e
deg(A) = n = lcm(n/nξ, ξ ∈ I) | ind(A) | deg(A),where the se
ond equality follows from the hypothesis on the indi
es

nξ = (G : Hξ) being relatively prime (even just for ξ = Q ∈ S), usingthat n = |G|. So deg(A) = n = ind(A), and hen
e A is a divisionalgebra. This �nishes the proof. �Consider a two-dimensional regular lo
al ring R, say with fra
tion�eld F , and whose maximal ideal has generators f, t. Let w : F× → Zbe the f -adi
 dis
rete valuation on F , with valuation ring W = R(f).The ring R/fR is also a dis
rete valuation ring, with fra
tion �eld
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W̄ = W/fW . The 
orresponding dis
rete valuation u : W̄× → Zis equal to the t̄-adi
 valuation on W̄ , where t̄ ∈ W̄ is the image of
t ∈ W under the 
anoni
al map η : W → W̄ . With Z × Z orderedlexi
ographi
ally, there is a rank two valuation u ◦ w : F× → Z × Zde�ned by

(u ◦ w)(a) =
(
w(a), u(η(af−w(a)))

)
. (∗)Note that u ◦ w is the valuation whose asso
iated pla
e is the 
ompo-sition of the pla
es asso
iated to the valuations u and w; this followsfrom the fa
t that both have valuation ring η−1(R/fR) = R + fW .(See [Bo72℄, Chapter VI, Se
tions 3-4, for a general dis
ussion.)Lemma 4.3Let R be a 
omplete regular lo
al ring whose maximal ideal has genera-tors f, t; let n be a positive integer; and assume that the fra
tion �eld Fof R 
ontains a primitive n-th root of unity ζ. Let D be the asso
iative

F -algebra generated by elements Y, Z satisfying the relations
Y n =

f

f − t
, Zn =

f − t2

f − t− t2
, Y Z = ζZY.Then D is a division algebra over F .Proof. The F -algebra D is the symbol algebra over F with respe
t tothe n-th root of unity ζ and the elements a = f/(f − t) and b =

(f − t2)/(f − t− t2) of F×; see [Wad02℄, (0.3). This is a 
entral simple
F -algebra of degree n.Consider the rank two valuation v := u ◦ w : F× → Γ := Z × Z asabove, with respe
t to the generators f, t of the maximal ideal of R.Thus v is given by the expression (∗) above. Observe that v(a) =
(1,−1) and v(b) = (0, 1). Thus the images of v(a) and v(b) in Γ/nΓgenerate that group, whi
h has order n2. Sin
e F 
ontains a primitive
n-th root of unity, it then follows from [Wad02℄, Example 4.4, that Dis a division algebra over F . �The following result now provides the 
onverse dire
tion of our maintheorem (in fa
t in a more general situation):Proposition 4.4Let G be a �nite group whose Sylow subgroups are abelian of rank atmost 2. Let F be a �nitely generated �eld extension of trans
enden
edegree one over a 
omplete dis
retely valued �eld K, and assume that F
ontains a primitive |G|-th root of unity. Then G is admissible over F .



PATCHING SUBFIELDS OF DIVISION ALGEBRAS 17Proof. Let p1, . . . , pr be the prime numbers dividing the order of G.For ea
h i let Pi be a Sylow pi-subgroup of G. Let T be the valuationring of K. As in the introdu
tion to this se
tion, there is a regular
T -
urve X̂ su
h that the redu
ed irredu
ible 
omponents of the 
losed�ber X are regular. Choose distin
t 
losed points Q1, . . . , Qr ∈ Xat whi
h X is regular. Thus Qi lies on only one (regular) irredu
ible
omponent of X, and there is a unique bran
h ℘i of X at the point Qi.By Proposition 6.6 of [HH07℄, there is a �nite morphism f : X̂ → P1

Twhose �ber S = f−1(∞) ⊂ X 
ontains all the points Qi and all thepoints at whi
h two irredu
ible 
omponents of X meet.As above, let I be the set of all indi
es U,Q, ℘, and 
onsider theasso
iated rings R̂ξ and their fra
tion �elds Fξ for ξ ∈ I. To provethe result, it is enough to 
onstru
t Pi-Galois adequate �eld extensions
Li = LQi

of FQi
, for i = 1, . . . , r, su
h that Li ⊗FQi

F℘i
is a splitextension F⊕|Pi|

℘i of F℘i
. Namely, if this is done, then let HQ = 1 and

LQ = FQ for every point Q ∈ S other than Q1, . . . , Qr. Sin
e theindi
es of the subgroups HQi
:= Pi are relatively prime for i = 1, . . . , r,it follows that the indi
es of all the subgroups HQ (for Q ∈ S) arerelatively prime; and Lemma 4.2 will then imply the assertion.So �x i. By hypothesis, Pi is an abelian pi-group of rank at most 2,say Pi = Cq×Cq′ . Sin
e X̂ is regular and sin
e Qi is a regular point ofthe 
losed �ber X, the maximal ideal of the two-dimensional regularlo
al ring R̂i := R̂Qi

is generated by two elements fi and ti, where
ti ∈ R̂i de�nes the redu
ed 
losed �ber of Spec(R̂i). (Thus t is a powerof ti multiplied by a unit in R̂i.) Consider the elements a = fi/(fi− ti)and b = (fi − t2i )/(fi − ti − t2i ) of FQi

, and let Li = FQi
(y, z) be the�eld extension of FQi

de�ned by the relations yq = a, zq′ = b. We willshow �rst that Li is a Pi-Galois adequate �eld extension of FQi
andthen show that Li ⊗FQi

F℘i
is a split extension of F℘i

.By the assumption on roots of unity, Kummer theory applies. Nei-ther a nor b is a d-th power in FQi
for any d > 1, so the extensions

FQi
(y) and FQi

(z) of FQi
are Galois with group Cq and Cq′, respe
tively.Here FQi

(y) is totally rami�ed over the prime (fi) of Spec(R̂i), whereas
FQi

(z) is unrami�ed there. So the interse
tion of these two �elds equals
FQi

, showing that they are linearly disjoint over FQi
. Hen
e the Galoisgroup of their 
ompositum Li/FQi

is in fa
t Pi as 
laimed.Let ζ ∈ F be a primitive qq′-th root of unity; this exists sin
e qq′ =
|Pi| divides |G|. Consider the 
entral simple FQi

-algebra Di generatedby elements Y, Z satisfying the relations Y q′ = y, Zq = z, and Y Z =
ζZY . Thus Y qq′ = fi/(fi − ti) and Zqq′ = (fi − t2i )/(fi − ti − t2i ). By
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-division algebra of degree qq′. Indu
tively,one sees that Y Zq = ζqZqY and thus Y q′Zq = ζqq

′

ZqY q′ = ZqY q′.Consequently, yz = zy in Di; i.e. Li is a sub�eld of Di. But the degreeof Li/FQi
is qq′, so Li is a maximal sub�eld; i.e., Li is adequate.Finally, we show that Li⊗FQi

F℘i
is split. The above elements a and bea
h lie in the dis
rete valuation ring R̂℘i

, and in fa
t ea
h is 
ongruentto 1 modulo the maximal ideal (ti) of that ring. The redu
tions of aand b modulo ti are thus qq′-th powers in the residue �eld of R̂℘i
, andso Hensel's Lemma implies that a and b are ea
h qq′-th powers in R̂℘i(using that R̂℘i

is 
omplete t-adi
ally and hen
e ti-adi
ally). Tensoringover R̂℘i
with F℘i

, we have that Li ⊗FQi
F℘i

is a split extension of F℘i
,as desired. �Combining the above with Proposition 3.5 yields our main theorem:Theorem 4.5Let F be a �nitely generated �eld extension of trans
enden
e degreeone over a 
omplete dis
retely valued �eld K with algebrai
ally 
losedresidue �eld k, and let G be a �nite group of order not divisible by

char(k). Then G is admissible over F if and only if ea
h of its Sylowsubgroups is abelian of rank at most 2.Proof. The forward dire
tion is given by Proposition 3.5. The 
onversefollows from Proposition 4.4, whi
h applies be
ause K (and hen
e F )
ontains a primitive |G|-th root of unity by Hensel's Lemma, sin
e theresidue �eld k is algebrai
ally 
losed of 
hara
teristi
 not dividing |G|.
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