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APPLICATIONS OF PATCHING TO QUADRATICFORMS AND CENTRAL SIMPLE ALGEBRASDAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENAbstrat. This paper provides appliations of pathing to qua-drati forms and entral simple algebras over funtion �elds ofurves over henselian valued �elds. In partiular, we use a path-ing approah to reprove and generalize a reent result of Parimalaand Suresh on the u-invariant of p-adi funtion �elds, p 6= 2. Thestrategy relies on a loal-global priniple for homogeneous spaesfor rational algebrai groups, ombined with loal omputations.1. IntrodutionA longstanding open problem in the theory of quadrati forms is to�nd a general method for evaluating the u-invariant of �elds. To date,though, the u-invariant has been omputed only in quite restritedsituations. In this paper we prove a general result that provides the u-invariant of funtion �elds of urves for a variety of open ases, as wellas implying known results in a uni�ed way. Most notably, we obtaina new proof of the reent result of Parimala and Suresh ([PS07℄) onthe u-invariant of nondyadi p-adi funtion �elds. Our approah alsoyields evidene for the expeted growth of the u-invariant, for exampleupon �eld extensions.The method used here is quite di�erent from that of [PS07℄ and otherworks on this topi, and is not ohomologial. The results stem from aloal-global priniple for the existene of points on ertain homogeneousvarieties, whih yields a Hasse-Minkowski type statement for quadratiforms over funtion �elds of urves.Our proofs rely on ideas from pathing, a method that has been usedin the past to prove many results about Galois theory (see e.g. [Har03℄).In [HH07℄, the �rst two authors extended pathing to strutures over�elds rather than over rings, to make the method more amenable toother appliations. This approah shows that giving an algebrai stru-ture over ertain funtion �elds is equivalent to giving the struture overa suitable olletion of over�elds. As in earlier forms of pathing, a keyThe �rst author was supported in part by NSF Grant DMS-0500118.1
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2 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENstep is to prove a matrix fatorization result. We use these ideas here,espeially in the proof of our loal-global priniple.In addition, we show how the same loal-global priniple an be usedto obtain results about the period-index problem for entral simplealgebras. In partiular, we give a new proof of a reent result of Lieblih([Lie08℄) on funtion �elds of urves over henselian rings. It has beenunderstood that there is a onnetion between results onerning u-invariants and the period-index problem for entral simple algebras,and it is interesting to see how similar our proofs are in these twosituations.Below, we summarize the main results on quadrati forms and entralsimple algebras (whih an be found in Setions 4 and 5).1.1. Results on quadrati forms. We begin by realling Kaplan-sky's de�nition of the u-invariant (some referenes use a modi�ed de�-nition due to Elman and Lam whih agrees with this for nonreal �elds,see e.g. [P�95℄, p. 114).De�nition 1.1Let k be a �eld. The u-invariant of k, denoted by u(k), is the max-imal dimension of anisotropi quadrati forms over k (or ∞, if suhdimensions are arbitrarily large).The u-invariant and the possible values it an take for a �xed or vary-ing �eld has been a major objet of study in the theory of quadratiforms. (Note that it is a positive integer if it is �nite.) There are manyopen problems onerning this number; see for example, [Lam05℄, Se-tion XIII.6. On the other hand there has been a lot of reent progress,most notably in the omputation of the u-invariant of funtion �eldsof non-dyadi p-adi urves due to Parimala and Suresh (see below).It is generally expeted that the u-invariant of �eld extensions shouldgrow along with the ohomologial dimension. In partiular, for �rea-sonable� �elds, one expets that �nite extensions have the same u-invariant, and that the u-invariant should double upon a �nitely gen-erated �eld extension of transendene degree one. To formalize ourdisussion towards these expetations, we make the following de�nition:De�nition 1.2Let k be a �eld. The strong u-invariant of k, denoted by us(k), is thesmallest real number n suh that- every �nite �eld extension E/k satis�es u(E) ≤ n, and- every �nitely generated �eld extension E/k of transendenedegree one satis�es u(E) ≤ 2n.



APPLICATIONS OF PATCHING 3If these u-invariants are arbitrarily large we say that us(k) = ∞.Thus us(k) ≤ n if and only if every �nitely generated �eld extension
E/k of transendene degree ℓ ≤ 1 satis�es u(E) ≤ 2ℓn. Sine the u-invariant, if �nite, is a positive integer, it follows that us(k) is at least
1 and lies in 1

2
N.Conerning quadrati forms, our main result is:Theorem (Theorem 4.10)Let K be a omplete disretely valued �eld whose residue �eld k hasharateristi unequal to 2. Then us(K) = 2us(k).More generally we show that this holds for exellent henselian dis-rete valuation rings (Corollary 4.12). As a onsequene of these re-sults, in many ases we are able to obtain exat values of the u-invariantand strong u-invariant, not just upper bounds.By de�nition, a Cd-�eld has u-invariant at most 2d. Using this, wededue from our main theorem that if T is a omplete (or exellenthenselian) disrete valuation ring whose residue �eld is a Cd-�eld ofodd harateristi, every funtion �eld F of a regular T -urve satis�es

u(F ) ≤ 2d+2 (see Corollary 4.13(a), whih is more general). As a speialase, we obtain the reent theorem of Parimala and Suresh ([PS07℄,Theorem 4.6; Corollary 4.15 below): A funtion �eld in one variableover a non-dyadi p-adi �eld has u-invariant 8. Our result also appliesto funtion �elds over the algebrai losure of Q in a non-dyadi p-adi�eld.Applying indution to our main theorem we obtain that the u-invariant of an m-loal �eld with algebraially losed (respetively, �-nite) residue �eld of harateristi unequal to 2 is 2m+1 (resp., 2m+2);see Corollary 4.14. For example, the u-invariant of a one-variable fun-tion �eld over Qp((t)) is 16, for p odd. As another appliation, let k bea funtion �eld of transendene degree d over an algebraially losed�eld of harateristi unequal to 2. Then the u-invariant of the fun-tion �eld of a K-urve is at most 2d+m+1, for any m-loal �eld K withresidue �eld k; see after Corollary 4.13.In addition to these, we obtain similar results for other lasses of�elds whih naturally our in the ontext of pathing, desribed atthe end of Setion 4. More spei�ally, suppose that T is a ompletedisrete valuation ring with uniformizer t and residue �eld k of hara-teristi unequal to 2. If F is the fration �eld of T [[x]] or of the t-adiompletion of T [x], then u(F ) ≤ 4us(k), with equality if u(k) = us(k);



4 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENe.g. if k is a Cd-�eld having u-invariant 2d. In partiular, if k is alge-braially losed, then u(F ) is equal to 4; and u(F ) equals 8 if k is �nite(example ases of the latter inlude k((x, y)) and the fration �eld of
Zp[[x]] with p odd).1.2. Results on entral simple algebras. Given a �eld k, reallthat the period (or exponent) of a entral simple k-algebra A is theorder of the lass of A in the Brauer group of k; and the index of A isthe degree of the division algebra D that lies in the lass of A (i.e. suhthat A is a matrix ring over D). The period and index always have thesame prime fators, and the period always divides the index ([Pie82℄,Proposition 14.4(b)(ii)). The period-index problem asks whether allentral simple algebras A over a given �eld k satisfy ind(A) | per(A)dfor some �xed exponent d depending only on k. In analogy with thenotion of the strong u-invariant (De�nition 1.2), we make the followingde�nition (extending that of Lieblih; see [Lie08℄, De�nition 1.1):De�nition 1.3Let k be a �eld. The Brauer dimension of k (away from a prime p)is de�ned to be 0 if k is separably losed (resp. separably losed awayfrom p, i.e. the absolute Galois group of k is a pro-p group). Otherwise,it is the smallest positive integer d suh that- for every �nite �eld extension E/k and every entral simple

E-algebra A (resp. with p 6 | per(A)), we have ind(A)| per(A)d−1;and- for every �nitely generated �eld extension E/k of transendenedegree one and every entral simple E-algebra A (resp. with
p 6 | per(A)), we have ind(A)| per(A)d.If no suh number d exists, we say that the Brauer dimension is ∞.Again, we an summarize this by saying that the Brauer dimensionof k is at most d if for every �nitely generated �eld extension E/k oftransendene degree ℓ ≤ 1 and every entral simple E-algebra A (resp.with p 6 | per(A)), we have ind(A)| per(A)d+ℓ−1.As with the u-invariant, it is expeted that this invariant shouldgrow in parallel to the ohomologial dimension. In partiular, oneexpets that it should inrease by one upon a �nitely generated �eldextension of transendene degree one. Early results in this diretionwere obtained by Saltman in [Sal97℄ and [Sal98℄, inluding the fat that

ind | per2 for p-adi urves, along with a general mehanism to relatethe Brauer dimension of urves over disretely valued �elds to that ofurves over the residue �eld. (See also [For96℄.) Along these lines, in



APPLICATIONS OF PATCHING 5Setion 5 we give an alternative proof of a result that was reentlyshown by Lieblih in the ase d > 0 ([Lie08℄, Theorem 5.3):Theorem (Theorem 5.5)Let K be a omplete disretely valued �eld whose residue �eld k hasharateristi 0 (resp. harateristi p > 0). If k has Brauer dimension
d ≥ 0 (resp. away from p) then K has Brauer dimension at most d+ 1(resp. away from p).More generally, as in [Lie08℄, we show a version of this result forexellent henselian rings. As an appliation of the above theorem,sine the Brauer dimension of a �nite �eld is 1, it follows that theBrauer dimension of a p-adi �eld is at most 2, and that of Qp((t)) isat most 3. As another appliation, let k be the funtion �eld of a urveover a separably losed �eld. Then the Brauer dimension of k is 1 by[deJ04℄. So ind(α) = per(α) for all α in the Brauer group of k((t)) with
char(k) not dividing the period. Similarly, ind(α) divides per(α)2 forall α in the Brauer group of k((t))(x) of period not divisible by char(k).In analogy to the results on the u-invariant, we also obtain state-ments for �elds that arise from pathing; see Corollary 5.10. In parti-ular, let T be a omplete disrete valuation ring with uniformizer t andresidue �eld k of harateristi 0 (resp. harateristi p > 0) and Brauerdimension d (resp. away from p). If F is the fration �eld of T [[x]] or ofthe t-adi ompletion of T [x], then ind(α)| per(α)d+2 for all α ∈ Br(F )with period not divisible by char(k). Moreover ind(α) = per(α) if F is
k((x, t)) or the fration �eld of k[x][[t]] where k is separably losed, orif F is the fration �eld of Zur

p [[x]], provided that the residue hara-teristi does not divide per(α).
1.3. Organization of the manusript. The organization of the man-usript is as follows. Setion 2 is onerned with a deomposition ofvetors. It is fairly tehnial and may be skipped upon a �rst reading.Setion 3 shows how this deomposition in vetor spaes an be usedto obtain a multipliative deomposition (i.e. fatorization) in rationallinear algebrai groups (Theorem 3.6). The main result of the setion,the loal-global priniple for homogeneous spaes (Theorem 3.7), is arather diret onsequene. It is the key ingredient for proving the upperbounds in the later results. In Setions 4 and 5, loal omputationsombined with Theorem 3.7 yield the main results about quadratiforms and entral simple algebras, respetively.



6 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENAknowledgment. The authors thank Karim Johannes Beher, Jean-Louis Colliot-Thélène, R. Parimala, Jakob Stix and V. Suresh for theiromments on this manusript.2. Deomposition of vetorsThe goal of this setion is to prove a deomposition theorem (The-orem 2.5) that will be used in the next setion to obtain fatorizationresults and a loal-global priniple for rational linear algebrai groups.This strategy parallels that of [HH07℄, whih onerned the group GLn.Throughout this setion we let F0 be the fration �eld of a ompletedisrete valuation ring R̂0 with uniformizer t, and we let | | be a normon F0 indued by the t-adi valuation � i.e. |a| = α−v(a) for a realnumber α > 1. This norm extends uniquely to a norm on a �xedalgebrai losure F̄0 of F0 (again denoted by | |). If E ⊆ F̄0 is a �eldextension of F0 and V is a �nite dimensional vetor spae over E withbasis b1, . . . , bn, we de�ne a norm on V by setting |∑ aibi| = max{|ai|}.Sine V is �nite dimensional, it is omplete with respet to this metriif E is �nite over F0. We will ommonly identify suh a vetor spae Vwith the points of the a�ne spae An
F0

(E) and onsequently talk aboutthe norm of suh points as well.For n ≥ 0, the t-adi topology on An
F0

(F̄0) is �ner than the Zariskitopology. This is beause a basi open set in the Zariski topology isde�ned by the non-vanishing of a polynomial f ∈ F0[x1, . . . , xn], andbeause suh an f is ontinuous in the t-adi topology.Now �x n, let A = F0[x1, . . . , x2n] be the oordinate ring of A2n
F0
,and let Â = F0[[x1, . . . , x2n]] be the ompletion at the maximal ideal

m0 at the origin. Also let A0 be the loalization of A at m0; thus
A0 ⊂ Â. For short, we write x for (x1, . . . , x2n). Given a 2n-tuple
ν = (ν1, . . . , ν2n) ∈ N 2n of nonnegative integers, write |ν| =

∑
νiand let xν denote xν1

1 · · ·xν2n

2n , a monomial of total degree |ν|. For
f =

∑
ν cνx

ν ∈ Â we de�ne ‖f‖ = sup{|cν |} (or ∞ if the oe�ientsare unbounded). Note that ‖f‖ is �nite for f ∈ A.For a real number M ≥ 1, let ÂM ⊂ Â be the subset onsisting ofthose f as above suh that for all ν ∈ N2n we have |cν | ≤ M |ν|. Sinethe absolute value on F0 is non-arhimedean, ÂM is a ring; and it isomplete with respet to the restrition of the m0-adi topology on Â.Note also that ÂM ⊂ ÂM ′ if M < M ′. In the ase that M = |t|s forsome (possibly negative) integer s, the subring ÂM ⊂ Â is just thepower series ring R̂0[[x1t
s, . . . , x2nt

s]]. In general, the next result showsthat we an view the elements of ÂM as power series funtions that are



APPLICATIONS OF PATCHING 7de�ned and t-adially bounded by 1 on the t-adi open dis of radius
M−1 about the origin in A2n(F0).Lemma 2.1 (a) Let f ∈ A0 ⊂ Â satisfy |f(0)| ≤ 1. Then forsome M ≥ 1 we have f ∈ ÂM and f = g/h for some g, h ∈ Awith h ∈ Â×

M .(b) Let M ≥ 1 and let f =
∑

ν∈N2n cνx
ν ∈ ÂM . If a ∈ A2n(F0) with

|a| < M−1 then the series
f(a) :=

∑

ν

cνa
νonverges t-adially to an element of F0, of norm at most 1.() In part (a), if a ∈ A2n(F0) with |a| < M−1 then the series f(a)onverges t-adially to the value g(a)/h(a) ∈ F0.Proof. (a) Sine A0 is the loalization of R̂0[x1, . . . , xn] at the ideal

(x1, . . . , xn), we may write f = g/h with g, h ∈ R̂0[x1, . . . , xn] ⊂ Aand with h 6∈ m0. Here ‖g‖ ≤ 1 and ‖h‖ = 1, so g, h ∈ Â1. Sine
A/m0 is a �eld, there exists h′ ∈ A suh that hh′ − 1 ∈ m0. Writing
hh′ = 1 − e with e ∈ m0 ⊂ A, we see that the inverse to h in Â isgiven by ∑

i≥0 h
′ei (where this series onverges in Â beause e ∈ m0).So f =

∑
i≥0 gh

′ei ∈ Â. Let M = max{1, ‖h′‖, ‖e‖} < ∞. Thus
g, h, h′, e ∈ ÂM (using that the nononstant oe�ients satisfy therequired ondition by our hoie of M , and the onstant oe�ientshave absolute value at most 1). Furthermore, sine ÂM is a ring, eahterm of ∑

h′ei and of ∑
gh′ei is also in ÂM . Sine ÂM is ompletewith respet to the restrition of the m0-adi topology on Â, theseseries onverge to elements of ÂM ⊂ Â. Therefore, f, h−1 ∈ ÂM and

h ∈ Â×
M .(b) Sine f ∈ ÂM , we have that |cν | ≤ M |ν| for eah ν. Let a ∈

A2n(F0) with m := |a| < M−1. Thus |cνaν | ≤ (mM)|ν| < 1 for eah
ν, sine 0 ≤ mM < 1. Sine F0 is t-adially omplete, the series f(a)(whih has �nitely many terms of eah total degree) onverges to anelement of F0 of norm at most 1.() Sine h ∈ A ∩ Â×

M , we have h(a)h−1(a) = 1 and so h(a) 6= 0.Let d > deg(g) and let C = max{‖g‖, ‖h‖}. Let fs be the polynomialtrunation of the series f ∈ Â modulo the terms of degree ≥ s. Thusthe sequene fs(a) onverges to some c ∈ F0, by (b). If s ≥ d, then
ks := fsh − g is a polynomial whose terms eah have degree ≥ s andfor whih the oe�ients of the terms of degree j have absolute value



8 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENat most M jC. With m := |a|, the absolute values of the terms ofdegree j in ks(a) are at most (mM)jC, and so |ks(a)| ≤ (mM)sC.Thus ks(a) → 0, sine 0 < mM < 1. That is, fs(a)h(a) → g(a), orequivalently ch(a) = g(a). Thus c = g(a)/h(a), i.e. the series f(a)onverges to g(a)/h(a). �Lemma 2.2Suppose f ∈ ÂM with M ≥ 1, and write
f = c0,0 + L+

∑

|ν|≥2

cνx
νwhere L is a linear form in x1, . . . , x2n and all cν ∈ F0. Let s ≥ 0,let 0 < ε ≤ |t|/M2, and suppose a, a′ ∈ A2n(F0) with |a| ≤ ε and

|a′| ≤ ε|t|s. Then
|f(a+ a′) − f(a) − L(a′)| ≤ ε|t|s+1.Proof. We may rearrange the quantity of interest as:

f(a+ a′) − f(a) − L(a′) =
∑

|ν|≥2

cν ((a+ a′)ν − aν) .Sine the absolute value is non-arhimedean, it su�es to show thatfor every term m = cνx
ν with |ν| ≥ 2 we have

|m(a+ a′) −m(a)| ≤ ε|t|s+1.For a given ν with |ν| ≥ 2, onsider the expression (x + x′)ν − xν ,regarded as a homogeneous element of degree j = |ν| in the polyno-mial ring F0[x1, . . . , x2n, x
′
1, . . . , x

′
2n]. Sine the terms of degree j in

x1, . . . , x2n anel, the result is a sum of terms of the form λℓ where λis an integer and ℓ is a monomial in the variables x, x′ with total degree
d in x1, . . . , x2n and total degree d′ in x′1, . . . , x′2n, suh that d+ d′ = jand d < j. Hene d′ ≥ 1. Consequently, for eah term of this form,

|λℓ(a, a′)| ≤ |ℓ(a, a′)| ≤ εd(ε|t|s)d′ = εj|t|sd′ ≤ εj|t|s.Sine (a + a′)ν − aν is a sum of suh terms, and the norm is non-arhimedean, we onlude |(a+ a′)ν − aν | ≤ εj|t|s.Sine m = cνx
ν , it follows that

|m(a+ a′) −m(a)| ≤ |cν |εj|t|s ≤M jεj |t|s.Now ε ≤ |t|/M2, so εj−1 ≤ |t|j−1/M2j−2. Sine |t| < 1, M ≥ 1, and
j ≥ 2, we have

εj−1 ≤ |t|j−1

M j+j−2
≤ |t|
M j

.



APPLICATIONS OF PATCHING 9Rearranging this gives the inequality (Mε)j ≤ ε|t| and so (Mε)j |t|s ≤
ε|t|s+1. Therefore

|m(a + a′) −m(a)| ≤M jεj|t|s ≤ ε|t|s+1,as desired. �For the remainder of this setion, it will be onvenient to write yi =
xn+i for i = 1, . . . , n. We will let ν = (ν1, . . . , νn) and ρ = (ρ1, . . . , ρn)be n-tuples of non-negative integers; and for suh ν, ρ we will write
|(ν, ρ)| =

∑
νi +

∑
ρi and will let xνyρ denote xν1

1 · · ·xνn
n y

ρ1

1 · · · yρn
n , amonomial of total degree |(ν, ρ)|. An element of Â will be written as

f =
∑

ν,ρ cν,ρx
νyρ with cν,ρ ∈ F0.Lemma 2.3Let f ∈ m0A0, and suppose there is some 1 ≤ i ≤ n suh that f(a, 0) =

ai = f(0, a) for all a = (a1, . . . , an) ∈ F n
0 for whih f(a, 0) and f(0, a)onverge. Then f ∈ ÂM ⊂ Â for some M ≥ 1, and its expansion hasthe form

f = xi + yi +
∑

|(ν,ρ)|≥2

cν,ρx
νyρ.Proof. By Lemma 2.1(a), both f and g := f − xi − yi ∈ m0A0 liein ÂM for some M ≥ 1; in partiular, g =
∑

ν,ρ cν,ρx
νyρ with eah

|cν,ρ| ≤ M |(ν,ρ)|. Here g onverges in a t-adi neighborhood of (0, 0),on whih g(a, b) = 0 if a = 0 or b = 0. To prove the result it su�esto show that cν,ρ = 0 for |(ν, ρ)| < 2. This is automati for c0,0 sine
g ∈ m0A0. It remains to show that cν,ρ = 0 for |(ν, ρ)| = 1.We argue by ontradition. Suppose that there exists (ν0, ρ0) suhthat cν0,ρ0

6= 0 with |(ν0, ρ0)| = 1. Without loss of generality, wemay assume that ν0 = (1, 0, . . . , 0) and ρ0 = (0, 0, . . . , 0). Choose
0 < m < 1 suh that m ≤ |cν0,ρ0

|, and N > 0 suh that |tN | < m/M2.Let v = (tN , 0, . . . , 0) ∈ A2n; thus g(v) = 0. Also, |L(v)| ≥ m|tN | > 0,where L is the sum of the terms of g of degree 1. So L(v) 6= 0.Now let h = cν,ρx
νyρ be an arbitrary term of g whose degree j :=

|(ν, ρ)| is at least 2. We laim |h(v)| < |L(v)|. Showing this for all suh
h would imply that |g(v)| = |L(v)|. Sine g(v) = 0 6= L(v), this wouldlead to a ontradition.To verify the laim, we may assume h(v) 6= 0. Using the de�nitionof v, we see diretly that h = cxj

1 for some c ∈ F0, and that |h(v)| =

|c||tN |j. Here |c| ≤ M j sine g ∈ ÂM and h is a term of g. We ompute
|L(v)|
|h(v)| ≥

m|tN |
|c||tN |j ≥ m

M j

1

|tN |j−1
.



10 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENSine |tN | < m/M2, we have 1/|tN | > M2/m and so 1/|tN |j−1 >
M2(j−1)/mj−1. Combining this with the above,

|L(v)|
|h(v)| ≥

m

M j

1

|tN |j−1
>

m

M j

M2j−2

mj−1
=
M j−2

mj−2
≥ 1,beause j ≥ 2, M ≥ 1, and 0 < m < 1. So |L(v)| > |h(v)| asdesired. �For the next result and for use in the next setion, we make thefollowing hypothesis, ontinuing under the notation introdued at thebeginning of the urrent setion:Hypothesis 2.4We assume that the omplete disrete valuation ring R̂0 ontains asubring T whih is also a omplete disrete valuation ring having uni-formizer t, and that F1, F2 are sub�elds of F0 ontaining T . We fur-ther assume that V ⊂ F1 ∩ R̂0, W ⊂ F2 ∩ R̂0 are t-adially omplete

T -submodules satisfying V +W = R̂0.The main theorem of this setion is the following deomposition re-sult, whih is related to [HH07℄, Proposition 3.2 (with An
F0

here orre-sponding to the a�ne spae of square matries of a given size):Theorem 2.5Under Hypothesis 2.4, let f : An
F0

× An
F0

99K An
F0

be an F0-rationalmap that is de�ned on a Zariski open set U ⊆ An
F0

× An
F0

ontainingthe origin (0, 0). Suppose further that f(u, 0) = u = f(0, u) whenever
(u, 0) (resp. (0, u)) is in U . Then there is a real number ε > 0 suhthat for all a ∈ An(F0) with |a| ≤ ε, there exist v ∈ V n and w ∈ W nsuh that (v, w) ∈ U(F0) and f(v, w) = a.Proof. Write the funtion f as an n-tuple (f1, . . . , fn) with fi ∈ A0. Infat fi ∈ m0A0 sine fi(0, 0) = 0. So by Lemma 2.1(a), there is a realnumber M ≥ 1 suh that fi ∈ ÂM for all i; and by Lemma 2.3,

fi = xi + yi +
∑

|(ν,ρ)|≥2

cν,ρ,ix
νyρ (∗)for some cν,ρ,i in F0.As noted at the beginning of this setion, the t-adi topology ona�ne spae is �ner than the Zariski topology. So there exists δ > 0suh that (v, w) ∈ U(F0) for all v, w ∈ An(F0) satisfying |(v, w)| ≤ δ.Choose N > 0 suh that |tN | ≤ min{|t|/M2, δ}, and set ε = |tN |. In



APPLICATIONS OF PATCHING 11partiular, whenever |(v, w)| ≤ ε, the point (v, w) lies in U(F0), andhene f(v, w) is de�ned.Now suppose a = (a1, . . . , an) ∈ An(F0) with |a| ≤ ε. We willindutively onstrut sequenes of elements vj = (v1,j, . . . , vn,j) ∈ V n,
wj = (w1,j , . . . , wn,j) ∈ W n, with j ≥ 0, suh that v0 = w0 = (0, . . . , 0)and(1) |(vj, wj)| ≤ ε for all j ≥ 0;(2) |vj − vj−1|, |wj − wj−1| ≤ ε|t|j−1 for all j ≥ 1; and(3) |fi(vj , wj) − ai| ≤ ε|t|j for all j ≥ 0.Sine the T -modules V n,W n are t-adially omplete, the seond on-dition ensures that v = lim

j→∞
vj and w = lim

j→∞
wj exist in V n and

W n. The �rst ondition shows moreover that |(v, w)| ≤ ε, so that
(v, w) ∈ U(F0) and f(v, w) is de�ned. Finally, the third onditionimplies that f(v, w) = a. Thus it su�es to onstrut suh sequenes.It follows from Lemma 2.1(b) that sine at eah stage we will have
|(vj, wj)| ≤ ε ≤ |t|/M2 < 1/M , the power series expressions for
f(vj, wj) are onvergent. By Lemma 2.1() we may identify the limitsof these evaluated power series with the values of the original rationalfuntions.Observe that the �rst and third onditions hold for j = 0. Nowassume indutively that for some j ≥ 0 we have hosen vj, wj satisfyingthe three asserted onditions (exept the seond, if j = 0). De�ne
bj = (b1,j , . . . , bn,j) = a− f(vj, wj). By the third ondition on (vj, wj),we have |bj| ≤ ε|t|j = |t|N+j. Write bj = tN+juj with uj ∈ R̂n

0 . ByHypothesis 2.4, we may write uj = v′j+1 + w′
j+1 for v′j+1 ∈ V n, w′

j+1 ∈
W n.Let vj+1 = vj + tN+jv′j+1 and wj+1 = wj + tN+jw′

j+1. It is im-mediate by onstrution that |vj+1 − vj |, |wj+1 − wj| ≤ ε|t|j sine
|t|N = ε. This proves the seond ondition on (vj+1, wj+1). Sine
|vj|, |wj| ≤ ε ≤ |t|/M2 (by the �rst ondition on (vj , wj)) and sine
|tN+jv′j+1|, |tN+jw′

j+1| ≤ ε|t|j, it follows by equation (∗) and Lemma 2.2that
|fi(vj+1, wj+1) − ai| = |fi(vj+1, wj+1) − fi(vj , wj) − bi,j|

=
∣∣fi(vj + tN+jv′j+1 , wj + tN+jw′

j+1) − fi(vj , wj) − tN+j(v′j+1 + w′
j+1)

∣∣

≤ ε|t|j+1,proving the third ondition on (vj+1, wj+1). The �rst ondition on
(vj+1, wj+1) holds by the seond ondition on (vj+1, wj+1) together withthe �rst ondition on (vj, wj), sine the norm is non-arhimedean and
j ≥ 0. �



12 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENThe above deomposition theorem will be used in the next setion toextend [HH07℄, Proposition 3.2, whih used an additive deompositionto provide a fatorization of matries in GLn. In applying Theorem 2.5above to obtain fatorization in more general rational linear algebraigroups G (Theorem 3.2 below), we will identify G birationally with anopen subset of some a�ne spae, with f above being the map therethat orresponds to multipliation in G.3. Fatorization and a loal-global prinipleWe say that a onneted linear algebrai group de�ned over a �eld
F is rational if it is rational as an F -variety. In this setion we provefatorization theorems for suh groups (Theorems 3.4 and 3.6), gener-alizing results of [HH07℄ about the rational group GLn. The key stepis Theorem 3.2, whih relies on Theorem 2.5. Afterwards, in Theo-rem 3.7, we apply this fatorization to obtain a loal-global priniplefor homogeneous spaes for rational groups.Lemma 3.1Let G be a rational onneted linear algebrai group over an in�nite�eld F , let F0 be an extension �eld of F , and let g ∈ G(F0). Thenthere exists a Zariski open subset Y ⊆ G suh that g ∈ Y (F0) and suhthat Y is F -isomorphi to an open subset of a�ne spae over F .Proof. Sine G is rational, there exists a non-empty irreduible Zariskiopen subset Y ′ ⊆ G that is isomorphi to an open subset of a�nespae. Sine F is in�nite, every non-empty open subset of a�ne F -spae ontains an F -point. Consequently, there exists a point y ∈
Y ′(F ), and the F0-sheme y−1g−1Y ′

F0
∩ Y ′

F0
is a Zariski dense opensubset of Y ′

F0
. Sine Y ′ is F -isomorphi to an open subset of a�nespae, and sine F is in�nite, it follows that Y ′(F ) is dense in Y ′(F0)with respet to the Zariski topology. Therefore there exists y′ ∈ Y ′(F )suh that y′ ∈ y−1g−1Y ′(F0). That is to say, g ∈ Y ′(F0)(yy

′)−1. Setting
Y = Y ′(yy′)−1, we �nd that Y is an F -subsheme of G suh that
g ∈ Y (F0) and Y ∼= Y ′ is F -isomorphi to an open subvariety of a�nespae. �The following fatorization theorem, whih extends [HH07℄, Propo-sition 3.2, to more general rational linear algebrai groups than GLn,relies on Theorem 2.5 above:



APPLICATIONS OF PATCHING 13Theorem 3.2Under Hypothesis 2.4, assume that F is a sub�eld of F1 ∩ F2 that on-tains T , and that F1 is t-adially dense in F0. Let G be a rational on-neted linear algebrai group de�ned over F . Then for any g ∈ G(F0)there exist gi ∈ G(Fi), i = 1, 2, suh that g1g2 = g.Proof. Sine G is rational, there is a Zariski dense open subset U ′ of Gthat is F -isomorphi to a Zariski open subset U of An
F , where n is thedimension of G. After translating, we may assume that U ′ ontainsthe identity e ∈ G and that the F -isomorphism φ : U ′ → U ⊆ An

Ftakes e to the origin in An(F ). Consider the group multipliation map
µ : G×G→ G, and let Ũ ′ = µ−1(U ′) ∩ (U ′ × U ′) ⊆ G×G. Note that
Ũ ′ is a Zariski open subset of G×G that ontains the point (e, e), andthat µ(Ũ ′) ⊆ U ′. The isomorphism φ : U ′ → U indues an isomorphism
φ × φ|eU ′ : Ũ ′ → Ũ for some dense open subset Ũ ⊆ An

F × An
F = A2n

F .Hene there exists a morphism f : Ũ → U suh that the followingdiagram ommutes:
G×G ⊇ Ũ ′

µ|eU′

//

φ×φ|eU′

��

U ′

φ

��

⊆ G

A2n
F ⊇ Ũ f

// U ⊆ An
FSine µ(g, e) = g = µ(e, g) for g ∈ G, it follows that f(v, 0) = v =

f(0, v) when (v, 0) and (0, v) are in Ũ . Consequently, it follows fromTheorem 2.5 (with Ũ here playing the role of U there) and the assump-tions of Hypothesis 2.4 that there is an ε > 0 suh that for g ∈ U ′(F0)with |φ(g)| ≤ ε, there exist v ∈ V n, w ∈W n with (v, w) ∈ Ũ(F0) suhthat f(v, w) = φ(g). Thus v ∈ U(F1) and w ∈ U(F2).To prove the theorem, onsider �rst the speial ase that g ∈ G(F0)satis�es |φ(g)| ≤ ε. If we set g1 = φ−1(v) and g2 = φ−1(w) for v, w asabove, then gi ∈ G(Fi) for i = 1, 2, and (g1, g2) ∈ Ũ ′. But now we have
g1g2 = g ∈ G(F0) by the above ommutative diagram, as desired.The general ase redues to the above speial ase by a lassialargument (e.g. see [Kn62℄). Namely, by Lemma 3.1, there is an open
F -subset Y ⊆ G suh that g ∈ Y (F0), together with an open immersion
ψ : Y → An

F . Now An(F1) is t-adially dense in An(F0), and the t-aditopology is �ner than the Zariski topology. So sine φ(e) = 0 ∈ An
F ,there exists h ∈ Y (F1) ⊆ G(F1) suh that |φ(h−1g)| ≤ ε. By the �rstpart, h−1g = g′1g

′
2 with g′i ∈ G(Fi), i = 1, 2. Setting g1 = hg′1 ∈ G(F1)and g2 = g′2 ∈ G(F2) gives the desired onlusion g = g1g2 ∈ G(F0). �



14 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENIn order to apply this result, we reall the following notation andterminology, whih arose in the ontext of pathing in [HH07℄:Notation 3.3 [HH07℄ (Setions 4 and 6)Let T be a omplete disrete valuation ring with uniformizer t andresidue �eld k, and let X̂ be a normal irreduible projetive T -urvewith funtion �eld F and with losed �ber X. Given an irreduibleomponent X0 of X with generi point η, onsider the loal ring of X̂at η. For a (possibly empty) proper subset U of X0, we let RU denotethe subring of this loal ring onsisting of the rational funtions thatare regular at eah point of U . In partiular, R∅ is the loal ring of X̂at the generi point of the omponent X0. The t-adi ompletion of RUis denoted by R̂U . If P is a losed point of X, we write RP for the loalring of X̂ at P , and R̂P for its ompletion at its maximal ideal. (Notethe distintion R̂P vs. R̂{P}.) A height 1 prime ℘ of R̂P that ontains
t determines a branh of X at P , i.e. an irreduible omponent of thepullbak of X to Spec R̂P . Similarly the ontration of ℘ to the loalring of X̂ at P determines an irreduible omponent X0 of X, and wesay that ℘ lies on X0. Note that a branh ℘ uniquely determines alosed point P and an irreduible omponent X0. In general, therean be several branhes ℘ on X0 at a point P ; but if X0 is smooth at
P then there is a unique branh ℘ on X0 at P . We write R̂℘ for theompletion of the loalization of R̂P at ℘; thus R̂P is ontained in R̂℘,whih is a omplete disrete valuation ring.Sine X̂ is normal, the loal ring RP is integrally losed and heneunibranhed; and sine T is a omplete disrete valuation ring, RPis exellent and hene R̂P is a domain ([Gro65℄, Sholie 7.8.3(ii, iii,vii)). For nonempty U as above and Q ∈ U , R̂U/t

nR̂U → R̂Q/t
nR̂Q isinjetive for all n and hene R̂U → R̂Q is also injetive. Thus R̂U isalso a domain. Note that the same is true if U is empty. The fration�elds of the domains R̂U , R̂P , and R̂℘ will be denoted by FU , FP , and

F℘.If ℘ is a branh at P lying on the losure of U ⊂ X0, then there arenatural inlusions of R̂P and R̂U into R̂℘, and hene of FP and FU into
F℘. The inlusion of R̂P was observed above; for R̂U , note that theloalizations of RU and of RP at the generi point of X0 are the same(viz. R∅); and this loalization is naturally ontained in the t-adiallyomplete ring R̂℘. Thus so is RU and hene its t-adi ompletion R̂U .



APPLICATIONS OF PATCHING 15Theorem 3.4 (Fatorization over smooth urves)Let T be a omplete disrete valuation ring, let X̂ be a smooth onnetedprojetive T -urve with funtion �eld F and losed �ber X. De�ne�elds Fi, i = 0, 1, 2, by one of the following:(1) Fi = FUi
where U1, U2 are proper subsets of X, U1∪U2 = X, and

U0 = U1 ∩ U2. (Note that here F0 is not a omplete disretelyvalued �eld unless U0 = ∅.)(2) F1 = FP , F2 = FU , and F0 = F℘, where P is a losed point of
X with omplement U ⊂ X, and ℘ orresponds to the (unique)branh of X at P .(3) F1 and F0 are as in (2) and F2 = F∅.Let G be a rational onneted linear algebrai group de�ned over F .Then for any g ∈ G(F0) there exist gi ∈ G(Fi), i = 1, 2, suh that

g1g2 = g.Proof. It su�es to show that the hypotheses of Theorem 3.2 hold ineah of the three parts of the above assertion.For part (1), write R̂i = R̂Ui
. We �rst assume that U0 is empty, sothat R̂0 is a omplete disrete valuation ring with uniformizer t. In thissituation let P be a losed point of U1 and let P̂ be a lift of P to X̂(i.e. an e�etive prime divisor on X̂ whose restrition to X is P ; see[HH07℄, Setion 4.1). Let gX be the genus of X, pik a non-negativeinteger N > 2gX − 2, and let V = L(Spec R̂1, NP̂ ), the T -submoduleof F1 onsisting of rational funtions on Spec R̂1 whose pole divisor isat most NP̂ . Note that V ⊂ R̂0 sine these rational funtions do nothave poles along the losed �ber (t). LetW = R̂2. Then Hypothesis 2.4holds for these rings and modules, by [HH07℄, Proposition 4.5.To omplete the proof of part (1) in this ase, it su�es to verify thatthe hypotheses of Theorem 3.2 are satis�ed, i.e. that F1 is t-adiallydense in F0. Sine the fration �eld of R̂1/tR̂1 is the same as R̂0/tR̂0(viz. the funtion �eld of X), it follows from [HH07℄, Lemma 3.1(a),that the ring R0 := R̂0 ∩ F1 is t-adially dense in R̂0. For the densityof F1 in F0, let x ∈ F0; sine R̂0 is a disrete valuation ring withuniformizer t, we may write x = t−ny for some n ∈ Z and y ∈ R̂0. Bythe density of R0 in R̂0, for any ℓ > 0 there exists x0 ∈ R0 suh that

x0−y ∈ tℓ+nR̂0. It then follows that t−nx0−x ∈ tℓR̂0. But t−nx0 ∈ F1,sine the �eld F1 ontains R0. So F1 is indeed dense in F0, �nishingthe proof of part (1) of the theorem in this speial ase.More generally, if U0 is not neessarily empty, then we proeed asfollows (paralleling the proof of [HH07℄, Theorem 4.10). Let U ′
2 =



16 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHEN
U2 r U0, and write F ′

2 = FU ′

2
and F ′

0 = F∅. Any g ∈ G(F0) lies in
G(F ′

0), and so by the above speial ase we may write g = g1g2 with
g1 ∈ G(F1) ≤ G(F0) and g2 ∈ G(F ′

2). But also g2 = g−1
1 g ∈ G(F0); and

F ′
2∩F0 = F2 by Theorem 4.9 of [HH07℄ sine U ′

2∪U0 = U2. So atually
g2 ∈ G(F2), �nishing the proof of part (1).For part (3), take V = R̂P and W = R̂∅. Hypothesis 2.4 holds by[HH07℄, Lemma 5.3. Also, the fration �eld of R̂P/tR̂P is R̂℘/tR̂℘, by[HH07℄, Lemma 5.2(d). (Those results apply sine if we let R̂ = R̂{P},then it is straightforward to hek that the rings R̂1, R̂2, R̂0 obtainedfrom R̂ in [HH07℄, Notation 5.1, are the same as the rings R̂P , R̂∅,
R̂℘ here.) So as in the proof of (1), F1 is t-adially dense in F0. ThusTheorem 3.2 implies the assertion.Part (2) is now immediate from the other two parts. Spei�ally, by(3) we may fator any element g ∈ G(F0) as g′1g′2 with g′1 ∈ G(FP ) and
g′2 ∈ G(F∅). Taking U1 = {P} and U2 = U = X r U1, by (1) we maythen fator g′2 as g′′1g2 with g′′1 ∈ G(FP ) (sine FU1

= F{P} ⊂ FP ) and
g2 ∈ G(FU). Writing g1 = g′1g

′′
1 ∈ G(FP ) gives the desired fatorization

g = g1g2. �The above fatorization theorem generalizes results of [HH07℄ about
GLn to rational onneted linear algebrai groups G. Parts (1) and (3)for GLn were respetively shown in Theorem 4.10 and Theorem 5.4 of[HH07℄ (whih in the latter ase again used the above omment aboutthe rings in [HH07℄, Notation 5.1). Also, if X̂ = P1

T , we an justtake V = R̂1 in ase (1) of the above proof, orresponding to hoosing
N = 0.As in Setion 6 of [HH07℄, the seond part of the above result willnext be extended to urves X̂ that are not neessarily smooth, and tothe ase where several points are hosen. To do this, we will hoose a�nite morphism X̂ → P1

T , so that the funtion �eld F of X̂ is a �niteextension of the funtion �eld F ′ of P1
T . We will then relate linearalgebrai groups over F to linear algebrai groups over F ′, using therestrition of salars funtor RF/F ′ that takes a�ne varieties over Fto a�ne varieties over F ′, and whih is haraterized by the funtorialisomorphism αX,Z : HomF ′(Z,RF/F ′(X)) → HomF (Z ×F ′ F,X) (see[BLR90℄, Setion 7.6, Theorem 4, whih does not require separabilityof F/F ′). It will be onvenient to use the following notation:Notation 3.5In the ontext of Notation 3.3, assume that f : X̂ → P1

T is a �nitemorphism suh that P := f−1(∞) ontains all points at whih distint



APPLICATIONS OF PATCHING 17irreduible omponents of the losed �ber X ⊂ X̂ meet. (Suh an
f exists by [HH07℄, Proposition 6.6.) We let U be the olletion ofirreduible omponents U of f−1(A1

k), and let B be the olletion of allbranhes ℘ at the points of P.Theorem 3.6 (Simultaneous fatorization for urves)Let X̂ be a normal onneted projetive T -urve and let f : X̂ → P1
Ta �nite morphism, in the ontext of Notation 3.5. Let G be a rationalonneted linear algebrai group over the funtion �eld F of X̂, andsuppose that for every branh ℘ ∈ B we are given an element g℘ ∈

G(F℘). Then we may �nd an element gP ∈ G(FP ) for eah P ∈ P, andan element gU ∈ G(FU) for eah U ∈ U, suh that for every branh
℘ ∈ B at a point P ∈ P with ℘ lying on the losure of some U ∈ U, wehave g℘ = gPgU with respet to the natural inlusions FP , FU → F℘.To avoid possible onfusion, we emphasize that eah gP (resp. gU)depends only on P (resp. U); but that the identity g℘ = gPgU takesplae in G(F℘), where we view gP and gU as elements of G(F℘) viathe respetive inlusions of G(FP ) and G(FU) that are indued by theorresponding inlusions of �elds. Thus if ℘, ℘′ are eah branhes at Plying on the losure of U (e.g. if P is a nodal point on an irreduibleomponent of X), then the produts g℘ = gPgU and g℘′ = gPgU takeplae over di�erent �elds F℘, F℘′, with respet to di�erent inlusions.Proof. Let F ′ be the funtion �eld of P1

T . Thus F , the funtion �eld of
X̂, is a �nite �eld extension of F ′ via f . Under Notation 3.3 for P1

T ,we may onsider the rings R̂∞, R̂A1
, and R℘′ where ℘′ is the branh at

∞ de�ned by the losed �ber. Let F ′
1, F ′

2, and F ′
0 be the orrespondingfration �elds.Let G′ := RF/F ′(G). By funtoriality of RF/F ′, the F ′-variety G′ is alinear algebrai group (e.g. see [Mil72℄, Setion 1) and it is rational. Bythe de�ning property of RF/F ′, there is a natural isomorphismG′(F ′

0) =
G(F ′

0 ⊗F ′ F ). Sine F ′
0 ⊗F ′ F =

∏
℘ F℘ by [HH07℄, Lemma 6.2(a), we�nd:

G′(F ′
0) = G(F ′

0 ⊗F ′ F ) = G(
∏

℘

F℘) =
∏

℘

G(F℘).Similarly,
G′(F ′

1) =
∏

P

G(FP ), G′(F2) =
∏

U

G(FU),



18 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENvia F ′
1⊗F ′F =

∏
P FP and F ′

2⊗F ′F =
∏

U FU ([HH07℄, Lemma 6.2(a)).In partiular, we may identify our tuple (g℘) ∈ ∏
℘G(F℘) with an el-ement g0 ∈ G′(F ′

0). By Theorem 3.4(2), there exist g1 ∈ G′(F ′
1) and

g2 ∈ G′(F ′
2) suh that g0 = g1g2. Again using the above identi�ations,the element g1 orresponds to a tuple (gP ) ∈

∏
P∈P

G(FP ) and g2 or-responds to a tuple (gU) ∈
∏

U∈U
G(FU). By [HH07℄, Lemma 6.2(b),the above isomorphisms on F ′

i ⊗F ′ F (for i = 0, 1, 2) are ompatible,with respet to the inlusions of ∏
FP and ∏

FU into ∏
F℘, and of

F ′
1, F

′
2 into F ′

0. So by the funtoriality of RF/F ′, the above fatorization
g0 = g1g2 ∈ G′(F ′

0) yields the desired equality g℘ = gPgU ∈ G(F℘) foreah point P ∈ P, eah omponent U ∈ U, and eah branh ℘ at Plying on the losure of U . �We ontinue to adopt Notations 3.3 and 3.5, onerning a normalprojetive T -urve X̂ with funtion �eld F and assoiated sets P,U,B.In what follows, if a linear algebrai group G ats on a variety Hover a �eld F , we will say that G ats transitively on the points of H iffor every �eld extension E of F the indued ation of the group G(E)on the set H(E) is transitive. (See also Remark 3.9.)Theorem 3.7 (Loal-global priniple for homogeneous spaes)Let G be a rational onneted linear algebrai group over F that atstransitively on the points of an F -variety H. Then in the ontext ofNotation 3.5, H(F ) 6= ∅ if and only if H(FP ) 6= ∅ for eah P ∈ P and
H(FU) 6= ∅ for eah U ∈ U.Proof. If H(F ) is non-empty, then so are eah H(FP ) and H(FU), sine
F is ontained in FP and FU .For the onverse, pik a point hP ∈ H(FP ) for eah P ∈ P and apoint hU ∈ H(FU) for eah U ∈ U. For eah ℘ ∈ B, as observed inNotation 3.3 there is a unique point P ∈ P and a unique irreduibleomponent X0 of X suh that ℘ is a branh at P that lies on X0. Theomponent X0 is the losure of a unique U ∈ U, whih is thus alsodetermined by ℘. Here we an view hP and hU as points of H(F℘) viathe inlusions of FP and FU into F℘. Sine G ats transitively on thepoints of H , there is an element g℘ ∈ G(F℘) suh that g℘(hU) = hP in
H(F℘). Sine G is rational and we are in the situation of Notation 3.5,Theorem 3.6 implies that there is a olletion of group elements gP ∈
G(FP ) for all P ∈ P and gU ∈ G(FU) for all U ∈ U, suh that forevery branh ℘ at P on the losure of U we have g℘ = gP gU . Let
h′P = g−1

P (hP ) ∈ H(FP ) and h′U = gU(hU) ∈ H(FU). Thus if P, U, ℘are a triple as above, then h′P and h′U beome identi�ed with the same



APPLICATIONS OF PATCHING 19element h′℘ ∈ H(F℘) under the inlusions of H(FP ) and H(FU) into
H(F℘). (Here h′℘ depends only on ℘ sine ℘ determines P and U .)We laim that there is an a�ne Zariski open subset SpecA ⊆ H thatontains the points h′P , h′U , h′℘ for all P, U, ℘. This is lear if H is quasi-projetive, sine this set of points is �nite. For a more general variety
H , observe that if ξ1, ξ2 ∈ P∪U∪B are related by being members of aommon triple P, U, ℘ as above, then any a�ne open subset of H thatontains h′ξ1 must also ontain h′ξ2 (sine they de�ne the same point in
H(F℘)). But sine the losed �ber of the urve X̂ is onneted, anytwo elements ξ1, ξ2 ∈ P ∪ U ∪ B are in the transitive losure of thisrelation. This proves the laim.Let φP : A → FP , φU : A → FU , and φ℘ : A → F℘ be the ho-momorphisms orresponding to the points h′P ∈ H(FP ), h′U ∈ H(FU),and h′℘ ∈ H(F℘). Thus if ℘ is a branh at P on the losure of U , themaps φP and φU eah indue the homomorphism φ℘ : A→ F℘ via theinlusions FP , FU →֒ F℘. So all the maps φP , φU , and φ℘ together de-�ne a homomorphism φ from A to the inverse limit of the �nite inversesystem onsisting of the �elds FP (for P ∈ P), FU (for U ∈ U), and F℘(for ℘ ∈ B). But by [HH07℄, Proposition 6.3, this inverse limit is just
F , with respet to the inlusions of F into the �elds FP , FU , F℘. The
F -homomorphism φ : A → F then de�nes an F -rational point on H ;i.e. H(F ) 6= ∅ as asserted. �Corollary 3.8Let G1 and G2 be linear algebrai groups suh that G1×G2 is a rationalonneted linear algebrai group. Then the assertions of Theorems 3.2,3.4, 3.6 and 3.7 hold for G1 and G2.Proof. By symmetry, it su�es to prove the statement for G1. Theo-rems 3.2, 3.4 and 3.6 hold for G1 by hoosing a preimage in G1 ×G2 ofeah given point of G1; fatoring in G1×G2 by the respetive theoremsfor that rational onneted group; and then projeting the fatoriza-tion to G1. Theorem 3.7 holds for G1 beause it holds for G1 ×G2 andbeause G1 × G2 ats transitively on the points of any F -variety forwhih G1 does. �Remark 3.9In the speial ase that G is a (onneted) redutive linear algebraigroup over F and H is a projetive F -variety, the transitivity onditionin the above theorem simpli�es. Spei�ally, it is equivalent to the apriori weaker ondition that the group G(F̄ ) ats transitively (in thelassial sense) on the set H(F̄ ), where F̄ is an algebrai losure of F .



20 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENTo see this, note that for any �eld extension E of F , the stabilizerof an E-point of H is a paraboli subgroup of G, by the projetivity of
H . By the hypotheses on G, paraboli subgroups are self-normalizing([Bor91℄, Theorem 11.16), hene distint E-points have distint stabi-lizers; and two suh subgroups are onjugate under G(E) if they areonjugate under G(Ē) ([Bor91℄, Theorem 20.9(iii)). But the transitiv-ity of G(F̄ ) on H(F̄ ) yields the same over Ē, implying the onjugayof the stabilizers. Therefore the stabilizers of any two E-points of Hare onjugate under G(E), and the points are then in the same G(E)-orbit. These extra hypotheses on G and H are in fat satis�ed in thesituations below where we apply the above theorem (see the proofs ofTheorems 4.2 and 5.1); but we will not need to use this fat.4. Quadrati formsIn this setion we prove our results on quadrati forms. We do thisby reduing to a loal problem, using the loal-global priniple in The-orem 3.7. For generalities onerning quadrati forms, we refer thereader to [Lam05℄ and [Grv02℄.Let F be a �eld of harateristi unequal to 2. Reall that by theWitt deomposition theorem ([Lam05℄, I.4.1), every quadrati form qover F may be deomposed as an orthogonal sum qt ⊥ qa ⊥ qh, where
qt is totally isotropi, qa is anisotropi, and qh is hyperboli (or zero).All fators are uniquely determined up to isometry. Here qr := qa ⊥ qhis regular (i.e. non-degenerate); and the qt fator does not our if q isregular. The Witt index iW (q) of q is 1

2
dim qh; if q is regular this isthe same as the dimension of any maximal totally isotropi subspae([Grv02℄, pp. 41-42). Sine char(F ) 6= 2, every quadrati form over Fis isometri to a diagonal form a1x

2
1 + · · ·+ anx

2
n, whih is denoted by

〈a1, . . . , an〉. If E is a �eld ontaining F , then qE denotes the form qviewed as a quadrati form over E.Remark 4.1If q is a regular quadrati form over a �eld F of harateristi unequalto 2, then the speial orthogonal group SO(q) of isometries of q ofdeterminant 1 is a rational onneted linear algebrai group. Moregenerally, let A be a �nite dimensional entral simple F -algebra withan involution ι (i.e. an anti-automorphism of order 2), and letG = {a ∈
A× | ι(a) = a−1}. Then the lassial Cayley map a 7→ (1 − a)(1 + a)−1de�nes a birational isomorphism from the onneted omponent G◦ tothe set of ι-skew symmetri elements, whih is an F -linear subspae of
A ([KMRT98℄, p. 201, Exerise 9); thus G◦ is rational.



APPLICATIONS OF PATCHING 21Theorem 4.2In the ontext of Notation 3.5, suppose q is a quadrati form over F ofdimension unequal to two, suh that qFξ
is isotropi for eah ξ ∈ P∪U.Then q is isotropi.Proof. If the dimension of q is one, then eah qFξ

is totally isotropi,and hene not regular. Thus neither is q, and the onlusion follows inthis ase.Now suppose n := dim q ≥ 3. By Witt deomposition, we may write
q = qt ⊥ qr, where qr is regular and qt is totally isotropi. If qt 6= 0then q is isotropi and there is nothing to show. Therefore, we mayassume that q (and hene eah qFξ

) is regular.Let H be the projetive quadri hypersurfae de�ned by q. Observethat O(q) ats transitively on the points of the F -variety H (see thede�nition before Theorem 3.7). To see this, let L be a �eld extensionof F , and let ξ1, ξ2 ∈ H(L). These points orrespond to lines W1,W2through the origin in An
L that are totally isotropi with respet to qL;and hene any isomorphism f : W1 → W2 as L-vetor spaes is anisometry. By Witt's extension theorem ([Grv02℄, Theorem 5.2), suhan f extends to an isometry of An

L taking W1 to W2. That is, someelement of the orthogonal group O(q)(L) arries ξ1 to ξ2. Hene O(q)ats transitively on the points of H .Sine n ≥ 3, the quadri hypersurfae H is onneted. Therefore,the speial orthogonal group SO(q), whih is the onneted omponentof O(q), also ats transitively on the points of H . By Remark 4.1, thegroup SO(q) is rational. Sine SO(q) ats transitively on the points of
H , Theorem 3.7 implies that H(F ) is non-empty provided that eah
H(Fξ) is. That is, if eah qFξ

is isotropi then so is q. �We note that in the above proof, the transitivity of SO(q) on thepoints of H an also be proven by applying Remark 3.9. Namely,
SO(q) is onneted and redutive, and the projetive variety H is ho-mogeneous for that group over F̄ (i.e., SO(q)(F̄ ) ats transitively on
H(F̄ )). So Remark 3.9 implies that SO(q) ats transitively on thepoints of H .The above result an be regarded as a Hasse-Minkowski theorem forquadrati forms over the funtion �eld of a urve de�ned over a om-plete disretely valued �eld. As a onsequene, we obtain the following:Corollary 4.3In the ontext of Notation 3.5, suppose q is a regular quadrati formover F . Then iW (q) ∈ {min(iW (qFξ

)),min(iW (qFξ
)) − 1}, where the



22 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENminimum is taken over all ξ ∈ P ∪ U. Moreover the seond ase anour only if all qFξ
are hyperboli.Proof. We proeed by indution. If the dimension of q is one, then qand qFξ

annot ontain a hyperboli plane, and so the Witt indies areall 0. If the dimension of q is two, and if any qFξ
is anisotropi, then sois q; thus iW (q) = 0 = min(iW (qFξ

)). The remaining two-dimensionalase is when all qFξ
are hyperboli, in whih ase min(iW (qFξ

)) = 1 and
iW (q) is equal to 1 or 0 depending on whether or not q is hyperboli.For the indutive step, onsider a form q of dimension n ≥ 3 andassume that the assertion holds for forms of dimension n − 2. Wemay suppose that min(iW (qFξ

)) is nonzero (otherwise there is nothingto show). In partiular, eah qFξ
is isotropi. Then by Theorem 4.2,

q is isotropi. By Witt deomposition, this implies that q ≃ h ⊥ q′for some q′ and a hyperboli plane h. Hene iW (q′) = iW (q) − 1 and
dim(q′) = n − 2. Moreover qFξ

≃ hFξ
⊥ q′Fξ

for all ξ. Thus qFξis hyperboli if and only if q′Fξ
is, and iW (q′Fξ

) = iW (qFξ
) − 1. Theonlusion of the orollary thus holds for q′ and hene for q. �We thank J.-L. Colliot-Thélène for bringing to our attention thefollowing example, whih shows that Theorem 4.2 does not in generalhold in dimension two, and that the seond ase of Corollary 4.3 anour for forms that are hyperboli over the �elds Fξ.Example 4.4Let T be a omplete disrete valuation ring with uniformizer t, fration�eld K, and residue �eld k of harateristi unequal to 2. Consider the�eld F = K(x)[y]/(y2−x(x−1)(1−xt)), whih is a degree two extensionof the funtion �eld K(x) of P1

T . The normalization X̂ of P1
T in F isa normal projetive T -urve that is equipped with a degree two �nitemorphism f : X̂ → P1

T . The losed �ber X of X̂ is a rational k-urvewith a single node P , whih is the unique point lying over the point atin�nity on P1
k; and the omplement U of P in X is the inverse image ofthe a�ne k-line. The general �ber of X̂ is an ellipti urve over K; thisis a Tate urve in the ase that K is a p-adi �eld. With a = x(x− 1),let X̂ ′ → X̂ be the unrami�ed degree two over with funtion �eld

F ′ := F [
√
a], and let q be the quadrati form 〈a,−1〉 over F . Then qis anisotropi over F beause a is not a square in F . But X̂ ′ → X̂ issplit over P and U and hene over the spetra of R̂P and R̂U . Henethe two-dimensional form q beomes isotropi (and thus hyperboli)over FP and over FU . This shows that Theorem 4.2 does not alwayshold for forms of dimension two. Moreover, the Witt indies iW (qP )



APPLICATIONS OF PATCHING 23and iW (qU) are equal to one, whereas that of the anisotropi form q isequal to zero. Thus iW (q) an equal min(iW (qFξ
)) − 1 in the loallyhyperboli ase of Corollary 4.3.Next, we onsider a variant on Hensel's Lemma.Lemma 4.5Let R be a ring and I an ideal suh that R is I-adially omplete. Let

X be an a�ne R-sheme with struture morphism φ : X → SpecR.Let n ≥ 0. If sn : SpecR/In → X ×R (R/In) is a setion of φn :=
φ×R (R/In) and its image lies in the smooth lous of φ, then sn maybe extended to a setion of φ.Proof. Write X = SpecS for some R-algebra S, with struture map
i : R → S. Let X ′ ⊆ X be the smooth lous of X over R, andlet φ′ be the restrition of φ to X ′. Sine X ′ is smooth over R, it isformally smooth over R (see [Gro67℄, De�nition 17.3.1). That is, forany m ≥ 1, any setion sm : SpecR/Im → X ′ ×R (R/Im) of φ′

m :=
φ′ ×R (R/Im) lifts to a setion sm+1 : SpecR/Im+1 → X ′ ×R (R/Im+1)of φ′

m+1 := φ ×R (R/Im+1) (see [Gro67℄, De�nition 17.1.1). Hene byindution, there is a ompatible system of setions sm : SpecR/Im →
X ′ ×R (R/Im) ⊆ X ×R (R/Im) of the maps φm, for m ≥ n, with eah
sm in partiular lifting sn. Here the morphism sm : SpecR/Im →
X ×R (R/Im) orresponds to a retrat πm : S/ImS → R/Im of themod Im-redution im : R/Im → S/ImS of i (i.e., πm ◦ im is the identityon R/Im). Writing pm : S → S/ImS for the redution modulo ImS,we obtain a ompatible system of maps πm ◦ pm : S → R/Im, whih inturn de�nes a map π : S → R given by their inverse limit (using that
R is I-adially omplete). The map π is then a retrat of i and thusorresponds to a setion of φ that extends sn. �In fat, the above lemma holds even without the assumption that
X is a�ne over SpecR, by using Corollaire 5.1.8 and Théorème 5.4.1of [Gro61℄ in plae of the inverse system argument at the end of theabove proof. By iting the above lemma in that more general form, oneould use the projetive hypersurfae H of Theorem 4.2 rather than theassoiated a�ne quadri Q in the proof of Proposition 4.8 below, andone would not need to hoose an a�ne open subset in the proof ofProposition 5.2. The proof above, however, is more elementary.In the ontext of Notation 3.5, assume that the residue �eld k of
T has harateristi unequal to 2. In partiular, F does not haveharateristi 2. As a onsequene, any quadrati form q over F maybe diagonalized.



24 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENDe�nition 4.6If q = 〈a1, . . . , an〉 is a regular diagonal quadrati form over a �eld Fas above, its singular divisor on X̂ is the sum of those prime divisorson X̂ at whih the divisor of some ai (viewed as a rational funtion on
X̂) has odd multipliity.Observe in the above de�nition that a hange of variables x′i = cixiwith ci ∈ F× does not a�et the singular divisor, sine eah ai is thenmultiplied by a square. In partiular, in the ontext of Notation 3.5,for every ξ ∈ U ∪ P, there is suh a hange of variables taking q toanother diagonal form q′ = 〈a′1, . . . , a′n〉 with eah a′i ∈ R̂ξ ∩F . Here q′is isometri to the form q, and has the same singular divisor.We reall the following standard result:Lemma 4.7Let S be a two-dimensional exellent normal sheme. Then there is abirational morphism π : S ′ → S suh that S ′ is regular. Moreover if Dis a divisor on S then we may hoose π : S ′ → S suh that the supportof π−1(D) has only normal rossings.Proof. The �rst part of the assertion is resolution of singularities forsurfaes; see [Abh69℄ or [Lip75℄. If π : S ′ → S is as in the �rst part,then by [Lip75℄, page 193, there is a birational morphism S ′′ → S ′ ofregular surfaes for whih the inverse image of D′ = π−1(D) is a normalrossing divisor on S ′′. �Reall from De�nition 1.1 that the u-invariant of a �eld is the maxi-mal dimension of anisotropi quadrati forms over the �eld. Below weuse Notation 3.3.Proposition 4.8Let X̂ be a regular projetive T -urve with funtion �eld F and losed�ber X. Let q be a regular diagonal quadrati form over F .(a) Let X0 be an irreduible omponent of X, with funtion �eld

κ(X0). If dim q > 2u(κ(X0)) then qFU
is isotropi for someZariski dense a�ne open subset U ⊂ X0.(b) Let P be a losed point of X with residue �eld κ(P ), and assumethat there are c omponents of the singular divisor of q that passthrough P . If dim q > 2cu(κ(P )) then qFP
is isotropi.Proof. Write q = 〈a1, . . . , ad〉 with ai ∈ F . After a multipliativehange of variables, we may assume that eah ai lies in R̂U or R̂Prespetively.



APPLICATIONS OF PATCHING 25(a) Sine X̂ is regular, the maximal ideal of the loal ring at thegeneri point η of X0 (whih is a odimension one point of X̂) is prin-ipal. So there is a Zariski a�ne open neighborhood SpecR ⊂ X̂ of
η whose losed �ber U is an a�ne open subset of X0 along whih Xis regular, and suh that the de�ning ideal of U in SpecR is prinipal,say with generator t0 ∈ R ⊂ F . Thus t ∈ t0R.Consider the prinipal divisor (a1 · · ·ad) on X̂. Eah of its ompo-nents other than X0 (whih may or may not be a omponent of thisdivisor) meets U at only �nitely many points. After shrinking U bydeleting those points, we may assume that the restrition of this divi-sor to Spec R̂U is either trivial or is supported along the losed �ber.Thus q is isometri to a diagonal form over R̂U ∩ F whose entries areeah either units in R̂U or the produt of t0 and a unit (sine evenpowers of t0 may be fatored out). Therefore, over R̂U ∩ F , the form
q is isometri to q′ ⊥ t0q

′′, where q′, q′′ are diagonal forms all of whoseentries are units in R̂U . It su�es to show (possibly after shrinking Uagain) that either q′ or q′′ is isotropi over FU , sine then q′ ⊥ t0q
′′ andhene q would be as well.Sine dim q = dim q′ + dim q′′, the assumption on dim q implies thateither q′ or q′′ has dimension e greater than u(κ(X0)). Let Q ⊂ Ae

bRUbe the a�ne quadri one de�ned by that subform and let Q′ ⊂ Qbe the omplement of the origin. (Thus Q is the a�ne one over theprojetive quadri de�ned by that subform.) Sine e > u(κ(X0)), itfollows that Q′(κ(X0)) 6= ∅. Therefore there is a rational setion ofthe a�ne morphism Q → SpecRU over U whose image lies on (thelosed �ber of) Q′. This rational setion is de�ned as a morphism on adense open subset of U . Replaing U by that subset, we may assumethat this rational map is a setion U → Q′ ⊂ Q of Q → Spec R̂Uover U . Now Q′ is the smooth lous of Q over R̂U , sine the residueharateristi of T is not 2, and sine the quadrati form is diagonalwith unit oe�ients. So by Lemma 4.5, the setion over U lifts to asetion Spec R̂U → Q. This yields an FU -point of Q that is not theorigin (sine its restrition to U is not). Hene either q′ or q′′ is isotropiover FU , as desired.(b) Sine R̂P is regular and loal, it is a unique fatorization domain([Eis95℄, Theorem 19.19). So the omponents Dj of the singular divisor
D that pass through P are the loi of irreduible elements rj ∈ R̂P ,
1 ≤ j ≤ c. After resaling the variables we obtain an isometri form
q′ = 〈a′1, . . . , a′d〉 with the same singular divisor as q, suh that eah
a′i is of the form ui

∏
r

nij

j ∈ R̂P ∩ F for some units ui ∈ R̂×
P , where



26 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENeah nij = 0 or 1. For eah c-tuple λ = (λ1, . . . , λc) ∈ {0, 1}c, let
S(λ) = {i |ni,j = λj for j = 1, . . . , c} and de�ne qλ = ⊥

i∈S(λ)
ui. Let qλbe the redution of qλ modulo the maximal ideal of R̂P .Sine dim q > 2cu(κ(P )), at least one of the 2c forms qλ over κ(P )has dimension e greater than u(κ(P )). Hene Q′(κ(X0)) 6= ∅, where

Q′ is the omplement of the origin in the a�ne one Q ⊂ Ae
bRP

de�nedby the form qλ. Sine Q′ is the smooth lous of Q over R̂P , Lemma 4.5lifts the κ(X0)-point of Q′ to a setion Spec R̂P → Q. This yields an
FP -point ofQ that is not the origin, thereby showing that qλ is isotropiover FP . Thus so is (

∏
r

λj

j )qλ. Sine (
∏
r

λj

j )qλ is a subform of q′, thisimplies that q′ is isotropi as well. Hene so is the isometri form q. �Lemma 4.9Let T be a disrete valuation ring with fration �eld K and residue�eld k of harateristi unequal to 2. Then u(K) ≥ 2u(k) and us(K) ≥
2us(k).Proof. Let t be a uniformizer of T , and hene of its ompletion T̂ . Let
q be an anisotropi form over k and let n be its dimension. Sine theharateristi of k is not 2, we may assume that q is diagonal. Let q̃be a diagonal lift of q to T . By [Lam05℄, VI.1.9(2), q′ = q̃ ⊥ tq̃ isanisotropi over K̂, the fration �eld of T̂ . Hene q′ is also anisotropiover K. This shows that if u(k) ≥ n then u(K) ≥ 2n; and that provesthe �rst assertion.For the seond assertion, let n = us(k) ∈ 1

2
Z. By de�nition of us,there is either an anisotropi quadrati form q of dimension n ∈ Zover a �nite extension E of k, or an anisotropi quadrati form q ofdimension 2n ∈ Z over a �nitely generated �eld extension E of k oftransendene degree one. After replaing q by an isometri form, wemay assume in either situation that q is diagonal. We onsider theabove two ases in turn.In the former ase, u(E) = n. Observe that there is a �nite extension

L of K whose residue �eld is E. (Namely, we indutively redue tothe ase that E = k[a] for some a ∈ E, say with moni minimalpolynomial f(y) ∈ k[y]; and then take L = K[ã], where ã is a root ofsome moni lift of f(y) to T [y].) By the �rst assertion of the lemma,
u(L) ≥ 2u(E) = 2n. But us(K) ≥ u(L). So us(K) ≥ 2n = 2us(k).In the latter ase, u(E) = 2n. Let {x} be a transendene basisfor E over k. We may assume that E = k(x)[a] for some a ∈ E, saywith moni minimal polynomial f ∈ k[x, y] over k(x). Take a moni



APPLICATIONS OF PATCHING 27lift f̃ ∈ T [x, y] of f and let F be the fration �eld of T [x, ã], where
ã is a root of f̃ . This is a �eld of transendene degree one over K.Taking the normalization of T [x] in F , we obtain a normal T -urve X̃whose losed �ber X is irreduible and has funtion �eld E. Let ξ bethe generi point of X, and let R be the loal ring of X̃ at ξ. Thus
R is a disrete valuation ring with fration �eld F and residue �eld
E. By the �rst assertion of the lemma, u(F ) ≥ 2u(E) = 4n; and so
us(K) ≥ 2n = 2us(k). �We now prove our main result about quadrati forms, in terms ofthe strong u-invariant (see De�nition 1.2).Theorem 4.10Let T be a omplete disrete valuation ring having fration �eld K andresidue �eld k, with char k 6= 2. Then us(K) = 2us(k).Proof. By the seond part of Lemma 4.9, us(K) ≥ 2us(k). It remains toshow that us(K) ≤ 2us(k). Write n = us(k), so every �nite extensionof k has u-invariant at most n. By Springer's theorem on nondyadiomplete disrete valuation �elds (see [Lam05℄, VI.1.10 and XI.6.2(7)),every �nite extension of K has u-invariant at most 2n. To prove thedesired inequality, we must therefore show that every �nitely generated�eld extension of transendene degree one over K has u-invariant atmost 4n. Let F be suh a �eld extension, and let q be a quadrati formover F of dimension > 4n. We wish to show that q is isotropi.We may assume that q is regular, sine otherwise it is triviallyisotropi. The harateristi of F is not 2, by the same property for k;so there is a diagonal form over F that is isometri to q, and we mayreplae q by that form. Let X̂1 be a normal projetive model for F over
T , and let D1 be the singular divisor of q on X̂1 (see De�nition 4.6).By Lemma 4.7, there is a regular projetive T -urve X̂ with funtion�eld F , and a birational morphism π : X̂ → X̂1, suh that π−1(D1) hasonly normal rossings. The singular divisor D of q on X̂ is ontainedin π−1(D1), and so it also has only normal rossings.For eah irreduible omponent X0 of the losed �ber X of X̂,the funtion �eld κ(X0) has transendene degree one over k; and so
u(κ(X0)) ≤ 2us(k) = 2n by the de�nition of us. Hene for eah suhomponent, dim q > 4n ≥ 2u(κ(X0)); and thus by Proposition 4.8(a),we may pik a Zariski dense a�ne open subset U0 ⊂ X0 suh that qFU0is isotropi. By [HH07℄, Proposition 6.6, there is a �nite morphism
f : X̂ → P1

T suh that f−1(∞) ontains the (�nitely many) points of



28 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHEN
X that do not lie in any of our hosen sets U0 (as X0 ranges over theomponents of X), as well as ontaining all the losed points at whihdistint omponents of X meet. Under Notation 3.5, and by the hoieof f , eah U ∈ U is ontained in one of the above sets U0; hene FUontains FU0

. Thus qFU
is isotropi for eah U ∈ U. Meanwhile, sinethe singular divisor of q has at most normal rossings, the number ofomponents of this divisor that pass through any losed point P ∈ Xis at most two. Sine u(κ(P )) ≤ us(k) = n for eah P , we have that

dim q > 4n ≥ 4u(κ(P )) ≥ 4. So by Proposition 4.8(b), qFP
is isotropifor eah P ∈ P. Therefore by Theorem 4.2, q is indeed isotropi. �The above result generalizes from the omplete ase to the henselianase. First we prove a lemma that relies on the Artin ApproximationTheorem ([Art69℄, Theorem 1.10).Lemma 4.11Let T be an exellent henselian disrete valuation ring, and let K̂ bethe ompletion of its fration �eld K. Let E be a �nitely generated�eld extension of K having transendene degree at most one, andlet X be a projetive E-variety. Suppose that X(Ê) 6= ∅ for every�nitely generated �eld extension Ê of K̂ that ontains E and satis�es

tr. deg. bK Ê = tr. deg.K E. Then X(E) 6= ∅.Proof. Let t be a uniformizer of T . By hypothesis, X is a losedsubset of some Pn
E de�ned by homogeneous polynomials f1, . . . , fm ∈

E[z0, . . . , zn].First onsider the ase that E is �nite over K. After multiplyingthe polynomials fi by some power of t, we may assume that eah filies in S[z0, . . . , zn], where S is the integral losure of T in E (thisbeing the valuation ring of E). Extend the valuation on K to E. Thenthe ompletion Ê of E is �nite over K̂ (and is the ompositum ofits sub�elds K̂ and E); so by assumption, X has an Ê-point. Aftermultiplying a hoie of oordinates of the point by some power of t,we may assume that eah oordinate āi lies in the valuation ring Ŝ of
Ê (where Ŝ is also the integral losure of T̂ in Ê). Thus we have asolution (ā0, . . . , ān) ∈ Ŝn+1 of the polynomial equations f1 = · · · =
fm = 0, with not all āi equal to 0. So for some e > 0 and some
i0, the element āi0 ∈ Ŝ is not ongruent to zero modulo teŜ. By theArtin Approximation Theorem ([Art69℄, Theorem 1.10), there exists asolution (a0, . . . , an) ∈ Sn+1 to the system f1 = · · · = fm = 0 suh that
ai ≡ āi modulo teŜ. In partiular, ai0 6= 0. Hene (a0, . . . , an) de�nesan S-point of X, and X(E) 6= ∅.



APPLICATIONS OF PATCHING 29It remains to onsider the ase that E has transendene degree oneover K. Thus E = K(x)[y1, . . . , yr]/(g1, . . . , gs), a �nite extension of
K(x), for some polynomials gi ∈ T [x, y] de�ning a prime ideal I ⊂
T [x, y] that does not extend to the unit ideal in K(x)[y]. (Here forshort we write y for y1, . . . , yr. Below we also write g for g1, . . . , gs.)Sine K̂(x)[y] is faithfully �at over K(x)[y], the extension Î of I to
T̂ [x, y] does not indue the unit ideal in K̂(x)[y]. In partiular, Î is aproper ideal in T̂ [x, y].We laim that Î is a prime ideal in T̂ [x, y]. For if it were not, thenthere would exist c, d ∈ T̂ [x, y] r Î for whih cd ∈ Î; i.e., cd =

∑
eigifor some ei ∈ T̂ [x, y]. But then [Art69℄, Theorem 1.10, applied to theoe�ients of the elements c, d, ei, would produe a ontradition to Ibeing prime, whih proves the laim.Sine Î = (g) is prime in T̂ [x, y], the ring Ê := K̂(x)[y]/(g) = E⊗KK̂is a domain. But Ê is �nite over the �eld K̂(x), sine E is �nite over

K(x); hene Ê is a �eld, and is the ompositum of its sub�elds E and
K̂. Sine Ê has transendene degree one over K̂, by the hypothesisthere is an Ê-point of X; i.e. a solution (ā0, . . . , ān) ∈ Ên+1 to thesystem f1 = · · · = fm = 0, with some āi0 6= 0. Lifting eah āi to anelement of K̂(x)[y] and then multiplying by a non-zero element of T̂ [x],we obtain elements âi ∈ T̂ [x, y] for i = 0, . . . , n, and elements bjh ∈
T̂ [x, y] for j = 1, . . . , m and h = 1, . . . , s, suh that fj(â0, . . . , ân) =∑

h bjhgh ∈ T̂ [x, y] for all j. Moreover âi0 6∈ Î ⊂ T̂ [x, y], and henefor some e > 0 its image in (T̂ /teT̂ )[x, y] does not lie in the redutionof Î. Applying [Art69℄, Theorem 1.10, to the oe�ients of x and
y in âi, bjh, there exist a′i, b′jh ∈ T [x, y] that are ongruent to âi, bjhmodulo te, suh that fj(a

′
0, . . . , a

′
n) =

∑
h b

′
jhgh ∈ T [x, y] for all j. Theredutions of a′0, . . . , a′n modulo I then yield a solution (a0, . . . , an) ∈

(T [x, y]/I)n+1 ⊂ En+1 to the system f1 = · · · = fm = 0, with ai0 6= 0.This solution then de�nes an E-point of X. �Corollary 4.12Let T be an exellent henselian disrete valuation ring with fration�eld K and with residue �eld k of harateristi unequal to 2. Then
us(K) = 2us(k).Proof. Let K̂ be the ompletion of K; this is a omplete disretely val-ued �eld with residue �eld k. Thus us(K̂) = 2us(k) by Theorem 4.10.Also, us(K) ≥ 2us(k) by the seond part of Lemma 4.9. Thus to provethe result it su�es to show that us(K) ≤ 2us(k).



30 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENSo let E be a �nitely generated �eld extension of K having transen-dene degree ℓ ≤ 1, and let q be a quadrati form over E of dimension
n > 21+ℓus(k). We wish to show that q is isotropi over E. Let H bethe hypersurfae in Pn−1

E de�ned by q (as in the proof of Theorem 4.2).Now us(K̂) = 2us(k), and so n > 2ℓus(K̂). Hene over every �nitelygenerated �eld extension of K̂ having transendene degree ℓ, overwhih q is de�ned (e.g. ontaining E), the form q is isotropi. Equiva-lently, H has a rational point over eah suh �eld. So by Lemma 4.11,
H has a rational point over E; i.e. q is isotropi over E. �Reall that k is a Cd-�eld if for all m ≥ 1 and n > md, everyhomogeneous form of degree m in n variables over k has a non-trivialsolution in k. In partiular, a Cd-�eld k satis�es u(k) ≤ 2d (by taking
m = 2). Moreover, every �nite extension of k is also a Cd-�eld, andevery one-variable funtion �eld over k is a Cd+1-�eld ([Ser73℄, II.4.5).Hene us(k) ≤ 2d for a Cd-�eld k.Reall also that a �eld K is alled an m-loal �eld with residue �eld
k if there is a sequene of �elds k0, . . . , km with k0 = k and km = K,and suh that ki is the fration �eld of an exellent henselian disretevaluation ring with residue �eld ki−1 for i = 1, . . . , m. For K and k asabove, it follows by indution that a �nite extension of K is an m-loal�eld whose residue �eld is a �nite extension of k. Also note that if
char(k) 6= 2, us(K) = 2mus(k) by Theorem 4.12 and indution; andso u(F ) ≤ 2m+1us(k) for any one-variable funtion �eld F over K, byde�nition of us.Corollary 4.13Suppose that K is an m-loal �eld whose residue �eld k is a Cd-�eld ofharateristi unequal to 2, and let F be a funtion �eld over K in onevariable.(a) Then us(K) ≤ 2d+m and hene u(F ) ≤ 2d+m+1.(b) If u(k) = 2d then u(K) = 2d+m. Moreover if some normal K-urve with funtion �eld F has a K-point, then u(F ) = 2d+m+1.() If u(k′) = 2d for every �nite extension k′/k, then u(F ) =

2d+m+1.Proof. (a) By the disussion preeding this result, us(K) = 2mus(k)and u(F ) ≤ 2m+1us(k). But us(k) ≤ 2d sine k is a Cd-�eld. So theonlusion follows.(b) Sine k is a Cd-�eld with u(k) = 2d, we have that u(k) ≤ us(k) ≤
2d and so in fat all three quantities are equal. Applying Lemma 4.9 andindution yields that u(K) ≥ 2mu(k) = 2d+m. But u(K) ≤ us(K) ≤
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2d+m by (a). So all these quantities are equal too, proving the �rstassertion.Now let X be a normal K-urve with funtion �eld F and let ξ be a
K-point on X. The loal ring at ξ has fration �eld F and residue �eld
K. So Lemma 4.9 implies that u(F ) ≥ 2u(K) = 2d+m+1. The reverseinequality follows from part (a).() The inequality u(F ) ≤ 2d+m+1 is given in part (a). To show thereverse inequality, hoose a normal (or equivalently, regular) K-urve
X having funtion �eld F , and hoose a losed point ξ on X. Let R bethe loal ring of X at ξ, with residue �eld κ(ξ). Then the fration �eldof R is F , and κ(ξ) is a �nite extension of K. Hene κ(ξ) is an m-loal�eld whose residue �eld k′ is a �nite extension of k. By hypothesis,
u(k′) = 2d; and k′ is a Cd-�eld sine k is. So applying part (b) to k′and κ(ξ), we �nd that u(κ(ξ)) = 2d+m. Lemma 4.9 now implies that
u(F ) ≥ 2d+m+1. �For example, if k is a �eld of transendene degree d over an alge-braially losed �eld of harateristi unequal to 2, then k is a Cd-�eld(theorem of Tsen-Lang, see [Ser73℄, II.4.5(b)). So u(F ) ≤ 2d+m+1 forany one-variable funtion �eld F over an m-loal �eld with residue�eld k, by Corollary 4.13(a). This was known in the speial ase that
F is a one-variable funtion �eld over k((t)). Namely, in that situation,
k((t)) is a Cd+1-�eld by Theorem 2 of [Gre66℄; so F is a Cd+2-�eld bythe theorem of Tsen-Lang ited above and hene u(F ) ≤ 2d+2.As a speial ase of Corollary 4.13(b), the u-invariant of K(x) equals
2d+m+1 if K is an m-loal �eld whose residue �eld is Cd, has u-invariant
2d, and does not have harateristi 2.Corollary 4.14Let F be a one-variable funtion �eld over anm-loal �eld whose residue�eld k has harateristi unequal to 2.(a) If k is algebraially losed, then u(F ) = 2m+1.(b) If k is a �nite �eld, then u(F ) = 2m+2.Proof. (a) This is a speial ase of Corollary 4.13(), using that analgebraially losed �eld k is C0, satis�es u(k) = 1, and has no non-trivial �nite extensions.(b) A �nite �eld k is C1 (by [Ser73℄, II.3.3(a)), and so u(k) ≤ 2 by theomment before Corollary 4.13. But u(k) 6= 1 sine the form x2 − cy2is anisotropi for any non-square c ∈ k (using char k 6= 2). Hene
u(k) = 2. Sine these properties hold for all �nite �elds of harateristinot 2, the assertion is again a speial ase of Corollary 4.13(). �



32 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENFrom Corollary 4.14, we immediately obtain the following, whih inthe ase of Qp was reently shown by Parimala and Suresh ([PS07℄,Theorem 4.6):Corollary 4.15Let p be an odd prime, and let K be a �nite extension of Qp or of the�eld of algebrai p-adi numbers (i.e. the algebrai losure of Q in Qp).If F is a funtion �eld in one variable over K, then u(F ) = 8.Proof. This is the ase of Corollary 4.14(b) with k a �nite �eld and
m = 1, taking the 1-loal �eld to be a p-adi �eld. �Note that the above orollary shows that u(F ) ≤ 8 even if K is nota �nite extension but merely algebrai.As another example of Corollary 4.14(b), let K = Qp((t)) with podd, and let F be a one-variable funtion �eld over K. Then K is
2-loal with �nite residue �eld, and so u(F ) = 16.We onlude this setion by proving an analog of Theorem 4.10 forfuntion �elds of pathes. This is done by means of the followinglemma. We adhere to Notation 3.3.Lemma 4.16Let X̂ be a smooth onneted projetive urve over a omplete disretevaluation ring T and let F be its funtion �eld. Let n ≥ 0 and assumethat the residue harateristi of T does not divide n. Let U be a subsetof the losed �ber X and let P be a losed point of X̂. If a ∈ F×

U (resp.
a ∈ F×

P ) then there exists an a′ ∈ F and a unit u ∈ F×
U (resp. u ∈ F×

P )suh that a = a′un.Proof. First onsider the ase that a ∈ F×
U . Sine FU is the fration�eld of R̂U , we may write a = a1/a2 where a1, a2 ∈ R̂U and ai 6= 0. Bythe Weierstrass Preparation Theorem for R̂U given in [HH07℄, Propo-sition 4.7, the nonzero element ai ∈ R̂U may be written as a produt

ai = bici with bi ∈ F× and ci ∈ R̂×
U for i = 1, 2. Let t be a uniformizerof T . Then the redution of ci modulo t is an element c̄i ∈ R̂U/tR̂U ,the ring of rational funtions on X that are regular at the points of

U . But this ring is also RU/tRU . So we may lift c̄i to an element
c′i ∈ RU ⊂ F . Here ci/c′i ∈ R̂×

U , and in fat ci/c′i ≡ 1 mod tR̂U . Nowthe residue harateristi of T does not divide n, and 1 is an n-th rootof ci/c′i modulo t. Hene ci/c′i has a (non-zero) n-th root c′′i ∈ R̂U byHensel's Lemma. Thus u := c′′1/c
′′
2 lies in F×

U , and a′ := b1c
′
1/b2c

′
2 lies



APPLICATIONS OF PATCHING 33in F . Sine ai = bic
′
i(c

′′
i )

n, we have a = a1/a2 = a′un. This proves theresult in this ase.Next onsider the ase that a ∈ F×
P . Taking U = {P} in the previousase, we are redued to showing that every element a ∈ F×

P is of theform a = a′un where a′ ∈ F×
{P} and u ∈ F×

P (beause F{P} ⊂ FP ).By the loal Weierstrass Preparation Theorem for R̂P given in [HH07℄,Proposition 5.6, we may write ai = bici for some bi ∈ F×
{P} and ci ∈

R̂×
P . (As noted in the proof of Theorem 3.4(3), our rings R̂{P} and

R̂P orrespond to R̂ and R̂1 in [HH07℄, Setion 5.) Let m be themaximal ideal of R̂{P} and let m
′ be the maximal ideal of R̂P . So

m
′ = mR̂P . Let c̄i ∈ R̂×

P /m
′ be the redution of ci modulo m

′. Theinlusion R̂{P} →֒ R̂P indues an isomorphism on the residue �elds
R̂{P}/mR̂{P} → R̂P/m

′R̂P ; so we an regard c̄i ∈ R̂{P}/mR̂{P}, and wean lift it to an element c′i ∈ R̂{P} ⊂ F{P}. Here c′i 6= 0 sine c̄i 6= 0(beause ci ∈ R̂×
P ). So ci/c′i ∈ R̂×

P is ongruent to 1 modulo tR̂P , andso by Hensel's Lemma is an n-th power of some non-zero c′′i ∈ R̂P .Taking a′ = b1c
′
1/b2c

′
2 ∈ F×

{P} and u := c′′1/c
′′
2 ∈ R̂P ⊂ FP with u 6= 0then yields the desired identity a = a′un. �As a onsequene of this lemma and Theorem 4.10, we obtain:Corollary 4.17Let T be a omplete disrete valuation ring with uniformizer t, whoseresidue �eld k is not of harateristi 2. Let X̂ be a smooth projetive

T -urve with losed �ber X, and let ξ be a proper subset of X (resp.a losed point of X). Then 4u(κ(Q)) ≤ u(Fξ) ≤ 4us(k) for any losedpoint Q ∈ X (resp. for Q = ξ).Proof. Let K be the fration �eld of T and let E,F be the funtion�elds of X, X̂. Thus F is a one-variable funtion �eld over K. Let
k′ = κ(Q), and let I ⊂ R̂ξ be the ideal that de�nes the losed �ber Xloally.For the �rst inequality, onsider the ase when ξ = U ⊂ X. Theloal ring A of X at Q is a disrete valuation ring having residue �eld
k′ and fration �eld E. Also, the loalization of R̂U at the prime ideal Iis a disrete valuation ring having residue �eld E and fration �eld FU .Applying Lemma 4.9 to these two rings yields u(FU) ≥ 2u(E) ≥ 4u(k′),as asserted. In the other ase, when ξ = P ∈ X (in whih ase Q = P ),if we replae the ring A by its ompletion Â, the �eld E by the fration



34 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHEN�eld Ê of Â, and R̂U , FU by R̂P , FP , then Lemma 4.9 similarly yields
u(FP ) ≥ 2u(Ê) ≥ 4u(k′).For the seond inequality, let q be a quadrati form over Fξ of di-mension n > 4us(k). We wish to show that q is isotropi. Sine theharateristi of k and hene of Fξ is not 2, the form q is isometri to adiagonal form a1x

2
1 + · · ·anx

2
n with ai ∈ Fξ. By Lemma 4.16, ai = a′iu

2
ifor some a′i ∈ F and ui ∈ F×

ξ . So after resaling xi by a fator of ui,we obtain a form q′ = a′1x
2
1 + · · · + a′nx

2
n that is isometri to q, with

a′i ∈ F . The dimension of the F -form q′ is greater than 2us(K), sine
us(K) = 2us(k) by Theorem 4.10. Therefore q′ is isotropi over F andhene over Fξ. Thus so is q. �Corollary 4.18Under the hypotheses of Corollary 4.17, if k is algebraially losed (resp.�nite), then u(Fξ) = 4 (resp. 8).Proof. Let k′ = κ(Q). In the algebraially losed ase the result fol-lows from Corollary 4.17 sine k′ = k and u(k) = us(k) = 1. Inthe �nite ase, k′ is also �nite, and both k and k′ are C1-�elds with
u-invariant equal to 2 (as noted in the proof of Corollary 4.14(b)).Moreover us(k) = 2 sine u(k) ≤ us(k) ≤ 2 for a C1-�eld. So the resultagain follows from Corollary 4.17. �For example, if k is algebraially losed (resp. �nite), then the fra-tion �elds of k[[x, t]] and k[x][[t]] eah have u-invariant equal to 4 (resp.
8). This follows by taking X̂ = P1

k[[t]] and taking ξ equal to the a�neline or one point. Similarly, taking X̂ = P1
Zp

with p 6= 2, we obtainthat the fration �eld of Zp[[x]] has u-invariant 8, as does the fration�eld of the p-adi ompletion of Zp[x]. The above orollary an also beapplied to other smooth projetive urves; but by restriting attentionto the line we may weaken the above hypotheses on k:Corollary 4.19Let T be a omplete disrete valuation ring with uniformizer t, whoseresidue �eld k has harateristi unequal to 2 and satis�es u(k) = us(k).Then the fration �elds of T [[x]] and of the t-adi ompletion of T [x]have u-invariant equal to 4u(k).Proof. This is immediate from Corollary 4.17, by taking X̂ = P 1
T ; tak-ing U = A1

T and P to be the point x = t = 0 in the respetive ases;and taking Q to be the rational point x = t = 0 in both ases. �



APPLICATIONS OF PATCHING 35In partiular, if k is any �eld with u(k) = us(k), the �eld k((x, t))has u-invariant equal to 4u(k). For example, if k is a Cd-�eld with
u(k) = 2d, then k((x, t)) has u-invariant equal to 2d+2. This is beause
2d = u(k) ≤ us(k) ≤ 2d, using that k is Cd. (Here, as above, we assume
char(k) 6= 2.) 5. Central simple algebrasThis setion ontains our results on entral simple algebras. As in theprevious setion, we use Theorem 3.7 to redue to a loal problem. Forbasi notions onerning entral simple algebras, we refer the readerto [Sal99℄ and [Pie82℄. In partiular, we reall that the index of aentral simple F -algebra A an be haraterized as the degree of aminimal splitting �eld for A, i.e. a �eld extension E/F suh that Asplits over E in the sense that A⊗F E is a matrix algebra over F .The notion of a entral simple algebra over a �eld generalizes to thatof an Azumaya algebra over a ommutative ring; see [Sal99℄, Chapter 2,or [Gro68℄, Part I, Setion 1. If A is an Azumaya algebra of degree nover a domain R, and 1 ≤ i < n, there is a funtorially assoiatedsmooth projetive R-sheme SBi(A), alled the i-th generalized Severi-Brauer variety of A (see [VdB88℄, p. 334, and [See99℄, Theorem 3.6;their notation is a bit di�erent). For eah R-algebra S, the S-pointsof SBi(A) are in bijetion with the right ideals of AS := A ⊗R S thatare diret summands of the S-module AS having dimension (i.e. S-rank) ni. If R is a �eld F , so that A is a entral simple F -algebra,and if E/F is a �eld extension, then SBi(A)(E) 6= ∅ if and only if
ind(AE) divides i ([KMRT98℄, Proposition 1.17). Here AE

∼= Matm(∆)for some E-division algebra ∆ and some m ≥ 1, and the right idealsof E-dimension ni are in natural bijetion with the subspaes of ∆m of
∆-dimension i/ ind(AE) ([KMRT98℄, Proposition 1.12, De�nition 1.9).Thus, writingD for the F -division algebra in the lass ofA, the F -linearalgebrai group GL1(A) = GLm(D) ats transitively on the points ofthe F -sheme SBi(A) (reall the de�nition given prior to Theorem 3.7).We now plae ourselves in the ontext of Setion 3.Theorem 5.1Under Notation 3.3 and 3.5, let A be a entral simple F -algebra. Then
ind(A) = lcmξ∈P∪U ind(AFξ

).Proof. Let n be the degree of A, and let D be the F -division algebrain the lass of A. Then GL1(A) = GLm(D) is a Zariski open subsetof An2

F (beause multipliation in D is given by polynomials over F );so it is a rational onneted linear algebrai group. As noted above,



36 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENif 1 ≤ i < n then GL1(A) ats transitively on the points of SBi(A);and if E is a �eld extension of F , then SBi(A)(E) 6= ∅ if and only if
ind(AE) divides i. So Theorem 3.7 implies that ind(A)|i if and onlyif ind(AFξ

)|i for eah ξ ∈ P ∪ U. Thus ind(A) = lcmξ∈P∪U ind(AFξ
) aslaimed. �Before proving our results about the period-index problem for entralsimple algebras, we reall the notion of rami�ation for suh algebras.Consider an integrally losed Noetherian domain R with fration �eld

E, the funtion �eld of Y = SpecR. For a odimension one irre-duible subvariety Z ⊂ Y with funtion �eld κ(Z), and an integer nnot divisible by the harateristi of κ(Z), there is a anonially de�nedrami�ation map (or residue map)
ramZ : Br(E)[n] → H1(κ(Z),Z/nZ)on the n-torsion part of the Brauer group (see [COP02℄, �2, or [Sal99℄,pp. 67-68; here we identify Z/nZ with 1

n
Z/Z ⊆ Q/Z). An elementof H1(κ(Z),Z/nZ) determines a yli Galois �eld extension L/κ(Z)with a spei�ed generator σ of Gal(L/κ(Z)) whose order divides n. Fora given lass α ∈ Br(E)[n] there are only �nitely many odimensionone subvarieties Z ⊂ Y for whih ramZ(α) is nonzero. We all theredued losed subsheme supported on the union of these varieties Zthe rami�ation divisor of α (or of an algebra in its lass). By [Sal99℄,Theorem 10.3, and [Gro68℄, Part II, Proposition 2.3, if R is regular ofdimension at most 2 and n is prime to the harateristis of all theresidue �elds κ(Z), then(∗) 0 → Br(R)[n] // Br(E)[n]

⊕Z ramZ
//
⊕

Z H
1(κ(Z),Z/nZ)is an exat sequene of abelian groups. An n-torsion element of Br(E)is unrami�ed if its rami�ation divisor is trivial; i.e. if its image under

⊕Z ramZ is zero. By the exat sequene (∗), this is equivalent to sayingthat this element of Br(E) is indued by an n-torsion element of Br(R).Reall (from the introdution) that we say that a �eld k is separablylosed away from p if its absolute Galois group is a pro-p group. By[Sha72℄, III.1, Proposition 16, this is equivalent to the ondition that
cdq(k) = 0 for all primes q 6= p. By [Ser73℄, II.4.1, Proposition 11,if q 6= char(k) the ondition cdq(k) = 0 implies that cdq(K) = d forany funtion �eld K of transendene degree d over k. This in turnimplies that there is no non-trivial prime-to-char(k) torsion in Br(K),for any �nitely generated �eld K over k of transendene degree ≤ 1,by applying [Ser73℄, II.2.3, Proposition 4, to suh a �eld K, and usingthat Br(K) = H2(K,Gm). Reall also that the Brauer dimension of k



APPLICATIONS OF PATCHING 37(resp. away from p) is de�ned to be 0 if k is separably losed (away from
p), and that otherwise it is the smallest positive integer d suh that forevery �nitely generated �eld extension E/k of transendene degree
ℓ ≤ 1, and every entral simple E-algebra A (resp. with p 6 | per(A)), wehave ind(A)| per(A)d+ℓ−1.Proposition 5.2Let T be a omplete disrete valuation ring with residue �eld k, let X̂be a regular projetive T -urve with funtion �eld F and let X be itslosed �ber. Let A be a entral simple F -algebra whose period n is notdivisible by char(k). Let d ≥ 0. Suppose that k has Brauer dimension atmost d away from char(k). Under Notation 3.3 we have the following:(a) Let X0 be an irreduible omponent of X. Then ind(AFU

) di-vides nd+1 for some Zariski dense a�ne open subset U ⊂ X0.(b) Let P be a losed point of X, and assume that the rami�ationdivisor of A has at most a normal rossing singularity at P .If the period q of AFP
is a prime number unequal to char(k),and FP ontains a primitive q-th root of unity, then ind(AFP

)divides qd+1.Proof. (a) As in the proof of Proposition 4.8(a), there is an a�ne Zariskiopen neighborhood SpecR ⊂ X̂ of the generi point ofX0 whose losed�ber U is an a�ne open subset ofX0 along whihX is regular, and suhthat the de�ning ideal of U in SpecR is prinipal, say with generator
t0 ∈ R ⊂ F . Let D be the rami�ation divisor of A in X̂. After shrink-ing U , we may assume that the rami�ation divisor of A on Spec R̂Uis either trivial or is the divisor of t0 and that ramU([A]) orrespondsto an étale yli Galois over U ′ → U with Galois generator σ. By[Gro71℄, I, Corollaire 8.4, we may lift U ′ → U to obtain an étale Galoisover Û ′ → Spec(R̂U ), whih neessarily has the same (yli) Galoisgroup. Let L̂/FU be the orresponding yli �eld extension and σ̂ thelift of σ to L̂. Let B be the yli FU -algebra (L̂, σ̂, t0), of degree divid-ing n (see, for example, [Sal99℄, p.7). Thus B is unrami�ed away from
t0 on R̂U ; and it follows from [Sal99℄, Lemma 10.2, that the yli overof U and Galois generator that are assoiated to B agree with thoseassoiated to A (i.e. U ′ and σ). Let C = AFU

⊗FU
Bop, where Bop isthe opposite algebra. Notie that the period of C divides n sine thoseof AFU

and Bop do. Sine [Bop] = −[B] and the rami�ation map is agroup homomorphism, the entral simple algebra C is unrami�ed over
R̂U .



38 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENSuppose that ind(CFV
)|nd for some dense open subset V ⊆ U . Sine

AFV
is Brauer equivalent to (C⊗FU

B)FV
, and sine ind(B)| deg(B)|n, itwould then follow that ind(AFV

)| ind(CFV
) ind(B)|nd+1. So to ompletethe proof of (a) it su�es to show that ind(CFV

)|nd for some V .Sine the lass of C in the Brauer group is unrami�ed over FU , theexat sequene of rami�ation (∗) yields an Azumaya algebra C over
R̂U with per(C) = per(C) and suh that CFU

is Brauer equivalent to
C. Sine per(C) divides n, the entral simple algebra Cκ(U) has perioddividing n (here κ(U) is the funtion �eld of U). By assumption on theresidue �eld k, ind(Cκ(U))| per(Cκ(U))

d|nd =: i for d > 0. In fat, thesame holds if d = 0 sine in that ase, per(Cκ(U)) = 1 by the ommentsbefore the proposition (using char(k) 6 |n).Let m be the degree of C over R̂U . By tensoring C with a matrixalgebra, we may assume that m > i. We may therefore onsider the
i-th generalized Severi-Brauer R̂U -sheme SBi(C). As noted before thestatement of Theorem 5.1, the fat that ind(Cκ(U))|i implies the exis-tene of a κ(U)-rational point on SBi(Cκ(U)); or equivalently on SBi(C),by funtoriality of SBi. Hene the morphism π : SBi(C) → Spec R̂Uhas a setion Spec(κ(U)) → SBi(C) over Spec(κ(U)), the generi pointof the losed �ber U of Spec(R̂U). Choose a Zariski dense open subset
V ⊆ U suh that this setion over Spec(κ(U)) extends to a setion over
V , and suh that the image of this latter setion lies in an open subsetof SBi(C) that is a�ne over R̂U . Then by Lemma 4.5, the setion over
V lifts to a setion over Spec(R̂V ). Thus we obtain an FV -point of
SBi(C); or equivalently, of SBi(CFV

). Consequently, the entral simple
FV -algebra CFV

has index dividing i = nd. But CFV
is Brauer equiva-lent to CFV

, sine CFU
is Brauer equivalent to C. Hene ind(CFV

) alsodivides nd, as desired.(b) By our assumptions, R̂P is a omplete regular loal ring whosefration �eld ontains a primitive q-th root of unity; and AFP
is a entralsimple algebra whose period is q and whose rami�ation divisor has atmost a normal rossing at P . Therefore [Sal07℄, Theorem 2.1, applies.In partiular, AFP

is Brauer equivalent to B⊗C, where the lass of C isunrami�ed over R̂P and the index of B divides q2. Namely, the above-mentioned theorem asserts that B is either a symbol algebra of indexdividing q or the produt of at most two suh symbol algebras, eah ofwhih determines a yli extension of the residue �eld at a branh ofthe rami�ation divisor at P . That same theorem says that the ase oftwo symbol algebras ours only if the yli �eld extension assoiatedto one of the symbols is unrami�ed at P (and is of degree prime to
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char(k)). If d = 0, this yli extension would have trivial residue �eldextension at P by the assumption on k, and would therefore be trivial.So in fat the index of B divides q if d = 0. That is, in general theindex of B divides q1+e, where e = 0 if d = 0 and e = 1 if d > 0.As in the proof of part (a), we may �nd an Azumaya algebra Cover R̂P suh that CFP

is Brauer equivalent to C. By tensoring witha matrix algebra of suitable size, we may assume that the degree of Cis greater than qd−e (with e as above). By the hypothesis on k, thealgebra Ck has index dividing i := qd−e (again using the ommentsbefore the proposition, in the ase d = 0, to get per(Ck) = 1 andhene ind(Ck) = 1). Thus we obtain a setion Spec k → SBi(C) of
SBi(C) → Spec R̂P over Spec k whose image lies in (the losed �ber of)an a�ne open subset of SBi(C). Sine SBi(C) → Spec R̂P is smoothand R̂P is omplete with residue �eld k, we may apply Lemma 4.5 tothis a�ne open subset and obtain a setion Spec R̂P → SBi(C). Thisin turn gives an FP -point of SBi(C), or equivalently an FP -point of
SBi(CFP

). In partiular, we �nd that the index of CFP
divides i = qd−e.But CFP

is Brauer equivalent to C. Sine A ∼= B⊗C we therefore �nd
ind(A)| ind(B) ind(C)|q1+eqd−e = qd+1as desired. �Before using the above proposition to show our main result on Brauerdimension (Theorem 5.5), we prove two lemmas.Lemma 5.3Let K be a omplete disretely valued �eld, and suppose that α ∈ Br(K)has period n, prime to the residue harateristi of K. Let L be a totallyrami�ed extension of K of degree n. Then αL ∈ Br(L) is unrami�ed.Proof. Let k be the ommon residue �eld of K and L. By [Sal99℄,Theorem 10.4, the rami�ation maps for K and L (with respet to themaximal ideals of the orresponding omplete disrete valuation rings)form a ommutative diagram

Br(K)

res

��

ram
// H1(k,Q/Z)

n

��

Br(L)
ram

// H1(k,Q/Z),where the left hand vertial map is indued by restrition (in Galoisohomology), and the right hand vertial map is indued by multipli-ation by n. Sine α has order n in the group Br(K), its image in the



40 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENlower right hand H1(k,Q/Z) is zero. Hene αL ∈ Br(L) is unrami-�ed. �Lemma 5.4Suppose K is a omplete disretely valued �eld with residue �eld k andvaluation ring T . Let α ∈ Br(T ). Then ind(αK) = ind(αk).Proof. Let A be an Azumaya algebra in the lass of α, and let n be thedegree of A over T (whih is also the degree of AK over K, and of Akover k). For 1 ≤ i < n, we have a ommutative diagram of shemes
SBi(AK) //

πK

��

SBi(A)

π

��

SBi(Ak)oo

πk

��

Spec(K) // Spec(T ) Spec(k),oowhere SBi is the i-th generalized Severi-Brauer variety. Sine π is aproper morphism, by the valuative riterion for properness it followsthat any setion of πK may be uniquely extended to a setion of π.Sine π is a smooth morphism, it has a setion if and only if πk does,by Hensel's lemma. This implies that πk has a setion if and only if
πK has a setion. But there is a K-point on SBi(AK) if and only if theindex of AK divides i, and similarly for k. So ind(αK)|i if and only if
ind(αk)|i. Therefore ind(αk) = ind(αK) as desired. �Theorem 5.5Let K be a omplete disretely valued �eld whose valuation ring T hasresidue �eld k. Suppose k has Brauer dimension d ≥ 0 away from
char(k). Then K has Brauer dimension at most d + 1 away from
char(k).Proof. Let A be entral simple algebra over a �nitely generated �eldextension F of K having transendene degree ℓ ≤ 1, and assume that
p := char(k) ≥ 0 does not divide n := per(A). We wish to show that
ind(A) divides per(A)d+ℓ. Let α ∈ Br(F ) be the lass of A.We begin by onsidering the ase of ℓ = 0; i.e., F is a �nite exten-sion of K, whose residue �eld k′ is a �nite extension of k. If d ≥ 1,let L be a totally rami�ed extension of F of degree n = per(α).Thus αL is unrami�ed by Lemma 5.3. Equivalently, by the exatsequene (∗) before the statement of Proposition 5.2, αL is induedby an element αS in Br(S), where S is the valuation ring of L. ByLemma 5.4, ind(αL) = ind(αk′), where αk′ ∈ Br(k′) is the lass induedby αS. The hypothesis on k implies that ind(αk′) | per(αk′)d−1. But
ind(α) |n ind(αL), by [Pie82℄, Proposition 13.4(v), sine n = [L : F ].



APPLICATIONS OF PATCHING 41Also, per(αk′) | per(αS) = per(αL), sine αk′ is indued by αS. So
ind(αL) | per(αL)d−1 and

ind(α) |n ind(αL) |n per(αL)d−1 |n per(α)d−1 = per(α)d,as desired.On the other hand, if d = 0, then k is separably losed away from
p, and so has no yli �eld extensions of degree prime to p. Thus
H1(k,Z/nZ) is trivial and α is unrami�ed. So α is indued by anelement αR ∈ Br(R), where R is the valuation ring of F . Let αkbe the indued element of Br(k). Then ind(α) = ind(αk) = 1 byLemma 5.4 and the fat that Br(k) has no n-torsion (as noted beforeProposition 5.2). So ind(α) | per(α)d holds trivially. This onludesthe proof in the ase ℓ = 0.We now turn to the ase ℓ = 1; i.e., F is a �nitely generated �eldextension of K having transendene degree one. Write n =

∏m
i=1 q

ri

i ,where the qi are distint primes unequal to p and eah ri ≥ 1. Sine
α has order n in the abelian group Br(F ), we may write α = α1 +
· · · + αm, where αi is qi-power torsion. Here per(α) =

∏
i per(αi)beause the qi are pairwise relatively prime. Sine the index of a tensorprodut of algebras divides the produt of the indies, it follows that

ind(α)|
∏

i ind(αi); so without loss of generality, we may assume that
m = 1 and that ind(α) is a power of a prime q. Sine per(α)| ind(α),the period of α is also a power of q, say n = qr.Consider �rst the ase r = 1, so that per(A) = q. Sine char(F ) 6= q,the extension F (ζq)/F , where ζq is a primitive q-th root of unity, isan extension of F of degree dividing q − 1. Sine this is prime to q,we �nd ind(A) = ind(A ⊗F F (ζq)) and per(A) = per(A ⊗F F (ζq)),by [Pie82℄, Propositions 13.4(vi) and 14.4b(v). Sine F (ζq) is still a�nitely generated extension of K of transendene degree 1, we maytherefore assume without loss of generality that ζq ∈ F .Observe (as in the proof of Theorem 4.10) that there is a regularprojetive T -urve X̂ with funtion �eld F suh that the rami�ationdivisor D of A on X̂ has only normal rossings. Namely, let X̂1 be anormal projetive model for F over T , and let D1 be the rami�ationdivisor of A on X̂1. By Lemma 4.7, there is a regular projetive T -urve X̂ with funtion �eld F , and a birational morphism π : X̂ → X̂1,suh that π−1(D1) has only normal rossings. The rami�ation divisor
D of A on X̂ is ontained in π−1(D1), and so it also has only normalrossings.By Proposition 5.2(a), for eah irreduible omponent X0 of thelosed �ber X of X̂, there is a Zariski dense a�ne open subset U0 ⊂ X0



42 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENsuh that AFU0
has index dividing qd+1. Let S be the (�nite) set ofpoints of X that do not lie in any of our hosen sets U0 (as X0 rangesover the omponents of X), together with all the losed points at whihdistint omponents of X meet. By [HH07℄, Proposition 6.6, there isa �nite morphism f : X̂ → P1

T suh that S ⊆ P := f−1(∞). UnderNotation 3.5, and by the hoie of f , eah U ∈ U is ontained in oneof the above sets U0; hene FU ontains FU0
. Thus eah AFU

has in-dex dividing qd+1. Meanwhile, sine the rami�ation divisor of A hasat most normal rossings, by Proposition 5.2(b) we also have that theindex of AFP
divides qd+1 for P ∈ P. Therefore ind(A) divides qd+1 byTheorem 5.1, and the result is proven in this ase.We now onsider the general ase per(A) = qr by indution on r.Choose an algebra B in the lass qr−1[A]. Sine B has period q, ithas index dividing qd+1 (by the �rst part of the proof for the ase

ℓ = 1). Consequently, B has a splitting �eld L whose degree over
F divides qd+1. Sine L is a �nitely generated �eld extension of Kof transendene degree 1, and A ⊗F L has period dividing qr−1 (byde�nition of L), it follows by indution that A⊗F L has index dividing
(qr−1)d+1. Hene A ⊗F L has a splitting �eld L′ whose degree over Ldivides (qr−1)d+1. Therefore L′/F is a splitting �eld of A of degreedividing (qr)d+1, and the proof is omplete. �As in the quadrati form ase, the main theorem generalizes to aresult about henselian disrete valuation rings.Corollary 5.6Let T be an exellent henselian disrete valuation ring having fration�eld K and residue �eld k. Let d ≥ 0. Suppose that k has Brauerdimension d away from char(k). Then K has Brauer dimension atmost d+ 1 away from char(k).Proof. We wish to show that if E is a �nitely generated �eld extensionofK of transendene degree ℓ ≤ 1, and if the period of a entral simple
E-algebra A is not divisible by char(k), then ind(A) | per(A)d+ℓ−1 =: i.Equivalently, we wish to show that there is an E-point on the general-ized Severi-Brauer variety SBi(A).The ompletion T̂ of T is a omplete disrete valuation ring withresidue �eld k. Hene by Theorem 5.5, the Brauer dimension of itsfration �eld K̂ is at most d+1 away from char(k). So for every �nitelygenerated �eld extension L of K̂ of transendene degree ℓ over whih
A is de�ned (e.g. ontaining E), the index of AL divides per(AL)d+ℓ−1and hene divides i = per(A)d+ℓ−1. Thus SBi(A) has a rational point



APPLICATIONS OF PATCHING 43over every suh �eld L. So by Lemma 4.11, SBi(A) has a rational pointover E. �Reall the de�nition of an m-loal �eld given in Setion 4.Corollary 5.7Let K be an m-loal �eld with residue �eld k, for some m ≥ 1. Let
d ≥ 0, and suppose that k has Brauer dimension d away from char(k).Then K has Brauer dimension at most d+m away from char(k).Proof. This follows from Corollary 5.6 and indution. �In partiular, if k is separably losed away from char(k), and F isa one-variable funtion �eld over an m-loal �eld with residue �eld k,then ind(α) | per(α)m for any α ∈ Br(F ) of period not divisible by
char(k). The above result also has the following onsequene:Corollary 5.8Let K be an m-loal �eld with residue �eld k and let F be a one-variablefuntion �eld over K, where k is either(a) a �nite �eld; or(b) the funtion �eld of a urve over a separably losed �eld k0.Then ind(α) | per(α)m (resp. ind(α) | per(α)m+1) for every element inthe Brauer group of K (resp. of F ) of period not divisible by char(k).Proof. (a) By Wedderburn's Theorem, Br(k′) is trivial for every �niteextension k′ of k. Moreover, period equals index in the Brauer group ofany one-dimensional funtion �eld over k (see [Rei75℄, Theorem 32.19).So the Brauer dimension of k is 1, and the onlusion follows fromCorollary 5.7.(b) Let p = char(k0) = char(k) ≥ 0. As noted before Proposition 5.2,sine k0 is separably losed there is no non-trivial prime-to-p torsion in
Br(k). Moreover, if E is a one-variable funtion �eld over k, then E isthe funtion �eld of a surfae over k0; and hene period equals indexfor elements of prime-to-p period in Br(E), by the main theorem of[deJ04℄. Thus the Brauer dimension of k is 1, and the assertion againfollows from Corollary 5.7. �As an example of Corollary 5.8(b), ind(α) | per(α)2 for any element
α in the Brauer group of C(x)((t))(y). Also, as a speial ase of part (a)of the above result, we have the following analog of Corollary 4.15 thatwas �rst proven by Saltman [Sal97℄:



44 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENCorollary 5.9Let p be a prime, and let K be a �nite extension of Qp or of the �eld ofalgebrai p-adi numbers (i.e. the algebrai losure of Q in Qp). If Fis a funtion �eld in one variable over K and the period of α ∈ Br(F )is not divisible by p, then ind(α) divides per(α)2.As another example of Corollary 5.8(a) (taking m = 2), the �eld
K = Qp((t)) satis�es the relation ind(α) | per(α)2 for α ∈ Br(K) ofperiod prime to p, and the �eld F = Qp((t))(x) satis�es the relation
ind(α) | per(α)3 for α ∈ Br(F ) of period prime to p.In parallel with the quadrati form situation, Theorem 5.5 has ananalog for the funtion �elds of pathes. Namely, using Lemma 4.16and Theorem 5.5 we proveCorollary 5.10Let T be a omplete disrete valuation ring with residue �eld k of har-ateristi p ≥ 0. Let X̂ be a smooth projetive T -urve with losed �ber
X, and let ξ be either a subset of X or a losed point of X. Supposethat k has Brauer dimension d. Then for all α in Br(Fξ) with periodnot divisible by p, we have ind(α) | per(α)d+2. Moreover if T ontainsa primitive per(α)-th root of unity, then ind(α) | per(α)d+1.Proof. As in the proof of Theorem 5.5 in the ase ℓ = 1, by onsideringthe prime fatorization of per(α) we redue to the ase that per(α) isa prime power, say qr.Let T ′ = T [ζqr ], where ζe denotes a primitive e-th root of unity. Let
X̂ ′ = X̂ ×T T

′, with funtion �eld F ′ = FT ′, and let ξ′ = ξ ×T T
′in X̂ ′. Then Fξ′ = FξT

′ = Fξ(ζqr), where Fξ′ is as in Notation 3.3with respet to the urve X̂ ′. Consider the intermediate �eld Fξ(ζq).The degree [Fξ(ζq) : Fξ] divides q − 1 and s := [Fξ′ : Fξ(ζq)] divides
qr−1. Let α′ ∈ Br(Fξ′) and α′′ ∈ Br(Fξ(ζq)) be the elements indued by
α ∈ Br(Fξ). Sine [Fξ(ζq) : Fξ] is prime to the period of α, the periodand index of α′′ are equal to those of α ([Pie82℄, Propositions 13.4(vi)and 14.4b(v)). By [Pie82℄, Proposition 13.4(v), s ind(α′) is divisible by
ind(α′′) = ind(α).Sine Fξ′ ontains ζqr , by [MS82℄ the element α′ ∈ Br(Fξ′) is rep-resented by a tensor produt (a1, b1)qr ⊗ · · · ⊗ (am, bm)qr of sym-bol algebras, where eah ai, bi ∈ Fξ′ . Applying Lemma 4.16 to thesmooth projetive T ′-urve X̂ ′, we may write ai = a′iu

qr

i and bi =

b′iv
qr

i for a′i, b′i ∈ F ′ and ui, vi ∈ Fξ′ . Thus (ai, bi)qr is Brauer equiv-alent to (a′i, b
′
i)qr . So if we onsider the entral simple F ′-algebra

A = (a′1, b
′
1)qr ⊗ · · · ⊗ (a′m, b

′
m)qr , then the lass of A ⊗F ′ Fξ′ is α′.



APPLICATIONS OF PATCHING 45By Theorem 5.5, ind(A) | per(A)d+1. But ind(α) divides s ind(α′) andhene s ind(A); and per(A) divides qr = per(α), sine per(ai, bi)qr | qr.So ind(α) | s per(α)d+1.Sine s divides qr−1, this shows that ind(α) | per(α)d+2. In the asethat T (and hene Fξ) ontains a primitive qr-th root of unity, s = 1and so ind(α) | per(α)d+1. �Corollary 5.11Under the hypotheses of Corollary 5.10, if k is separably losed, then
per(α) = ind(α) for elements in Br(Fξ) of period not divisible by theharateristi of k.Proof. Sine the harateristi of k does not divide per(α), it followsthat k ontains a primitive per(α)-th root of unity. Moreover k hasBrauer dimension zero. So ind(α) divides per(α) by Corollary 5.10.But per(α) divides ind(α); so the result follows. �In partiular, if k is separably losed, then period equals index forelements of period not divisible by char(k) in the Brauer groups of thefration �elds of k[[x, t]] and k[x][[t]]. Similarly, let Zur

p be the maximalunrami�ed extension of Zp. The residue �eld of Zur
p is the algebraiallylosed �eld F̄p, and so the fration �elds of Zur

p [[x]] and of the p-adiompletion of Zur
p [x] eah have the property that period equals indexfor elements in their Brauer group having period prime to p.Remark 5.12(a) The proof of Corollary 5.10 atually shows more: that the indexof α ∈ Br(Fξ) divides [Fξ(ζn) : Fξ(ζρ(n))]n

d+1, where n = per(α) andwhere ρ(n) denotes the produt of the distint primes that divide n(eah taken with multipliity one). In partiular, the index of α in
Br(Fξ) divides per(α)d+2/ρ(per(α)).(b) We suspet that atually ind(α)| per(α)d+1 in Corollary 5.10,even without the assumption on roots of unity. Perhaps this ould beshown by paralleling the proof of Theorem 5.5 with F replaed by Fξ.But doing this would require generalizations of previous results hereand in [HH07℄.Remark 5.12(a) shows that Corollary 5.11 an be strengthened toinlude the ase that k is separably losed away from p = char(k). Tosee this, �rst note for any integer n, the degree [Fξ(ζn) : Fξ(ζρ(n))] isdivisible only by primes that divide n. Now let α be an element of
Br(Fξ) whose period n is not divisible by p. Then the above degree isprime to p. But k is separably losed away from p. So in fat this degree
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