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APPLICATIONS OF PATCHING TO QUADRATICFORMS AND CENTRAL SIMPLE ALGEBRASDAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENAbstra
t. This paper provides appli
ations of pat
hing to qua-drati
 forms and 
entral simple algebras over fun
tion �elds of
urves over henselian valued �elds. In parti
ular, we use a pat
h-ing approa
h to reprove and generalize a re
ent result of Parimalaand Suresh on the u-invariant of p-adi
 fun
tion �elds, p 6= 2. Thestrategy relies on a lo
al-global prin
iple for homogeneous spa
esfor rational algebrai
 groups, 
ombined with lo
al 
omputations.1. Introdu
tionA longstanding open problem in the theory of quadrati
 forms is to�nd a general method for evaluating the u-invariant of �elds. To date,though, the u-invariant has been 
omputed only in quite restri
tedsituations. In this paper we prove a general result that provides the u-invariant of fun
tion �elds of 
urves for a variety of open 
ases, as wellas implying known results in a uni�ed way. Most notably, we obtaina new proof of the re
ent result of Parimala and Suresh ([PS07℄) onthe u-invariant of nondyadi
 p-adi
 fun
tion �elds. Our approa
h alsoyields eviden
e for the expe
ted growth of the u-invariant, for exampleupon �eld extensions.The method used here is quite di�erent from that of [PS07℄ and otherworks on this topi
, and is not 
ohomologi
al. The results stem from alo
al-global prin
iple for the existen
e of points on 
ertain homogeneousvarieties, whi
h yields a Hasse-Minkowski type statement for quadrati
forms over fun
tion �elds of 
urves.Our proofs rely on ideas from pat
hing, a method that has been usedin the past to prove many results about Galois theory (see e.g. [Har03℄).In [HH07℄, the �rst two authors extended pat
hing to stru
tures over�elds rather than over rings, to make the method more amenable toother appli
ations. This approa
h shows that giving an algebrai
 stru
-ture over 
ertain fun
tion �elds is equivalent to giving the stru
ture overa suitable 
olle
tion of over�elds. As in earlier forms of pat
hing, a keyThe �rst author was supported in part by NSF Grant DMS-0500118.1
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2 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENstep is to prove a matrix fa
torization result. We use these ideas here,espe
ially in the proof of our lo
al-global prin
iple.In addition, we show how the same lo
al-global prin
iple 
an be usedto obtain results about the period-index problem for 
entral simplealgebras. In parti
ular, we give a new proof of a re
ent result of Liebli
h([Lie08℄) on fun
tion �elds of 
urves over henselian rings. It has beenunderstood that there is a 
onne
tion between results 
on
erning u-invariants and the period-index problem for 
entral simple algebras,and it is interesting to see how similar our proofs are in these twosituations.Below, we summarize the main results on quadrati
 forms and 
entralsimple algebras (whi
h 
an be found in Se
tions 4 and 5).1.1. Results on quadrati
 forms. We begin by re
alling Kaplan-sky's de�nition of the u-invariant (some referen
es use a modi�ed de�-nition due to Elman and Lam whi
h agrees with this for nonreal �elds,see e.g. [P�95℄, p. 114).De�nition 1.1Let k be a �eld. The u-invariant of k, denoted by u(k), is the max-imal dimension of anisotropi
 quadrati
 forms over k (or ∞, if su
hdimensions are arbitrarily large).The u-invariant and the possible values it 
an take for a �xed or vary-ing �eld has been a major obje
t of study in the theory of quadrati
forms. (Note that it is a positive integer if it is �nite.) There are manyopen problems 
on
erning this number; see for example, [Lam05℄, Se
-tion XIII.6. On the other hand there has been a lot of re
ent progress,most notably in the 
omputation of the u-invariant of fun
tion �eldsof non-dyadi
 p-adi
 
urves due to Parimala and Suresh (see below).It is generally expe
ted that the u-invariant of �eld extensions shouldgrow along with the 
ohomologi
al dimension. In parti
ular, for �rea-sonable� �elds, one expe
ts that �nite extensions have the same u-invariant, and that the u-invariant should double upon a �nitely gen-erated �eld extension of trans
enden
e degree one. To formalize ourdis
ussion towards these expe
tations, we make the following de�nition:De�nition 1.2Let k be a �eld. The strong u-invariant of k, denoted by us(k), is thesmallest real number n su
h that- every �nite �eld extension E/k satis�es u(E) ≤ n, and- every �nitely generated �eld extension E/k of trans
enden
edegree one satis�es u(E) ≤ 2n.



APPLICATIONS OF PATCHING 3If these u-invariants are arbitrarily large we say that us(k) = ∞.Thus us(k) ≤ n if and only if every �nitely generated �eld extension
E/k of trans
enden
e degree ℓ ≤ 1 satis�es u(E) ≤ 2ℓn. Sin
e the u-invariant, if �nite, is a positive integer, it follows that us(k) is at least
1 and lies in 1

2
N.Con
erning quadrati
 forms, our main result is:Theorem (Theorem 4.10)Let K be a 
omplete dis
retely valued �eld whose residue �eld k has
hara
teristi
 unequal to 2. Then us(K) = 2us(k).More generally we show that this holds for ex
ellent henselian dis-
rete valuation rings (Corollary 4.12). As a 
onsequen
e of these re-sults, in many 
ases we are able to obtain exa
t values of the u-invariantand strong u-invariant, not just upper bounds.By de�nition, a Cd-�eld has u-invariant at most 2d. Using this, wededu
e from our main theorem that if T is a 
omplete (or ex
ellenthenselian) dis
rete valuation ring whose residue �eld is a Cd-�eld ofodd 
hara
teristi
, every fun
tion �eld F of a regular T -
urve satis�es

u(F ) ≤ 2d+2 (see Corollary 4.13(a), whi
h is more general). As a spe
ial
ase, we obtain the re
ent theorem of Parimala and Suresh ([PS07℄,Theorem 4.6; Corollary 4.15 below): A fun
tion �eld in one variableover a non-dyadi
 p-adi
 �eld has u-invariant 8. Our result also appliesto fun
tion �elds over the algebrai
 
losure of Q in a non-dyadi
 p-adi
�eld.Applying indu
tion to our main theorem we obtain that the u-invariant of an m-lo
al �eld with algebrai
ally 
losed (respe
tively, �-nite) residue �eld of 
hara
teristi
 unequal to 2 is 2m+1 (resp., 2m+2);see Corollary 4.14. For example, the u-invariant of a one-variable fun
-tion �eld over Qp((t)) is 16, for p odd. As another appli
ation, let k bea fun
tion �eld of trans
enden
e degree d over an algebrai
ally 
losed�eld of 
hara
teristi
 unequal to 2. Then the u-invariant of the fun
-tion �eld of a K-
urve is at most 2d+m+1, for any m-lo
al �eld K withresidue �eld k; see after Corollary 4.13.In addition to these, we obtain similar results for other 
lasses of�elds whi
h naturally o

ur in the 
ontext of pat
hing, des
ribed atthe end of Se
tion 4. More spe
i�
ally, suppose that T is a 
ompletedis
rete valuation ring with uniformizer t and residue �eld k of 
hara
-teristi
 unequal to 2. If F is the fra
tion �eld of T [[x]] or of the t-adi

ompletion of T [x], then u(F ) ≤ 4us(k), with equality if u(k) = us(k);



4 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENe.g. if k is a Cd-�eld having u-invariant 2d. In parti
ular, if k is alge-brai
ally 
losed, then u(F ) is equal to 4; and u(F ) equals 8 if k is �nite(example 
ases of the latter in
lude k((x, y)) and the fra
tion �eld of
Zp[[x]] with p odd).1.2. Results on 
entral simple algebras. Given a �eld k, re
allthat the period (or exponent) of a 
entral simple k-algebra A is theorder of the 
lass of A in the Brauer group of k; and the index of A isthe degree of the division algebra D that lies in the 
lass of A (i.e. su
hthat A is a matrix ring over D). The period and index always have thesame prime fa
tors, and the period always divides the index ([Pie82℄,Proposition 14.4(b)(ii)). The period-index problem asks whether all
entral simple algebras A over a given �eld k satisfy ind(A) | per(A)dfor some �xed exponent d depending only on k. In analogy with thenotion of the strong u-invariant (De�nition 1.2), we make the followingde�nition (extending that of Liebli
h; see [Lie08℄, De�nition 1.1):De�nition 1.3Let k be a �eld. The Brauer dimension of k (away from a prime p)is de�ned to be 0 if k is separably 
losed (resp. separably 
losed awayfrom p, i.e. the absolute Galois group of k is a pro-p group). Otherwise,it is the smallest positive integer d su
h that- for every �nite �eld extension E/k and every 
entral simple

E-algebra A (resp. with p 6 | per(A)), we have ind(A)| per(A)d−1;and- for every �nitely generated �eld extension E/k of trans
enden
edegree one and every 
entral simple E-algebra A (resp. with
p 6 | per(A)), we have ind(A)| per(A)d.If no su
h number d exists, we say that the Brauer dimension is ∞.Again, we 
an summarize this by saying that the Brauer dimensionof k is at most d if for every �nitely generated �eld extension E/k oftrans
enden
e degree ℓ ≤ 1 and every 
entral simple E-algebra A (resp.with p 6 | per(A)), we have ind(A)| per(A)d+ℓ−1.As with the u-invariant, it is expe
ted that this invariant shouldgrow in parallel to the 
ohomologi
al dimension. In parti
ular, oneexpe
ts that it should in
rease by one upon a �nitely generated �eldextension of trans
enden
e degree one. Early results in this dire
tionwere obtained by Saltman in [Sal97℄ and [Sal98℄, in
luding the fa
t that

ind | per2 for p-adi
 
urves, along with a general me
hanism to relatethe Brauer dimension of 
urves over dis
retely valued �elds to that of
urves over the residue �eld. (See also [For96℄.) Along these lines, in



APPLICATIONS OF PATCHING 5Se
tion 5 we give an alternative proof of a result that was re
entlyshown by Liebli
h in the 
ase d > 0 ([Lie08℄, Theorem 5.3):Theorem (Theorem 5.5)Let K be a 
omplete dis
retely valued �eld whose residue �eld k has
hara
teristi
 0 (resp. 
hara
teristi
 p > 0). If k has Brauer dimension
d ≥ 0 (resp. away from p) then K has Brauer dimension at most d+ 1(resp. away from p).More generally, as in [Lie08℄, we show a version of this result forex
ellent henselian rings. As an appli
ation of the above theorem,sin
e the Brauer dimension of a �nite �eld is 1, it follows that theBrauer dimension of a p-adi
 �eld is at most 2, and that of Qp((t)) isat most 3. As another appli
ation, let k be the fun
tion �eld of a 
urveover a separably 
losed �eld. Then the Brauer dimension of k is 1 by[deJ04℄. So ind(α) = per(α) for all α in the Brauer group of k((t)) with
char(k) not dividing the period. Similarly, ind(α) divides per(α)2 forall α in the Brauer group of k((t))(x) of period not divisible by char(k).In analogy to the results on the u-invariant, we also obtain state-ments for �elds that arise from pat
hing; see Corollary 5.10. In parti
-ular, let T be a 
omplete dis
rete valuation ring with uniformizer t andresidue �eld k of 
hara
teristi
 0 (resp. 
hara
teristi
 p > 0) and Brauerdimension d (resp. away from p). If F is the fra
tion �eld of T [[x]] or ofthe t-adi
 
ompletion of T [x], then ind(α)| per(α)d+2 for all α ∈ Br(F )with period not divisible by char(k). Moreover ind(α) = per(α) if F is
k((x, t)) or the fra
tion �eld of k[x][[t]] where k is separably 
losed, orif F is the fra
tion �eld of Zur

p [[x]], provided that the residue 
hara
-teristi
 does not divide per(α).
1.3. Organization of the manus
ript. The organization of the man-us
ript is as follows. Se
tion 2 is 
on
erned with a de
omposition ofve
tors. It is fairly te
hni
al and may be skipped upon a �rst reading.Se
tion 3 shows how this de
omposition in ve
tor spa
es 
an be usedto obtain a multipli
ative de
omposition (i.e. fa
torization) in rationallinear algebrai
 groups (Theorem 3.6). The main result of the se
tion,the lo
al-global prin
iple for homogeneous spa
es (Theorem 3.7), is arather dire
t 
onsequen
e. It is the key ingredient for proving the upperbounds in the later results. In Se
tions 4 and 5, lo
al 
omputations
ombined with Theorem 3.7 yield the main results about quadrati
forms and 
entral simple algebras, respe
tively.
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knowledgment. The authors thank Karim Johannes Be
her, Jean-Louis Colliot-Thélène, R. Parimala, Jakob Stix and V. Suresh for their
omments on this manus
ript.2. De
omposition of ve
torsThe goal of this se
tion is to prove a de
omposition theorem (The-orem 2.5) that will be used in the next se
tion to obtain fa
torizationresults and a lo
al-global prin
iple for rational linear algebrai
 groups.This strategy parallels that of [HH07℄, whi
h 
on
erned the group GLn.Throughout this se
tion we let F0 be the fra
tion �eld of a 
ompletedis
rete valuation ring R̂0 with uniformizer t, and we let | | be a normon F0 indu
ed by the t-adi
 valuation � i.e. |a| = α−v(a) for a realnumber α > 1. This norm extends uniquely to a norm on a �xedalgebrai
 
losure F̄0 of F0 (again denoted by | |). If E ⊆ F̄0 is a �eldextension of F0 and V is a �nite dimensional ve
tor spa
e over E withbasis b1, . . . , bn, we de�ne a norm on V by setting |∑ aibi| = max{|ai|}.Sin
e V is �nite dimensional, it is 
omplete with respe
t to this metri
if E is �nite over F0. We will 
ommonly identify su
h a ve
tor spa
e Vwith the points of the a�ne spa
e An
F0

(E) and 
onsequently talk aboutthe norm of su
h points as well.For n ≥ 0, the t-adi
 topology on An
F0

(F̄0) is �ner than the Zariskitopology. This is be
ause a basi
 open set in the Zariski topology isde�ned by the non-vanishing of a polynomial f ∈ F0[x1, . . . , xn], andbe
ause su
h an f is 
ontinuous in the t-adi
 topology.Now �x n, let A = F0[x1, . . . , x2n] be the 
oordinate ring of A2n
F0
,and let Â = F0[[x1, . . . , x2n]] be the 
ompletion at the maximal ideal

m0 at the origin. Also let A0 be the lo
alization of A at m0; thus
A0 ⊂ Â. For short, we write x for (x1, . . . , x2n). Given a 2n-tuple
ν = (ν1, . . . , ν2n) ∈ N 2n of nonnegative integers, write |ν| =

∑
νiand let xν denote xν1

1 · · ·xν2n

2n , a monomial of total degree |ν|. For
f =

∑
ν cνx

ν ∈ Â we de�ne ‖f‖ = sup{|cν |} (or ∞ if the 
oe�
ientsare unbounded). Note that ‖f‖ is �nite for f ∈ A.For a real number M ≥ 1, let ÂM ⊂ Â be the subset 
onsisting ofthose f as above su
h that for all ν ∈ N2n we have |cν | ≤ M |ν|. Sin
ethe absolute value on F0 is non-ar
himedean, ÂM is a ring; and it is
omplete with respe
t to the restri
tion of the m0-adi
 topology on Â.Note also that ÂM ⊂ ÂM ′ if M < M ′. In the 
ase that M = |t|s forsome (possibly negative) integer s, the subring ÂM ⊂ Â is just thepower series ring R̂0[[x1t
s, . . . , x2nt

s]]. In general, the next result showsthat we 
an view the elements of ÂM as power series fun
tions that are



APPLICATIONS OF PATCHING 7de�ned and t-adi
ally bounded by 1 on the t-adi
 open dis
 of radius
M−1 about the origin in A2n(F0).Lemma 2.1 (a) Let f ∈ A0 ⊂ Â satisfy |f(0)| ≤ 1. Then forsome M ≥ 1 we have f ∈ ÂM and f = g/h for some g, h ∈ Awith h ∈ Â×

M .(b) Let M ≥ 1 and let f =
∑

ν∈N2n cνx
ν ∈ ÂM . If a ∈ A2n(F0) with

|a| < M−1 then the series
f(a) :=

∑

ν

cνa
ν
onverges t-adi
ally to an element of F0, of norm at most 1.(
) In part (a), if a ∈ A2n(F0) with |a| < M−1 then the series f(a)
onverges t-adi
ally to the value g(a)/h(a) ∈ F0.Proof. (a) Sin
e A0 is the lo
alization of R̂0[x1, . . . , xn] at the ideal

(x1, . . . , xn), we may write f = g/h with g, h ∈ R̂0[x1, . . . , xn] ⊂ Aand with h 6∈ m0. Here ‖g‖ ≤ 1 and ‖h‖ = 1, so g, h ∈ Â1. Sin
e
A/m0 is a �eld, there exists h′ ∈ A su
h that hh′ − 1 ∈ m0. Writing
hh′ = 1 − e with e ∈ m0 ⊂ A, we see that the inverse to h in Â isgiven by ∑

i≥0 h
′ei (where this series 
onverges in Â be
ause e ∈ m0).So f =

∑
i≥0 gh

′ei ∈ Â. Let M = max{1, ‖h′‖, ‖e‖} < ∞. Thus
g, h, h′, e ∈ ÂM (using that the non
onstant 
oe�
ients satisfy therequired 
ondition by our 
hoi
e of M , and the 
onstant 
oe�
ientshave absolute value at most 1). Furthermore, sin
e ÂM is a ring, ea
hterm of ∑

h′ei and of ∑
gh′ei is also in ÂM . Sin
e ÂM is 
ompletewith respe
t to the restri
tion of the m0-adi
 topology on Â, theseseries 
onverge to elements of ÂM ⊂ Â. Therefore, f, h−1 ∈ ÂM and

h ∈ Â×
M .(b) Sin
e f ∈ ÂM , we have that |cν | ≤ M |ν| for ea
h ν. Let a ∈

A2n(F0) with m := |a| < M−1. Thus |cνaν | ≤ (mM)|ν| < 1 for ea
h
ν, sin
e 0 ≤ mM < 1. Sin
e F0 is t-adi
ally 
omplete, the series f(a)(whi
h has �nitely many terms of ea
h total degree) 
onverges to anelement of F0 of norm at most 1.(
) Sin
e h ∈ A ∩ Â×

M , we have h(a)h−1(a) = 1 and so h(a) 6= 0.Let d > deg(g) and let C = max{‖g‖, ‖h‖}. Let fs be the polynomialtrun
ation of the series f ∈ Â modulo the terms of degree ≥ s. Thusthe sequen
e fs(a) 
onverges to some c ∈ F0, by (b). If s ≥ d, then
ks := fsh − g is a polynomial whose terms ea
h have degree ≥ s andfor whi
h the 
oe�
ients of the terms of degree j have absolute value



8 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENat most M jC. With m := |a|, the absolute values of the terms ofdegree j in ks(a) are at most (mM)jC, and so |ks(a)| ≤ (mM)sC.Thus ks(a) → 0, sin
e 0 < mM < 1. That is, fs(a)h(a) → g(a), orequivalently ch(a) = g(a). Thus c = g(a)/h(a), i.e. the series f(a)
onverges to g(a)/h(a). �Lemma 2.2Suppose f ∈ ÂM with M ≥ 1, and write
f = c0,0 + L+

∑

|ν|≥2

cνx
νwhere L is a linear form in x1, . . . , x2n and all cν ∈ F0. Let s ≥ 0,let 0 < ε ≤ |t|/M2, and suppose a, a′ ∈ A2n(F0) with |a| ≤ ε and

|a′| ≤ ε|t|s. Then
|f(a+ a′) − f(a) − L(a′)| ≤ ε|t|s+1.Proof. We may rearrange the quantity of interest as:

f(a+ a′) − f(a) − L(a′) =
∑

|ν|≥2

cν ((a+ a′)ν − aν) .Sin
e the absolute value is non-ar
himedean, it su�
es to show thatfor every term m = cνx
ν with |ν| ≥ 2 we have

|m(a+ a′) −m(a)| ≤ ε|t|s+1.For a given ν with |ν| ≥ 2, 
onsider the expression (x + x′)ν − xν ,regarded as a homogeneous element of degree j = |ν| in the polyno-mial ring F0[x1, . . . , x2n, x
′
1, . . . , x

′
2n]. Sin
e the terms of degree j in

x1, . . . , x2n 
an
el, the result is a sum of terms of the form λℓ where λis an integer and ℓ is a monomial in the variables x, x′ with total degree
d in x1, . . . , x2n and total degree d′ in x′1, . . . , x′2n, su
h that d+ d′ = jand d < j. Hen
e d′ ≥ 1. Consequently, for ea
h term of this form,

|λℓ(a, a′)| ≤ |ℓ(a, a′)| ≤ εd(ε|t|s)d′ = εj|t|sd′ ≤ εj|t|s.Sin
e (a + a′)ν − aν is a sum of su
h terms, and the norm is non-ar
himedean, we 
on
lude |(a+ a′)ν − aν | ≤ εj|t|s.Sin
e m = cνx
ν , it follows that

|m(a+ a′) −m(a)| ≤ |cν |εj|t|s ≤M jεj |t|s.Now ε ≤ |t|/M2, so εj−1 ≤ |t|j−1/M2j−2. Sin
e |t| < 1, M ≥ 1, and
j ≥ 2, we have

εj−1 ≤ |t|j−1

M j+j−2
≤ |t|
M j

.



APPLICATIONS OF PATCHING 9Rearranging this gives the inequality (Mε)j ≤ ε|t| and so (Mε)j |t|s ≤
ε|t|s+1. Therefore

|m(a + a′) −m(a)| ≤M jεj|t|s ≤ ε|t|s+1,as desired. �For the remainder of this se
tion, it will be 
onvenient to write yi =
xn+i for i = 1, . . . , n. We will let ν = (ν1, . . . , νn) and ρ = (ρ1, . . . , ρn)be n-tuples of non-negative integers; and for su
h ν, ρ we will write
|(ν, ρ)| =

∑
νi +

∑
ρi and will let xνyρ denote xν1

1 · · ·xνn
n y

ρ1

1 · · · yρn
n , amonomial of total degree |(ν, ρ)|. An element of Â will be written as

f =
∑

ν,ρ cν,ρx
νyρ with cν,ρ ∈ F0.Lemma 2.3Let f ∈ m0A0, and suppose there is some 1 ≤ i ≤ n su
h that f(a, 0) =

ai = f(0, a) for all a = (a1, . . . , an) ∈ F n
0 for whi
h f(a, 0) and f(0, a)
onverge. Then f ∈ ÂM ⊂ Â for some M ≥ 1, and its expansion hasthe form

f = xi + yi +
∑

|(ν,ρ)|≥2

cν,ρx
νyρ.Proof. By Lemma 2.1(a), both f and g := f − xi − yi ∈ m0A0 liein ÂM for some M ≥ 1; in parti
ular, g =
∑

ν,ρ cν,ρx
νyρ with ea
h

|cν,ρ| ≤ M |(ν,ρ)|. Here g 
onverges in a t-adi
 neighborhood of (0, 0),on whi
h g(a, b) = 0 if a = 0 or b = 0. To prove the result it su�
esto show that cν,ρ = 0 for |(ν, ρ)| < 2. This is automati
 for c0,0 sin
e
g ∈ m0A0. It remains to show that cν,ρ = 0 for |(ν, ρ)| = 1.We argue by 
ontradi
tion. Suppose that there exists (ν0, ρ0) su
hthat cν0,ρ0

6= 0 with |(ν0, ρ0)| = 1. Without loss of generality, wemay assume that ν0 = (1, 0, . . . , 0) and ρ0 = (0, 0, . . . , 0). Choose
0 < m < 1 su
h that m ≤ |cν0,ρ0

|, and N > 0 su
h that |tN | < m/M2.Let v = (tN , 0, . . . , 0) ∈ A2n; thus g(v) = 0. Also, |L(v)| ≥ m|tN | > 0,where L is the sum of the terms of g of degree 1. So L(v) 6= 0.Now let h = cν,ρx
νyρ be an arbitrary term of g whose degree j :=

|(ν, ρ)| is at least 2. We 
laim |h(v)| < |L(v)|. Showing this for all su
h
h would imply that |g(v)| = |L(v)|. Sin
e g(v) = 0 6= L(v), this wouldlead to a 
ontradi
tion.To verify the 
laim, we may assume h(v) 6= 0. Using the de�nitionof v, we see dire
tly that h = cxj

1 for some c ∈ F0, and that |h(v)| =

|c||tN |j. Here |c| ≤ M j sin
e g ∈ ÂM and h is a term of g. We 
ompute
|L(v)|
|h(v)| ≥

m|tN |
|c||tN |j ≥ m

M j

1

|tN |j−1
.



10 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENSin
e |tN | < m/M2, we have 1/|tN | > M2/m and so 1/|tN |j−1 >
M2(j−1)/mj−1. Combining this with the above,

|L(v)|
|h(v)| ≥

m

M j

1

|tN |j−1
>

m

M j

M2j−2

mj−1
=
M j−2

mj−2
≥ 1,be
ause j ≥ 2, M ≥ 1, and 0 < m < 1. So |L(v)| > |h(v)| asdesired. �For the next result and for use in the next se
tion, we make thefollowing hypothesis, 
ontinuing under the notation introdu
ed at thebeginning of the 
urrent se
tion:Hypothesis 2.4We assume that the 
omplete dis
rete valuation ring R̂0 
ontains asubring T whi
h is also a 
omplete dis
rete valuation ring having uni-formizer t, and that F1, F2 are sub�elds of F0 
ontaining T . We fur-ther assume that V ⊂ F1 ∩ R̂0, W ⊂ F2 ∩ R̂0 are t-adi
ally 
omplete

T -submodules satisfying V +W = R̂0.The main theorem of this se
tion is the following de
omposition re-sult, whi
h is related to [HH07℄, Proposition 3.2 (with An
F0

here 
orre-sponding to the a�ne spa
e of square matri
es of a given size):Theorem 2.5Under Hypothesis 2.4, let f : An
F0

× An
F0

99K An
F0

be an F0-rationalmap that is de�ned on a Zariski open set U ⊆ An
F0

× An
F0


ontainingthe origin (0, 0). Suppose further that f(u, 0) = u = f(0, u) whenever
(u, 0) (resp. (0, u)) is in U . Then there is a real number ε > 0 su
hthat for all a ∈ An(F0) with |a| ≤ ε, there exist v ∈ V n and w ∈ W nsu
h that (v, w) ∈ U(F0) and f(v, w) = a.Proof. Write the fun
tion f as an n-tuple (f1, . . . , fn) with fi ∈ A0. Infa
t fi ∈ m0A0 sin
e fi(0, 0) = 0. So by Lemma 2.1(a), there is a realnumber M ≥ 1 su
h that fi ∈ ÂM for all i; and by Lemma 2.3,

fi = xi + yi +
∑

|(ν,ρ)|≥2

cν,ρ,ix
νyρ (∗)for some cν,ρ,i in F0.As noted at the beginning of this se
tion, the t-adi
 topology ona�ne spa
e is �ner than the Zariski topology. So there exists δ > 0su
h that (v, w) ∈ U(F0) for all v, w ∈ An(F0) satisfying |(v, w)| ≤ δ.Choose N > 0 su
h that |tN | ≤ min{|t|/M2, δ}, and set ε = |tN |. In
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ular, whenever |(v, w)| ≤ ε, the point (v, w) lies in U(F0), andhen
e f(v, w) is de�ned.Now suppose a = (a1, . . . , an) ∈ An(F0) with |a| ≤ ε. We willindu
tively 
onstru
t sequen
es of elements vj = (v1,j, . . . , vn,j) ∈ V n,
wj = (w1,j , . . . , wn,j) ∈ W n, with j ≥ 0, su
h that v0 = w0 = (0, . . . , 0)and(1) |(vj, wj)| ≤ ε for all j ≥ 0;(2) |vj − vj−1|, |wj − wj−1| ≤ ε|t|j−1 for all j ≥ 1; and(3) |fi(vj , wj) − ai| ≤ ε|t|j for all j ≥ 0.Sin
e the T -modules V n,W n are t-adi
ally 
omplete, the se
ond 
on-dition ensures that v = lim

j→∞
vj and w = lim

j→∞
wj exist in V n and

W n. The �rst 
ondition shows moreover that |(v, w)| ≤ ε, so that
(v, w) ∈ U(F0) and f(v, w) is de�ned. Finally, the third 
onditionimplies that f(v, w) = a. Thus it su�
es to 
onstru
t su
h sequen
es.It follows from Lemma 2.1(b) that sin
e at ea
h stage we will have
|(vj, wj)| ≤ ε ≤ |t|/M2 < 1/M , the power series expressions for
f(vj, wj) are 
onvergent. By Lemma 2.1(
) we may identify the limitsof these evaluated power series with the values of the original rationalfun
tions.Observe that the �rst and third 
onditions hold for j = 0. Nowassume indu
tively that for some j ≥ 0 we have 
hosen vj, wj satisfyingthe three asserted 
onditions (ex
ept the se
ond, if j = 0). De�ne
bj = (b1,j , . . . , bn,j) = a− f(vj, wj). By the third 
ondition on (vj, wj),we have |bj| ≤ ε|t|j = |t|N+j. Write bj = tN+juj with uj ∈ R̂n

0 . ByHypothesis 2.4, we may write uj = v′j+1 + w′
j+1 for v′j+1 ∈ V n, w′

j+1 ∈
W n.Let vj+1 = vj + tN+jv′j+1 and wj+1 = wj + tN+jw′

j+1. It is im-mediate by 
onstru
tion that |vj+1 − vj |, |wj+1 − wj| ≤ ε|t|j sin
e
|t|N = ε. This proves the se
ond 
ondition on (vj+1, wj+1). Sin
e
|vj|, |wj| ≤ ε ≤ |t|/M2 (by the �rst 
ondition on (vj , wj)) and sin
e
|tN+jv′j+1|, |tN+jw′

j+1| ≤ ε|t|j, it follows by equation (∗) and Lemma 2.2that
|fi(vj+1, wj+1) − ai| = |fi(vj+1, wj+1) − fi(vj , wj) − bi,j|

=
∣∣fi(vj + tN+jv′j+1 , wj + tN+jw′

j+1) − fi(vj , wj) − tN+j(v′j+1 + w′
j+1)

∣∣

≤ ε|t|j+1,proving the third 
ondition on (vj+1, wj+1). The �rst 
ondition on
(vj+1, wj+1) holds by the se
ond 
ondition on (vj+1, wj+1) together withthe �rst 
ondition on (vj, wj), sin
e the norm is non-ar
himedean and
j ≥ 0. �



12 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENThe above de
omposition theorem will be used in the next se
tion toextend [HH07℄, Proposition 3.2, whi
h used an additive de
ompositionto provide a fa
torization of matri
es in GLn. In applying Theorem 2.5above to obtain fa
torization in more general rational linear algebrai
groups G (Theorem 3.2 below), we will identify G birationally with anopen subset of some a�ne spa
e, with f above being the map therethat 
orresponds to multipli
ation in G.3. Fa
torization and a lo
al-global prin
ipleWe say that a 
onne
ted linear algebrai
 group de�ned over a �eld
F is rational if it is rational as an F -variety. In this se
tion we provefa
torization theorems for su
h groups (Theorems 3.4 and 3.6), gener-alizing results of [HH07℄ about the rational group GLn. The key stepis Theorem 3.2, whi
h relies on Theorem 2.5. Afterwards, in Theo-rem 3.7, we apply this fa
torization to obtain a lo
al-global prin
iplefor homogeneous spa
es for rational groups.Lemma 3.1Let G be a rational 
onne
ted linear algebrai
 group over an in�nite�eld F , let F0 be an extension �eld of F , and let g ∈ G(F0). Thenthere exists a Zariski open subset Y ⊆ G su
h that g ∈ Y (F0) and su
hthat Y is F -isomorphi
 to an open subset of a�ne spa
e over F .Proof. Sin
e G is rational, there exists a non-empty irredu
ible Zariskiopen subset Y ′ ⊆ G that is isomorphi
 to an open subset of a�nespa
e. Sin
e F is in�nite, every non-empty open subset of a�ne F -spa
e 
ontains an F -point. Consequently, there exists a point y ∈
Y ′(F ), and the F0-s
heme y−1g−1Y ′

F0
∩ Y ′

F0
is a Zariski dense opensubset of Y ′

F0
. Sin
e Y ′ is F -isomorphi
 to an open subset of a�nespa
e, and sin
e F is in�nite, it follows that Y ′(F ) is dense in Y ′(F0)with respe
t to the Zariski topology. Therefore there exists y′ ∈ Y ′(F )su
h that y′ ∈ y−1g−1Y ′(F0). That is to say, g ∈ Y ′(F0)(yy

′)−1. Setting
Y = Y ′(yy′)−1, we �nd that Y is an F -subs
heme of G su
h that
g ∈ Y (F0) and Y ∼= Y ′ is F -isomorphi
 to an open subvariety of a�nespa
e. �The following fa
torization theorem, whi
h extends [HH07℄, Propo-sition 3.2, to more general rational linear algebrai
 groups than GLn,relies on Theorem 2.5 above:



APPLICATIONS OF PATCHING 13Theorem 3.2Under Hypothesis 2.4, assume that F is a sub�eld of F1 ∩ F2 that 
on-tains T , and that F1 is t-adi
ally dense in F0. Let G be a rational 
on-ne
ted linear algebrai
 group de�ned over F . Then for any g ∈ G(F0)there exist gi ∈ G(Fi), i = 1, 2, su
h that g1g2 = g.Proof. Sin
e G is rational, there is a Zariski dense open subset U ′ of Gthat is F -isomorphi
 to a Zariski open subset U of An
F , where n is thedimension of G. After translating, we may assume that U ′ 
ontainsthe identity e ∈ G and that the F -isomorphism φ : U ′ → U ⊆ An

Ftakes e to the origin in An(F ). Consider the group multipli
ation map
µ : G×G→ G, and let Ũ ′ = µ−1(U ′) ∩ (U ′ × U ′) ⊆ G×G. Note that
Ũ ′ is a Zariski open subset of G×G that 
ontains the point (e, e), andthat µ(Ũ ′) ⊆ U ′. The isomorphism φ : U ′ → U indu
es an isomorphism
φ × φ|eU ′ : Ũ ′ → Ũ for some dense open subset Ũ ⊆ An

F × An
F = A2n

F .Hen
e there exists a morphism f : Ũ → U su
h that the followingdiagram 
ommutes:
G×G ⊇ Ũ ′

µ|eU′

//

φ×φ|eU′

��

U ′

φ

��

⊆ G

A2n
F ⊇ Ũ f

// U ⊆ An
FSin
e µ(g, e) = g = µ(e, g) for g ∈ G, it follows that f(v, 0) = v =

f(0, v) when (v, 0) and (0, v) are in Ũ . Consequently, it follows fromTheorem 2.5 (with Ũ here playing the role of U there) and the assump-tions of Hypothesis 2.4 that there is an ε > 0 su
h that for g ∈ U ′(F0)with |φ(g)| ≤ ε, there exist v ∈ V n, w ∈W n with (v, w) ∈ Ũ(F0) su
hthat f(v, w) = φ(g). Thus v ∈ U(F1) and w ∈ U(F2).To prove the theorem, 
onsider �rst the spe
ial 
ase that g ∈ G(F0)satis�es |φ(g)| ≤ ε. If we set g1 = φ−1(v) and g2 = φ−1(w) for v, w asabove, then gi ∈ G(Fi) for i = 1, 2, and (g1, g2) ∈ Ũ ′. But now we have
g1g2 = g ∈ G(F0) by the above 
ommutative diagram, as desired.The general 
ase redu
es to the above spe
ial 
ase by a 
lassi
alargument (e.g. see [Kn62℄). Namely, by Lemma 3.1, there is an open
F -subset Y ⊆ G su
h that g ∈ Y (F0), together with an open immersion
ψ : Y → An

F . Now An(F1) is t-adi
ally dense in An(F0), and the t-adi
topology is �ner than the Zariski topology. So sin
e φ(e) = 0 ∈ An
F ,there exists h ∈ Y (F1) ⊆ G(F1) su
h that |φ(h−1g)| ≤ ε. By the �rstpart, h−1g = g′1g

′
2 with g′i ∈ G(Fi), i = 1, 2. Setting g1 = hg′1 ∈ G(F1)and g2 = g′2 ∈ G(F2) gives the desired 
on
lusion g = g1g2 ∈ G(F0). �



14 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENIn order to apply this result, we re
all the following notation andterminology, whi
h arose in the 
ontext of pat
hing in [HH07℄:Notation 3.3 [HH07℄ (Se
tions 4 and 6)Let T be a 
omplete dis
rete valuation ring with uniformizer t andresidue �eld k, and let X̂ be a normal irredu
ible proje
tive T -
urvewith fun
tion �eld F and with 
losed �ber X. Given an irredu
ible
omponent X0 of X with generi
 point η, 
onsider the lo
al ring of X̂at η. For a (possibly empty) proper subset U of X0, we let RU denotethe subring of this lo
al ring 
onsisting of the rational fun
tions thatare regular at ea
h point of U . In parti
ular, R∅ is the lo
al ring of X̂at the generi
 point of the 
omponent X0. The t-adi
 
ompletion of RUis denoted by R̂U . If P is a 
losed point of X, we write RP for the lo
alring of X̂ at P , and R̂P for its 
ompletion at its maximal ideal. (Notethe distin
tion R̂P vs. R̂{P}.) A height 1 prime ℘ of R̂P that 
ontains
t determines a bran
h of X at P , i.e. an irredu
ible 
omponent of thepullba
k of X to Spec R̂P . Similarly the 
ontra
tion of ℘ to the lo
alring of X̂ at P determines an irredu
ible 
omponent X0 of X, and wesay that ℘ lies on X0. Note that a bran
h ℘ uniquely determines a
losed point P and an irredu
ible 
omponent X0. In general, there
an be several bran
hes ℘ on X0 at a point P ; but if X0 is smooth at
P then there is a unique bran
h ℘ on X0 at P . We write R̂℘ for the
ompletion of the lo
alization of R̂P at ℘; thus R̂P is 
ontained in R̂℘,whi
h is a 
omplete dis
rete valuation ring.Sin
e X̂ is normal, the lo
al ring RP is integrally 
losed and hen
eunibran
hed; and sin
e T is a 
omplete dis
rete valuation ring, RPis ex
ellent and hen
e R̂P is a domain ([Gro65℄, S
holie 7.8.3(ii, iii,vii)). For nonempty U as above and Q ∈ U , R̂U/t

nR̂U → R̂Q/t
nR̂Q isinje
tive for all n and hen
e R̂U → R̂Q is also inje
tive. Thus R̂U isalso a domain. Note that the same is true if U is empty. The fra
tion�elds of the domains R̂U , R̂P , and R̂℘ will be denoted by FU , FP , and

F℘.If ℘ is a bran
h at P lying on the 
losure of U ⊂ X0, then there arenatural in
lusions of R̂P and R̂U into R̂℘, and hen
e of FP and FU into
F℘. The in
lusion of R̂P was observed above; for R̂U , note that thelo
alizations of RU and of RP at the generi
 point of X0 are the same(viz. R∅); and this lo
alization is naturally 
ontained in the t-adi
ally
omplete ring R̂℘. Thus so is RU and hen
e its t-adi
 
ompletion R̂U .



APPLICATIONS OF PATCHING 15Theorem 3.4 (Fa
torization over smooth 
urves)Let T be a 
omplete dis
rete valuation ring, let X̂ be a smooth 
onne
tedproje
tive T -
urve with fun
tion �eld F and 
losed �ber X. De�ne�elds Fi, i = 0, 1, 2, by one of the following:(1) Fi = FUi
where U1, U2 are proper subsets of X, U1∪U2 = X, and

U0 = U1 ∩ U2. (Note that here F0 is not a 
omplete dis
retelyvalued �eld unless U0 = ∅.)(2) F1 = FP , F2 = FU , and F0 = F℘, where P is a 
losed point of
X with 
omplement U ⊂ X, and ℘ 
orresponds to the (unique)bran
h of X at P .(3) F1 and F0 are as in (2) and F2 = F∅.Let G be a rational 
onne
ted linear algebrai
 group de�ned over F .Then for any g ∈ G(F0) there exist gi ∈ G(Fi), i = 1, 2, su
h that

g1g2 = g.Proof. It su�
es to show that the hypotheses of Theorem 3.2 hold inea
h of the three parts of the above assertion.For part (1), write R̂i = R̂Ui
. We �rst assume that U0 is empty, sothat R̂0 is a 
omplete dis
rete valuation ring with uniformizer t. In thissituation let P be a 
losed point of U1 and let P̂ be a lift of P to X̂(i.e. an e�e
tive prime divisor on X̂ whose restri
tion to X is P ; see[HH07℄, Se
tion 4.1). Let gX be the genus of X, pi
k a non-negativeinteger N > 2gX − 2, and let V = L(Spec R̂1, NP̂ ), the T -submoduleof F1 
onsisting of rational fun
tions on Spec R̂1 whose pole divisor isat most NP̂ . Note that V ⊂ R̂0 sin
e these rational fun
tions do nothave poles along the 
losed �ber (t). LetW = R̂2. Then Hypothesis 2.4holds for these rings and modules, by [HH07℄, Proposition 4.5.To 
omplete the proof of part (1) in this 
ase, it su�
es to verify thatthe hypotheses of Theorem 3.2 are satis�ed, i.e. that F1 is t-adi
allydense in F0. Sin
e the fra
tion �eld of R̂1/tR̂1 is the same as R̂0/tR̂0(viz. the fun
tion �eld of X), it follows from [HH07℄, Lemma 3.1(a),that the ring R0 := R̂0 ∩ F1 is t-adi
ally dense in R̂0. For the densityof F1 in F0, let x ∈ F0; sin
e R̂0 is a dis
rete valuation ring withuniformizer t, we may write x = t−ny for some n ∈ Z and y ∈ R̂0. Bythe density of R0 in R̂0, for any ℓ > 0 there exists x0 ∈ R0 su
h that

x0−y ∈ tℓ+nR̂0. It then follows that t−nx0−x ∈ tℓR̂0. But t−nx0 ∈ F1,sin
e the �eld F1 
ontains R0. So F1 is indeed dense in F0, �nishingthe proof of part (1) of the theorem in this spe
ial 
ase.More generally, if U0 is not ne
essarily empty, then we pro
eed asfollows (paralleling the proof of [HH07℄, Theorem 4.10). Let U ′
2 =
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U2 r U0, and write F ′

2 = FU ′

2
and F ′

0 = F∅. Any g ∈ G(F0) lies in
G(F ′

0), and so by the above spe
ial 
ase we may write g = g1g2 with
g1 ∈ G(F1) ≤ G(F0) and g2 ∈ G(F ′

2). But also g2 = g−1
1 g ∈ G(F0); and

F ′
2∩F0 = F2 by Theorem 4.9 of [HH07℄ sin
e U ′

2∪U0 = U2. So a
tually
g2 ∈ G(F2), �nishing the proof of part (1).For part (3), take V = R̂P and W = R̂∅. Hypothesis 2.4 holds by[HH07℄, Lemma 5.3. Also, the fra
tion �eld of R̂P/tR̂P is R̂℘/tR̂℘, by[HH07℄, Lemma 5.2(d). (Those results apply sin
e if we let R̂ = R̂{P},then it is straightforward to 
he
k that the rings R̂1, R̂2, R̂0 obtainedfrom R̂ in [HH07℄, Notation 5.1, are the same as the rings R̂P , R̂∅,
R̂℘ here.) So as in the proof of (1), F1 is t-adi
ally dense in F0. ThusTheorem 3.2 implies the assertion.Part (2) is now immediate from the other two parts. Spe
i�
ally, by(3) we may fa
tor any element g ∈ G(F0) as g′1g′2 with g′1 ∈ G(FP ) and
g′2 ∈ G(F∅). Taking U1 = {P} and U2 = U = X r U1, by (1) we maythen fa
tor g′2 as g′′1g2 with g′′1 ∈ G(FP ) (sin
e FU1

= F{P} ⊂ FP ) and
g2 ∈ G(FU). Writing g1 = g′1g

′′
1 ∈ G(FP ) gives the desired fa
torization

g = g1g2. �The above fa
torization theorem generalizes results of [HH07℄ about
GLn to rational 
onne
ted linear algebrai
 groups G. Parts (1) and (3)for GLn were respe
tively shown in Theorem 4.10 and Theorem 5.4 of[HH07℄ (whi
h in the latter 
ase again used the above 
omment aboutthe rings in [HH07℄, Notation 5.1). Also, if X̂ = P1

T , we 
an justtake V = R̂1 in 
ase (1) of the above proof, 
orresponding to 
hoosing
N = 0.As in Se
tion 6 of [HH07℄, the se
ond part of the above result willnext be extended to 
urves X̂ that are not ne
essarily smooth, and tothe 
ase where several points are 
hosen. To do this, we will 
hoose a�nite morphism X̂ → P1

T , so that the fun
tion �eld F of X̂ is a �niteextension of the fun
tion �eld F ′ of P1
T . We will then relate linearalgebrai
 groups over F to linear algebrai
 groups over F ′, using therestri
tion of s
alars fun
tor RF/F ′ that takes a�ne varieties over Fto a�ne varieties over F ′, and whi
h is 
hara
terized by the fun
torialisomorphism αX,Z : HomF ′(Z,RF/F ′(X)) → HomF (Z ×F ′ F,X) (see[BLR90℄, Se
tion 7.6, Theorem 4, whi
h does not require separabilityof F/F ′). It will be 
onvenient to use the following notation:Notation 3.5In the 
ontext of Notation 3.3, assume that f : X̂ → P1

T is a �nitemorphism su
h that P := f−1(∞) 
ontains all points at whi
h distin
t



APPLICATIONS OF PATCHING 17irredu
ible 
omponents of the 
losed �ber X ⊂ X̂ meet. (Su
h an
f exists by [HH07℄, Proposition 6.6.) We let U be the 
olle
tion ofirredu
ible 
omponents U of f−1(A1

k), and let B be the 
olle
tion of allbran
hes ℘ at the points of P.Theorem 3.6 (Simultaneous fa
torization for 
urves)Let X̂ be a normal 
onne
ted proje
tive T -
urve and let f : X̂ → P1
Ta �nite morphism, in the 
ontext of Notation 3.5. Let G be a rational
onne
ted linear algebrai
 group over the fun
tion �eld F of X̂, andsuppose that for every bran
h ℘ ∈ B we are given an element g℘ ∈

G(F℘). Then we may �nd an element gP ∈ G(FP ) for ea
h P ∈ P, andan element gU ∈ G(FU) for ea
h U ∈ U, su
h that for every bran
h
℘ ∈ B at a point P ∈ P with ℘ lying on the 
losure of some U ∈ U, wehave g℘ = gPgU with respe
t to the natural in
lusions FP , FU → F℘.To avoid possible 
onfusion, we emphasize that ea
h gP (resp. gU)depends only on P (resp. U); but that the identity g℘ = gPgU takespla
e in G(F℘), where we view gP and gU as elements of G(F℘) viathe respe
tive in
lusions of G(FP ) and G(FU) that are indu
ed by the
orresponding in
lusions of �elds. Thus if ℘, ℘′ are ea
h bran
hes at Plying on the 
losure of U (e.g. if P is a nodal point on an irredu
ible
omponent of X), then the produ
ts g℘ = gPgU and g℘′ = gPgU takepla
e over di�erent �elds F℘, F℘′, with respe
t to di�erent in
lusions.Proof. Let F ′ be the fun
tion �eld of P1

T . Thus F , the fun
tion �eld of
X̂, is a �nite �eld extension of F ′ via f . Under Notation 3.3 for P1

T ,we may 
onsider the rings R̂∞, R̂A1
, and R℘′ where ℘′ is the bran
h at

∞ de�ned by the 
losed �ber. Let F ′
1, F ′

2, and F ′
0 be the 
orrespondingfra
tion �elds.Let G′ := RF/F ′(G). By fun
toriality of RF/F ′, the F ′-variety G′ is alinear algebrai
 group (e.g. see [Mil72℄, Se
tion 1) and it is rational. Bythe de�ning property of RF/F ′, there is a natural isomorphismG′(F ′

0) =
G(F ′

0 ⊗F ′ F ). Sin
e F ′
0 ⊗F ′ F =

∏
℘ F℘ by [HH07℄, Lemma 6.2(a), we�nd:

G′(F ′
0) = G(F ′

0 ⊗F ′ F ) = G(
∏

℘

F℘) =
∏

℘

G(F℘).Similarly,
G′(F ′

1) =
∏

P

G(FP ), G′(F2) =
∏

U

G(FU),



18 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENvia F ′
1⊗F ′F =

∏
P FP and F ′

2⊗F ′F =
∏

U FU ([HH07℄, Lemma 6.2(a)).In parti
ular, we may identify our tuple (g℘) ∈ ∏
℘G(F℘) with an el-ement g0 ∈ G′(F ′

0). By Theorem 3.4(2), there exist g1 ∈ G′(F ′
1) and

g2 ∈ G′(F ′
2) su
h that g0 = g1g2. Again using the above identi�
ations,the element g1 
orresponds to a tuple (gP ) ∈

∏
P∈P

G(FP ) and g2 
or-responds to a tuple (gU) ∈
∏

U∈U
G(FU). By [HH07℄, Lemma 6.2(b),the above isomorphisms on F ′

i ⊗F ′ F (for i = 0, 1, 2) are 
ompatible,with respe
t to the in
lusions of ∏
FP and ∏

FU into ∏
F℘, and of

F ′
1, F

′
2 into F ′

0. So by the fun
toriality of RF/F ′, the above fa
torization
g0 = g1g2 ∈ G′(F ′

0) yields the desired equality g℘ = gPgU ∈ G(F℘) forea
h point P ∈ P, ea
h 
omponent U ∈ U, and ea
h bran
h ℘ at Plying on the 
losure of U . �We 
ontinue to adopt Notations 3.3 and 3.5, 
on
erning a normalproje
tive T -
urve X̂ with fun
tion �eld F and asso
iated sets P,U,B.In what follows, if a linear algebrai
 group G a
ts on a variety Hover a �eld F , we will say that G a
ts transitively on the points of H iffor every �eld extension E of F the indu
ed a
tion of the group G(E)on the set H(E) is transitive. (See also Remark 3.9.)Theorem 3.7 (Lo
al-global prin
iple for homogeneous spa
es)Let G be a rational 
onne
ted linear algebrai
 group over F that a
tstransitively on the points of an F -variety H. Then in the 
ontext ofNotation 3.5, H(F ) 6= ∅ if and only if H(FP ) 6= ∅ for ea
h P ∈ P and
H(FU) 6= ∅ for ea
h U ∈ U.Proof. If H(F ) is non-empty, then so are ea
h H(FP ) and H(FU), sin
e
F is 
ontained in FP and FU .For the 
onverse, pi
k a point hP ∈ H(FP ) for ea
h P ∈ P and apoint hU ∈ H(FU) for ea
h U ∈ U. For ea
h ℘ ∈ B, as observed inNotation 3.3 there is a unique point P ∈ P and a unique irredu
ible
omponent X0 of X su
h that ℘ is a bran
h at P that lies on X0. The
omponent X0 is the 
losure of a unique U ∈ U, whi
h is thus alsodetermined by ℘. Here we 
an view hP and hU as points of H(F℘) viathe in
lusions of FP and FU into F℘. Sin
e G a
ts transitively on thepoints of H , there is an element g℘ ∈ G(F℘) su
h that g℘(hU) = hP in
H(F℘). Sin
e G is rational and we are in the situation of Notation 3.5,Theorem 3.6 implies that there is a 
olle
tion of group elements gP ∈
G(FP ) for all P ∈ P and gU ∈ G(FU) for all U ∈ U, su
h that forevery bran
h ℘ at P on the 
losure of U we have g℘ = gP gU . Let
h′P = g−1

P (hP ) ∈ H(FP ) and h′U = gU(hU) ∈ H(FU). Thus if P, U, ℘are a triple as above, then h′P and h′U be
ome identi�ed with the same



APPLICATIONS OF PATCHING 19element h′℘ ∈ H(F℘) under the in
lusions of H(FP ) and H(FU) into
H(F℘). (Here h′℘ depends only on ℘ sin
e ℘ determines P and U .)We 
laim that there is an a�ne Zariski open subset SpecA ⊆ H that
ontains the points h′P , h′U , h′℘ for all P, U, ℘. This is 
lear if H is quasi-proje
tive, sin
e this set of points is �nite. For a more general variety
H , observe that if ξ1, ξ2 ∈ P∪U∪B are related by being members of a
ommon triple P, U, ℘ as above, then any a�ne open subset of H that
ontains h′ξ1 must also 
ontain h′ξ2 (sin
e they de�ne the same point in
H(F℘)). But sin
e the 
losed �ber of the 
urve X̂ is 
onne
ted, anytwo elements ξ1, ξ2 ∈ P ∪ U ∪ B are in the transitive 
losure of thisrelation. This proves the 
laim.Let φP : A → FP , φU : A → FU , and φ℘ : A → F℘ be the ho-momorphisms 
orresponding to the points h′P ∈ H(FP ), h′U ∈ H(FU),and h′℘ ∈ H(F℘). Thus if ℘ is a bran
h at P on the 
losure of U , themaps φP and φU ea
h indu
e the homomorphism φ℘ : A→ F℘ via thein
lusions FP , FU →֒ F℘. So all the maps φP , φU , and φ℘ together de-�ne a homomorphism φ from A to the inverse limit of the �nite inversesystem 
onsisting of the �elds FP (for P ∈ P), FU (for U ∈ U), and F℘(for ℘ ∈ B). But by [HH07℄, Proposition 6.3, this inverse limit is just
F , with respe
t to the in
lusions of F into the �elds FP , FU , F℘. The
F -homomorphism φ : A → F then de�nes an F -rational point on H ;i.e. H(F ) 6= ∅ as asserted. �Corollary 3.8Let G1 and G2 be linear algebrai
 groups su
h that G1×G2 is a rational
onne
ted linear algebrai
 group. Then the assertions of Theorems 3.2,3.4, 3.6 and 3.7 hold for G1 and G2.Proof. By symmetry, it su�
es to prove the statement for G1. Theo-rems 3.2, 3.4 and 3.6 hold for G1 by 
hoosing a preimage in G1 ×G2 ofea
h given point of G1; fa
toring in G1×G2 by the respe
tive theoremsfor that rational 
onne
ted group; and then proje
ting the fa
toriza-tion to G1. Theorem 3.7 holds for G1 be
ause it holds for G1 ×G2 andbe
ause G1 × G2 a
ts transitively on the points of any F -variety forwhi
h G1 does. �Remark 3.9In the spe
ial 
ase that G is a (
onne
ted) redu
tive linear algebrai
group over F and H is a proje
tive F -variety, the transitivity 
onditionin the above theorem simpli�es. Spe
i�
ally, it is equivalent to the apriori weaker 
ondition that the group G(F̄ ) a
ts transitively (in the
lassi
al sense) on the set H(F̄ ), where F̄ is an algebrai
 
losure of F .



20 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENTo see this, note that for any �eld extension E of F , the stabilizerof an E-point of H is a paraboli
 subgroup of G, by the proje
tivity of
H . By the hypotheses on G, paraboli
 subgroups are self-normalizing([Bor91℄, Theorem 11.16), hen
e distin
t E-points have distin
t stabi-lizers; and two su
h subgroups are 
onjugate under G(E) if they are
onjugate under G(Ē) ([Bor91℄, Theorem 20.9(iii)). But the transitiv-ity of G(F̄ ) on H(F̄ ) yields the same over Ē, implying the 
onjuga
yof the stabilizers. Therefore the stabilizers of any two E-points of Hare 
onjugate under G(E), and the points are then in the same G(E)-orbit. These extra hypotheses on G and H are in fa
t satis�ed in thesituations below where we apply the above theorem (see the proofs ofTheorems 4.2 and 5.1); but we will not need to use this fa
t.4. Quadrati
 formsIn this se
tion we prove our results on quadrati
 forms. We do thisby redu
ing to a lo
al problem, using the lo
al-global prin
iple in The-orem 3.7. For generalities 
on
erning quadrati
 forms, we refer thereader to [Lam05℄ and [Grv02℄.Let F be a �eld of 
hara
teristi
 unequal to 2. Re
all that by theWitt de
omposition theorem ([Lam05℄, I.4.1), every quadrati
 form qover F may be de
omposed as an orthogonal sum qt ⊥ qa ⊥ qh, where
qt is totally isotropi
, qa is anisotropi
, and qh is hyperboli
 (or zero).All fa
tors are uniquely determined up to isometry. Here qr := qa ⊥ qhis regular (i.e. non-degenerate); and the qt fa
tor does not o

ur if q isregular. The Witt index iW (q) of q is 1

2
dim qh; if q is regular this isthe same as the dimension of any maximal totally isotropi
 subspa
e([Grv02℄, pp. 41-42). Sin
e char(F ) 6= 2, every quadrati
 form over Fis isometri
 to a diagonal form a1x

2
1 + · · ·+ anx

2
n, whi
h is denoted by

〈a1, . . . , an〉. If E is a �eld 
ontaining F , then qE denotes the form qviewed as a quadrati
 form over E.Remark 4.1If q is a regular quadrati
 form over a �eld F of 
hara
teristi
 unequalto 2, then the spe
ial orthogonal group SO(q) of isometries of q ofdeterminant 1 is a rational 
onne
ted linear algebrai
 group. Moregenerally, let A be a �nite dimensional 
entral simple F -algebra withan involution ι (i.e. an anti-automorphism of order 2), and letG = {a ∈
A× | ι(a) = a−1}. Then the 
lassi
al Cayley map a 7→ (1 − a)(1 + a)−1de�nes a birational isomorphism from the 
onne
ted 
omponent G◦ tothe set of ι-skew symmetri
 elements, whi
h is an F -linear subspa
e of
A ([KMRT98℄, p. 201, Exer
ise 9); thus G◦ is rational.



APPLICATIONS OF PATCHING 21Theorem 4.2In the 
ontext of Notation 3.5, suppose q is a quadrati
 form over F ofdimension unequal to two, su
h that qFξ
is isotropi
 for ea
h ξ ∈ P∪U.Then q is isotropi
.Proof. If the dimension of q is one, then ea
h qFξ

is totally isotropi
,and hen
e not regular. Thus neither is q, and the 
on
lusion follows inthis 
ase.Now suppose n := dim q ≥ 3. By Witt de
omposition, we may write
q = qt ⊥ qr, where qr is regular and qt is totally isotropi
. If qt 6= 0then q is isotropi
 and there is nothing to show. Therefore, we mayassume that q (and hen
e ea
h qFξ

) is regular.Let H be the proje
tive quadri
 hypersurfa
e de�ned by q. Observethat O(q) a
ts transitively on the points of the F -variety H (see thede�nition before Theorem 3.7). To see this, let L be a �eld extensionof F , and let ξ1, ξ2 ∈ H(L). These points 
orrespond to lines W1,W2through the origin in An
L that are totally isotropi
 with respe
t to qL;and hen
e any isomorphism f : W1 → W2 as L-ve
tor spa
es is anisometry. By Witt's extension theorem ([Grv02℄, Theorem 5.2), su
han f extends to an isometry of An

L taking W1 to W2. That is, someelement of the orthogonal group O(q)(L) 
arries ξ1 to ξ2. Hen
e O(q)a
ts transitively on the points of H .Sin
e n ≥ 3, the quadri
 hypersurfa
e H is 
onne
ted. Therefore,the spe
ial orthogonal group SO(q), whi
h is the 
onne
ted 
omponentof O(q), also a
ts transitively on the points of H . By Remark 4.1, thegroup SO(q) is rational. Sin
e SO(q) a
ts transitively on the points of
H , Theorem 3.7 implies that H(F ) is non-empty provided that ea
h
H(Fξ) is. That is, if ea
h qFξ

is isotropi
 then so is q. �We note that in the above proof, the transitivity of SO(q) on thepoints of H 
an also be proven by applying Remark 3.9. Namely,
SO(q) is 
onne
ted and redu
tive, and the proje
tive variety H is ho-mogeneous for that group over F̄ (i.e., SO(q)(F̄ ) a
ts transitively on
H(F̄ )). So Remark 3.9 implies that SO(q) a
ts transitively on thepoints of H .The above result 
an be regarded as a Hasse-Minkowski theorem forquadrati
 forms over the fun
tion �eld of a 
urve de�ned over a 
om-plete dis
retely valued �eld. As a 
onsequen
e, we obtain the following:Corollary 4.3In the 
ontext of Notation 3.5, suppose q is a regular quadrati
 formover F . Then iW (q) ∈ {min(iW (qFξ

)),min(iW (qFξ
)) − 1}, where the



22 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENminimum is taken over all ξ ∈ P ∪ U. Moreover the se
ond 
ase 
ano

ur only if all qFξ
are hyperboli
.Proof. We pro
eed by indu
tion. If the dimension of q is one, then qand qFξ


annot 
ontain a hyperboli
 plane, and so the Witt indi
es areall 0. If the dimension of q is two, and if any qFξ
is anisotropi
, then sois q; thus iW (q) = 0 = min(iW (qFξ

)). The remaining two-dimensional
ase is when all qFξ
are hyperboli
, in whi
h 
ase min(iW (qFξ

)) = 1 and
iW (q) is equal to 1 or 0 depending on whether or not q is hyperboli
.For the indu
tive step, 
onsider a form q of dimension n ≥ 3 andassume that the assertion holds for forms of dimension n − 2. Wemay suppose that min(iW (qFξ

)) is nonzero (otherwise there is nothingto show). In parti
ular, ea
h qFξ
is isotropi
. Then by Theorem 4.2,

q is isotropi
. By Witt de
omposition, this implies that q ≃ h ⊥ q′for some q′ and a hyperboli
 plane h. Hen
e iW (q′) = iW (q) − 1 and
dim(q′) = n − 2. Moreover qFξ

≃ hFξ
⊥ q′Fξ

for all ξ. Thus qFξis hyperboli
 if and only if q′Fξ
is, and iW (q′Fξ

) = iW (qFξ
) − 1. The
on
lusion of the 
orollary thus holds for q′ and hen
e for q. �We thank J.-L. Colliot-Thélène for bringing to our attention thefollowing example, whi
h shows that Theorem 4.2 does not in generalhold in dimension two, and that the se
ond 
ase of Corollary 4.3 
ano

ur for forms that are hyperboli
 over the �elds Fξ.Example 4.4Let T be a 
omplete dis
rete valuation ring with uniformizer t, fra
tion�eld K, and residue �eld k of 
hara
teristi
 unequal to 2. Consider the�eld F = K(x)[y]/(y2−x(x−1)(1−xt)), whi
h is a degree two extensionof the fun
tion �eld K(x) of P1

T . The normalization X̂ of P1
T in F isa normal proje
tive T -
urve that is equipped with a degree two �nitemorphism f : X̂ → P1

T . The 
losed �ber X of X̂ is a rational k-
urvewith a single node P , whi
h is the unique point lying over the point atin�nity on P1
k; and the 
omplement U of P in X is the inverse image ofthe a�ne k-line. The general �ber of X̂ is an ellipti
 
urve over K; thisis a Tate 
urve in the 
ase that K is a p-adi
 �eld. With a = x(x− 1),let X̂ ′ → X̂ be the unrami�ed degree two 
over with fun
tion �eld

F ′ := F [
√
a], and let q be the quadrati
 form 〈a,−1〉 over F . Then qis anisotropi
 over F be
ause a is not a square in F . But X̂ ′ → X̂ issplit over P and U and hen
e over the spe
tra of R̂P and R̂U . Hen
ethe two-dimensional form q be
omes isotropi
 (and thus hyperboli
)over FP and over FU . This shows that Theorem 4.2 does not alwayshold for forms of dimension two. Moreover, the Witt indi
es iW (qP )



APPLICATIONS OF PATCHING 23and iW (qU) are equal to one, whereas that of the anisotropi
 form q isequal to zero. Thus iW (q) 
an equal min(iW (qFξ
)) − 1 in the lo
allyhyperboli
 
ase of Corollary 4.3.Next, we 
onsider a variant on Hensel's Lemma.Lemma 4.5Let R be a ring and I an ideal su
h that R is I-adi
ally 
omplete. Let

X be an a�ne R-s
heme with stru
ture morphism φ : X → SpecR.Let n ≥ 0. If sn : SpecR/In → X ×R (R/In) is a se
tion of φn :=
φ×R (R/In) and its image lies in the smooth lo
us of φ, then sn maybe extended to a se
tion of φ.Proof. Write X = SpecS for some R-algebra S, with stru
ture map
i : R → S. Let X ′ ⊆ X be the smooth lo
us of X over R, andlet φ′ be the restri
tion of φ to X ′. Sin
e X ′ is smooth over R, it isformally smooth over R (see [Gro67℄, De�nition 17.3.1). That is, forany m ≥ 1, any se
tion sm : SpecR/Im → X ′ ×R (R/Im) of φ′

m :=
φ′ ×R (R/Im) lifts to a se
tion sm+1 : SpecR/Im+1 → X ′ ×R (R/Im+1)of φ′

m+1 := φ ×R (R/Im+1) (see [Gro67℄, De�nition 17.1.1). Hen
e byindu
tion, there is a 
ompatible system of se
tions sm : SpecR/Im →
X ′ ×R (R/Im) ⊆ X ×R (R/Im) of the maps φm, for m ≥ n, with ea
h
sm in parti
ular lifting sn. Here the morphism sm : SpecR/Im →
X ×R (R/Im) 
orresponds to a retra
t πm : S/ImS → R/Im of themod Im-redu
tion im : R/Im → S/ImS of i (i.e., πm ◦ im is the identityon R/Im). Writing pm : S → S/ImS for the redu
tion modulo ImS,we obtain a 
ompatible system of maps πm ◦ pm : S → R/Im, whi
h inturn de�nes a map π : S → R given by their inverse limit (using that
R is I-adi
ally 
omplete). The map π is then a retra
t of i and thus
orresponds to a se
tion of φ that extends sn. �In fa
t, the above lemma holds even without the assumption that
X is a�ne over SpecR, by using Corollaire 5.1.8 and Théorème 5.4.1of [Gro61℄ in pla
e of the inverse system argument at the end of theabove proof. By 
iting the above lemma in that more general form, one
ould use the proje
tive hypersurfa
e H of Theorem 4.2 rather than theasso
iated a�ne quadri
 Q in the proof of Proposition 4.8 below, andone would not need to 
hoose an a�ne open subset in the proof ofProposition 5.2. The proof above, however, is more elementary.In the 
ontext of Notation 3.5, assume that the residue �eld k of
T has 
hara
teristi
 unequal to 2. In parti
ular, F does not have
hara
teristi
 2. As a 
onsequen
e, any quadrati
 form q over F maybe diagonalized.



24 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENDe�nition 4.6If q = 〈a1, . . . , an〉 is a regular diagonal quadrati
 form over a �eld Fas above, its singular divisor on X̂ is the sum of those prime divisorson X̂ at whi
h the divisor of some ai (viewed as a rational fun
tion on
X̂) has odd multipli
ity.Observe in the above de�nition that a 
hange of variables x′i = cixiwith ci ∈ F× does not a�e
t the singular divisor, sin
e ea
h ai is thenmultiplied by a square. In parti
ular, in the 
ontext of Notation 3.5,for every ξ ∈ U ∪ P, there is su
h a 
hange of variables taking q toanother diagonal form q′ = 〈a′1, . . . , a′n〉 with ea
h a′i ∈ R̂ξ ∩F . Here q′is isometri
 to the form q, and has the same singular divisor.We re
all the following standard result:Lemma 4.7Let S be a two-dimensional ex
ellent normal s
heme. Then there is abirational morphism π : S ′ → S su
h that S ′ is regular. Moreover if Dis a divisor on S then we may 
hoose π : S ′ → S su
h that the supportof π−1(D) has only normal 
rossings.Proof. The �rst part of the assertion is resolution of singularities forsurfa
es; see [Abh69℄ or [Lip75℄. If π : S ′ → S is as in the �rst part,then by [Lip75℄, page 193, there is a birational morphism S ′′ → S ′ ofregular surfa
es for whi
h the inverse image of D′ = π−1(D) is a normal
rossing divisor on S ′′. �Re
all from De�nition 1.1 that the u-invariant of a �eld is the maxi-mal dimension of anisotropi
 quadrati
 forms over the �eld. Below weuse Notation 3.3.Proposition 4.8Let X̂ be a regular proje
tive T -
urve with fun
tion �eld F and 
losed�ber X. Let q be a regular diagonal quadrati
 form over F .(a) Let X0 be an irredu
ible 
omponent of X, with fun
tion �eld

κ(X0). If dim q > 2u(κ(X0)) then qFU
is isotropi
 for someZariski dense a�ne open subset U ⊂ X0.(b) Let P be a 
losed point of X with residue �eld κ(P ), and assumethat there are c 
omponents of the singular divisor of q that passthrough P . If dim q > 2cu(κ(P )) then qFP
is isotropi
.Proof. Write q = 〈a1, . . . , ad〉 with ai ∈ F . After a multipli
ative
hange of variables, we may assume that ea
h ai lies in R̂U or R̂Prespe
tively.
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e X̂ is regular, the maximal ideal of the lo
al ring at thegeneri
 point η of X0 (whi
h is a 
odimension one point of X̂) is prin-
ipal. So there is a Zariski a�ne open neighborhood SpecR ⊂ X̂ of
η whose 
losed �ber U is an a�ne open subset of X0 along whi
h Xis regular, and su
h that the de�ning ideal of U in SpecR is prin
ipal,say with generator t0 ∈ R ⊂ F . Thus t ∈ t0R.Consider the prin
ipal divisor (a1 · · ·ad) on X̂. Ea
h of its 
ompo-nents other than X0 (whi
h may or may not be a 
omponent of thisdivisor) meets U at only �nitely many points. After shrinking U bydeleting those points, we may assume that the restri
tion of this divi-sor to Spec R̂U is either trivial or is supported along the 
losed �ber.Thus q is isometri
 to a diagonal form over R̂U ∩ F whose entries areea
h either units in R̂U or the produ
t of t0 and a unit (sin
e evenpowers of t0 may be fa
tored out). Therefore, over R̂U ∩ F , the form
q is isometri
 to q′ ⊥ t0q

′′, where q′, q′′ are diagonal forms all of whoseentries are units in R̂U . It su�
es to show (possibly after shrinking Uagain) that either q′ or q′′ is isotropi
 over FU , sin
e then q′ ⊥ t0q
′′ andhen
e q would be as well.Sin
e dim q = dim q′ + dim q′′, the assumption on dim q implies thateither q′ or q′′ has dimension e greater than u(κ(X0)). Let Q ⊂ Ae

bRUbe the a�ne quadri
 
one de�ned by that subform and let Q′ ⊂ Qbe the 
omplement of the origin. (Thus Q is the a�ne 
one over theproje
tive quadri
 de�ned by that subform.) Sin
e e > u(κ(X0)), itfollows that Q′(κ(X0)) 6= ∅. Therefore there is a rational se
tion ofthe a�ne morphism Q → SpecRU over U whose image lies on (the
losed �ber of) Q′. This rational se
tion is de�ned as a morphism on adense open subset of U . Repla
ing U by that subset, we may assumethat this rational map is a se
tion U → Q′ ⊂ Q of Q → Spec R̂Uover U . Now Q′ is the smooth lo
us of Q over R̂U , sin
e the residue
hara
teristi
 of T is not 2, and sin
e the quadrati
 form is diagonalwith unit 
oe�
ients. So by Lemma 4.5, the se
tion over U lifts to ase
tion Spec R̂U → Q. This yields an FU -point of Q that is not theorigin (sin
e its restri
tion to U is not). Hen
e either q′ or q′′ is isotropi
over FU , as desired.(b) Sin
e R̂P is regular and lo
al, it is a unique fa
torization domain([Eis95℄, Theorem 19.19). So the 
omponents Dj of the singular divisor
D that pass through P are the lo
i of irredu
ible elements rj ∈ R̂P ,
1 ≤ j ≤ c. After res
aling the variables we obtain an isometri
 form
q′ = 〈a′1, . . . , a′d〉 with the same singular divisor as q, su
h that ea
h
a′i is of the form ui

∏
r

nij

j ∈ R̂P ∩ F for some units ui ∈ R̂×
P , where
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h nij = 0 or 1. For ea
h c-tuple λ = (λ1, . . . , λc) ∈ {0, 1}c, let
S(λ) = {i |ni,j = λj for j = 1, . . . , c} and de�ne qλ = ⊥

i∈S(λ)
ui. Let qλbe the redu
tion of qλ modulo the maximal ideal of R̂P .Sin
e dim q > 2cu(κ(P )), at least one of the 2c forms qλ over κ(P )has dimension e greater than u(κ(P )). Hen
e Q′(κ(X0)) 6= ∅, where

Q′ is the 
omplement of the origin in the a�ne 
one Q ⊂ Ae
bRP

de�nedby the form qλ. Sin
e Q′ is the smooth lo
us of Q over R̂P , Lemma 4.5lifts the κ(X0)-point of Q′ to a se
tion Spec R̂P → Q. This yields an
FP -point ofQ that is not the origin, thereby showing that qλ is isotropi
over FP . Thus so is (

∏
r

λj

j )qλ. Sin
e (
∏
r

λj

j )qλ is a subform of q′, thisimplies that q′ is isotropi
 as well. Hen
e so is the isometri
 form q. �Lemma 4.9Let T be a dis
rete valuation ring with fra
tion �eld K and residue�eld k of 
hara
teristi
 unequal to 2. Then u(K) ≥ 2u(k) and us(K) ≥
2us(k).Proof. Let t be a uniformizer of T , and hen
e of its 
ompletion T̂ . Let
q be an anisotropi
 form over k and let n be its dimension. Sin
e the
hara
teristi
 of k is not 2, we may assume that q is diagonal. Let q̃be a diagonal lift of q to T . By [Lam05℄, VI.1.9(2), q′ = q̃ ⊥ tq̃ isanisotropi
 over K̂, the fra
tion �eld of T̂ . Hen
e q′ is also anisotropi
over K. This shows that if u(k) ≥ n then u(K) ≥ 2n; and that provesthe �rst assertion.For the se
ond assertion, let n = us(k) ∈ 1

2
Z. By de�nition of us,there is either an anisotropi
 quadrati
 form q of dimension n ∈ Zover a �nite extension E of k, or an anisotropi
 quadrati
 form q ofdimension 2n ∈ Z over a �nitely generated �eld extension E of k oftrans
enden
e degree one. After repla
ing q by an isometri
 form, wemay assume in either situation that q is diagonal. We 
onsider theabove two 
ases in turn.In the former 
ase, u(E) = n. Observe that there is a �nite extension

L of K whose residue �eld is E. (Namely, we indu
tively redu
e tothe 
ase that E = k[a] for some a ∈ E, say with moni
 minimalpolynomial f(y) ∈ k[y]; and then take L = K[ã], where ã is a root ofsome moni
 lift of f(y) to T [y].) By the �rst assertion of the lemma,
u(L) ≥ 2u(E) = 2n. But us(K) ≥ u(L). So us(K) ≥ 2n = 2us(k).In the latter 
ase, u(E) = 2n. Let {x} be a trans
enden
e basisfor E over k. We may assume that E = k(x)[a] for some a ∈ E, saywith moni
 minimal polynomial f ∈ k[x, y] over k(x). Take a moni




APPLICATIONS OF PATCHING 27lift f̃ ∈ T [x, y] of f and let F be the fra
tion �eld of T [x, ã], where
ã is a root of f̃ . This is a �eld of trans
enden
e degree one over K.Taking the normalization of T [x] in F , we obtain a normal T -
urve X̃whose 
losed �ber X is irredu
ible and has fun
tion �eld E. Let ξ bethe generi
 point of X, and let R be the lo
al ring of X̃ at ξ. Thus
R is a dis
rete valuation ring with fra
tion �eld F and residue �eld
E. By the �rst assertion of the lemma, u(F ) ≥ 2u(E) = 4n; and so
us(K) ≥ 2n = 2us(k). �We now prove our main result about quadrati
 forms, in terms ofthe strong u-invariant (see De�nition 1.2).Theorem 4.10Let T be a 
omplete dis
rete valuation ring having fra
tion �eld K andresidue �eld k, with char k 6= 2. Then us(K) = 2us(k).Proof. By the se
ond part of Lemma 4.9, us(K) ≥ 2us(k). It remains toshow that us(K) ≤ 2us(k). Write n = us(k), so every �nite extensionof k has u-invariant at most n. By Springer's theorem on nondyadi

omplete dis
rete valuation �elds (see [Lam05℄, VI.1.10 and XI.6.2(7)),every �nite extension of K has u-invariant at most 2n. To prove thedesired inequality, we must therefore show that every �nitely generated�eld extension of trans
enden
e degree one over K has u-invariant atmost 4n. Let F be su
h a �eld extension, and let q be a quadrati
 formover F of dimension > 4n. We wish to show that q is isotropi
.We may assume that q is regular, sin
e otherwise it is triviallyisotropi
. The 
hara
teristi
 of F is not 2, by the same property for k;so there is a diagonal form over F that is isometri
 to q, and we mayrepla
e q by that form. Let X̂1 be a normal proje
tive model for F over
T , and let D1 be the singular divisor of q on X̂1 (see De�nition 4.6).By Lemma 4.7, there is a regular proje
tive T -
urve X̂ with fun
tion�eld F , and a birational morphism π : X̂ → X̂1, su
h that π−1(D1) hasonly normal 
rossings. The singular divisor D of q on X̂ is 
ontainedin π−1(D1), and so it also has only normal 
rossings.For ea
h irredu
ible 
omponent X0 of the 
losed �ber X of X̂,the fun
tion �eld κ(X0) has trans
enden
e degree one over k; and so
u(κ(X0)) ≤ 2us(k) = 2n by the de�nition of us. Hen
e for ea
h su
h
omponent, dim q > 4n ≥ 2u(κ(X0)); and thus by Proposition 4.8(a),we may pi
k a Zariski dense a�ne open subset U0 ⊂ X0 su
h that qFU0is isotropi
. By [HH07℄, Proposition 6.6, there is a �nite morphism
f : X̂ → P1

T su
h that f−1(∞) 
ontains the (�nitely many) points of
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X that do not lie in any of our 
hosen sets U0 (as X0 ranges over the
omponents of X), as well as 
ontaining all the 
losed points at whi
hdistin
t 
omponents of X meet. Under Notation 3.5, and by the 
hoi
eof f , ea
h U ∈ U is 
ontained in one of the above sets U0; hen
e FU
ontains FU0

. Thus qFU
is isotropi
 for ea
h U ∈ U. Meanwhile, sin
ethe singular divisor of q has at most normal 
rossings, the number of
omponents of this divisor that pass through any 
losed point P ∈ Xis at most two. Sin
e u(κ(P )) ≤ us(k) = n for ea
h P , we have that

dim q > 4n ≥ 4u(κ(P )) ≥ 4. So by Proposition 4.8(b), qFP
is isotropi
for ea
h P ∈ P. Therefore by Theorem 4.2, q is indeed isotropi
. �The above result generalizes from the 
omplete 
ase to the henselian
ase. First we prove a lemma that relies on the Artin ApproximationTheorem ([Art69℄, Theorem 1.10).Lemma 4.11Let T be an ex
ellent henselian dis
rete valuation ring, and let K̂ bethe 
ompletion of its fra
tion �eld K. Let E be a �nitely generated�eld extension of K having trans
enden
e degree at most one, andlet X be a proje
tive E-variety. Suppose that X(Ê) 6= ∅ for every�nitely generated �eld extension Ê of K̂ that 
ontains E and satis�es

tr. deg. bK Ê = tr. deg.K E. Then X(E) 6= ∅.Proof. Let t be a uniformizer of T . By hypothesis, X is a 
losedsubset of some Pn
E de�ned by homogeneous polynomials f1, . . . , fm ∈

E[z0, . . . , zn].First 
onsider the 
ase that E is �nite over K. After multiplyingthe polynomials fi by some power of t, we may assume that ea
h filies in S[z0, . . . , zn], where S is the integral 
losure of T in E (thisbeing the valuation ring of E). Extend the valuation on K to E. Thenthe 
ompletion Ê of E is �nite over K̂ (and is the 
ompositum ofits sub�elds K̂ and E); so by assumption, X has an Ê-point. Aftermultiplying a 
hoi
e of 
oordinates of the point by some power of t,we may assume that ea
h 
oordinate āi lies in the valuation ring Ŝ of
Ê (where Ŝ is also the integral 
losure of T̂ in Ê). Thus we have asolution (ā0, . . . , ān) ∈ Ŝn+1 of the polynomial equations f1 = · · · =
fm = 0, with not all āi equal to 0. So for some e > 0 and some
i0, the element āi0 ∈ Ŝ is not 
ongruent to zero modulo teŜ. By theArtin Approximation Theorem ([Art69℄, Theorem 1.10), there exists asolution (a0, . . . , an) ∈ Sn+1 to the system f1 = · · · = fm = 0 su
h that
ai ≡ āi modulo teŜ. In parti
ular, ai0 6= 0. Hen
e (a0, . . . , an) de�nesan S-point of X, and X(E) 6= ∅.
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onsider the 
ase that E has trans
enden
e degree oneover K. Thus E = K(x)[y1, . . . , yr]/(g1, . . . , gs), a �nite extension of
K(x), for some polynomials gi ∈ T [x, y] de�ning a prime ideal I ⊂
T [x, y] that does not extend to the unit ideal in K(x)[y]. (Here forshort we write y for y1, . . . , yr. Below we also write g for g1, . . . , gs.)Sin
e K̂(x)[y] is faithfully �at over K(x)[y], the extension Î of I to
T̂ [x, y] does not indu
e the unit ideal in K̂(x)[y]. In parti
ular, Î is aproper ideal in T̂ [x, y].We 
laim that Î is a prime ideal in T̂ [x, y]. For if it were not, thenthere would exist c, d ∈ T̂ [x, y] r Î for whi
h cd ∈ Î; i.e., cd =

∑
eigifor some ei ∈ T̂ [x, y]. But then [Art69℄, Theorem 1.10, applied to the
oe�
ients of the elements c, d, ei, would produ
e a 
ontradi
tion to Ibeing prime, whi
h proves the 
laim.Sin
e Î = (g) is prime in T̂ [x, y], the ring Ê := K̂(x)[y]/(g) = E⊗KK̂is a domain. But Ê is �nite over the �eld K̂(x), sin
e E is �nite over

K(x); hen
e Ê is a �eld, and is the 
ompositum of its sub�elds E and
K̂. Sin
e Ê has trans
enden
e degree one over K̂, by the hypothesisthere is an Ê-point of X; i.e. a solution (ā0, . . . , ān) ∈ Ên+1 to thesystem f1 = · · · = fm = 0, with some āi0 6= 0. Lifting ea
h āi to anelement of K̂(x)[y] and then multiplying by a non-zero element of T̂ [x],we obtain elements âi ∈ T̂ [x, y] for i = 0, . . . , n, and elements bjh ∈
T̂ [x, y] for j = 1, . . . , m and h = 1, . . . , s, su
h that fj(â0, . . . , ân) =∑

h bjhgh ∈ T̂ [x, y] for all j. Moreover âi0 6∈ Î ⊂ T̂ [x, y], and hen
efor some e > 0 its image in (T̂ /teT̂ )[x, y] does not lie in the redu
tionof Î. Applying [Art69℄, Theorem 1.10, to the 
oe�
ients of x and
y in âi, bjh, there exist a′i, b′jh ∈ T [x, y] that are 
ongruent to âi, bjhmodulo te, su
h that fj(a

′
0, . . . , a

′
n) =

∑
h b

′
jhgh ∈ T [x, y] for all j. Theredu
tions of a′0, . . . , a′n modulo I then yield a solution (a0, . . . , an) ∈

(T [x, y]/I)n+1 ⊂ En+1 to the system f1 = · · · = fm = 0, with ai0 6= 0.This solution then de�nes an E-point of X. �Corollary 4.12Let T be an ex
ellent henselian dis
rete valuation ring with fra
tion�eld K and with residue �eld k of 
hara
teristi
 unequal to 2. Then
us(K) = 2us(k).Proof. Let K̂ be the 
ompletion of K; this is a 
omplete dis
retely val-ued �eld with residue �eld k. Thus us(K̂) = 2us(k) by Theorem 4.10.Also, us(K) ≥ 2us(k) by the se
ond part of Lemma 4.9. Thus to provethe result it su�
es to show that us(K) ≤ 2us(k).



30 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENSo let E be a �nitely generated �eld extension of K having trans
en-den
e degree ℓ ≤ 1, and let q be a quadrati
 form over E of dimension
n > 21+ℓus(k). We wish to show that q is isotropi
 over E. Let H bethe hypersurfa
e in Pn−1

E de�ned by q (as in the proof of Theorem 4.2).Now us(K̂) = 2us(k), and so n > 2ℓus(K̂). Hen
e over every �nitelygenerated �eld extension of K̂ having trans
enden
e degree ℓ, overwhi
h q is de�ned (e.g. 
ontaining E), the form q is isotropi
. Equiva-lently, H has a rational point over ea
h su
h �eld. So by Lemma 4.11,
H has a rational point over E; i.e. q is isotropi
 over E. �Re
all that k is a Cd-�eld if for all m ≥ 1 and n > md, everyhomogeneous form of degree m in n variables over k has a non-trivialsolution in k. In parti
ular, a Cd-�eld k satis�es u(k) ≤ 2d (by taking
m = 2). Moreover, every �nite extension of k is also a Cd-�eld, andevery one-variable fun
tion �eld over k is a Cd+1-�eld ([Ser73℄, II.4.5).Hen
e us(k) ≤ 2d for a Cd-�eld k.Re
all also that a �eld K is 
alled an m-lo
al �eld with residue �eld
k if there is a sequen
e of �elds k0, . . . , km with k0 = k and km = K,and su
h that ki is the fra
tion �eld of an ex
ellent henselian dis
retevaluation ring with residue �eld ki−1 for i = 1, . . . , m. For K and k asabove, it follows by indu
tion that a �nite extension of K is an m-lo
al�eld whose residue �eld is a �nite extension of k. Also note that if
char(k) 6= 2, us(K) = 2mus(k) by Theorem 4.12 and indu
tion; andso u(F ) ≤ 2m+1us(k) for any one-variable fun
tion �eld F over K, byde�nition of us.Corollary 4.13Suppose that K is an m-lo
al �eld whose residue �eld k is a Cd-�eld of
hara
teristi
 unequal to 2, and let F be a fun
tion �eld over K in onevariable.(a) Then us(K) ≤ 2d+m and hen
e u(F ) ≤ 2d+m+1.(b) If u(k) = 2d then u(K) = 2d+m. Moreover if some normal K-
urve with fun
tion �eld F has a K-point, then u(F ) = 2d+m+1.(
) If u(k′) = 2d for every �nite extension k′/k, then u(F ) =

2d+m+1.Proof. (a) By the dis
ussion pre
eding this result, us(K) = 2mus(k)and u(F ) ≤ 2m+1us(k). But us(k) ≤ 2d sin
e k is a Cd-�eld. So the
on
lusion follows.(b) Sin
e k is a Cd-�eld with u(k) = 2d, we have that u(k) ≤ us(k) ≤
2d and so in fa
t all three quantities are equal. Applying Lemma 4.9 andindu
tion yields that u(K) ≥ 2mu(k) = 2d+m. But u(K) ≤ us(K) ≤
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2d+m by (a). So all these quantities are equal too, proving the �rstassertion.Now let X be a normal K-
urve with fun
tion �eld F and let ξ be a
K-point on X. The lo
al ring at ξ has fra
tion �eld F and residue �eld
K. So Lemma 4.9 implies that u(F ) ≥ 2u(K) = 2d+m+1. The reverseinequality follows from part (a).(
) The inequality u(F ) ≤ 2d+m+1 is given in part (a). To show thereverse inequality, 
hoose a normal (or equivalently, regular) K-
urve
X having fun
tion �eld F , and 
hoose a 
losed point ξ on X. Let R bethe lo
al ring of X at ξ, with residue �eld κ(ξ). Then the fra
tion �eldof R is F , and κ(ξ) is a �nite extension of K. Hen
e κ(ξ) is an m-lo
al�eld whose residue �eld k′ is a �nite extension of k. By hypothesis,
u(k′) = 2d; and k′ is a Cd-�eld sin
e k is. So applying part (b) to k′and κ(ξ), we �nd that u(κ(ξ)) = 2d+m. Lemma 4.9 now implies that
u(F ) ≥ 2d+m+1. �For example, if k is a �eld of trans
enden
e degree d over an alge-brai
ally 
losed �eld of 
hara
teristi
 unequal to 2, then k is a Cd-�eld(theorem of Tsen-Lang, see [Ser73℄, II.4.5(b)). So u(F ) ≤ 2d+m+1 forany one-variable fun
tion �eld F over an m-lo
al �eld with residue�eld k, by Corollary 4.13(a). This was known in the spe
ial 
ase that
F is a one-variable fun
tion �eld over k((t)). Namely, in that situation,
k((t)) is a Cd+1-�eld by Theorem 2 of [Gre66℄; so F is a Cd+2-�eld bythe theorem of Tsen-Lang 
ited above and hen
e u(F ) ≤ 2d+2.As a spe
ial 
ase of Corollary 4.13(b), the u-invariant of K(x) equals
2d+m+1 if K is an m-lo
al �eld whose residue �eld is Cd, has u-invariant
2d, and does not have 
hara
teristi
 2.Corollary 4.14Let F be a one-variable fun
tion �eld over anm-lo
al �eld whose residue�eld k has 
hara
teristi
 unequal to 2.(a) If k is algebrai
ally 
losed, then u(F ) = 2m+1.(b) If k is a �nite �eld, then u(F ) = 2m+2.Proof. (a) This is a spe
ial 
ase of Corollary 4.13(
), using that analgebrai
ally 
losed �eld k is C0, satis�es u(k) = 1, and has no non-trivial �nite extensions.(b) A �nite �eld k is C1 (by [Ser73℄, II.3.3(a)), and so u(k) ≤ 2 by the
omment before Corollary 4.13. But u(k) 6= 1 sin
e the form x2 − cy2is anisotropi
 for any non-square c ∈ k (using char k 6= 2). Hen
e
u(k) = 2. Sin
e these properties hold for all �nite �elds of 
hara
teristi
not 2, the assertion is again a spe
ial 
ase of Corollary 4.13(
). �



32 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENFrom Corollary 4.14, we immediately obtain the following, whi
h inthe 
ase of Qp was re
ently shown by Parimala and Suresh ([PS07℄,Theorem 4.6):Corollary 4.15Let p be an odd prime, and let K be a �nite extension of Qp or of the�eld of algebrai
 p-adi
 numbers (i.e. the algebrai
 
losure of Q in Qp).If F is a fun
tion �eld in one variable over K, then u(F ) = 8.Proof. This is the 
ase of Corollary 4.14(b) with k a �nite �eld and
m = 1, taking the 1-lo
al �eld to be a p-adi
 �eld. �Note that the above 
orollary shows that u(F ) ≤ 8 even if K is nota �nite extension but merely algebrai
.As another example of Corollary 4.14(b), let K = Qp((t)) with podd, and let F be a one-variable fun
tion �eld over K. Then K is
2-lo
al with �nite residue �eld, and so u(F ) = 16.We 
on
lude this se
tion by proving an analog of Theorem 4.10 forfun
tion �elds of pat
hes. This is done by means of the followinglemma. We adhere to Notation 3.3.Lemma 4.16Let X̂ be a smooth 
onne
ted proje
tive 
urve over a 
omplete dis
retevaluation ring T and let F be its fun
tion �eld. Let n ≥ 0 and assumethat the residue 
hara
teristi
 of T does not divide n. Let U be a subsetof the 
losed �ber X and let P be a 
losed point of X̂. If a ∈ F×

U (resp.
a ∈ F×

P ) then there exists an a′ ∈ F and a unit u ∈ F×
U (resp. u ∈ F×

P )su
h that a = a′un.Proof. First 
onsider the 
ase that a ∈ F×
U . Sin
e FU is the fra
tion�eld of R̂U , we may write a = a1/a2 where a1, a2 ∈ R̂U and ai 6= 0. Bythe Weierstrass Preparation Theorem for R̂U given in [HH07℄, Propo-sition 4.7, the nonzero element ai ∈ R̂U may be written as a produ
t

ai = bici with bi ∈ F× and ci ∈ R̂×
U for i = 1, 2. Let t be a uniformizerof T . Then the redu
tion of ci modulo t is an element c̄i ∈ R̂U/tR̂U ,the ring of rational fun
tions on X that are regular at the points of

U . But this ring is also RU/tRU . So we may lift c̄i to an element
c′i ∈ RU ⊂ F . Here ci/c′i ∈ R̂×

U , and in fa
t ci/c′i ≡ 1 mod tR̂U . Nowthe residue 
hara
teristi
 of T does not divide n, and 1 is an n-th rootof ci/c′i modulo t. Hen
e ci/c′i has a (non-zero) n-th root c′′i ∈ R̂U byHensel's Lemma. Thus u := c′′1/c
′′
2 lies in F×

U , and a′ := b1c
′
1/b2c

′
2 lies
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e ai = bic
′
i(c

′′
i )

n, we have a = a1/a2 = a′un. This proves theresult in this 
ase.Next 
onsider the 
ase that a ∈ F×
P . Taking U = {P} in the previous
ase, we are redu
ed to showing that every element a ∈ F×

P is of theform a = a′un where a′ ∈ F×
{P} and u ∈ F×

P (be
ause F{P} ⊂ FP ).By the lo
al Weierstrass Preparation Theorem for R̂P given in [HH07℄,Proposition 5.6, we may write ai = bici for some bi ∈ F×
{P} and ci ∈

R̂×
P . (As noted in the proof of Theorem 3.4(3), our rings R̂{P} and

R̂P 
orrespond to R̂ and R̂1 in [HH07℄, Se
tion 5.) Let m be themaximal ideal of R̂{P} and let m
′ be the maximal ideal of R̂P . So

m
′ = mR̂P . Let c̄i ∈ R̂×

P /m
′ be the redu
tion of ci modulo m

′. Thein
lusion R̂{P} →֒ R̂P indu
es an isomorphism on the residue �elds
R̂{P}/mR̂{P} → R̂P/m

′R̂P ; so we 
an regard c̄i ∈ R̂{P}/mR̂{P}, and we
an lift it to an element c′i ∈ R̂{P} ⊂ F{P}. Here c′i 6= 0 sin
e c̄i 6= 0(be
ause ci ∈ R̂×
P ). So ci/c′i ∈ R̂×

P is 
ongruent to 1 modulo tR̂P , andso by Hensel's Lemma is an n-th power of some non-zero c′′i ∈ R̂P .Taking a′ = b1c
′
1/b2c

′
2 ∈ F×

{P} and u := c′′1/c
′′
2 ∈ R̂P ⊂ FP with u 6= 0then yields the desired identity a = a′un. �As a 
onsequen
e of this lemma and Theorem 4.10, we obtain:Corollary 4.17Let T be a 
omplete dis
rete valuation ring with uniformizer t, whoseresidue �eld k is not of 
hara
teristi
 2. Let X̂ be a smooth proje
tive

T -
urve with 
losed �ber X, and let ξ be a proper subset of X (resp.a 
losed point of X). Then 4u(κ(Q)) ≤ u(Fξ) ≤ 4us(k) for any 
losedpoint Q ∈ X (resp. for Q = ξ).Proof. Let K be the fra
tion �eld of T and let E,F be the fun
tion�elds of X, X̂. Thus F is a one-variable fun
tion �eld over K. Let
k′ = κ(Q), and let I ⊂ R̂ξ be the ideal that de�nes the 
losed �ber Xlo
ally.For the �rst inequality, 
onsider the 
ase when ξ = U ⊂ X. Thelo
al ring A of X at Q is a dis
rete valuation ring having residue �eld
k′ and fra
tion �eld E. Also, the lo
alization of R̂U at the prime ideal Iis a dis
rete valuation ring having residue �eld E and fra
tion �eld FU .Applying Lemma 4.9 to these two rings yields u(FU) ≥ 2u(E) ≥ 4u(k′),as asserted. In the other 
ase, when ξ = P ∈ X (in whi
h 
ase Q = P ),if we repla
e the ring A by its 
ompletion Â, the �eld E by the fra
tion



34 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHEN�eld Ê of Â, and R̂U , FU by R̂P , FP , then Lemma 4.9 similarly yields
u(FP ) ≥ 2u(Ê) ≥ 4u(k′).For the se
ond inequality, let q be a quadrati
 form over Fξ of di-mension n > 4us(k). We wish to show that q is isotropi
. Sin
e the
hara
teristi
 of k and hen
e of Fξ is not 2, the form q is isometri
 to adiagonal form a1x

2
1 + · · ·anx

2
n with ai ∈ Fξ. By Lemma 4.16, ai = a′iu

2
ifor some a′i ∈ F and ui ∈ F×

ξ . So after res
aling xi by a fa
tor of ui,we obtain a form q′ = a′1x
2
1 + · · · + a′nx

2
n that is isometri
 to q, with

a′i ∈ F . The dimension of the F -form q′ is greater than 2us(K), sin
e
us(K) = 2us(k) by Theorem 4.10. Therefore q′ is isotropi
 over F andhen
e over Fξ. Thus so is q. �Corollary 4.18Under the hypotheses of Corollary 4.17, if k is algebrai
ally 
losed (resp.�nite), then u(Fξ) = 4 (resp. 8).Proof. Let k′ = κ(Q). In the algebrai
ally 
losed 
ase the result fol-lows from Corollary 4.17 sin
e k′ = k and u(k) = us(k) = 1. Inthe �nite 
ase, k′ is also �nite, and both k and k′ are C1-�elds with
u-invariant equal to 2 (as noted in the proof of Corollary 4.14(b)).Moreover us(k) = 2 sin
e u(k) ≤ us(k) ≤ 2 for a C1-�eld. So the resultagain follows from Corollary 4.17. �For example, if k is algebrai
ally 
losed (resp. �nite), then the fra
-tion �elds of k[[x, t]] and k[x][[t]] ea
h have u-invariant equal to 4 (resp.
8). This follows by taking X̂ = P1

k[[t]] and taking ξ equal to the a�neline or one point. Similarly, taking X̂ = P1
Zp

with p 6= 2, we obtainthat the fra
tion �eld of Zp[[x]] has u-invariant 8, as does the fra
tion�eld of the p-adi
 
ompletion of Zp[x]. The above 
orollary 
an also beapplied to other smooth proje
tive 
urves; but by restri
ting attentionto the line we may weaken the above hypotheses on k:Corollary 4.19Let T be a 
omplete dis
rete valuation ring with uniformizer t, whoseresidue �eld k has 
hara
teristi
 unequal to 2 and satis�es u(k) = us(k).Then the fra
tion �elds of T [[x]] and of the t-adi
 
ompletion of T [x]have u-invariant equal to 4u(k).Proof. This is immediate from Corollary 4.17, by taking X̂ = P 1
T ; tak-ing U = A1

T and P to be the point x = t = 0 in the respe
tive 
ases;and taking Q to be the rational point x = t = 0 in both 
ases. �
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ular, if k is any �eld with u(k) = us(k), the �eld k((x, t))has u-invariant equal to 4u(k). For example, if k is a Cd-�eld with
u(k) = 2d, then k((x, t)) has u-invariant equal to 2d+2. This is be
ause
2d = u(k) ≤ us(k) ≤ 2d, using that k is Cd. (Here, as above, we assume
char(k) 6= 2.) 5. Central simple algebrasThis se
tion 
ontains our results on 
entral simple algebras. As in theprevious se
tion, we use Theorem 3.7 to redu
e to a lo
al problem. Forbasi
 notions 
on
erning 
entral simple algebras, we refer the readerto [Sal99℄ and [Pie82℄. In parti
ular, we re
all that the index of a
entral simple F -algebra A 
an be 
hara
terized as the degree of aminimal splitting �eld for A, i.e. a �eld extension E/F su
h that Asplits over E in the sense that A⊗F E is a matrix algebra over F .The notion of a 
entral simple algebra over a �eld generalizes to thatof an Azumaya algebra over a 
ommutative ring; see [Sal99℄, Chapter 2,or [Gro68℄, Part I, Se
tion 1. If A is an Azumaya algebra of degree nover a domain R, and 1 ≤ i < n, there is a fun
torially asso
iatedsmooth proje
tive R-s
heme SBi(A), 
alled the i-th generalized Severi-Brauer variety of A (see [VdB88℄, p. 334, and [See99℄, Theorem 3.6;their notation is a bit di�erent). For ea
h R-algebra S, the S-pointsof SBi(A) are in bije
tion with the right ideals of AS := A ⊗R S thatare dire
t summands of the S-module AS having dimension (i.e. S-rank) ni. If R is a �eld F , so that A is a 
entral simple F -algebra,and if E/F is a �eld extension, then SBi(A)(E) 6= ∅ if and only if
ind(AE) divides i ([KMRT98℄, Proposition 1.17). Here AE

∼= Matm(∆)for some E-division algebra ∆ and some m ≥ 1, and the right idealsof E-dimension ni are in natural bije
tion with the subspa
es of ∆m of
∆-dimension i/ ind(AE) ([KMRT98℄, Proposition 1.12, De�nition 1.9).Thus, writingD for the F -division algebra in the 
lass ofA, the F -linearalgebrai
 group GL1(A) = GLm(D) a
ts transitively on the points ofthe F -s
heme SBi(A) (re
all the de�nition given prior to Theorem 3.7).We now pla
e ourselves in the 
ontext of Se
tion 3.Theorem 5.1Under Notation 3.3 and 3.5, let A be a 
entral simple F -algebra. Then
ind(A) = lcmξ∈P∪U ind(AFξ

).Proof. Let n be the degree of A, and let D be the F -division algebrain the 
lass of A. Then GL1(A) = GLm(D) is a Zariski open subsetof An2

F (be
ause multipli
ation in D is given by polynomials over F );so it is a rational 
onne
ted linear algebrai
 group. As noted above,



36 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENif 1 ≤ i < n then GL1(A) a
ts transitively on the points of SBi(A);and if E is a �eld extension of F , then SBi(A)(E) 6= ∅ if and only if
ind(AE) divides i. So Theorem 3.7 implies that ind(A)|i if and onlyif ind(AFξ

)|i for ea
h ξ ∈ P ∪ U. Thus ind(A) = lcmξ∈P∪U ind(AFξ
) as
laimed. �Before proving our results about the period-index problem for 
entralsimple algebras, we re
all the notion of rami�
ation for su
h algebras.Consider an integrally 
losed Noetherian domain R with fra
tion �eld

E, the fun
tion �eld of Y = SpecR. For a 
odimension one irre-du
ible subvariety Z ⊂ Y with fun
tion �eld κ(Z), and an integer nnot divisible by the 
hara
teristi
 of κ(Z), there is a 
anoni
ally de�nedrami�
ation map (or residue map)
ramZ : Br(E)[n] → H1(κ(Z),Z/nZ)on the n-torsion part of the Brauer group (see [COP02℄, �2, or [Sal99℄,pp. 67-68; here we identify Z/nZ with 1

n
Z/Z ⊆ Q/Z). An elementof H1(κ(Z),Z/nZ) determines a 
y
li
 Galois �eld extension L/κ(Z)with a spe
i�ed generator σ of Gal(L/κ(Z)) whose order divides n. Fora given 
lass α ∈ Br(E)[n] there are only �nitely many 
odimensionone subvarieties Z ⊂ Y for whi
h ramZ(α) is nonzero. We 
all theredu
ed 
losed subs
heme supported on the union of these varieties Zthe rami�
ation divisor of α (or of an algebra in its 
lass). By [Sal99℄,Theorem 10.3, and [Gro68℄, Part II, Proposition 2.3, if R is regular ofdimension at most 2 and n is prime to the 
hara
teristi
s of all theresidue �elds κ(Z), then(∗) 0 → Br(R)[n] // Br(E)[n]

⊕Z ramZ
//
⊕

Z H
1(κ(Z),Z/nZ)is an exa
t sequen
e of abelian groups. An n-torsion element of Br(E)is unrami�ed if its rami�
ation divisor is trivial; i.e. if its image under

⊕Z ramZ is zero. By the exa
t sequen
e (∗), this is equivalent to sayingthat this element of Br(E) is indu
ed by an n-torsion element of Br(R).Re
all (from the introdu
tion) that we say that a �eld k is separably
losed away from p if its absolute Galois group is a pro-p group. By[Sha72℄, III.1, Proposition 16, this is equivalent to the 
ondition that
cdq(k) = 0 for all primes q 6= p. By [Ser73℄, II.4.1, Proposition 11,if q 6= char(k) the 
ondition cdq(k) = 0 implies that cdq(K) = d forany fun
tion �eld K of trans
enden
e degree d over k. This in turnimplies that there is no non-trivial prime-to-char(k) torsion in Br(K),for any �nitely generated �eld K over k of trans
enden
e degree ≤ 1,by applying [Ser73℄, II.2.3, Proposition 4, to su
h a �eld K, and usingthat Br(K) = H2(K,Gm). Re
all also that the Brauer dimension of k



APPLICATIONS OF PATCHING 37(resp. away from p) is de�ned to be 0 if k is separably 
losed (away from
p), and that otherwise it is the smallest positive integer d su
h that forevery �nitely generated �eld extension E/k of trans
enden
e degree
ℓ ≤ 1, and every 
entral simple E-algebra A (resp. with p 6 | per(A)), wehave ind(A)| per(A)d+ℓ−1.Proposition 5.2Let T be a 
omplete dis
rete valuation ring with residue �eld k, let X̂be a regular proje
tive T -
urve with fun
tion �eld F and let X be its
losed �ber. Let A be a 
entral simple F -algebra whose period n is notdivisible by char(k). Let d ≥ 0. Suppose that k has Brauer dimension atmost d away from char(k). Under Notation 3.3 we have the following:(a) Let X0 be an irredu
ible 
omponent of X. Then ind(AFU

) di-vides nd+1 for some Zariski dense a�ne open subset U ⊂ X0.(b) Let P be a 
losed point of X, and assume that the rami�
ationdivisor of A has at most a normal 
rossing singularity at P .If the period q of AFP
is a prime number unequal to char(k),and FP 
ontains a primitive q-th root of unity, then ind(AFP

)divides qd+1.Proof. (a) As in the proof of Proposition 4.8(a), there is an a�ne Zariskiopen neighborhood SpecR ⊂ X̂ of the generi
 point ofX0 whose 
losed�ber U is an a�ne open subset ofX0 along whi
hX is regular, and su
hthat the de�ning ideal of U in SpecR is prin
ipal, say with generator
t0 ∈ R ⊂ F . Let D be the rami�
ation divisor of A in X̂. After shrink-ing U , we may assume that the rami�
ation divisor of A on Spec R̂Uis either trivial or is the divisor of t0 and that ramU([A]) 
orrespondsto an étale 
y
li
 Galois 
over U ′ → U with Galois generator σ. By[Gro71℄, I, Corollaire 8.4, we may lift U ′ → U to obtain an étale Galois
over Û ′ → Spec(R̂U ), whi
h ne
essarily has the same (
y
li
) Galoisgroup. Let L̂/FU be the 
orresponding 
y
li
 �eld extension and σ̂ thelift of σ to L̂. Let B be the 
y
li
 FU -algebra (L̂, σ̂, t0), of degree divid-ing n (see, for example, [Sal99℄, p.7). Thus B is unrami�ed away from
t0 on R̂U ; and it follows from [Sal99℄, Lemma 10.2, that the 
y
li
 
overof U and Galois generator that are asso
iated to B agree with thoseasso
iated to A (i.e. U ′ and σ). Let C = AFU

⊗FU
Bop, where Bop isthe opposite algebra. Noti
e that the period of C divides n sin
e thoseof AFU

and Bop do. Sin
e [Bop] = −[B] and the rami�
ation map is agroup homomorphism, the 
entral simple algebra C is unrami�ed over
R̂U .
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)|nd for some dense open subset V ⊆ U . Sin
e

AFV
is Brauer equivalent to (C⊗FU

B)FV
, and sin
e ind(B)| deg(B)|n, itwould then follow that ind(AFV

)| ind(CFV
) ind(B)|nd+1. So to 
ompletethe proof of (a) it su�
es to show that ind(CFV

)|nd for some V .Sin
e the 
lass of C in the Brauer group is unrami�ed over FU , theexa
t sequen
e of rami�
ation (∗) yields an Azumaya algebra C over
R̂U with per(C) = per(C) and su
h that CFU

is Brauer equivalent to
C. Sin
e per(C) divides n, the 
entral simple algebra Cκ(U) has perioddividing n (here κ(U) is the fun
tion �eld of U). By assumption on theresidue �eld k, ind(Cκ(U))| per(Cκ(U))

d|nd =: i for d > 0. In fa
t, thesame holds if d = 0 sin
e in that 
ase, per(Cκ(U)) = 1 by the 
ommentsbefore the proposition (using char(k) 6 |n).Let m be the degree of C over R̂U . By tensoring C with a matrixalgebra, we may assume that m > i. We may therefore 
onsider the
i-th generalized Severi-Brauer R̂U -s
heme SBi(C). As noted before thestatement of Theorem 5.1, the fa
t that ind(Cκ(U))|i implies the exis-ten
e of a κ(U)-rational point on SBi(Cκ(U)); or equivalently on SBi(C),by fun
toriality of SBi. Hen
e the morphism π : SBi(C) → Spec R̂Uhas a se
tion Spec(κ(U)) → SBi(C) over Spec(κ(U)), the generi
 pointof the 
losed �ber U of Spec(R̂U). Choose a Zariski dense open subset
V ⊆ U su
h that this se
tion over Spec(κ(U)) extends to a se
tion over
V , and su
h that the image of this latter se
tion lies in an open subsetof SBi(C) that is a�ne over R̂U . Then by Lemma 4.5, the se
tion over
V lifts to a se
tion over Spec(R̂V ). Thus we obtain an FV -point of
SBi(C); or equivalently, of SBi(CFV

). Consequently, the 
entral simple
FV -algebra CFV

has index dividing i = nd. But CFV
is Brauer equiva-lent to CFV

, sin
e CFU
is Brauer equivalent to C. Hen
e ind(CFV

) alsodivides nd, as desired.(b) By our assumptions, R̂P is a 
omplete regular lo
al ring whosefra
tion �eld 
ontains a primitive q-th root of unity; and AFP
is a 
entralsimple algebra whose period is q and whose rami�
ation divisor has atmost a normal 
rossing at P . Therefore [Sal07℄, Theorem 2.1, applies.In parti
ular, AFP

is Brauer equivalent to B⊗C, where the 
lass of C isunrami�ed over R̂P and the index of B divides q2. Namely, the above-mentioned theorem asserts that B is either a symbol algebra of indexdividing q or the produ
t of at most two su
h symbol algebras, ea
h ofwhi
h determines a 
y
li
 extension of the residue �eld at a bran
h ofthe rami�
ation divisor at P . That same theorem says that the 
ase oftwo symbol algebras o

urs only if the 
y
li
 �eld extension asso
iatedto one of the symbols is unrami�ed at P (and is of degree prime to
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char(k)). If d = 0, this 
y
li
 extension would have trivial residue �eldextension at P by the assumption on k, and would therefore be trivial.So in fa
t the index of B divides q if d = 0. That is, in general theindex of B divides q1+e, where e = 0 if d = 0 and e = 1 if d > 0.As in the proof of part (a), we may �nd an Azumaya algebra Cover R̂P su
h that CFP

is Brauer equivalent to C. By tensoring witha matrix algebra of suitable size, we may assume that the degree of Cis greater than qd−e (with e as above). By the hypothesis on k, thealgebra Ck has index dividing i := qd−e (again using the 
ommentsbefore the proposition, in the 
ase d = 0, to get per(Ck) = 1 andhen
e ind(Ck) = 1). Thus we obtain a se
tion Spec k → SBi(C) of
SBi(C) → Spec R̂P over Spec k whose image lies in (the 
losed �ber of)an a�ne open subset of SBi(C). Sin
e SBi(C) → Spec R̂P is smoothand R̂P is 
omplete with residue �eld k, we may apply Lemma 4.5 tothis a�ne open subset and obtain a se
tion Spec R̂P → SBi(C). Thisin turn gives an FP -point of SBi(C), or equivalently an FP -point of
SBi(CFP

). In parti
ular, we �nd that the index of CFP
divides i = qd−e.But CFP

is Brauer equivalent to C. Sin
e A ∼= B⊗C we therefore �nd
ind(A)| ind(B) ind(C)|q1+eqd−e = qd+1as desired. �Before using the above proposition to show our main result on Brauerdimension (Theorem 5.5), we prove two lemmas.Lemma 5.3Let K be a 
omplete dis
retely valued �eld, and suppose that α ∈ Br(K)has period n, prime to the residue 
hara
teristi
 of K. Let L be a totallyrami�ed extension of K of degree n. Then αL ∈ Br(L) is unrami�ed.Proof. Let k be the 
ommon residue �eld of K and L. By [Sal99℄,Theorem 10.4, the rami�
ation maps for K and L (with respe
t to themaximal ideals of the 
orresponding 
omplete dis
rete valuation rings)form a 
ommutative diagram

Br(K)

res

��

ram
// H1(k,Q/Z)

n

��

Br(L)
ram

// H1(k,Q/Z),where the left hand verti
al map is indu
ed by restri
tion (in Galois
ohomology), and the right hand verti
al map is indu
ed by multipli-
ation by n. Sin
e α has order n in the group Br(K), its image in the



40 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENlower right hand H1(k,Q/Z) is zero. Hen
e αL ∈ Br(L) is unrami-�ed. �Lemma 5.4Suppose K is a 
omplete dis
retely valued �eld with residue �eld k andvaluation ring T . Let α ∈ Br(T ). Then ind(αK) = ind(αk).Proof. Let A be an Azumaya algebra in the 
lass of α, and let n be thedegree of A over T (whi
h is also the degree of AK over K, and of Akover k). For 1 ≤ i < n, we have a 
ommutative diagram of s
hemes
SBi(AK) //

πK

��

SBi(A)

π

��

SBi(Ak)oo

πk

��

Spec(K) // Spec(T ) Spec(k),oowhere SBi is the i-th generalized Severi-Brauer variety. Sin
e π is aproper morphism, by the valuative 
riterion for properness it followsthat any se
tion of πK may be uniquely extended to a se
tion of π.Sin
e π is a smooth morphism, it has a se
tion if and only if πk does,by Hensel's lemma. This implies that πk has a se
tion if and only if
πK has a se
tion. But there is a K-point on SBi(AK) if and only if theindex of AK divides i, and similarly for k. So ind(αK)|i if and only if
ind(αk)|i. Therefore ind(αk) = ind(αK) as desired. �Theorem 5.5Let K be a 
omplete dis
retely valued �eld whose valuation ring T hasresidue �eld k. Suppose k has Brauer dimension d ≥ 0 away from
char(k). Then K has Brauer dimension at most d + 1 away from
char(k).Proof. Let A be 
entral simple algebra over a �nitely generated �eldextension F of K having trans
enden
e degree ℓ ≤ 1, and assume that
p := char(k) ≥ 0 does not divide n := per(A). We wish to show that
ind(A) divides per(A)d+ℓ. Let α ∈ Br(F ) be the 
lass of A.We begin by 
onsidering the 
ase of ℓ = 0; i.e., F is a �nite exten-sion of K, whose residue �eld k′ is a �nite extension of k. If d ≥ 1,let L be a totally rami�ed extension of F of degree n = per(α).Thus αL is unrami�ed by Lemma 5.3. Equivalently, by the exa
tsequen
e (∗) before the statement of Proposition 5.2, αL is indu
edby an element αS in Br(S), where S is the valuation ring of L. ByLemma 5.4, ind(αL) = ind(αk′), where αk′ ∈ Br(k′) is the 
lass indu
edby αS. The hypothesis on k implies that ind(αk′) | per(αk′)d−1. But
ind(α) |n ind(αL), by [Pie82℄, Proposition 13.4(v), sin
e n = [L : F ].



APPLICATIONS OF PATCHING 41Also, per(αk′) | per(αS) = per(αL), sin
e αk′ is indu
ed by αS. So
ind(αL) | per(αL)d−1 and

ind(α) |n ind(αL) |n per(αL)d−1 |n per(α)d−1 = per(α)d,as desired.On the other hand, if d = 0, then k is separably 
losed away from
p, and so has no 
y
li
 �eld extensions of degree prime to p. Thus
H1(k,Z/nZ) is trivial and α is unrami�ed. So α is indu
ed by anelement αR ∈ Br(R), where R is the valuation ring of F . Let αkbe the indu
ed element of Br(k). Then ind(α) = ind(αk) = 1 byLemma 5.4 and the fa
t that Br(k) has no n-torsion (as noted beforeProposition 5.2). So ind(α) | per(α)d holds trivially. This 
on
ludesthe proof in the 
ase ℓ = 0.We now turn to the 
ase ℓ = 1; i.e., F is a �nitely generated �eldextension of K having trans
enden
e degree one. Write n =

∏m
i=1 q

ri

i ,where the qi are distin
t primes unequal to p and ea
h ri ≥ 1. Sin
e
α has order n in the abelian group Br(F ), we may write α = α1 +
· · · + αm, where αi is qi-power torsion. Here per(α) =

∏
i per(αi)be
ause the qi are pairwise relatively prime. Sin
e the index of a tensorprodu
t of algebras divides the produ
t of the indi
es, it follows that

ind(α)|
∏

i ind(αi); so without loss of generality, we may assume that
m = 1 and that ind(α) is a power of a prime q. Sin
e per(α)| ind(α),the period of α is also a power of q, say n = qr.Consider �rst the 
ase r = 1, so that per(A) = q. Sin
e char(F ) 6= q,the extension F (ζq)/F , where ζq is a primitive q-th root of unity, isan extension of F of degree dividing q − 1. Sin
e this is prime to q,we �nd ind(A) = ind(A ⊗F F (ζq)) and per(A) = per(A ⊗F F (ζq)),by [Pie82℄, Propositions 13.4(vi) and 14.4b(v). Sin
e F (ζq) is still a�nitely generated extension of K of trans
enden
e degree 1, we maytherefore assume without loss of generality that ζq ∈ F .Observe (as in the proof of Theorem 4.10) that there is a regularproje
tive T -
urve X̂ with fun
tion �eld F su
h that the rami�
ationdivisor D of A on X̂ has only normal 
rossings. Namely, let X̂1 be anormal proje
tive model for F over T , and let D1 be the rami�
ationdivisor of A on X̂1. By Lemma 4.7, there is a regular proje
tive T -
urve X̂ with fun
tion �eld F , and a birational morphism π : X̂ → X̂1,su
h that π−1(D1) has only normal 
rossings. The rami�
ation divisor
D of A on X̂ is 
ontained in π−1(D1), and so it also has only normal
rossings.By Proposition 5.2(a), for ea
h irredu
ible 
omponent X0 of the
losed �ber X of X̂, there is a Zariski dense a�ne open subset U0 ⊂ X0
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h that AFU0
has index dividing qd+1. Let S be the (�nite) set ofpoints of X that do not lie in any of our 
hosen sets U0 (as X0 rangesover the 
omponents of X), together with all the 
losed points at whi
hdistin
t 
omponents of X meet. By [HH07℄, Proposition 6.6, there isa �nite morphism f : X̂ → P1

T su
h that S ⊆ P := f−1(∞). UnderNotation 3.5, and by the 
hoi
e of f , ea
h U ∈ U is 
ontained in oneof the above sets U0; hen
e FU 
ontains FU0
. Thus ea
h AFU

has in-dex dividing qd+1. Meanwhile, sin
e the rami�
ation divisor of A hasat most normal 
rossings, by Proposition 5.2(b) we also have that theindex of AFP
divides qd+1 for P ∈ P. Therefore ind(A) divides qd+1 byTheorem 5.1, and the result is proven in this 
ase.We now 
onsider the general 
ase per(A) = qr by indu
tion on r.Choose an algebra B in the 
lass qr−1[A]. Sin
e B has period q, ithas index dividing qd+1 (by the �rst part of the proof for the 
ase

ℓ = 1). Consequently, B has a splitting �eld L whose degree over
F divides qd+1. Sin
e L is a �nitely generated �eld extension of Kof trans
enden
e degree 1, and A ⊗F L has period dividing qr−1 (byde�nition of L), it follows by indu
tion that A⊗F L has index dividing
(qr−1)d+1. Hen
e A ⊗F L has a splitting �eld L′ whose degree over Ldivides (qr−1)d+1. Therefore L′/F is a splitting �eld of A of degreedividing (qr)d+1, and the proof is 
omplete. �As in the quadrati
 form 
ase, the main theorem generalizes to aresult about henselian dis
rete valuation rings.Corollary 5.6Let T be an ex
ellent henselian dis
rete valuation ring having fra
tion�eld K and residue �eld k. Let d ≥ 0. Suppose that k has Brauerdimension d away from char(k). Then K has Brauer dimension atmost d+ 1 away from char(k).Proof. We wish to show that if E is a �nitely generated �eld extensionofK of trans
enden
e degree ℓ ≤ 1, and if the period of a 
entral simple
E-algebra A is not divisible by char(k), then ind(A) | per(A)d+ℓ−1 =: i.Equivalently, we wish to show that there is an E-point on the general-ized Severi-Brauer variety SBi(A).The 
ompletion T̂ of T is a 
omplete dis
rete valuation ring withresidue �eld k. Hen
e by Theorem 5.5, the Brauer dimension of itsfra
tion �eld K̂ is at most d+1 away from char(k). So for every �nitelygenerated �eld extension L of K̂ of trans
enden
e degree ℓ over whi
h
A is de�ned (e.g. 
ontaining E), the index of AL divides per(AL)d+ℓ−1and hen
e divides i = per(A)d+ℓ−1. Thus SBi(A) has a rational point
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h �eld L. So by Lemma 4.11, SBi(A) has a rational pointover E. �Re
all the de�nition of an m-lo
al �eld given in Se
tion 4.Corollary 5.7Let K be an m-lo
al �eld with residue �eld k, for some m ≥ 1. Let
d ≥ 0, and suppose that k has Brauer dimension d away from char(k).Then K has Brauer dimension at most d+m away from char(k).Proof. This follows from Corollary 5.6 and indu
tion. �In parti
ular, if k is separably 
losed away from char(k), and F isa one-variable fun
tion �eld over an m-lo
al �eld with residue �eld k,then ind(α) | per(α)m for any α ∈ Br(F ) of period not divisible by
char(k). The above result also has the following 
onsequen
e:Corollary 5.8Let K be an m-lo
al �eld with residue �eld k and let F be a one-variablefun
tion �eld over K, where k is either(a) a �nite �eld; or(b) the fun
tion �eld of a 
urve over a separably 
losed �eld k0.Then ind(α) | per(α)m (resp. ind(α) | per(α)m+1) for every element inthe Brauer group of K (resp. of F ) of period not divisible by char(k).Proof. (a) By Wedderburn's Theorem, Br(k′) is trivial for every �niteextension k′ of k. Moreover, period equals index in the Brauer group ofany one-dimensional fun
tion �eld over k (see [Rei75℄, Theorem 32.19).So the Brauer dimension of k is 1, and the 
on
lusion follows fromCorollary 5.7.(b) Let p = char(k0) = char(k) ≥ 0. As noted before Proposition 5.2,sin
e k0 is separably 
losed there is no non-trivial prime-to-p torsion in
Br(k). Moreover, if E is a one-variable fun
tion �eld over k, then E isthe fun
tion �eld of a surfa
e over k0; and hen
e period equals indexfor elements of prime-to-p period in Br(E), by the main theorem of[deJ04℄. Thus the Brauer dimension of k is 1, and the assertion againfollows from Corollary 5.7. �As an example of Corollary 5.8(b), ind(α) | per(α)2 for any element
α in the Brauer group of C(x)((t))(y). Also, as a spe
ial 
ase of part (a)of the above result, we have the following analog of Corollary 4.15 thatwas �rst proven by Saltman [Sal97℄:



44 DAVID HARBATER, JULIA HARTMANN, AND DANIEL KRASHENCorollary 5.9Let p be a prime, and let K be a �nite extension of Qp or of the �eld ofalgebrai
 p-adi
 numbers (i.e. the algebrai
 
losure of Q in Qp). If Fis a fun
tion �eld in one variable over K and the period of α ∈ Br(F )is not divisible by p, then ind(α) divides per(α)2.As another example of Corollary 5.8(a) (taking m = 2), the �eld
K = Qp((t)) satis�es the relation ind(α) | per(α)2 for α ∈ Br(K) ofperiod prime to p, and the �eld F = Qp((t))(x) satis�es the relation
ind(α) | per(α)3 for α ∈ Br(F ) of period prime to p.In parallel with the quadrati
 form situation, Theorem 5.5 has ananalog for the fun
tion �elds of pat
hes. Namely, using Lemma 4.16and Theorem 5.5 we proveCorollary 5.10Let T be a 
omplete dis
rete valuation ring with residue �eld k of 
har-a
teristi
 p ≥ 0. Let X̂ be a smooth proje
tive T -
urve with 
losed �ber
X, and let ξ be either a subset of X or a 
losed point of X. Supposethat k has Brauer dimension d. Then for all α in Br(Fξ) with periodnot divisible by p, we have ind(α) | per(α)d+2. Moreover if T 
ontainsa primitive per(α)-th root of unity, then ind(α) | per(α)d+1.Proof. As in the proof of Theorem 5.5 in the 
ase ℓ = 1, by 
onsideringthe prime fa
torization of per(α) we redu
e to the 
ase that per(α) isa prime power, say qr.Let T ′ = T [ζqr ], where ζe denotes a primitive e-th root of unity. Let
X̂ ′ = X̂ ×T T

′, with fun
tion �eld F ′ = FT ′, and let ξ′ = ξ ×T T
′in X̂ ′. Then Fξ′ = FξT

′ = Fξ(ζqr), where Fξ′ is as in Notation 3.3with respe
t to the 
urve X̂ ′. Consider the intermediate �eld Fξ(ζq).The degree [Fξ(ζq) : Fξ] divides q − 1 and s := [Fξ′ : Fξ(ζq)] divides
qr−1. Let α′ ∈ Br(Fξ′) and α′′ ∈ Br(Fξ(ζq)) be the elements indu
ed by
α ∈ Br(Fξ). Sin
e [Fξ(ζq) : Fξ] is prime to the period of α, the periodand index of α′′ are equal to those of α ([Pie82℄, Propositions 13.4(vi)and 14.4b(v)). By [Pie82℄, Proposition 13.4(v), s ind(α′) is divisible by
ind(α′′) = ind(α).Sin
e Fξ′ 
ontains ζqr , by [MS82℄ the element α′ ∈ Br(Fξ′) is rep-resented by a tensor produ
t (a1, b1)qr ⊗ · · · ⊗ (am, bm)qr of sym-bol algebras, where ea
h ai, bi ∈ Fξ′ . Applying Lemma 4.16 to thesmooth proje
tive T ′-
urve X̂ ′, we may write ai = a′iu

qr

i and bi =

b′iv
qr

i for a′i, b′i ∈ F ′ and ui, vi ∈ Fξ′ . Thus (ai, bi)qr is Brauer equiv-alent to (a′i, b
′
i)qr . So if we 
onsider the 
entral simple F ′-algebra

A = (a′1, b
′
1)qr ⊗ · · · ⊗ (a′m, b

′
m)qr , then the 
lass of A ⊗F ′ Fξ′ is α′.



APPLICATIONS OF PATCHING 45By Theorem 5.5, ind(A) | per(A)d+1. But ind(α) divides s ind(α′) andhen
e s ind(A); and per(A) divides qr = per(α), sin
e per(ai, bi)qr | qr.So ind(α) | s per(α)d+1.Sin
e s divides qr−1, this shows that ind(α) | per(α)d+2. In the 
asethat T (and hen
e Fξ) 
ontains a primitive qr-th root of unity, s = 1and so ind(α) | per(α)d+1. �Corollary 5.11Under the hypotheses of Corollary 5.10, if k is separably 
losed, then
per(α) = ind(α) for elements in Br(Fξ) of period not divisible by the
hara
teristi
 of k.Proof. Sin
e the 
hara
teristi
 of k does not divide per(α), it followsthat k 
ontains a primitive per(α)-th root of unity. Moreover k hasBrauer dimension zero. So ind(α) divides per(α) by Corollary 5.10.But per(α) divides ind(α); so the result follows. �In parti
ular, if k is separably 
losed, then period equals index forelements of period not divisible by char(k) in the Brauer groups of thefra
tion �elds of k[[x, t]] and k[x][[t]]. Similarly, let Zur

p be the maximalunrami�ed extension of Zp. The residue �eld of Zur
p is the algebrai
ally
losed �eld F̄p, and so the fra
tion �elds of Zur

p [[x]] and of the p-adi

ompletion of Zur
p [x] ea
h have the property that period equals indexfor elements in their Brauer group having period prime to p.Remark 5.12(a) The proof of Corollary 5.10 a
tually shows more: that the indexof α ∈ Br(Fξ) divides [Fξ(ζn) : Fξ(ζρ(n))]n

d+1, where n = per(α) andwhere ρ(n) denotes the produ
t of the distin
t primes that divide n(ea
h taken with multipli
ity one). In parti
ular, the index of α in
Br(Fξ) divides per(α)d+2/ρ(per(α)).(b) We suspe
t that a
tually ind(α)| per(α)d+1 in Corollary 5.10,even without the assumption on roots of unity. Perhaps this 
ould beshown by paralleling the proof of Theorem 5.5 with F repla
ed by Fξ.But doing this would require generalizations of previous results hereand in [HH07℄.Remark 5.12(a) shows that Corollary 5.11 
an be strengthened toin
lude the 
ase that k is separably 
losed away from p = char(k). Tosee this, �rst note for any integer n, the degree [Fξ(ζn) : Fξ(ζρ(n))] isdivisible only by primes that divide n. Now let α be an element of
Br(Fξ) whose period n is not divisible by p. Then the above degree isprime to p. But k is separably 
losed away from p. So in fa
t this degree
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e the Brauer dimension d of k is zero, Remark 5.12(a)then shows that ind(α) divides (and hen
e is equal to) n = per(α).Referen
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