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RIGHT COIDEAL SUBALGEBRAS OF THE BOREL PART OF A

QUANTIZED ENVELOPING ALGEBRA

ISTVÁN HECKENBERGER AND STEFAN KOLB

Abstract. For the Borel part of a quantized enveloping algebra we classify
all right coideal subalgebras for which the intersection with the coradical is a
Hopf algebra. The result is expressed in terms of characters of the subalgebras
U+[w] of the quantized enveloping algebra, introduced by de Concini, Kac, and
Procesi for any Weyl group element w. We explicitly determine all characters
of U+[w] building on recent work by Yakimov on prime ideals of U+[w] which
are invariant under a torus action.

1. Introduction

Let g be a complex, finite-dimensional, semisimple Lie algebra and Uq(g) the
corresponding quantized enveloping algebra. Quantum analogs of Lie subalgebras
of g are often realized as coideal subalgebras of Uq(g). Recall that a subalgebra C of
a Hopf algebraH is called a right coideal subalgebra if the coproduct∆ ofH satisfies
∆(C) ⊆ C ⊗H . The universal enveloping algebra U(g) is a cocommutative Hopf
algebra and hence right coideal subalgebras of U(g) are always Hopf subalgebras.
The quantum deformation Uq(g), however, is essentially obtained by deforming the
coproduct. Hence one expects quantum deformations of Hopf subalgebras of U(g)
inside Uq(g) only to satisfy the weaker coideal property.

Let Π be a basis of simple roots for g. Let U = Uq(g) be defined as in [Jan96,
Chapter 4] over a base field k with q ∈ k \ {0} not a root of unity. Let U+ and U0

denote the subalgebras of U generated by the sets {Eα |α ∈ Π} and {Kα,K
−1
α |α ∈

Π}, respectively, and define the positive Borel part U≥0 = U+U0 which is a Hopf
subalgebra of U . In the present paper we give an explicit combinatorial classification
of all right coideal subalgebras C of U≥0 for which C ∩U0 is a Hopf algebra. To be
more precise, let Q denote the root lattice and, for any element w in the Weyl group
W of g, let U+[w] denote the subalgebra of U+ generated by the corresponding
Lusztig root vectors as defined in [Jan96, 8.24]. Our first main result, which is
made precise in Theorem 2.15, states the following:

There is a canonical bijection between the set of all right coideal subalgebras C of
U≥0 for which C ∩ U0 is a Hopf algebra and the set of all triples (w, φ, L) where
w ∈ W , φ : U+[w] → k is a character, and L is a subgroup of Q such that φ and L
satisfy an additional compatibility condition.
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2 ISTVÁN HECKENBERGER AND STEFAN KOLB

Many examples of coideal subalgebras of U were initially constructed with a
theory of homogeneous spaces or harmonic analysis for quantum groups in mind.
Koornwinder’s observation [Koo93] that a quantum group analog of one-dimensional
complex projective space can be obtained via a skew primitive element in Uq(sl2(C))
inspired the development of a theory of quantum symmetric spaces via coideal sub-
algebras. First, quantum analogs of all classical symmetric pairs were constructed
in a case by case fashion [Nou96], [Dij96], [NDS97]. Later, a comprehensive theory
of quantum symmetric pairs as one-sided coideal subalgebras in U was developed
by G. Letzter [Let02], [Let03]. Letzter’s work also contains general qualitative re-
sults about the structure of coideal subalgebras of U , mainly in terms of filtrations
and the associated graded algebras [Let02, Section 4]. Closely related is a program
initiated by Kharchenko to determine all right coideal subalgebras of U≥0 which
contain U0. It was proved for g of type An [KS08], Bn [Kha09], and G2 [Pog09]
that the number of such right coideal subalgebras coincides with the order of the
Weyl group. Recently, the situation was clarified by Schneider and the first named
author who proved in [HS09] that the algebras U+[w]U0, where w ∈W , exhaust all
right coideal subalgebras of U≥0 which contain U0. This result forms the starting
point of the present work.

Motivated by the above classification, the second main result of this paper con-
sists of an explicit combinatorial description of the set Char(U+[w]) of all characters
of U+[w]. Define W≤w = {y ∈ W | y ≤ w} where ≤ denotes the Bruhat order on
W . In Sections 3.3 and 3.5 we show the following:

The set Char(U+[w]) can be canonically identified with a disjoint union of spectra
of Laurent polynomial rings indexed by the elements of a subset Ww ⊆W≤w. The
subset Ww is given explicitly, and the dimension of the component corresponding
to y ∈Ww is ℓ(w) − ℓ(y), where ℓ denotes the length function.

To determine Char(U+[w]) we apply the theory ofH-stable prime ideals, outlined
in [BG02, Part II]. Here H = (k \ {0})rank(g) is a torus which naturally acts on
U+[w]. A subspace of U+[w] is H-stable if and only if it is naturally graded by
the root lattice Q. Following a standard construction, one associates an H-prime
ideal of U+[w] to any character of U+[w]. Recently, Yakimov obtained an order
preserving bijection between W≤w with the Bruhat order and the set of H-prime
ideals of U+[w], which is ordered by inclusion [Yak09]. To determine Char(U+[w])
we directly find a large family of H-prime ideals which correspond to characters.
We then apply Yakimov’s result and previous results by Gorelik [Gor00] to show
that this family is complete.

Characters of U+[w] appear in the classification of right coideal subalgebras via
a standard construction: For any right coideal subalgebra C of a Hopf algebra H
and any character φ : C → k one obtains a new right coideal subalgebra Cφ by
application of the coproduct and evaluation of φ on the first tensor component
(cf. Section 2.3). It was recently noted that this construction is also at the heart of
coideal subalgebras of U which appear in the theory of quantum symmetric pairs
[KS09, Section 4]. One might ask if U possesses certain standard right coideal sub-
algebras from which all other right coideal subalgebras are obtained via characters
in this way. This is but one question on the way towards a general combinatorial
classification of right coideal subalgebras of U .

The classification of right coideal subalgebras of U≥0 which contain U0 also
holds for small quantum groups of semisimple Lie algebras where q is a root of



RIGHT COIDEAL SUBALGEBRAS OF U≥0 3

unity [KS08], [HS09]. In the setting of the present paper, however, the assumption
that q is not a root of unity is essential. It would be interesting to extend the
classification of right coideal subalgebras to more general classes of pointed Hopf
algebras.

This paper consists of the two sections outlined above and an appendix. The
appendix contains technical results on root systems and Weyl group combinatorics
which are used to prove the statements leading up to Theorem 3.17.

2. Right coideal subalgebras of U≥0

2.1. Quantized enveloping algebras and right coideal subalgebras. We
mostly follow the notation and conventions of [Jan96]. Let g be a finite-dimensional
complex semisimple Lie algebra and let Φ be the root system with respect to a fixed
Cartan subalgebra. We also fix a basis Π of Φ and denote by Φ+ and Φ− the cor-
responding sets of positive roots and negative roots, respectively. Let W be the
Weyl group of g and let (·, ·) be the invariant scalar product on the real vector
space generated by Π such that (α, α) = 2 for all short roots in each component.
For any β ∈ Φ we write sβ to denote the reflection at the hyperplane orthogonal
to β with respect to (·, ·). Let Q = ZΠ be the root lattice and let Q+ = N0Π. For
each α ∈ Π let dα = (α, α)/2. Let U = Uq(g) be the quantized enveloping algebra
of g in the sense of [Jan96, Chapter 4]. More precisely, let k be a field and fix an
element q ∈ k with q 6= 0 and qn 6= 1 for all n ∈ N. Then U is the unital associative
algebra defined over k with generators Kα,K

−1
α , Eα, Fα for all α ∈ Π and relations

given in [Jan96, 4.3]. By [Jan96, Proposition 4.11] there is a unique Hopf algebra
structure on U with coproduct ∆, counit ε, and antipode S such that

∆(Eα) =Eα ⊗ 1 +Kα ⊗ Eα, ε(Eα) =0, S(Eα) = −K−1
α Eα,(2.1)

∆(Fα) =Fα ⊗K−1
α + 1 ⊗ Fα, ε(Fα) =0, S(Fα) = −FαKα,(2.2)

∆(Kα) =Kα ⊗Kα, ε(Kα) =1, S(Kα) = K−1
α .(2.3)

We will make use of Sweedler notation for the coproduct in the form ∆(x) =
x(1) ⊗ x(2) for any x ∈ U . Let ad denote the left adjoint action of U on itself, that
is, (adx)(y) = x(1)yS(x(2)) for all x, y ∈ U .

As in [Jan96, Chapter 4] let U+, U0, and U≥0 be the subalgebras of U generated
by the sets {Eα |α ∈ Π}, {Kα,K

−1
α |α ∈ Π} and {Kα,K

−1
α , Eα |α ∈ Π}, respec-

tively. In fact, U0 and U≥0 are Hopf subalgebras of Uq(g). For any β ∈ Q define
Kβ =

∏

α∈ΠK
nα
α if β =

∑

α∈Π nαα for some nα ∈ Z.
For any α ∈ Π let Tα denote the algebra automorphisms of U defined in [Jan96,

8.14]. Let w ∈ W be an element of length ℓ(w) = t and choose α1, . . . , αt ∈ Π
such that sα1

sα2
· · · sαt

is a reduced expression of w. For all i ∈ {1, 2, . . . , t} let
βi = sα1

· · · sαi−1
αi. In [Jan96, 8.21] Lusztig root vectors in U+ are defined by

Eβi
= Tα1

· · ·Tαi−1
Eαi

for all i ∈ {1, . . . , t}. Following [CKP95] the subspace

U+[w] = spank{E
at

βt
· · ·Ea2

β2
Ea1

β1
| a1, . . . , at ∈ N0},

is attached to w in [Jan96, 8.24]. It is shown in [CKP95] that U+[w] is a subalgebra
which does not depend on the reduced expression. The following observation is the
starting point of our investigations of right coideal subalgebras of U≥0.

Theorem 2.1. [HS09, Theorem 7.3] The map from W to the set of right coideal
subalgebras of U≥0 containing U0, given by w 7→ U+[w]U0, is a bijection.
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For all α ∈ Q+ let

U+
α ={x ∈ U+ |KβxK

−1
β = q(β,α)x for all β ∈ Q}.(2.4)

The algebra U≥0 admits a Q2-grading given by

U≥0 = ⊕
α,β∈Q

U+
αKβ.(2.5)

For all α, β ∈ Q let pr(α,β) : U≥0 → U+
αKβ be the unique Q2-graded projection.

Note that pr(α,β) = 0 if α ∈ Q \Q+.

A subspace T of U0 is a Hopf subalgebra if and only if there exists a subgroup
L of the abelian group Q such that T = spank{Kα |α ∈ L}. We write TL for this
Hopf algebra. In particular, T{0} = k and TQ = U0. We will frequently use the
notation

L⊥ = {γ ∈ Q | (γ, β) = 0 for all β ∈ L}

to denote the orthogonal complement of a subgroup L ⊆ Q. The adjoint action of
TL on U≥0 is diagonalizable. We say that an element x ∈ U≥0 \ {0} is a weight
vector for adTL, if there exists α ∈ Q such that

(adKβ)(x) = q(β,α)x for all β ∈ L.(2.6)

Any adTL-stable subspace of U≥0 has a basis consisting of weight vectors for adTL.

Lemma 2.2. Let L ⊆ Q be a subgroup and α1, α2, β1, β2 ∈ Q. Let x ∈ U≥0 be
a weight vector for adTL such that pr(α1,β1)(x) 6= 0 and pr(α2,β2)(x) 6= 0. Then

α1 − α2 ∈ L⊥.

Proof. The assumptions of the Lemma together with the direct sum decomposition
(2.5) imply that (adKβ)(x) = q(α1,β)x = q(α2,β)x for all β ∈ L. As q is not a root
of unity one obtains (α1 − α2, β) = 0 for all β ∈ L. �

For any right coideal C ⊆ U≥0 and any β ∈ Q define

Cβ = U+Kβ ∩ C.(2.7)

The following lemma is an adapted version of [Let02, Lemmata 1.1, 1.3].

Lemma 2.3. Let C ⊆ U≥0 be a right coideal. Then C = ⊕β∈QCβ. If C is an
algebra then this decomposition is an algebra grading of C by Q.

Proof. Let p : U≥0 → U0, p = ⊕β∈Qpr(0,β), be the unique Q2-graded projection.

As p is an algebra map, Equations (2.1) and (2.3) imply that p is a coalgebra
homomorphism. Since C is a right coideal, the map p′ = (id ⊗ p)∆ : U≥0 →
U≥0 ⊗ U0 induces a right coaction of U0 on C. Further,

p′(xKβ) = xKβ ⊗Kβ for all β ∈ Q, x ∈ U+,

and hence C = ⊕β∈QCβ . The last claim of the lemma follows now from the
commutation relations in U≥0. �

The comultiplication ∆ of U≥0 is compatible with the Q2-grading (2.5) via

∆(x) − x⊗Kβ ∈ ⊕
γ≺α

U+
γ Kα+β−γ ⊗ U+

α−γKβ(2.8)

for x ∈ U+
αKβ , α, β ∈ Q, where γ ≺ α means that α− γ ∈ Q+ \ {0}. The relation

≺ defines a partial ordering on Q.
The next lemmata show that left coideals are useful for the study of right coideals.
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Lemma 2.4. Let C ⊆ U≥0 be a right coideal. Let β ∈ Q and x ∈ Cβ \ {0}. Let
J be a Q2-homogeneous subspace and a left coideal of U≥0. Let γ ∈ Q be maximal
with respect to ≺ such that pr(γ,β)(x) /∈ J . Then Kβ+γ ∈ C.

Proof. For all α ∈ Q+ let xα ∈ U+
α be such that x =

∑

α∈Q+
xαKβ . Let pJ : U≥0 →

U≥0/J be the canonical map of left U≥0-comodules. Since J is Q2-homogeneous,
the map pJ is Q2-graded. Let α ∈ Q+ with γ ≺ α. By assumption, xαKβ ∈ J .
Since J is a left coideal, we conclude that (id ⊗ pJ )∆(xαKβ) = 0. Thus the
maximality of γ and Relation (2.8) imply that

(id ⊗ pJ)∆(x) =Kβ+γ ⊗ pJ(xγKβ)

+ terms x1 ⊗ pJ(x2) with x2 ∈ U+
αKβ for some α 6= γ.

Since C is a right coideal one obtains Kβ+γ ∈ C. �

Lemma 2.5. Let C ⊆ U≥0 be a right coideal and let x ∈ C−β for some β ∈ Q. Let
L ⊆ Q be a subgroup such that C ∩ U0 ⊆ TL. Assume that x is a weight vector for
adTL. Let α ∈ Q+ be maximal with respect to ≺ such that xα := pr(α,−β)(x) 6= 0.

Let Jα ⊆ U≥0 be the left coideal generated by xα.
(1) If γ ∈ Q satisfies xγ := pr(γ,−β)(x) 6= 0 then xγ ∈ Jα and α− γ ∈ L⊥ ∩Q+.

(2) The element α ∈ Q+ is uniquely determined by x.
(3) If pr(γ,−β)(x) 6= 0 for some γ ∈ β + L⊥ then β = α.

Proof. Since xα is Q2-homogeneous the subspace Jα of U≥0 is alsoQ2-homogeneous
by Relation (2.8). Let γ ∈ Q be such that xγ := pr(γ,−β)(x) 6= 0. Then α− γ ∈ L⊥

by Lemma 2.2. We now proceed indirectly to prove the first statement. If xγ /∈ Jα
and γ is maximal with respect to ≺ with this property, then Lemma 2.4 for J = Jα
implies Kγ−β ∈ C. Similarly, Kα−β ∈ C by Lemma 2.4 for J = 0. Hence γ−α ∈ L
and thus α = γ as (·, ·) is positive definite and α − γ ∈ L⊥. This however is a
contradiction to xα ∈ Jα, xγ /∈ Jα. Clearly, xγ ∈ Jα implies that α− γ ∈ Q+.

Statement (2) immediately follows from (1). To prove statement (3) assume that
pr(γ,−β)(x) 6= 0 for some γ ∈ β + L⊥. By (1) one gets α − β ∈ L⊥. On the other
hand Lemma 2.4 implies that α− β ∈ L and hence α = β. �

2.2. Connected right coideal subalgebras. In analogy to the terminology for
coalgebras [Mon93, 5.1.5] we make the following definition.

Definition 2.6. Let C be a right coideal subalgebra of U≥0. We say that C is
connected if C ∩ U0 = k1.

Let K denote the set of right coideal subalgebras C of U≥0 such that C ∩U0 is a
Hopf algebra. For any C ∈ K we write L(C) for the subgroup of Q corresponding to
the Hopf subalgebra C ∩U0 of U0. Clearly, C is connected if and only if L(C) = 0.

We will now show that any right coideal subalgebra C ∈ K decomposes into the
product of TL(C) and a connected right coideal subalgebra. To this end define for
any C ∈ K a subspace

I(C) = ⊕
β∈Q+

{x ∈ C−β | (adKα)(x) = q(α,β)x for all α ∈ L(C)}.(2.9)

The definition implies directly that

I(C) = ⊕
β∈Q+

{x ∈ C−β | pr(γ,−β)(x) = 0 for all γ ∈ Q \ (β + L(C)⊥)}.(2.10)
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Lemma 2.7. Let C ∈ K, β ∈ Q+, and let x ∈ I(C) ∩ C−β with x 6= 0. Then
pr(β,−β)(x) 6= 0. If pr(γ,−β)(x) 6= 0 for some γ ∈ Q then β − γ ∈ L(C)⊥ ∩Q+.

Proof. Let α be the unique maximal element in Q with pr(α,−β)(x) 6= 0, see

Lemma 2.5(2). Then α ∈ β + L(C)⊥ by Equation (2.10), and hence α = β by
Lemma 2.5(3). The remaining claim holds by Lemma 2.5(1). �

Proposition 2.8. Let C ∈ K.
(1) I(C) is a connected, adTL(C)-stable right coideal subalgebra of U≥0.
(2) The decomposition I(C) = ⊕β∈Q+

I(C)−β is an algebra grading.

(3) The multiplication map I(C) ⊗ U0 → U≥0 is injective.
(4) The multiplication map I(C) ⊗ TL(C) → C is bijective.

(5) Let D be a connected adTL(C)-stable right coideal subalgebra of U≥0. If
D ⊆ C then D ⊆ I(C). If DTL(C) = C then D = I(C).

Proof. (1) The Q2-grading of U≥0 is an algebra grading, and hence I(C) is a subal-
gebra of C. Relation (2.8) and Equation (2.10) imply that ∆(I(C)) ⊆ I(C)⊗U≥0.
Let β ∈ Q and let x ∈ I(C)∩C−β∩U0. If x 6= 0 then pr(β,−β)(x) 6= 0 by Lemma 2.7,

and hence β = 0. Thus I(C)∩U0 = k1, and hence I(C) is a connected right coideal
subalgebra of C. Further, I(C) is adTL(C)-stable by Definition (2.9).

(2) This is a special case of Lemma 2.3.
(3) Consider elements xβ ∈ I(C)−β and tβ ∈ U0 \ {0} such that xβ 6= 0 for

finitely many β ∈ Q+. Choose a maximal γ ∈ Q+ such that xγ 6= 0. Then
pr(γ,−γ)(xγ) 6= 0 but pr(γ,δ)(xβ) = 0 for all β ∈ Q+ \ {γ}, δ ∈ Q by Lemma 2.7.

Hence pr(γ,δ)(
∑

β xβtβ) = pr(γ,δ)(xγtγ) 6= 0 for a suitable δ ∈ Q. This implies
∑

β xβtβ 6= 0 which proves injectivity.

(4) Injectivity follows from (3). To verify surjectivity consider an element x ∈
C−β for some β ∈ Q and assume that x is a weight vector for adTL(C). As in
Lemma 2.5 let α ∈ Q+ be maximal such that pr(α,−β)(x) 6= 0. Lemma 2.4 implies

that Kα−β ∈ TL(C). Moreover, x = xKβ−αKα−β and xKβ−α ∈ C−α ∩ I(C) by
Equation (2.9). Hence x lies indeed in the image of the multiplication map.

(5) Assume that D ⊆ C. By (2.7) one has D−β ⊆ C−β for all β ∈ Q. Further,
D−β is adTL(C)-stable for all β ∈ Q since D and U+K−β are adTL(C)-stable. Let
x ∈ D−β be a weight vector for adTL(C). By Lemma 2.5 there exists a unique
maximal weight α ∈ Q such that pr(α,−β) 6= 0. Since D is connected Lemma 2.4

implies α = β. Thus x ∈ I(C) by Equation (2.9). Since adTL(C) is diagonalizable,
we conclude that D ⊆ I(C). Then the last claim holds by (4). �

Corollary 2.9. Let C ∈ K and let L ⊆ Q be a subgroup. Assume that C is
adTL-stable. Then CTL ∈ K.

Proof. It follows from the assumptions that CTL is a right coideal subalgebra of
U≥0. Further, CTL = I(C)TL(C)+L by Proposition 2.8(4), and hence CTL ∩ U0 =
TL(C)+L by Proposition 2.8(3). Thus CTL ∈ K. �

Define a linear map

ϕ : U≥0 → U≥0, ϕ(x) =
∑

β∈Q

pr(β,−β)(x)
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and observe that ϕ is a homomorphism of right U≥0-comodules by Relation (2.8).
For all C ∈ K define

C̄ = ϕ(I(C))U0.

We will see in the following proposition that C̄ is a right coideal subalgebra of U≥0

containing U0 as in Theorem 2.1. For any C ∈ K let ϕC : I(C) → U≥0 be the
restriction of ϕ to I(C).

Proposition 2.10. Let C ∈ K. Then the following hold.
(1) ϕC is an injective homomorphism of right U≥0-comodule algebras.
(2) ϕC(I(C)) is a connected, adU0-stable right coideal subalgebra of U≥0.
(3) C̄ ∈ K, and the multiplication map ϕC(I(C)) ⊗ U0 → C̄ is bijective.
(4) ϕC(I(C)) = S(U+) ∩ C̄.

Proof. (1) Lemma 2.7 implies that ϕC is injective and that

pr(β,−β)(x)pr(γ,−γ)(y) = pr(β+γ,−(β+γ))(xy) for all x ∈ I(C)−β , y ∈ I(C)−γ .

This and Proposition 2.8(2) imply that ϕC is an algebra homomorphism. As ϕ is
a homomorphism of right U≥0-comodules so is ϕC .

(2) By (1) the subspace ϕC(I(C)) is a right coideal subalgebra of U≥0. It is
connected since ϕ(U≥0) ∩ U0 = k1. It is adU0-stable, since ϕC(I(C)−β) is adU0-
stable for all β ∈ Q+.

Recall that the multiplication map S(U+) ⊗ U0 → U≥0 is bijective. Thus (3)
and (4) follow from (2) and since ϕC(I(C)) ⊆ S(U+). �

Define a linear map ψ : U+ → S(U+) by

ψ(xβ) = q−(β,β)/2xβK
−1
β for all xβ ∈ U+

β , β ∈ Q+.

The following technical Lemma will allow us to identify the connected adU0-stable
right coideal subalgebras of U≥0 in Theorem 2.12.

Lemma 2.11. The map ψ : U+ → S(U+) is an algebra isomorphism. Moreover,
ψ(U+[w]) = S(U+) ∩ U+[w]U0 for all w ∈ W .

Proof. Since S(U+) is generated by the elements S(Eα) = −K−1
α Eα, where α ∈ Π,

we conclude that S(U+) is spanned by the elements of the form xβK
−1
β , where

β ∈ Q+ and xβ ∈ U+
β . Thus ψ(U+) = S(U+). Since U+ is graded by Q+, the map

ψ is also injective. For any α, β ∈ Q+ and any xα ∈ U+
α , yβ ∈ U+

β one verifies that

ψ(xαyβ) = ψ(xα)ψ(yβ) which implies that ψ is an algebra homomorphism.
Let w ∈ W . Since U+[w] is graded by Q+, the last claim follows from the

definition of ψ and the above description of S(U+). �

Theorem 2.12. (1) Let w ∈ W . Then ψ(U+[w]) is a connected adU0-stable right
coideal subalgebra of U≥0.

(2) Any connected adU0-stable right coideal subalgebra of U≥0 is of the form
ψ(U+[w]) for a unique w ∈ W .

Proof. (1) Let C = U+[w]U0. Then C ∈ K by Theorem 2.1. Moreover, L(C) =
Q and hence I(C) = S(U+) ∩ U+[w]U0 by Equation (2.9) or Equation (2.10).
Therefore I(C) = ψ(U+[w]) by Lemma 2.11. Moreover, ϕC = idI(C), and hence
the claim holds by Proposition 2.10(2).
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(2) Let now D be a connected adU0-stable right coideal subalgebra. Then
I(D) = D by Proposition 2.8(4), and hence ϕD = idD by Equation (2.9). Moreover
D̄ = DU0 ∈ K by Proposition 2.10(3), and D = S(U+) ∩ DU0 by Proposition
2.10(4). By Theorem 2.1, DU0 = U+[w]U0 for a unique w ∈ W . Thus D =
ψ(U+[w]) by Lemma 2.11. �

2.3. Right coideal subalgebras and characters. By definition a character of an
associative, unital k-algebra A is an algebra homomorphism φ : A→ k with φ(1) =
1. Let Char(A) denote the set of characters of A. The following construction,
though only considered for U≥0 here, works for right coideal subalgebras of an
arbitrary Hopf algebra.

Let C be a right coideal subalgebra of U≥0 and φ ∈ Char(C). Consider the
subspace

Cφ := {(φ⊗ id)∆(x) |x ∈ C} = {φ(x(1))x(2) |x ∈ C}

of U≥0. It follows from the coassociativity of the coproduct that Cφ is a right
coideal subalgebra of U≥0 and that the map

C → Cφ, x 7→ φ(x(1))x(2) for all x ∈ U≥0(2.11)

is a surjective homomorphism of right U≥0-comodule algebras.

Lemma 2.13. Let C be a connected right coideal subalgebra of U≥0 and φ ∈
Char(C). Then Cφ is connected and the map (2.11) is an isomorphism.

Proof. Recall the standard N0-filtration of U≥0. More explicitly, define a Z-linear
homomorphism ht : Q → Z by ht(α) = 1 for all α ∈ Π. Now set FnU≥0 =
⊕β∈Q,ht(β)≤nU

+
β U

0. Note that F is a filtration of U≥0 both as an algebra and as a
coalgebra. Assume that C is connected. It suffices to show for any x ∈ C and any
m ∈ N0 the relation

x ∈ FmU≥0 \ Fm−1U≥0 =⇒ φ(x(1))x(2) /∈ Fm−1U≥0.(2.12)

To this end write x = xm + u with xm ∈ ⊕β∈Q,ht(β)=mU
+
β U

0 and u ∈ Fm−1U≥0.
Since F is a filtration of coalgebras and C is a connected right coideal subalgebra
one obtains ∆(xm)−1⊗xm ∈ U≥0⊗Fm−1U≥0. Thus φ(x(1))x(2)−xm ∈ Fm−1U≥0

which implies φ(x(1))x(2) /∈ Fm−1U≥0 and concludes the proof. �

Remark 2.14. One can show that the map (2.11) is bijective for all C ∈ K.

Let V ⊆ U+ be an adU0-stable subspace and let φ ∈ Hom(V, k) be a linear
functional. We define

suppφ = {β ∈ Q+ |φ(x) 6= 0 for some x ∈ U+
β ∩ V }.(2.13)

We will only use the notion suppφ in the case where V = U+[w] for some w ∈ W
and where φ is a character. The following theorem is the first main result of this
paper. Recall that K denotes the set of all right coideal subalgebras C of U≥0 such
that C ∩ U0 is a Hopf algebra. Recall moreover that ε denotes the counit of U≥0.

Theorem 2.15. (1) Let C ∈ K. Then ϕC(I(C)) = ψ(U+[wC ]) for a unique wC ∈
W , and ϕ−1

C ψ : U+[wC ] → I(C) is an algebra isomorphism with ϕ−1
C ψ(U+[wC ] ∩

U+
β ) = I(C)−β for all β ∈ Q+. The map

φC : U+[wC ] → k, φC(x) = ε(ϕ−1
C ψ(x)) for all x ∈ U+[wC ],(2.14)
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is a character, and L(C) ⊆ (suppφC)⊥.
(2) Let w ∈ W , φ ∈ Char(U+[w]), and L ⊆ (suppφ)⊥ a subgroup. Let

D(w, φ) := ψ(U+[w])φψ−1 = {φ(ψ−1(x(1)))x(2) |x ∈ ψ(U+[w])}

and C(w, φ, L) := D(w, φ)TL. Then D(w, φ) is a connected, adTL-stable right
coideal subalgebra of U≥0, and C(w, φ, L) ∈ K.

(3) The map

K → {(w, φ, L) |w ∈W, φ ∈ Char(U+[w]), L is a subgroup of (suppφ)⊥}

C 7→ (wC , φC , L(C))

given by (1) is a bijection with inverse map (w, φ, L) 7→ C(w, φ, L) as in (2).

Proof. (1) By Proposition 2.10(2), ϕC(I(C)) is a connected adU0-stable right
coideal subalgebra of U≥0, and hence ϕC(I(C)) = ψ(U+[wC ]) for a unique wC ∈W
by Theorem 2.12. Now ϕC is an injective algebra homomorphism by Proposition
2.10(1), and hence ϕ−1

C ψ is an algebra isomorphism. The compatibility of ϕ−1
C ψ

with the given degrees holds since ψ(U+
β ) = U+

β K
−1
β and since ϕC(I(C)−β) ⊆

U+
β K

−1
β for all β ∈ Q+. Moreover, φC ∈ Char(U+[wC ]) since ε and ϕ−1

C ψ are

algebra homomorphisms. Finally, let γ ∈ Q and xγ ∈ U+[wC ] ∩ U+
γ . Then

y := ϕ−1
C ψ(xγ) ∈ I(C)−γ . Hence, if φC(xγ) = ε(y) = pr(0,−γ)(y)Kγ 6= 0 then

γ ∈ L(C)⊥ by Lemma 2.7. Thus L(C) ⊆ (suppφC)⊥.
(2) Lemma 2.13 implies that D(w, φ) is a connected right coideal subalgebra of

U≥0. Moreover, D(w, φ) is adTL-stable since the adjoint action of U0 commutes
with ψ and since L ⊆ (suppφ)⊥. Hence D(w, φ)TL ∈ K by Corollary 2.9.

(3) Let C ∈ K. For all x ∈ ψ(U+[wC ]) one obtains

φC(ψ−1(x(1)))x(2) = ε(ϕ−1
C (x(1)))x(2) = ε(ϕ−1

C (x)(1))ϕ
−1
C (x)(2) = ϕ−1

C (x),

where the second equation is satisfied by Proposition 2.10(1). ThereforeD(wC , φC) =
ϕ−1
C ψ(U+[wC ]) = I(C), and hence D(wC , φC)TL(C) = C by Proposition 2.8(4).
Conversely, consider a triple (w, φ, L) contained in the codomain of the map

in (3), and let C = C(w, φ, L). Then I(C) = D(w, φ) by Proposition 2.8(5) and
ϕC(D(w, φ)) = ψ(U+[w]) by definition of ϕC and D(w,ϕ). Thus we have shown
wC = w and L(C) = L. Further, one has

ϕC(φ(ψ−1(y(1)))y(2)) = y for all y ∈ ψ(U+[w])(2.15)

by definition of ϕC . Let x ∈ U+[w] and let y = ψ(x). Then

φC(x) = ε(ϕ−1
C ψ(x)) = ε(ϕ−1

C (y)) = ε(φ(ψ−1(y(1)))y(2)) = φ(ψ−1(y)) = φ(x),

where the first equation follows from (2.14) and the third equation holds by (2.15).
Hence we have φC = φ which completes the proof of (3). �

3. Characters of U+[w]

Motivated by Theorem 2.15 we now turn to the classification of characters of
U+[w]. Throughout this section we fix an element w ∈W and a reduced expression

w = sα1
· · · sαt

, α1, . . . , αt ∈ Π,(3.1)

of w in terms of simple reflections, where t = ℓ(w). As in Section 2.1, for all
i = 1, . . . , t let βi = sα1

· · · sαi−1
αi. The set {βi | i = 1, . . . , t} coincides with

Φ+
w := {β ∈ Φ+ |w−1β ∈ Φ−}.
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Recall that U+[w] is the subalgebra of U+ generated by the root vectors Eβi
:=

Tα1
· · ·Tαi−1

Eαi
for i = 1, . . . , t. In the following, if we write Eβ for some β ∈ Φ+

w

we always mean the root vector corresponding to the fixed reduced expression (3.1)
for the element w. If we write βi with a lower index i = 1, . . . , t then we always
refer to the specific ordering of Φ+

w from above.

3.1. Orthogonality. Let φ : U+[w] → k be a character. In the following lemma
we show that roots corresponding to root vectors on which φ does not vanish, are
mutually orthogonal. By the result of Levendorskĭı and Soibelman [LS91, Proposi-
tion 5.5.2], [Jan96, p. 164] one has for i < j the commutation relation

Eβi
Eβj

− q(βi,βj)Eβj
Eβi

=
∑

(ai+1, . . . , aj−1) ∈ N
j−i−1
0

m(ai+1,...,aj−1)E
ai+1

βi+1
· · ·E

aj−1

βj−1
.(3.2)

for some coefficients m(ai+1,...,aj−1) ∈ k. These commutation relations are the main
ingredient to obtain the following result.

Lemma 3.1. Let φ : U+[w] → k be a character and (βi, βj) 6= 0 for some i 6= j.
Then φ(Eβi

) = 0 or φ(Eβj
) = 0.

Proof. Consider Equation (3.2) for i < j. If the right hand side is zero, then the
claim of the lemma holds. We now perform an indirect proof. Assume that j−i > 0
is minimal such that (βi, βj) 6= 0 and such that φ(Eβi

) 6= 0 and φ(Eβj
) 6= 0.

Then the right hand side of Equation (3.2) is nonzero and contains a monomial
E
ai+1

βi+1
· · ·E

aj−1

βj−1
such that φ(Eβm

) 6= 0 whenever i < m < j and am 6= 0. Thus

by Lemma A.2 we can find an n with i < n < j such that φ(Eβn
) 6= 0 and

one of (βi, βn), (βj , βn) is nonzero. This is a contradiction to the minimality of
j − i > 0. �

For any φ ∈ Char(U+[w]) define

Φ+
w(φ) := {β ∈ Φ+

w |φ(Eβ) 6= 0}.(3.3)

We will see in Remark 3.4 that Φ+
w(φ) is independent of the chosen reduced expres-

sion for w.

Remark 3.2. By Lemma 3.1 for any φ ∈ Char(U+[w]) the set Φ+
w(φ) consists of

pairwise orthogonal roots. In particular, Φ+
w(φ) is linearly independent and contains

at most rank(g) elements.

3.2. Polynomial H-prime ideals. The algebra U+[w] is Q-graded via the di-
rect sum decomposition U+[w] = ⊕α∈Q(U+[w] ∩ U+

α ). Equivalently, U+[w] has a

rational action of the torus H := (k×)rank(g) by k-algebra automorphisms, where
k× = k \ {0}, (cf. [BG02, II.2.11]). This will allow us to follow [BG02, Chapter II]
and apply the theory of prime ideals invariant under a torus action to determine
Char(U+[w]). Recall that a proper ideal P of an associative k-algebra A is called
prime if any two ideals I, J not contained in P satisfy IJ 6⊆ P . Equivalently, P
is prime if for all a, b ∈ A \ P there exists c ∈ A with acb /∈ P . In particular, if
P is prime and A/P is commutative, then a, b ∈ A \ P implies that ab /∈ P . If A
admits an action of the torus H by automorphisms, then an ideal P of A is called
H-prime, see [BG02, II.1.9], if any two ideals I, J stable under the action of H
and not contained in P satisfy IJ 6⊆ P . If, moreover, A is noetherian and H acts
rationally, then H-prime ideals are prime [BG02, II.2.9]. All these assumptions are
fulfilled for the action of H = (k×)rankg on U+[w].
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Let φ : U+[w] → k be a character. Then ker(φ) is an ideal in U+[w] which is
one-codimensional and hence prime. The intersection

Pφ :=
⋂

h∈H

h ker(φ)(3.4)

is an H-prime ideal of U+[w]. Indeed, let I and J be H-stable (or equivalently Q-
graded) ideals such that IJ ⊆ Pφ ⊆ ker(φ). Then, say, I ⊆ ker(φ) because ker(φ)
is prime and hence I ⊆ Pφ since I is H-stable. Following [BG02, II.1.9] the set of
H-prime ideals in U+[w] will be denoted by H − spec(U+[w]). The H-prime ideals
of U+[w] obtained in the above way via characters have very special properties as
illustrated by the following lemma.

Proposition 3.3. Let φ : U+[w] → k be a character and Pφ the corresponding
H-prime ideal defined by Equation (3.4). Then the quotient U+[w]/Pφ is a com-
mutative polynomial ring in the root vectors Eβ with β ∈ Φ+

w(φ).

Proof. The quotient algebra U+[w]/Pφ is generated by the root vectors Eβ with
β ∈ Φ+

w(φ). Assume now that φ(Eβi
) 6= 0 and φ(Eβj

) 6= 0 for some i < j. We know
from Lemma 3.1 that (βi, βj) = 0. Hence by Equation (3.2) the commutator of Eβi

and Eβj
is a polynomial in the Eβm

of weight βi+βj . As (βi, βi+βj) = (βi, βi) 6= 0
each monomial in this polynomial contains a root vector Eβm

with m 6= i and
(βi, βm) 6= 0. By Lemma 3.1 this implies φ(Eβm

) = 0 and hence Eβm
∈ Pφ.

Thus, the right hand side of Equation (3.2) is contained in Pφ and the commutator
[Eβi

, Eβj
] is zero in U+[w]/Pφ. This proves that U+[w]/Pφ is commutative.

It remains to show that in U+[w]/Pφ there are no relations between the Eβ
with β ∈ Φ+

w(φ) apart from commutativity. To this end assume that Pφ contains
a nonzero commutative polynomial in the Eβ with β ∈ Φ+

w(φ). By linear indepen-
dence of the set Φ+

w(φ) observed in Remark 3.2 one can use the torus action (or
equivalently the Q-grading) to show that Pφ already contains a monomial in the Eβ
with β ∈ Φ+

w(φ). As noted above Pφ is a prime ideal and U+[w]/Pφ is commutative.
Hence one gets the contradiction Eβ ∈ Pφ for some β ∈ Φ+

w(φ). �

Remark 3.4. By Proposition 3.3 the set Φ+
w(φ) defined in (3.3) is uniquely deter-

mined by the H-prime ideal Pφ. Hence Φ+
w(φ) only depends on the character φ and

not on the chosen reduced expression for w.

Proposition 3.3 motivates the following definition.

Definition 3.5. An H-prime ideal P of U+[w] is called polynomial if U+[w]/P is
a commutative polynomial ring in the Eβ, β ∈ Φ+

w, which are not contained in P .
The set of polynomial H-prime ideals in U+[w] is denoted by H − specpoly(U+[w]).

Lemma 3.6. Let P ∈ H − specpoly(U+[w]). The ideal P is generated by the set
{Eβ |β ∈ Φ+

w , Eβ ∈ P}.

Proof. This follows from the PBW-Theorem for U+[w], cf. [Jan96, 8.24]. �

To summarize results we collect some equivalent characterizations of polynomial
H-prime ideals of U+[w].

Proposition 3.7. For any H-prime ideal P of U+[w] the following are equivalent:

(1) The H-prime ideal P is polynomial.
(2) The algebra U+[w]/P is commutative.
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(3) There exists φ ∈ Char(U+[w]) such that the prime ideal P is generated by
the set {Eβ |β ∈ Φ+

w \ Φ+
w(φ)}.

Proof. The equivalence of properties (1) and (3) is immediate from Lemma 3.6 and
Proposition 3.3. It remains to show that (2) implies (1). To this end assume that
P is an H-prime ideal such that U+[w]/P is commutative and define

J = {i ∈ {1, . . . , t} |Eβi
/∈ P}.

We claim that (βi, βj) = 0 for all distinct i, j ∈ J . Indeed, otherwise choose
elements i < j in J with j − i minimal such that (βi, βj) 6= 0 and Eβi

, Eβj
/∈

P . This implies for any m with i < m < j that Eβm
∈ P if (βi, βm) 6= 0 or

(βm, βj) 6= 0. Hence by Lemma A.2 the right hand side of Equation (3.2) belongs
to P for the chosen i, j. The assumption (βi, βj) 6= 0 now implies that Eβi

Eβj
∈ P .

But U+[w]/P is commutative and P is prime, which gives the contradiction to
Eβi

, Eβj
/∈ P . This proves that indeed (βi, βj) = 0 for all distinct i, j ∈ J .

Assume now that a commutative polynomial f in the Eβi
, i ∈ J , belongs to

P . Using the H-stability of P and the orthogonality one may assume that f is a
monomial. Yet this yields again a contradiction to the fact that P is prime and
U+[w]/P is commutative. �

3.3. Stratification of Char(U+[w]). By Proposition 3.3 one has a surjective map

prw : Char(U+[w]) → H − specpoly(U+[w]), φ 7→ prw(φ) := Pφ.

For each P ∈ H − specpoly(U+[w]) the preimage pr−1
w (P ) is isomorphic to the

spectrum of a Laurent polynomial ring in as many variables as there are elements
in {β ∈ Φ+

w |Eβ /∈ P}. Therefore the set Char(U+[w]) is a disjoint union

Char(U+[w]) =
⊔

P∈H−specpoly(U+[w])

pr−1
w (P )(3.5)

of spectra of Laurent polynomial rings. The decomposition (3.5) is the H-stratifica-
tion of Char(U+[w]) in the sense of [BG02, II.2.1]. In order to classify characters
of U+[w] it hence remains to determine all polynomial H-prime ideals P of U+[w]
and for each of them the set {β ∈ Φ+

w |Eβ /∈ P}.
Let Θ ⊆ Φ+ be a set of pairwise orthogonal roots. Then the reflections sβ and

sγ commute for any β, γ ∈ Θ. Hence we may write Πβ∈Θsβ to denote the product
of all reflections corresponding to roots in Θ. Let

wΘ = (Πβ∈Θsβ)w(3.6)

and define

Tw = {Θ ⊆ Φ+
w |Θ consists of pairwise orthogonal roots,(3.7)

and ℓ(wΘ) = ℓ(w) − |Θ|}.

For any Θ ∈ Tw and any β ∈ Φ+
w one has the implication

β ∈ Θ =⇒ w−1
Θ β ∈ Φ+.(3.8)

In explicit examples of small rank the set Tw is not hard to determine. Let J ⊆
{1, . . . , t} be a subset such that the elements of Θ := {βi | i ∈ J} are pairwise
orthogonal. Then the set Θ belongs to Tw if and only if one obtains a reduced
expression by deleting all simple reflections sαi

for i ∈ J from the expression (3.1)
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for w. Moreover, by the following lemma, all sets in Tw can be built by an inductive
procedure from smaller sets in Tw.

Lemma 3.8. Let w ∈ W and Θ ∈ Tw. If Θ′ ⊆ Θ then Θ′ ∈ Tw.

Proof. Let Θ′′ ⊂ Θ and β ∈ Θ\Θ′′. For any weight λ the orthogonality assumption
implies that (β,wΘ′′λ) = (β,wλ). Hence, if λ is regular dominant, that is (α, λ) > 0
for all α ∈ Π, then (β,wΘ′′λ) < 0 because w−1β < 0. By Lemma A.3 this implies
sβwΘ′′ < wΘ′′ . Repeated application of this argument leads to

Θ′ $ Θ′′ ⊆ Θ =⇒ wΘ ≤ wΘ′′ < wΘ′ .

Together with l(wΘ) = l(w)− |Θ| this implies l(wΘ′) = l(w)− |Θ′| for any Θ′ ⊆ Θ.
Hence any subset Θ′ ⊆ Θ belongs to Tw. �

The set Tw will provide us with the desired parametrization ofH−specpoly(U+[w]).
As a first step we associate a polynomial H-prime ideal to each element in Tw.

Proposition 3.9. Let Θ ∈ Tw and let PΘ denote the two-sided ideal of U+[w]
generated by all Eβ with β ∈ Φ+

w \ Θ. Then PΘ is a polynomial H-prime ideal of
U+[w], and Eβ /∈ PΘ for all β ∈ Θ.

Proof. We may assume that g is simple. By [Jan96, 8.24] the algebra U+[w] can
be given in terms of generators Eβi

, i = 1, . . . , t, and relations (3.2). It suffices to
show that for any m,n ∈ {1, . . . , t} with m < n there is no family {aj ∈ N0}βj∈Θ

such that

βm + βn =
∑

βj∈Θ,m<j<n

ajβj .(3.9)

Indeed, if no such family exists, then any nontrivial monomial on the right hand
side of Equation (3.2) contains a factor in PΘ.

If g is of rank 2 then Tw consists only of subsets of {β1, βt}. In this case the
right hand side of Equation (3.9) always vanishes. Hence we may assume that
rank(g) ≥ 3.

We prove the impossibility of (3.9) indirectly. Assume we have found a family
{aj ∈ N0}βj∈Θ such that (3.9) holds. By Lemma 3.8 all subsets of Θ are also
contained in Tw. Thus, leaving out certain elements of Θ we may assume that all
aj are strictly positive and that βm, βn /∈ Θ. Moreover, shortening w from both
sides if necessary, we may assume that m = 1 and n = t. Hence we have

α1 + βt =
∑

βj∈Θ

ajβj .(3.10)

Now let β′
t = −wΘαt ∈ Φ+. The assumptions Θ ∈ Tw and α1 /∈ Θ imply that

w−1
Θ α1 ∈ Φ−, w−1

Θ β′
t = −αt ∈ Φ−.(3.11)

Using the definition (3.6) of wΘ and the orthogonality of the βj ∈ Θ one calculates

β′
t = βt − 2

∑

βj∈Θ

(βj , βt)

(βj , βj)
βj .

Hence one obtains that

α1 + β′
t =

∑

βj∈Θ

(

aj − 2
(βj, βt)

(βj, βj)

)

βj .(3.12)
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Apply w−1
Θ to this equation. By (3.11) and since w−1

Θ βj ∈ Φ+ for all βj ∈ Θ by
(3.8), we conclude that there exists βi ∈ Θ such that

0 < ai <
2(βi, βt)

(βi, βi)
.(3.13)

Hence βt is long by Lemma A.1. Replacing w by w−1 and Θ by −w−1(Θ) and ap-
plying the same procedure one obtains that α1 has to be long. Again by Lemma A.1
the root βi ∈ Θ satisfying (3.13) has to be short. Then (α1, βi), (βi, βt) ∈ {2,−2},
since g is irreducible and not of type G2. Further, (α1, βi) + (βt, βi) = 2ai > 0
by Equation (3.10), and hence (α1, βi) = (βt, βi) = 2. This is a contradiction to
Relation (3.13). �

Remark 3.10. We will see in Corollary 3.16 that for any Θ ∈ Tw the polynomial
H-prime ideal PΘ obtained by Proposition 3.9 is independent of the chosen reduced
expression for w.

3.4. H-prime ideals with noncommutative quotients. The next aim is to
show that Proposition 3.9 already produces as many distinct polynomial H-prime
ideals as we can possibly find. To this end we resort to the description of H −
spec(U+[w]) recently given by Yakimov [Yak09] based on results by Gorelik [Gor00].
In order to refer to these papers without much rewriting, we work with U−[w]
instead of U+[w] for now. Recall from [Jan96, 8.24] that by definition U−[w] =
ω(U+[w]) where ω denotes the algebra automorphism of U defined by

ω(Eα) = Fα, ω(Fα) = Eα, ω(Kα) = K−1
α for all α ∈ Π.(3.14)

Let Λ denote the weight lattice and Λ+ the set of dominant weights. In this
subsection we mostly use Gorelik’s and Joseph’s notation following [Gor00], [Jos95].
For any dominant integral weight λ ∈ Λ+ let V (λ) denote the corresponding simple
U -module and let vλ ∈ V (λ) be a highest weight vector. We write V (λ)∗ to denote
the dual space of V (λ) which is canonically a right Uq(g)-module. Let kq[G] be the
Hopf algebra generated by all matrix coefficients cλf,v for v ∈ V (λ), f ∈ V (λ)∗ of

the representations V (λ), λ ∈ Λ+. We define

R+ =
⊕

λ∈Λ+

V (λ)∗

which is an algebra with the Cartan multiplication. We can consider R+ as a
subalgebra of kq[G] if we identify f ∈ V (λ)∗ with the matrix coefficient cλf,vλ

. Let

ξwλ ∈ V (λ)∗ be a functional which only lives on the weight space of weight wλ
in V (λ). To shorten notation we write cλξwλ,vλ

simply as cλw. The elements cλw
are defined up to scalars. By [Jos95, 9.1.10] these scalars can be chosen such that
cµwc

ν
w = cµ+ν

w for any µ, ν ∈ Λ+ and cw := {cλw |λ ∈ Λ+} becomes an Ore set in R+.
Recall that we have fixed w for all of this section, however, we can define cλy and

cy analogously for any y ∈ W . Consider the localized algebra Rw := R[c−1
w ]. This

algebra is Λ-graded with deg((cµw)−1cνf,vν
) = ν−µ for all µ, ν ∈ Λ+, f ∈ V (ν)∗. Let

Rw0 denote the algebra of elements of degree zero in Rw. Using the abbreviation
c−λw := (cλw)−1 one may write

Rw0 =
∑

λ∈Λ+

c−λw V (λ)∗ = lim
−−−−→
λ∈Λ+

c−λw V (λ)∗.
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In particular, any element of Rw0 can be written in the form c−λw cλf,vλ
for some

λ ∈ Λ+ and f ∈ V (λ)∗.
Following [Gor00, 5.2.3, 6.1.2], for any y ∈ W define ideals Q(y)± of R+ and

Q(y)±w of Rw0 by

Q(y)± =
∑

λ∈Λ+

{cλξ,vλ
| ξ ∈ V (λ)∗, ξ ⊥ U±vyλ},

Q(y)±w = lim
−−−−→
λ∈Λ+

{c−λw cλξ,vλ
| ξ ∈ V (λ)∗, ξ ⊥ U±vyλ},

where vyλ ∈ V (λ) is a weight vector of weight yλ. (For the fact that Q(y)±

and Q(y)±w are ideals confer to Gorelik’s reference to [Jos95, 10.1.8]. Consult also
[Yak09, 3.1].) By definition, for any y, y′ ∈W with y ≤ y′ one obtains the inclusions
Q(y′)+w ⊆ Q(y)+w and Q(y)−w ⊆ Q(y′)−w .

For our purposes it is sufficient to consider for any y ≤ w the subspaces

Q(y, w)w :=Q(y)−w +Q(w)+w ⊂ Rw0 ,(3.15)

Q(y, w) :={a ∈ R+ | ∃λ ∈ Λ+ : cλwa ∈ Q(y)− +Q(w)+} ⊂ R+.(3.16)

For any y ≤ w the subspace Q(y, w)w is an H-stable prime ideal of Rw0 by [Gor00,
6.6], and Q(y, w) is an H-stable prime ideal of R+ by [Gor00, 6.7].

Lemma 3.11. [Gor00, Lemma 6.10] Let y, y′ ∈ W with y ≤ y′ ≤ w. Then
Q(y, w) ∩ cy′ = ∅.

Corollary 3.12. Let λ ∈ Λ+ and y, y′ ∈ W with y ≤ y′ ≤ w. Then c−λw cλy′ is not

contained in Q(y, w)w.

Proof. Assume that c−λw cλy′ ∈ Q(y, w)w for some y ≤ y′ ≤ w. Then there exists

µ ∈ Λ+ such that

c−λw cλy′ = c−µw cµξ,vµ
+ c−µw cµζ,vµ

for some ξ ∈ (U−vyµ)
⊥ and ζ ∈ (U+vwµ)

⊥. Multiplying from the left by cλ+µ
w and

setting η = λ+ µ one obtains (using that Q(y)− and Q(w)+ are ideals) that

cµwc
λ
y′ = cηξ′,vη

+ cηζ′,vη

for some ξ′ ∈ (U−vyη)
⊥ and ζ′ ∈ (U+vwη)

⊥. By definition of Q(y, w) this means
that cλy′ ∈ Q(y, w) which is a contradiction to Lemma 3.11. �

The following proposition is the main technical tool to show that certainH-prime
ideals of U+[w] are not polynomial.

Proposition 3.13. Let β, γ ∈ Φ+. Define y′ = sγw and y = sβsγw and assume
that y < y′ < w. Then in Rw0 /Q(y, w)w the relation

(c−λw cλy )(c
−λ
w cλy′) = qC(λ)(c−λw cλy′)(c

−λ
w cλy)(3.17)

holds for all λ ∈ Λ+, where C(λ) = (wλ−y′λ, yλ−y′λ). In particular, if (β, γ) 6= 0
then Rw0 /Q(y, w)w is not commutative.

Proof. Following [Gor00, Section 4] we use commutation relations in kq[G] which
appeared as standard tools for instance in [Jos95, 9.1]. For any η ∈ Λ define J+

λ (η)w
(resp. J−

λ (η)w) to be the left ideal of Rw0 generated by c−λw cλfη′ ,vλ
with η′ < η (resp.
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η′ > η), where fη′ ∈ V (λ)∗ only lives on the weight space of weight η′ in V (λ). By
definition one has for all w′ ∈ W and λ ∈ Λ+ the inclusions

J+
λ (w′λ)w ⊆ Q(w′)+w , J−

λ (w′λ)w ⊆ Q(w′)−w

and hence definition (3.15) gives

J+
λ (wλ)w + J−

λ (yλ)w ⊆ Q(y, w)w .(3.18)

By [Gor00, Lemma 4.2(i)] one has

c−2λ
w cλy′c

λ
w = q(λ,λ)−(wλ,y′λ)c−λw cλy′ mod J+

λ (wλ)w(3.19)

and by [Gor00, Lemma 4.4(iv)] one has

(c−λw cλy )(c
−λ
w cλy′) = q−(yλ,y′λ−wλ)(c−2λ

w cλy′c
λ
w)(c−λw cλy) mod J−

λ (yλ)w .(3.20)

The inclusion (3.18) together with Equations (3.19) and (3.20) imply the relation

(c−λw cλy )(c
−λ
w cλy′) = qC(λ)(c−λw cλy′)(c

−λ
w cλy) mod Q(y, w)w

with C(λ) = −(yλ, y′λ − wλ) + (λ, λ) − (wλ, y′λ) = (wλ − y′λ, yλ − y′λ). This
proves the commutation relation (3.17).

To prove the second statement recall from Corollary 3.12 that both c−λw cλy and

c−λw cλy′ are nonzero elements in Rw0 /Q(y, w)w. We now assume that λ is a regular

weight, i.e. that the Weyl group acts faithfully on λ. Then wλ − y′λ is a nonzero
multiple of γ, and similarly y′λ − yλ is a nonzero multiple of β. Hence C(λ) is a
nonzero multiple of (β, γ) and therefore nonzero by assumption. Since Q(y, w)w is
prime, we conclude that Rw0 /Q(y, w)w is not commutative. �

3.5. Classification of characters. By [Yak09, Theorem 3.8] there exists an or-
der preserving bijection between the poset of H-prime ideals of U−[w] ordered by
inclusion and the set

W≤w := {y ∈ W | y ≤ w}(3.21)

with the Bruhat order. Let P−(y) denote theH-prime ideal of U−[w] corresponding
to y ∈ W≤w. More explicitly, Yakimov constructs a surjective algebra homomor-
phism

φw : Rw0 → U−[w](3.22)

with kernel Q(w)+w which is moreover compatible with the H-action [Yak09, Propo-
sition 3.6]. The H-prime ideals of U−[w] are hence in one-to-one correspondence to
the H-prime ideals of Rw0 which contain Q(w)+w . These are known to be of the form
Q(y, w)w for all y ∈ W≤w by [Gor00] (cf. [Yak09, Theorem 3.1]). By definition
P−(y) = φw(Q(y, w)w) and hence

U−[w]/P−(y) ∼= Rw0 /Q(y, w)w.(3.23)

Recall that ω(U−[w]) = U+[w] where ω denotes the involutive algebra isomorphism
defined by (3.14). For any y ≤ w let P+(y) = ω(P−(y)). Then P+(y) is an H-
prime ideal of U+[w] since ω is an algebra isomorphism and ω(U0) = U0. By the
results for U−[w] explained above, any H-prime ideal of U+[w] is of the form P+(y)
for some y ∈ W≤w. Moreover, ω induces an algebra isomorphism

U−[w]/P−(y) ∼= U+[w]/P+(y).(3.24)
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Recall the definition of Tw from (3.7). To identify the set of polynomial H-prime
ideals of U+[w] with a subset of W≤w define

Ww = {wΘ |Θ ∈ Tw}.

By Lemma 3.8 one has Ww ⊆W≤w. Define a map

κw : Tw → Ww, κw(Θ) = wΘ.(3.25)

The set Tw is partially ordered by inclusion while the set Ww is partially ordered
by the Bruhat order on W .

Lemma 3.14. The map κw is an order reversing bijection.

Proof. The map κw is surjective by definition and order reversing by Lemma 3.8.
It follows from [BB06, Lemma 2.7.2] that for any Θ ∈ Tw there exists at most one
sequence j1 < j2 < · · · < j|Θ| such that the elements wm := sjmsjm+1

· · · sj|Θ|
w

satisfy

wΘ = w1 < w2 < · · · < w|Θ| < w.

Hence κw is injective by Lemma 3.8 and the fact that the reflections sβ for β ∈ Θ
commute for any Θ ∈ Tw. �

Proposition 3.15. Let y ∈W≤w \Ww. Then U+[w]/P+(y) is not commutative.

Proof. By [BB06, 2.2.6] one can choose γ1, . . . , γr ∈ Φ+ such that

sγr
sγr−1

· · · sγ1w =y,(3.26)

l(sγi
sγi−1

· · · sγ1w) =l(w) − i(3.27)

for all i = 1, . . . , r. As y /∈ Ww there exist a, b ∈ {1, . . . , r}, a 6= b, such that
(γa, γb) 6= 0. Now we may apply Corollary A.5 and assume that (γ1, γ2) 6= 0. Hence,
by Proposition 3.13, the algebra Rw0 /Q(sγ2sγ1w,w)w is not commutative. By (3.27)
we have y ≤ sγ2sγ1w and hence Q(y, w)w ⊆ Q(sγ2sγ1w,w)w . Thus Rw0 /Q(y, w)w
is also not commutative which by (3.23) and (3.24) proves the proposition. �

Recall that for any Θ ∈ Tw we have defined PΘ to be the ideal generated by
{Eβ |β ∈ Φ+

w \ Θ}. Then PΘ ∈ H − specpoly(U+[w]) by Proposition 3.9.

Corollary 3.16. (1) The map Ww → H − specpoly(U+[w]), y 7→ P+(y), is an
order preserving bijection.
(2) One has PΘ = P+(wΘ) for all Θ ∈ Tw.
(3) If y ∈Ww then U+[w]/P+(y) is a commutative polynomial ring in l(w) − l(y)
variables. These variables can be chosen to be the Eβ with β ∈ (κw)−1(y).

Proof. The map in (1) is order preserving and injective because the map W≤w →
H − spec(U+[w]), y 7→ P+(y), is an order preserving bijection. It follows from
Proposition 3.9 that

|Tw| ≤ |H − specpoly(U+[w])|.(3.28)

On the other hand Proposition 3.15, together with the bijection between W≤w and
the set of H-prime ideals in U+[w], implies that

|H − specpoly(U+[w])| ≤ |Ww|.(3.29)

By Lemma 3.14 one obtains |Ww| = |H − specpoly(U+[w])| which shows that the
map in (1) is bijective.
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By Proposition 3.9 the map Tw → H − specpoly(U+[w]), Θ 7→ PΘ is injective.
By Lemma 3.14 and (1) we conclude that

{PΘ |Θ ∈ Tw} = {P+(y) | y ∈Ww}.(3.30)

To prove (2) it hence suffices to show that Eβ /∈ P+(wΘ) for all Θ ∈ Tw and
β ∈ Θ. Let Θ ∈ Tw and β ∈ Θ. Then wΘ ≤ sβw by Lemma 3.8 and hence
P+(wΘ) ⊆ P+(sβw). Thus we only need to show that Eβ /∈ P+(sβw). To this end
recall that by definition P+(sβw) = ω(φw(Q(sβw,w)w)). Hence ω(φw(c−λw cλsβw

)) /∈

P+(sβw) by Corollary 3.12. By definition of φw (cf. [Yak09, Theorem 3.7]) the
element ω(φw(c−λw cλsβw)) belongs to the weight space of weight mβ of U+[w] for

some m ∈ N0. We may assume m 6= 0 by choosing λ ∈ Λ+ regular. Hence
U+[w]/P+(sβw) contains an element of weight mβ for some positive integer m.

On the other hand it follows from (1) and Equation (3.30) that P+(w) = P∅

and that P+(sβw) = P{γ} for some γ ∈ Φ+
w with {γ} ∈ Tw. Proposition 3.9 hence

implies that U+[w]/P+(sβw) is a polynomial ring in Eγ . Therefore β = γ and
Eβ /∈ P+(sβw) which completes the proof of (2). Property (3) follows immediately
from (2) and Proposition 3.9. �

With the above corollary we have all the information necessary to give an explicit
description of the characters of U+[w]. For any two sets A,B let Map(A,B) denote
the set of maps from A to B. As before, let k× = k \ {0}. Recall also the definition
of κw from Equation (3.25).

Theorem 3.17. There is a bijection

Ψ :
{

(y, f) | y ∈Ww, f ∈ Map((κw)−1(y), k×)
}

→ Char(U+[w])

uniquely determined by

Ψ(y, f)(Eβ) =

{

f(β) if β ∈ (κw)−1(y),

0 otherwise.

The inverse map is given by Ψ−1(φ) = (wΦ+
w(φ), fφ) for all φ ∈ Char(U+[w]), where

fφ(β) = φ(Eβ) for all β ∈ Φ+
w(φ).

For the classification of right coideal subalgebras in Theorem 2.15 it is necessary
to determine subgroups L of the root lattice which are orthogonal to suppφ for
a given character φ of U+[w]. To this end we also note the following immediate
consequence of Proposition 3.3.

Proposition 3.18. Let φ ∈ Char(U+[w]). Then suppφ =
∑

β∈Φ+
w(φ) N0β.

Appendix A. Root systems and Weyl group combinatorics

We collect here some auxiliary results about root systems and the Bruhat order
for finite Weyl groups, which are used to obtain the combinatorial classification of
characters of U+[w] in Section 3. First we state two lemmata on roots.

Lemma A.1. [Hum72, 9.4] Let α, β ∈ Φ. If (α, β) 6= 0 and (α, α) ≤ (β, β) then
2|(α, β)| = (β, β).

Lemma A.2. Let γ1, . . . , γs, β, β
′ ∈ Φ+ and a1, . . . , as ∈ N0. Assume that β+β′ =

∑s
m=1 amγm. Then there exists n ∈ {1, . . . , s} with an(γn, β) 6= 0 or an(γn, β

′) 6= 0.

Proof. This follows from (β + β′, β + β′) 6= 0. �
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Now we turn to the well-known characterization of the Bruhat order in terms of
positive roots and regular weights. Recall that λ ∈ Λ+ is called regular if (α, λ) > 0
for all simple roots α ∈ Π.

Lemma A.3. Let λ ∈ Λ+ be a regular weight, u ∈ W , and β ∈ Φ+. Then the
following are equivalent: (1) sβu < u, (2) u−1β ∈ Φ−, (3) (β, uλ) < 0.

Proof. The equivalence of (1) and (2) is an immediate consequence of the strong
exchange condition, cf. [BB06, 1.4.3, 4.4.6]. The equivalence of (2) and (3) follows
from the W -invariance of the bilinear form (·, ·). �

The following technical result is used in the proof of Proposition 3.15.

Lemma A.4. Let α, β, γ ∈ Φ+ and w ∈ W such that

l(sαsβsγw) = l(sβsγw) − 1 = l(sγw) − 2 = l(w) − 3.(A.1)

If (α, β) 6= 0 or (α, γ) 6= 0 then there exist α′, β′, γ′ ∈ Φ+ with (β′, γ′) 6= 0 such
that sαsβsγ = sα′sβ′sγ′ and

l(sα′sβ′sγ′w) = l(sβ′sγ′w) − 1 = l(sγ′w) − 2 = l(w) − 3.(A.2)

Proof. It suffices to consider the case with (β, γ) = 0.
If (α, β) = 0 then sαsβ = sβsα and we are done with α′ = β, β′ = α, and γ′ = γ.

Exchanging β and γ if necessary we may hence assume that

(α, β) 6= 0 6= (α, γ).

Define v = sγw.
Case 1: v−1α < 0. By Lemma A.3 we have l(sαv) < l(v). It remains to show that

l(ssαβsαv) < l(sαv)(A.3)

because then α′ = sαβ, β′ = α, and γ′ = γ fulfill the conditions of the lemma.
For any regular λ ∈ Λ+ one has (sαβ, sαvλ) = (β, vλ) < 0 by Lemma A.3 and the
second equality in (A.1). Again by Lemma A.3 this proves (A.3).
Case 2: v−1α > 0. We first claim that (α, β) < 0. Indeed, by the first equality in
(A.1) one has for any regular λ ∈ Λ+ the relation

0 > (α, sβvλ) = (α, vλ) −
2(α, β)

(β, β)
(β, vλ).(A.4)

As sβv < v one has (β, vλ) < 0. Using (α, vλ) > 0, which holds by assumption,
one now gets the desired (α, β) < 0 from (A.4).
Case 2a: v−1α > 0 and (α, α) = (β, β) = −2(α, β). This is the case whenever α
and β have the same length. As in Case 1 one verifies that

sβssβαv < ssβαv < v.(A.5)

Indeed, (α, sβvλ) < 0 for any regular λ ∈ Λ+ by (A.1) and Lemma A.3. Hence
(sβα, vλ) < 0 which again by Lemma A.3 implies ssβαv < v. To obtain the first
relation in (A.5) note that sβα = sαβ = α+ β and hence

ssβαβ = sβsαsββ = −α.

Now the first relation in (A.5) follows from Lemma A.3 and

(β, ssβαvλ) = (−α, vλ) < 0.
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Case 2b: v−1α > 0 and (α, α) 6= (β, β). Recall that (α, β) < 0. Since β and
γ may be exchanged, we can assume that (β, β) 6= (α, α) 6= (γ, γ) and (α, γ) < 0,
(α, β) < 0, and (β, γ) = 0. This, however, is impossible in a finite root system.
Indeed, if (β, β) = 2 and (α, α) = 2d with d = 2 or d = 3, then z := α+ β + γ is a
root. Moreover, this root satisfies (z, α) = 0 and (z, β) = (z, γ) ≤ 0 by Lemma A.1.
This yields the contradiction (z, z) ≤ 0. Similarly, one obtains a contradiction if β
is long and α is short by considering 2α+ β + γ. �

Lemma 3.8 and repeated application of Lemma A.4 imply the following Corollary.

Corollary A.5. Let w ∈ W and assume that β1, . . . , βm ∈ Φ+ satisfy

l(sβi
sβi−1

· · · sβ1
w) = l(w) − i

for all i = 1, . . . ,m. Assume, moreover, that there exist i, j ∈ {1, . . . ,m}, i 6= j,
such that (βi, βj) 6= 0. Then there exist γ1, . . . , γm ∈ Φ+ such that

l(sγi
sγi−1

· · · sγ1w) =l(w) − i for all i ∈ {1, . . . ,m},

sγm
sγm−1

· · · sγ1w =sβm
sβm−1

· · · sβ1
w,

and (γ1, γ2) 6= 0.
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