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ON THE COMPLEMENT OF THE RICHARDSON ORBIT

KARIN BAUR AND LUTZ HILLE

Abstract. We consider parabolic subgroups of a general algebraic group over
an algebraically closed field k whose Levi part has exactly t factors. By a
classical theorem of Richardson, the nilradical of a parabolic subgroup P has
an open dense P -orbit. In the complement to this dense orbit, there are
infinitely many orbits as soon as the number t of factors in the Levi part is
≥ 6. In this paper, we describe the irreducible components of the complement.
In particular, we show that there are at most t − 1 irreducible components.
We are also able to determine their codimensions.

Contents

1. Introduction and notations 1

2. Components via rank conditions 5

2.1. Line diagrams 5

2.2. From line diagrams to the nilradical 6

2.3. The varieties Zij 7

3. Components via tableaux 11

3.1. The Young tableaux T (µ, d) 11

3.2. The Young tableaux T (i, j) 13

4. The irreducible components of Z 15

5. An application 16

References 18

1. Introduction and notations

Let P be a parabolic subgroup of a reductive algebraic groupG over an algebraically
closed field k. Let p be its Lie algebra and let p = l⊕ n be the Levi decomposition
of p, i.e. n is the nilpotent radical of p. A classical result of Richardson [R] says
that P has an open dense orbit in the nilradical. We will call this P -orbit the
Richardson orbit for P . However, in general there are infinitely many P -orbits in
n.

For classical G, the cases where there are finitely many P -orbits in n have been
classified in [HR1]. Also, the P -action on the derived Lie algebras of n have been
studied in a series of papers, and the cases with finitely many orbits have been
classified, cf. [BrH1], [BrH2], [BrH3], [BrHR].
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2 BAUR AND HILLE

If G is a general linear group, G = GLn, then the parabolic subgroup P can be
described by the lengths of the blocks in the Levi factor: Write P = LN where L
is a Levi factor and N is the unipotent radical of P . Then we can assume that L
consists of matrices which have non-zero entries in square blocks on the diagonal.
Similarly, the Levi factor l of p consists of the n×n-matrices with non-zero entries
lying in squares of size di × di (i = 1, . . . , t) on the diagonal and n are the matrices
which only have non-zero entries above and to the right of these square blocks.

Let t be the number of such blocks and d1, . . . , dt the lengths of them,
∑

di = n
(with di > 0 for all i). So d is a composition of n. We will call such a d = (d1, . . . , dt)
a dimension vector. We write P (d) for the corresponding parabolic subgroup and
n(d) for the nilpotent radical of P (d), the Richardson orbit of P (d) is denoted by
O(d). Its partition will be λ(d). Once d is fixed, we will often just use P , n and
λ if there is no ambiguity. Recall that the nilpotent GLn-orbits are parametrised
by partitions of n. We will use C(µ) to denote the nilpotent GLn-orbit for the
partition µ (µ a partition of n). And we will usually denote P -orbits in n by a
calligraphic O, i.e. we will write O or O(µ) if µ is the partition of the nilpotency
class of the P -orbit.

Now, the nilradical n is a disjoint union of the intersections n∩C(µ) of the nilradical
with all nilpotent GLn-orbits. By Richardsons result, n ∩ C(λ) = O(λ) is a single
P -orbit. In particular, the Richardson orbit consists exactly of the elements of the
nilpotency class λ. However, for µ ≤ λ, the intersection n∩C(µ) might be reducible
(cf. Proposition 3.3).

In the case where n is the nilradical of a Borel subalgebra of the Lie algebra of a
simple algebraic group G, Spaltenstein has first studied the varieties n ∩ (G · e) for
G · e a nilpotent orbit under the adjoint action ([S]). In [GHR], the authors study
the action of a Borel subgroup B of a simple algebraic group on the closure n∩C(µ)
for the subregular nilpotency class C(µ) and characterize the cases where B has
only finitely many orbits under the adjoint action.

The main goal of this article is to describe the irreducible components of the com-
plement Z := n \ O(d) of the Richardson orbit in n. They occur in intersections
n ∩ C(µ) for certain partitions µ = µ(i, j) ≤ λ.

We have two descriptions of the irreducible components of Z. On one hand, we give
rank conditions on the matrices of n, on the other hand, we use tableaux T (i, j)
for certain (i, j) with 1 ≤ i < j ≤ t and associate irreducible components n(T (i, j))
of the intersections n ∩ C(µ(i, j)) to them. Before we can state the two results we
now introduce the necessary notation.

Let d = (d1, . . . , dt) be a dimension vector, n the nilradical of the corresponding
parabolic subalgebra. For A ∈ n and 1 ≤ i, j ≤ t we write Aij to describe the
matrix formed by taking the entries of A lying in the rectangle formed by rows
d1 + · · · + di−1 + 1 up to d1 + · · · + di and columns d1 + · · · + dj−1 + 1 up to
d1+ · · ·+dj and with zeroes everywhere else. For i ≥ j, this is just the zero matrix.
Figure 1 shows the blocks Aij for d = (2, 4, 7).

We set A[i, j] to be the matrix formed by the (Akl)i≤k≤j,i≤l≤j , i.e. by the rectangles
right to and below of Aii and left to and above of Ajj . For instance, A[i, i] is just
Aii and A[1, t] has the same entries as A. More generally, A[ij] is a square matrix
of size (di + · · ·+ dj)× (di + · · ·+ dj) with Aii, . . . , Ajj on its diagonal.

We are now ready to explain the rank conditions. For the rest of this section, we
will always assume that a pair (i, j) satisfies 1 ≤ i < j ≤ t. We write X(d) for an
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Figure 1. The block decomposition of the matrix A for d = (2, 4, 7)

element of O(d). For k ≥ 1 define

rkij := rk(X(d)[i, j] k)

κ(i, j) := 1 +#{l | i < l < j, dl ≥ min(di, dj)} .

Observe that the numbers rkij are independent of the choice of an element of the
Richardson orbit. With this, we can define two subsets of n as our candidates for
irreducible components of Z.

Definition 1.1. Let d = (d1, . . . , dt) be a dimension vector and n the nilradical of
the parabolic subgroup P of GLn. We set

Zk
ij := {A ∈ n | rkA[ij]k < rkij}

Zij := Z
κ(i,j)
ij

to be the elements A of n for which the rank of kth power of the matrix A[ij] is
defective, respectively the A for which the rank of the κ(i, j)th power is defective.

To any dimension vector d = (d1, . . . , dt) we associate subsets Γ(d) and Λ(d) of the
set {(i, j) | 1 ≤ i < j ≤ t}. In Section 2 we will show that the complement Z of the
open dense orbit is the union of the sets Zij for (i, j) ∈ Λ(d).

Γ(d) := {(i, j) | dl < min(di, dj) or dl > max(di, dj) ∀ i < l < j} ,

Λ(d) := {(i, j) ∈ Γ(d) | di = dj} ∪

{(i, j) ∈ Γ(d) | di 6= dj and

(i) dk ≤ min(di, dj) or dk ≥ max(di, dj) ∀ k
(ii) dk 6= dj for k < i
(iii) dk 6= di for k > j







,

Let us describe the latter in words: For (i, j) to be in Λ(d), we require that the
dl with i < l < j are smaller than the minimum of di and dj or larger than the
maximum of them. Furthermore, the dk have to be smaller or larger than the
minimum min(di, dj) resp. the maximum max(di, dj) (for all k) and, if di 6= dj ,
then di is different from dj+1, . . . , dt and dj is different from d1, d2, . . . , di−1. In
general, Γ(d) is different from Λ(d) as we illustrate now.

Example 1.2. (a) If d = (1, 3, 4, 2) then Γ(d) = {(1, 2), (2, 3), (3, 4), (2, 4), (1, 4)}
and Λ(d) = {(2, 3), (2, 4), (1, 4)}.

(b) For d = (1, 2, 3, 2), Γ(d) = {(1, 2), (2, 3), (3, 4), (2, 4)}, Λ(d) = {(1, 2), (2, 4)}.



4 BAUR AND HILLE

(c) If d = (d1, . . . , dt) is increasing or decreasing, then
Γ(d) = Λ(d) = {(1, 2), (2, 3), . . . , (t− 1, t)}.

(d) The fourth example will be our running example throughout the paper: If
d = (7, 5, 2, 3, 5, 1, 2, 6, 5) then we have Γ(d) = {(i, i+ 1) | 1 ≤ i ≤ 8}
∪ {(1, 8), (2, 4), (2, 5), (3, 6), (3, 7), (4, 6), (4, 7), (5, 7), (5, 8), (5, 9), (7, 9)} and
Λ(d) = {(1, 8), (2, 5), (3, 7), (5, 9)}.

We claim that the irreducible components of Z = n \ O(d) are the Zij with (i, j)
from the parameter set Λ(d):

Theorem. (Theorem 4.1) Let d = (d1, . . . , dt) be a composition of n, λ = λ(d) the
partition of the Richardson orbit corresponding to d. Then

Z =
⋃

(i,j)∈Λ(d)

Zij

is the decomposition of Z into irreducible components.

For the second description of the irreducible components we let T (d) be the unique
Young tableau obtained by filling the Young diagram of λ with d1 ones, d2 twos,
etc. (for details, we refer to Subsection 3.1). Now for each pair (i, j) we write
s(i, j) for the last row of T (d) containing i and j and we let T (i, j) be the tableau
obtained from T (d) by removing the box containing the number j from row s(i, j)
and inserting it at the next possible position in order to obtain another tableau.
The tableau T (i, j) corresponds to an irreducible component of the intersection
of n with a nilpotent GLn-orbit as is explained in Section 3 (Proposition 3.3).
We write n(T (i, j)) ⊆ n for the irreducible component in n ∩ C(µ(i, j) of tableau
T (i, j). We claim that they correspond to irreducible components of Z exactly for
the (i, j) ∈ Λ(d).

Theorem. (Corollary 4.4) Let d = (d1, . . . , dt) be a dimension vector, λ = λ(d)
the partition of the Richardson orbit corresponding to d. Then

Z =
⋃

(i,j)∈Λ(d)

n(T (i, j))

is the decomposition of Z into irreducible components.

As a consequence, we obtain that Z has at most t− 1 irreducible components (cf.
Corollary 4.2) and we can describe their codimensions in n (Corollary 4.3). To be
more precise, if d is increasing or decreasing or if all the di are different, then Z has
t − 1 irreducible components. In particular, this applies to the Borel case where
d = (1, . . . , 1). An example with t = 9 and where we only have four irreducible
components is our running example, see Example 3.8.

Note that the techniques we use are similar to the ones of [BaH] where we describe
the complement to the generic orbit in a representation space of a directed quiver
of type At. However, the indexing sets are different and cannot be derived from
each other.

The paper is organised as follows: in Section 2 we explain how to obtain the rank
conditions. We first describe line diagrams associated to a composition d of n. Line
diagrams will be used to describe elements of the corresponding nilradical n. In
Subsection 2.3 we prove that the elements of Λ(d) give the irreducible components.
For this, we show that if (i, j) does not belong to Γ(d) then the variety Zij is
contained in a union of Zksls for a subset of elements (ks, ls) of Γ(d) (Lemma 2.11).
Next, if (i, j) is in Γ(d) \ Λ(d), then we can find (k, l) ∈ Λ(d) such that Zij is
contained in Zkl (Corollary 2.13). In Section 3, we recall Young diagrams and their
fillings. Then we consider Young tableaux associated to a composition d of n and
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a nilpotency class µ ≤ λ(d). In a next step, we consider Young tableaux T (i, j)
associated to the elements of the parameter set Λ(d). To each of these tableaux
T (i, j) we associate an irreducible variety n(T (i, j)): It is defined as the irreducible
component in n ∩ C(µ(i, j)) corresponding to the tableau T (i, j). The n(T (i, j))
are known to be irreducible by work of the second author, [H]. By showing that
n(T (i, j)) is equal to Zij from Section 2 for elements (i, j) of the parameter set Λ(d)
we can complete the description of the complement of the Richardson orbit in n

into irreducible components.

2. Components via rank conditions

2.1. Line diagrams. Let d = (d1, . . . , dt) be a dimension vector for a parabolic
subalgebra of gln, n the corresponding nilradical. We recall a pictorial way to rep-
resent elements of n and in particular, to obtain an element of the Richardson orbit
O(d). This can be found in [BrHRR, Section 2] and in [Ba, Section 3]. We draw
t top-adjusted columns of d1, d2, . . . , dt vertices. The vertices are connected using
edges between vertices of different columns. If two vertices lie on the same height
and there is no third vertex between them on that height then we call the two
vertices neighbors. The complete line diagram for d, LR(d), is the diagram with
horizontal edges between all neighbored vertices (as the second and the third dia-
gram of Example 2.1). A line diagram L(d) for d is a diagram with arbitrary edges
between different columns (possibly with branching). A collection of connected
edges is called a chain of edges (see the example below). If no branching occurs in
a line diagram then a chain consisting of l edges connects l + 1 vertices. In that
case we can define the length of a chain: The length of a chain of edges in a line
diagram (without branching) is the number of edges the chain contains. A chain of
length 0 is a vertex that is not connected to any other vertex.

In Example 2.1, we show two complete and a branched line diagram for d =
(3, 1, 2, 4) resp. for d = (3, 1, 6, 1, 2, 5, 4).

Example 2.1. a) A line diagram with branching and the complete line diagram
LR(d) for d = (3, 1, 2, 4) are here. To the right of the latter we give the lengths of
the chains in the diagram.

b) Now we consider our running example d = (7, 5, 2, 3, 5, 1, 2, 6, 5). Its complete
line diagram LR(d) is here, with the lengths of the chains to the right.

0

8
7
5
4
4
1

We will see in the next subsection that the line diagram LR(d) determines an
element of the Richardson orbit of n. In general, line diagrams give rise to elements
of the nilradical of nilpotency class smaller than λ = λ(d) with respect to the
Bruhat order.

Any line diagram (complete or not) gives rise to an element A of n:

The sizes of the columns of a line diagram correspond to the sizes of the square
blocks in the Levi factor of p. An edge between column i and column j (with i < j)
of the diagram corresponds to a non-zero entry in the block Aij of the matrix A. A
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chain of two joint edges between three columns i0 < i1 < i2 gives rise to a non-zero
entry in block A2

(i0,i2)
of the matrix A2, etc. This can be made explicit, as we

explain in the next subsection.

2.2. From line diagrams to the nilradical. The elements of the nilradical n
for the dimension vector d = (d1, . . . , dt) are nilpotent endomorphisms of kn, for
n =

∑

di. In particular, if we write e1, . . . , en for a basis of kn, then the elements
of n are sums

∑

i<j aijEij for some aij ∈ k where the elementary matrix Eij sends
ej to ei.

We now describe a map associating an element of the nilradical to a given line
diagram. We view the vertices of a line diagram L(d) as labelled by the numbers
1, 2, . . . , n, starting at the top left vertex, with 1, 2, . . . , d1 in the first column,
d1 + 1, . . . , d1 + d2 in the second column, etc. Now if two vertices i and j (with
i < j) are joint by an edge, we associate to this edge the matrix Eij .

We denote an edge between two vertices i and j (i < j ≤ n) of the diagram by
e(i, j). Then we associate to an edge e(i, j) of L(d) the elementary matrix Eij ∈ n.
This can be extended to a map from the set of line diagrams for d to the nilradical
n by linearity.

For later use, we denote this map by Φ:

Φ : {line diagrams for d} −→ n, L(d) 7→
∑

e(i,j)∈L(d)

Eij .

If L(d) is a line diagram without branching, then the partition of the image under
Φ of the line diagram L(d) can be read off from it directly as follows: if L(d) has s

chains of lengths c1, c2, . . . , cs (all ≥ 0). Then
∑s

j=1(cj + 1) =
∑t

i=1 di = n.

Remark 2.2. Let L(d) be a line diagram without branching and let c1, . . . , cs be
the lengths of the chains of L(d). Let µ = (µ1, . . . , µs) be the partition obtained by
ordering the numbers cj + 1 by size. Then µ is the partition of Φ(L(d)).

In particular, Φ(LR(d)) is an element of the Richardson orbit O(d) since the par-
tition of LR(d) is just the dual of the dimension vector d and this is equal to λ(d)
(cf. Section 3 in [Ba]). If L(d) is any other line diagram for d L(d) (withouth
branching), with lengths of chains c1, . . . , cs and µi := ci + 1 then we always have
∑k

j=1 µj ≤
∑k

j=1 λj(d) and so the partition of Φ(L(d)) is smaller than or equal to

the partition of Φ(LR(d)) under the Bruhat order.

To summarize, we have the following:

Lemma 2.3. Let d be a dimension vector. Then, Φ(L(d)) is an element of the
nilradical n of nilpotency class µ ≤ λ(d). In other words, Φ(L(d)) lies in n∩C(µ).

Example 2.4. Let d = (3, 1, 2, 4) as in Example 2.1 (a). The lengths of the chains
of LR(d) are 3, 2, 1, 0, the Richardson orbit has partition (4, 3, 2, 1). We compute
the matrix of the complete line diagram LR(d), and the powers of this matrix. Let
X(d) := Φ(LR(d)). Then X(d) and its powers are

X(d) = E14 + E45 + E57 + E26 + E68 + E39

X(d)2 = E15 + E47 + E28

X(d)3 = E17

X(d)k = 0 for k > 3.

Recall that we have defined the varieties Zk
ij by comparing the ranks of certain sub-

matrices of elements in the nilradical n to the corresponding rank rkij of a Richardson
element, cf. Definition 1.1. We thus need to be able to compute the rank of the
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submatrix X(d)[ij] of an element X(d) of the Richardson orbit O(d) and of its
powers. For this, we can use the line diagram LR(d). Let X(d) =

∑

e(k,l)∈LR(d)Ekl

be the Richardson element given by LR(d).

To compute the rank rk1t of X(d)k, it is enough to count the chains of length ≥ k
in the line diagram LR(d). Analogously, to find the rank rkij of the kth power of

the submatrix X(d)[ij], one has to count the chains of length ≥ k between the ith
and jth column in LR(d):

Let 1 ≤ k < l ≤ n be such that the image Φ(e(k, l)) of the edge e(k, l) is in X(d)[ij].
That means we are considering edges e(k, l) starting in some column i1 ≥ i and
ending in some column i2 ≤ j. Thus, in computing rkij , we really consider the kth

power of the matrix which arises from columns i, i + 1, . . . , j of LR(d). We now
introduce the notation to refer to the subdiagram consisting of these columns. We
denote by LR(d)[ij] subdiagram of LR(d) of all vertices from the ith up to the jth
column and of all edges starting strictly after the (i − 1)st column resp. ending
strictly before the (j+1)st column. In other words, we remove columns 1, 2, . . . , i−1
and columns j + 1, . . . , t together with all edges incident with them.

With this notation we have

(2.1) rkij = #{chains in LR(d)[ij] with at least k edges}

for 1 ≤ i < j ≤ t, k ≥ 1.

Similarly, if L(d) is a line diagram for d, we write L(d)[ij] to denote the subdiagram
of L(d) of rows i to j.

Example 2.5. The subdiagram LR(d)[47] for d = (7, 5, 2, 3, 5, 1, 2, 6, 5) of the dia-
gram LR(d) from (b) of Example 2.1 is shown here (dotted lines and empty circles
are thought to be removed):

2.3. The varieties Zij. As explained earlier, we want to show that the irreducible
components of Z are indexed by the parameter set Λ(d). With this in mind, we
now discuss the properties of the varieties Zk

ij . We will prove that for l 6= κ(i, j),

Z l
ij is either empty or contained in Zij or in the union Zij0 ∪Zi0j for some i0 ≤ j0.

Later in this section we will see that not all (i, j) with 1 ≤ i < j ≤ t are needed to
describe the complement Z.

The following notations will be useful:

d<[ij] := |{l | i < l < j, dl < min(di, dj)}|

d≥[ij] := |{l | i < l < j, dl ≥ min(di, dj)}| .

If d = (7, 5, 2, 3, 5, 1, 2, 6, 5), then d<[25] = 2, d<[26] = ∅ and d≥[26] = 3.

Remark 2.6. Observe that

κ(i, j) = 1 +#d≥[ij]

= j − i−#d<[ij] .

In particular, κ(i, j) = j − i if and only if d<[ij] = ∅. Figure 2 illustrates this.

Lemma 2.7. Let d = (d1, . . . , dt) be a dimension vector and 1 ≤ i < j ≤ t. Then
for k > 0 we have

Zk
ij = ∅ if and only if k > j − i .
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i j

Figure 2. Our running example has d<[26] = ∅, so κ(2, 6) = 4

Proof. One has rkij = rkX(d)[ij]k > 0 exactly for k ≤ j − i and 0 ∈ Zk
ij if and only

if rkij > 0. �

It remains to consider the cases where l is smaller than κ(i, j) or when l lies between
κ(i, j) and j − i. This is covered by the next two statements.

Lemma 2.8. For 1 ≤ l < κ(i, j) the following holds:

Z l
ij ( Zij .

Proof. We may assume di ≤ dj . For any B ∈ n the rank of B[ij]l is independent
of the order of di, di+1, . . . , dj : incomputing the rank, we need to know the number
of (independent) chains of length l in the line diagram of b[ij]. Hence we may
reorder di, . . . , dj to obtain ds1 , . . . , dsj−i+1

with dsk ≤ dsk+1
for k = 1, . . . , j − i.

One computes rlij = rkX(d)[ij]l as the sum
∑j−i−l

k=0 di+k.

Let A belong to Z l
ij for some l < κ(i, j). Thus rkA[ij]l < rlij = rkX(d)[ij]l.

But then also the rank of A[ij]k is smaller than rkij for k = l + 1, . . . , κ(i, j). In
particular, A ∈ Zij . The inequality is clear. �

Let A belong to Z l
ij for some l < κ(i, j). Thus rkA[ij]l < rlij . But then also the

rank of A[ij]k is smaller than rkij for k = l+ 1, . . . , κ(i, j). In particular, A ∈ Zij .

Lemma 2.9. For κ(i, j) < l ≤ j−i the following holds: there exist i0 ≤ j0 ∈ d<[ij],
di0 , dj0 < min(di, dj) maximal, such that

Z l
ij ⊆ Zij0 ∪ Zi0j .

Proof. We first observe that for elements of the Richardson orbit, the rank rlij is

rlij =

j−l
∑

i0=i

max
i0 < · · · < il ≤ j

min{di0 , . . . , dil}

(1) Let us first consider the case where d<[ij] only has one element, say d<[ij] =
{i0}, see Figure 3). Then κ(i, j) = j − i− 1 and so l = j − i.

For A ∈ n to be an element of Z l
ij , the rank of A[ij]l is smaller than rlij . Since di0

is minimal among all di, . . . , dj , this implies rkA[ii0]
l < rlij or rkA[i0j]

l < rlij and
we are done.

(2) The case where d<[ij] has at least two elements only needs a slight modification
of the argument. Take i0, j0 from d<[ij] with di0 , dj0 maximal with i0 being the
smallest among these indices, j0 the largest one (we do not distinguish between the
two possibilities di0 = dj0 and di0 6= dj0), see Figure 4. With a similar reasoning as
in part (1) of the proof, A then lies in Zi,j0 or in Zi0,j .

�
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ji i0

Figure 3. The case |d<[ij]| = 1: in the running example, we have
d<[47] = {6} and κ(i, j) = 2

ji0i j0

Figure 4. The case i0 6= j0 ∈ d<[ij]: our running example has
d<[48] = {6, 7} and so κ(4, 8) = 2

Lemma 2.10. The complement Z decomposes as follows:

Z = ∪1≤i<j≤tZij = ∪ij ∪k≥1 Z
k
ij .

Proof. The inclusion ⊆ of the second equality is clear. To obtain the inclusion
⊇, one uses Lemmata 2.7, 2.8 and 2.9. Consider the first equality: by definition,
A ∈ Z if and only if A /∈ O(d). The latter is the case if and only if there exist
1 ≤ i < j ≤ t, k ≤ j− i, such that A ∈ Zk

ij : to see this, one uses the formula for the

dimension of the stabilizer of A ∈ gln, see [KP]. This formula uses the dimensions
of the kernels of the maps Ak, k ≥ 1. The stabilizer of A has dimension 0 if and
only if A is an element of O(d). �

It now remains to see that the (i, j) ∈ Λ(d) are enough to describe the irreducible
components of Z. In a first step (Lemma 2.11), we start with (i, j) /∈ Γ(d) and show
that in that case Zij is contained in a union of Zkl’s such that the corresponding
(k, l) all lie in Γ(d).

Then we consider an element (i, j) of Γ(d) \ Λ(d) and show that we can find (k, l)
∈ Λ(d) with Zij ⊆ Zkl (Lemma 2.12 and Corollary 2.13). As always, we assume
that 1 ≤ i < j ≤ t and 1 ≤ k < l ≤ t.

Lemma 2.11. Assume that (i, j) does not belong to Γ(d). Then there exists Γ′(d) ⊆
Γ(d) such that

Zij ⊆
⋃

(k,l)∈Γ′(d)

Zkl .

Proof. It is enough to show that we can find an l, i < l < j, with min(di, dj) ≤
dl ≤ max(di, dj), such that

Zij ⊆ Zil ∪ Zlj .
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By iterating this, we will eventually end up with a subset Γ′(d) ⊂ Γ(d) as in the
statement of the lemma.

So choose an l, 1 < l < t, with min(di, dj) ≤ dl ≤ max(di, dj) (such an l exists since

(i, j) /∈ Γ(d)). Take A ∈ Zij arbitrary. By assumption, A[ij]κ(i,j) is defective, i.e.

rkA[ij]κ(i,j) < r
κ(i,j)
ij . Since dl ≥ di, dj , the defectiveness is inherited from A[il] or

from A[lj] and A ∈ Zil or A ∈ Zlj accordingly. �

Let us remark that when removing an edge of a chain of LR(d) in the proof above,
we ensured that the matrix A has a zero entry at the corresponding position. In
general, the diagram of a matrix in Zil resp. in Zlj has more non-zero entries than
the ones obtained after removing one edge from LR(d): this is illustrated by the
dashed lines in Figure 5.

ji l ji l

Figure 5. Examples for A ∈ Zil resp. for A ∈ Zlj for d =
(7, 5, 2, 3, 5, 1, 2, 6, 5), with i = 3, j = 8 and l = 6

The following lemma states that for any (i, j) from Γ(d) \ Λ(d) there exists (k, l)
from Λ(d) with k ≤ i < j ≤ l such that Zij ⊆ Zkl.

Lemma 2.12. Assume that (i, j) ∈ Γ(d) \ Λ(d). Then one of the following holds:

there exists k > j with Zij ⊆ Zik

or there exists l < i with Zij ⊆ Zlj.

Proof. First observe that di 6= dj since (i, j) belongs to Λ(d) otherwise. Without
loss of generality, we assume di < dj . We have three cases to consider:

(i) There is k1 ∈ {1, . . . , i− 1} ∪ {j + 1, . . . , t} with di < dk1
< dj .

(ii) There exists k2 < i with dk2
= dj .

(iii) There exists k3 > j with dk2
= di.

jk2 i k3k1k1

Figure 6. For the running example, (7, 8) is in Γ(d) \Λ(d), as for
all i, dmi

violates the assumptions on Λ(d)

The three cases are illustrated in Figure 6: if (i, j) ∈ Γ(d) but not in Λ(d) then one
of the following has to occur: there has to be a k with dk inside the shaded area or
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with dk lying on the same height as dj (if k < i) resp. on the same height as di (if
k > j).

Case (i) with k1 > j: Among the k1 > j with di < dk1
< dj choose one with

dk1
−di minimal, and k1 minimal (i.e. as close to j as possible). Note that we have

κ(i, j) ≤ κ(i, k1). Now A ∈ Zij means that A[ij]κ(i,j) is defective. Since di < dk1
,

this defectiveness has to be inherited from A[i, k1], i.e. rkA[i, k1]
κ(i,k1) < r

κ(i,k1)
i,k1

and so, Zij ⊆ Zi,k1
.

Case (i) with k1 < i: here, we choose k1 accordingly to be such that dj − dk1
is

minimal and k1 < i maximal among those (i.e. as close to i as possible). One
checks that κ(i, j) ≤ κ(k1, j). Similarly as before, one gets Zij ⊆ Zk1,j .

Case (ii) : Among the k2 < i with dk2
= dj , choose the maximal one (i.e. the

one closest to i). We have κ(i, j) ≤ κ(k2, j) and we get Zij ⊆ Zk2,j . Case (iii) is
completely analogous to case (ii). �

Observe that (k2, j) and (i, k3) from cases (ii) and (iii) above are elements of Λ(d).

Corollary 2.13. For any (i, j) ∈ Γ(d) \ Λ(d) there exists (k, l) ∈ Λ(d) such that

Zij ⊆ Zkl .

Proof. Without loss of generality, we can assume di < dj . By the observation after
the proof of Lemma 2.12, we are done if there exists k′ < i with dk′ = dj or k′′ > j
with dk′′ = di. Using similar arguments, one sees that if there exist k′ < i and
k′′ > j with di < dk′ = dk′′ < dj then (k′, k′′) ∈ Λ(d) and Zij ⊆ Zk′,k′′ . Thus,
assume that there exists k ∈ {1, . . . , i − 1} ∪ {j + 1, . . . , t} with di < dk < dj and
such that there is no k′ < i with dk′ = dj and no k′′ > j with dk′′ = di.
If k > j, we choose k such that dk − di is minimal and take the minimal k > j
among these (i.e. k is as close to j as possible). There are two possibilities:
Either we have dk′ > dk for all k′ < i. Then, (k′, k) ∈ Λ(d) and one checks that
Zij ⊆ Zk′,k.
Or there exists is k′ < i with di < dk′ < dk. In that case, among the k′ < i with
this property, we choose one with dk −dk′ minimal and such that k′ < i is maximal
(i.e. k′ is as close to i as possible). Again, we get (k′, k) ∈ Λ(d) and Zij ⊆ Zk′,k.
The case k < i is analogous. �

3. Components via tableaux

Let d = (d1, . . . , dt) be a composition of n and O(d) be the corresponding Richard-
son orbit in n, let λ = λ(d) be the partition of the Richardson orbit. The second
description of the irreducible components of Z = n \ O(d) uses partitions µij , for
(i, j) ∈ Λ(d) and tableaux corresponding to them. Observe that λ1 = t, that λ2 is
the number of di ≥ 2 appearing in d, λ3 = #{di | di ≥ 3}, and so on.

Let us introduce the necessary notation. If λ = λ1 ≥ λ2 ≥ · · · ≥ λs ≥ 1 is a
partition of n we will also use λ to denote the Young diagram of shape λ. It has s
rows, with λ1 boxes in the top row, λ2 boxes in the second row, etc., up to λs boxes
in the last row. That means that we view Young diagrams as a number of right
adjusted rows of boxes, attached to the top left corner, and decreasing in length
from top to bottom. A standard reference for this is the book [F] by Fulton.

3.1. The Young tableaux T (µ, d). Let µ ≤ λ(d) be a partition of n (unless
mentioned otherwise, we will always deal with partitions of n).

Definition 3.1. We define a Young tableau of shape µ and of dimension vector
d to be a filling of the Young diagram of µ with d1 ones, d2 twos, etc. We write
T (µ, d) for the set of all Young tableaux of shape µ and for d.
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Recall that the rules for fillings of a Young diagram are that the numbers in a row
strictly increase from left to right and that the numbers in a column weakly increase
from top to bottom. In general, there might be several Young tableaux of a given
shape for a given d. There is exactly one Young tableau of shape λ = λ(d) and for
d, so T (λ(d), d) only has one element. To abbreviate, we will just call it T (d). The
entries of the boxes of its first row are 1, 2, . . . , t.

Example 3.2. The partition of the composition d = (7, 5, 2, 3, 5, 1, 2, 6, 5) of 36 is
λ(d) = (9, 8, 6, 5, 5, 2, 1). The partition µ = (9, 8, 6, 5, 4, 3, 1) is smaller than λ(d)
and T (µ, d) consists of one element T (µ, d). We include T (d) and T (µ, d) here.

T (d) 1

1

1

1

1

1

1

3

3

2

2

2

2

2

4

4

4

5

5

5

5

5 6

7

7

8

8

8

8

8

8

9

9

9

9

9

T (µ, d) 1

1

1

1

1

1

1

3

3

2

2

2

2

2

4

4

4

5

5

5

5

5 6

7

7

8

8

8

8

8

8

9

9

9

9

9

In order to understand the irreducible components of the complement Z = n\O(d),
we have to consider the intersections n ∩ C(µ) for µ < λ(d). Each irreducible
component of Z corresponds to an irreducible component in such an intersection.
Here, we can use a result of the second author (cf. Section 4.2 of [H]). First,
one observes that the irreducible components of n ∩ C(µ) are given by sequences

µ1, . . . , µt where µi is a partition of
∑i

j dj where µt = µ and such that 0 ≤ µi+1
j −

µi
j ≤ 1 (for all j, for 1 ≤ i < t). And the latter correspond to tableaux of shape µ

with di entries i, i.e. the elements of T (µ, d) in our notation.

Proposition 3.3. Let µ ≤ λ(d) be a partition of n. Then the irreducible compo-
nents of n ∩ C(µ) are in natural bijection with with the tableaux in T (µ, d).

Proof. This is Satz 4.2.8 in [H]. �

Example 3.4. Let d = (d1, . . . , dt) be a dimension vector and λ = λ(d). We know
that n ∩ C(λ) = O(d) is the Richardson orbit. On the other hand, T (λ, d) = T (d)
has exactly one tableau. We now explain how to relate the complete line diagram
LR(d) to the tableau T (d). The lengths of the chains in LR(d) are the entries of
the partition of λ and hence give the shape of T (d). The filling of T (d) can now
be obtained from LR(d) by labelling each vertex of the i-th column in LR(d) by an
i. These numbers are then copied row by row, from left to right into the Young
diagram of shape λ to get T (d).

label columns

1

1

3

3

2

2

2

4

4

4

4 copy into T (d)
1

1

3

32

2

2

4

4

4

4

From this connection between the line diagram LR(d) and T (d) one deduces the
following useful observation. Every pair (i, j) with 1 ≤ i < j ≤ t determines a
unique row of T (d) namely the last row of T (d) containing i and j. Such a row
always exists as the first row just consists of the boxes with numbers 1, 2, 3, . . . , t.
We denote this row by s(i, j).

Lemma 3.5. The number of boxes between i and j in row s(i, j) of T (d) is equal
to κ(i, j)− 1.
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Proposition 3.3 describes the irreducible components of the intersections n ∩ C(µ)
for µ ≤ λ: They are given by the Young tableaux in T (µ, d), i.e. by all possible
fillings of the diagram µ by the numbers given by d.

Clearly, not all irreducible components of the different intersections n ∩ C(µ) give
rise to an irreducible component of Z. If µ2 ≤ µ1 and Ti ∈ T (µi, d) are tableaux
such that T2 can be obtained from T1 by moving down boxes successively, then the
irreducible component corresponding to T2 is already contained in the irreducible
component corresponding to T1 and thus does not give rise to a new irreducible
component of the complement Z of the Richardson orbit. This is in particular the
case, if T1 is obtained from the tableau T (d) of the Richardson orbit by moving
down a single box and T2 is a degeneration of T1 (obtained by moving down boxes
from T1). Thus, the only candidates for irreducible components are the ones given
by tableaux which can be obtained from T (d) by moving down a single box to the
closest possible row. We call such a degeneration a minimal movement.

3.2. The Young tableaux T (i, j). To describe minimal movements, we now de-
fine certain tableaux T (i, j).

Definition 3.6. The tableau T (i, j) is the tableau obtained from T (d) by removing
the box containing the number j from row s(i, j) and inserting it in the nearest row
in order to obtain another tableau. In other words: Among the possible rows where
this box could be inserted, we choose the one that is closest to row s(i, j). We denote
the partition of the resulting tableau T (i, j) by µ(i, j).

Definition 3.7. For a tableau T (i, j) we define n(T (i, j)) ⊆ n to be the irreducible
component of n ∩ C(µ(i, j)) whose tableau is T (i, j).

We claim that n(T (i, j)) gives rise to an irreducible component of the complement
Z exactly when (i, j) belongs to the parameter set Λ(d).

For completeness, we recall the definition of a the tableau T for a an irreducible
component in C(µ) ∩ n. Consider a maximal flag V0 ⊂ V1 ⊂ . . . ⊂ Vt of vector
spaces that is stabilized by P (d). Take any matrix A in the open subset of an
irreducible component of C(µ) ∩ n where A restricted to Vi has constant Jordan
type. Then the Young diagram of A|Vi

is the partition obtained from T by deleting
all boxes with entries i+ 1, . . . , t. So the subdiagramm consisting of all boxes with
entries at most i measures the generic Jordan type of A restricted to the subspace
Vi. In particular, the equation defining the component corresponding to T (i, j)
can involve only equations in the entries of A[1, j]. Even stronger, we will see in
Lemma 3.9 that the equations involve only entries in A[i, j] for (i, j) in Γ(d).

To prepare for Lemma 3.9 we observe that for (1, t) ∈ Γ(d) the component n(T (1, t))
coincides with C(µ(1, t))∩ n since there is only one tableau for the partition µ(1, t)
with dimension vector d. Consequently, this component is defined by the equation

rkA[1, t]κ(1,t) < r
κ(1,t)
1,t defining C(µ(1, t)) ∩ n inside n.

By definition, the tableau T (i, j) is obtained from T (d) through a minimal move-
ment. Its partition µ(i, j) is clearly smaller than λ = λ(d) as the lengths of the
rows of a tableau are the parts of the corresponding partition. In particular, these
lengths form a decreasing sequence of positive numbers. Thus, moving down a box
from a row of length k to a lower row of length at most k− 2 results in a partition
which is smaller than the original partition. Note, however, that different elements
(i, j) and (k, l) can lead to the same partition µ(i, j) = µ(k, l), e.g. µ(2, 5) = µ(5, 9)
in Example 3.8 below.
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Example 3.8. Let d = (7, 5, 2, 3, 5, 1, 2, 6, 5) be a dimension vector, n = 36. To
illustrate the construction of T (i, j) we compute these tableaux for all (i, j) ∈ Λ(d) =
{(1, 8), (2, 5), (3, 7), (5, 9)}. They are presented in Figure 7. In the picture showing
the line diagram LR(d) we have indicated the connections between the columns i
and j for all (i, j) ∈ Λ(d) by shaded areas.

T (d) 1

1

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

5

5

5

5

5 6

7

7

8

8

8

8

8

8

9

9

9

9

9

T (1, 8)
1

1

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

5

5

5

5

5 6

7

7

8

8

8

8

8

8

9

9

9

9

9

T (2, 5) 1

1

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

5

5

5

5

5 6

7

7

8

8

8

8

8

8

9

9

9

9

9

T (3, 7) 1

1

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

5

5

5

5

5 6

7

7

8

8

8

8

8

8

9

9

9

9

9

T (5, 9) 1

1

1

1

1

1

1

2

2

2

2

2

3

3

4

4

4

5

5

5

5

5 6

7

7

8

8

8

8

8

8

9

9

9

9

9

LR(d)

Figure 7. The tableaux T (d), T (i, j) and LR(d) for Example 3.8.

Lemma 3.9. Let d = (d1, . . . , dt) be a dimension vector, (i, j) ∈ Γ(d). Then

n(T (i, j)) = Zij .

In particular, Zi,j is irreducible.

Proof. We show that n(T (i, j)) = {A ∈ n | rkA[ij]κ(i,j) < r
κ(i,j)
ij } = Zij . The

second equation holds as it is the definition of Zij .
We first prove the lemma for a special case: replace d1, . . . , di−1 and dj+1, . . . , dt by
zero, thus we get a new shorter dimension vector e := (di, . . . , dj) = (e1, . . . , ej−i+1).
Note that (i, j) is in Γ(d) precisely when (1, j− i+1) is in Γ(e). Also note that the
codimension of Zi,j for d coincides with the codimension of Z1,j−i+1 for e, the first
variety is just a product of the latter with an affine space. Consequently, Zi,j for d
is irreducible precisely when Z1,j−i+1 is irreducible for e. Finally, we compare the
component n(T (i, j)) for d with the unique component n(T (1, j − i+ 1)) for e that
coincides with n∩C(µ(1, j−i+1)) for e. Again, both are just given by the equation

rkA[i, j]κ(i,j) < r
κ(i,j)
i,j for d, respectively rkA[1, j− i+1]κ(1,j−i+1) < r

κ(1,j−i+1)
1,j−i+1 for

e. This finally shows that both varieties coincide.
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�

4. The irreducible components of Z

We are now ready to finish the proof of the descriptions of the decomposition of
the complement Z = n \O(d) of the Richardson orbit into irreducible components.
Again, let d = (d1, . . . , dt) be a dimension vector, λ = λ(d) the partition of the
Richardson orbit and (i, j) a pair with 1 ≤ i < j ≤ t. Recall that the T (i, j) are
elements of T (µ(i, j), d). By Proposition 3.3 the T (i, j) correspond to irreducible
components of n ∩ C(µ(i, j)). So the corresponding n(T (i, j)) are irreducible.

Theorem 4.1.

Z =
⋃

(i,j)∈Λ(d)

Zij

is the decomposition of Z into irreducible components.

Proof. We know that Z is the union of all Zij over all (i, j) with 1 ≤ i < j ≤ t from
Lemma 2.10. By Lemma 2.11,

Z =
⋃

(k,l)∈Γ′(d)

Zkl

for some subset Γ′(d) ⊆ Γ(d). And finally, Corollary 2.13 tells us that for each (k, l)
in this subset Γ′(d), there exists (i, j) ∈ Λ(d) such that Zkl is contained in Zij .

It remains to see that Zij ( Zkl and Zij ) Zkl for all (i, j) 6= (k, l) ∈ Λ(d). This
follows as for (i, j) 6= (k, l) from Λ(d), one can find matrices A in Zij which do not
satisfy the conditions for Zkl and vice versa: Assume (i, j) 6= (k, l) ∈ Λ(d). From
the line diagram LR(d) we remove one edge of the lowest chain connecting columns
i and j, connecting the resulting edges if possible with lower rows to the left and
right (as with the dashed lines in Figure 5) produces an element A of Zij (under
Φ) with A /∈ Zkl. It is completely analogous to find B ∈ Zkl, B /∈ Zij

The irreducibility follows now since Zij = n(T (i, j)) (Lemma 3.9). �

Corollary 4.2. The complement Z = n \ O(d) has at most t− 1 irreducible com-
ponents.

Proof. If d is increasing or decreasing then clearly, Λ(d) has size t − 1, cf. Exam-
ple 1.2. The same is true if the di are all different. In all other cases there are
di = dj with |j − i| > 1, and such that there exists an index i < l < j with dl 6= di.
If dl > di is minimal among these, then neither (i, l) nor (l, j) belong to Λ(d) and
thus Λ(d) has at most t − 2 elements. The same is true for dl < di, dl maximal
among such. �

Furthermore, we can describe the codimension of Zij in n as follows. Recall that
T (i, j) is obtained from T (d) through a minimal movement (see Subsection 3.1).
Let c(i, j) be the number of rows the box with label j moves down, i.e. j goes
from row s(i, j) to row s(i, j) + c(i, j). It is known that for every row a box in a
Young diagram is moved down, the dimension of the GLn-orbit of the corresponding
nilpotent elements decreases by two. This can be seen using the formula for the
dimension of the stabilizer from [KP]. The change in dimension in the nilradical
is half of this. Thus, the resulting n(T (i, j)) then has codimension c(i, j) in the
nilradical n and we get:

Corollary 4.3. For (i, j) ∈ Γ(d), Zij has codimension c(i, j) in n.

The second description of the irreducible components of Z is now an immediate
consequence of Theorem 4.1 and Lemma 3.9:
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Corollary 4.4.

Z =
⋃

(i,j)∈Λ(d)

n(T (i, j))

is the decomposition of Z into irreducible components.

5. An application

In the last section, we illustrate our work on an example. We work with G = GL5

and consider the parabolic subgroups of different dimension vectors.

A) If d = (1, 1, 1, 1, 1) then P = B is a Borel subgroup. Note that Λ(d) = Γ(d) =
{(1, 2), (2, 3), (3, 4), (4, 5)}, so Theorem 4.1 describes the complement Z as the union

Z = Z12 ∪ Z23 ∪ Z34 ∪ Z45

of four irreducible components.

In this example, we have that Aij = aij are all 1×1-matrices. The Richardson orbit
is the intersection of the regular nilpotent orbit with the set of upper triangular
matrices in gl5. The regular nilpotent elements are the nilpotent 5 × 5-matrices
whose 4th power is non-zero. So the Richardson orbit consists of the strictly upper
triangular matrices A = (aij)ij with

A[1, 5]4 =













0 0 0 0 a12a23a34a45
0 0 0 0

0 0 0
0 0

0













with a12a23a34a45 6= 0.

For A to be in the complement Z of the Richardson orbit, the product a12a23a34a45
has to be zero, i.e. A[1, 5]4 = 0. Then clearly, A ∈ Zi,i+1 for an i ≤ 4 as Zi,i+1 is
the set of matrices with Ai,i+1 = 0. Thus, A lies in one of the components Zij with
(i, j) ∈ Λ(d).

B) If d = (1, 1, 1, 2) then Λ(d) = Γ(d) = {(1, 2), (2, 3), (3, 4)}. The Richardson orbit
is determined by the conditions rkA[12] = rkA[23] = rkA[34] = 1, rkA[13]2 =
rk[24]2 = 1, rk[14]3 = 1 (for A ∈ n). For A to be in the complement, one of these
ranks has to be zero. By Theorem 4.1, we should have

Z = Z12 ∪ Z23 ∪ Z34

where the component Z12 consists of the matrices A ∈ n with a12 = 0, the compo-
nent Z23 of the A with a23 = 0 and Z34 of the A with a34 = a35 = 0. Let us first
compute A2, and A3 for A ∈ n (we omit the zero entries in the opposite nilradical):

A =













0 a12 a13 a14 a15
0 a23 a24 a25

0 a34 a35
0 0

0













A2 =













0 0 a12a23 a12a24 + a13a34 a12a25 + a13a35
0 0 a23a34 a23a35

0 0 0
0 0

0












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A3 =













0 0 0 a12a23a34 a12a23a35
0 0 0 0

0 0 0
0 0

0













Then we see that A[14]3 = A3 = 0 if and only if a12a23a34 = 0 and a12a23a35 = 0.
Thus, A clearly belongs to one of the three components described above. Now,
A[13]2 = 0 if and only if a12a23 = 0 as this is the only non-zero entry of A[13]2.
Similarly, A[24]2 = 0 if and only if a23a34 = 0 and a23a35 = 0. In all cases, A is
contained in one of the three components. The case of d = (2, 1, 1, 1) is completely
analogous.

C) The first interesting case appears for d = (1, 1, 2, 1). Here, Λ(d) = {(1, 2), (2, 4)} 6=
Γ(d). So we expect two irreducible components, Z12 as the matrices A with a12 = 0
and Z24 as the A with rkA[24]2 = 0. We first compute A, A2 and A3 for A ∈ n:

A =













0 a12 a13 a14 a15
0 a23 a24 a25

0 0 a35
0 a45

0













A2 =













0 0 a12a23 a12a24 a12a25 + a13a35 + a14a45
0 0 a23a35 a24a45

0 0 0
0 0

0













A3 =













0 0 0 0 a12(a23a34 + a24a45)
0 0 0 0

0 0 0
0 0

0













The elements A of the Richardson orbit have non-zero a12, and rkA[23] = rkA[34] =
1, rkA[13]2 = rkA[24]2 = rkA[14]3 = rkA3 = 1. Clearly, when a12 = 0, then
A ∈ Z12. And when rkA[23] rkA[34] = 0, A belongs to Z24. Now A[14]3 = 0 if and
only if a12 = 0 or a23a34 + a24a34 = 0 which is equivalent to A ∈ Z12 or A ∈ Z24,
respectively. Furthermore, A[13]2 = 0 if and only if a12a23 = 0 and a12a24 = 0,
which is equivalent to A ∈ Z12 ∪ Z24. The matrices A satisfying A[24]2 are by
definition Z24. The case d = (1, 2, 1, 1) is analogous.

D) Let d = (2, 2, 1), with Λ(d) = Γ(d) = {(1, 2), (2, 3)}, the complement should be
Z12 ∪ Z23. The Richardson orbit is given as the matrices A with rkA[12] = 2 and
rkA[23] = rkA[13]2 = 1. We compute A and A2:

A =













0 0 a13 a14 a15
0 a23 a24 a25

0 0 a35
0 a45

0













A2 =













0 0 0 0 a13a35 + a14a45
0 0 0 a23a35 + a24a45

0 0 0
0 0

0













If A is a matrix with A[13]2 = 0 then if a35 = a45 = 0, A is an element of Z23. So
let rkA[23] 6= 0. Solving the two equations a13a35+ a14a45 = 0 a23a35+ a24a45 = 0
then shows that the rank of A[12] is one. Thus Z13 is already contained in Z12.
The case d = (1, 2, 2) is analogous.

E) The second interesting case is d = (2, 1, 2), with Λ(d) = {(1, 3)} and Γ(d) =
{(1, 3), (1, 2), (2, 3)}. Here we only obtain one irreducible component in the com-
plement! The Richardson orbit is defined by rkA[13]2 = rkA2 = 1 and rkA = 3:
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The dimension of its stabilizer has to be equal to the dimension of the Levi factor.
Using the formulae from [KP] then gives this description of the Richardson orbit.
For the complement, we are looking at matrices A with rkA[12] = 0 or rkA[23] = 0
or rkA[13]2 = 0. If A satisfies A[12] = 0 then A2 is also zero, so A ∈ Z13 by
definition. Similarly, matrices with A[23] = 0 square to zero and hence lie in Z13.

F) The case d = (1, 3, 1) with Λ(d) = {(1, 3)}, so again, we only have one compo-
nent in the complement of the open dense orbit. For matrices of the Richardson
orbit, we have rkA[12] = rkA[23] = rkA[13]2 = 1. For the complement, we take
matrices where one of these ranks is zero. If it is rkA[12] = 0 or rkA[23] = 0 then
clearly, A[13]2 = 0, so A ∈ Z13. The cases d = (3, 1, 1) and d = (1, 1, 3) behave
similarly as d = (2, 1, 1, 1) and d = (1, 1, 1, 2). We omit them here.

G) The remaining cases are d = (4, 1), d = (1, 4). Here, the complement to the
Richardson orbit is given by A[12] = 0, i.e. it is the zero matrix.
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