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TILTING BUNDLES ON RATIONAL SURFACES AND

QUASI-HEREDITARY ALGEBRAS

LUTZ HILLE, MARKUS PERLING

Abstract. Let X be any rational surface. We construct a tilting bundle
T on X. Moreover, we can choose T in such way that its endomorphism
algebra is quasi-hereditary. In particular, the bounded derived category of
coherent sheaves on X is equivalent to the bounded derived category of finitely
generated modules over a finite dimensional quasi-hereditary algebra A. The
construction starts with a full exceptional sequence of line bundles on X and
uses universal extensions. If X is any smooth projective variety with a full
exceptional sequence of coherent sheaves (or vector bundles, or even complexes
of coherent sheaves) with all groups Extq for q ≥ 2 vanishing, then X also
admits a tilting sheaf (tilting bundle, or tilting complex, respectively) obtained
as a universal extension of this exceptional sequence.
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1. Introduction

Tilting bundles were first constructed by Beilinson on the projective n–space P
n

[Be]. Later Kapranov obtained tilting bundles on homogeneous spaces [Kap]. More-
over, many further examples are known for certain monoidal transformations and
projective space bundles [Or]. More recently, tilting bundles consisting of line bun-
dles were investigated by the authors [HP2] and exceptional sequences on stacky
toric varieties were constructed by Kawamata [Kaw]. It is also known that varieties
admitting a tilting bundle satisfy very strict conditions, its Grothendieck group of
coherent sheaves is a finitely generated free abelian group and the Hodge diamond
is concentrated on the diagonal (in characteristic zero) [BH]. However, we are still
far from a classification of smooth (projective) algebraic varieties admitting a tilting
bundle. The present note is a step forward in this direction for algebraic surfaces.
The converse of our main result, if X is a surface admitting a tilting bundle then it
is rational, is still an open problem. It can be shown for many surfaces that tilting
bundles cannot exist using the classification (see e.g. [BPV]). However, there exist
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surfaces of general type that have all the strong properties we need: the canonical
divisor has no global sections, the Grothendieck group of coherent sheaves is finitely
generated and free, and the Hodge diamond is concentrated on the diagonal.

In this note X is a rational surface over an algebraically closed field k. We assume
it is smooth and projective. Some results are valid also for any smooth projective
algebraic variety, however our main interest concerns rational surfaces. The princi-
pal aim is to show, that any rational surface admits a tilting bundle. The proof is
constructive and goes in two main steps. First, we construct on any rational surface
a full exceptional sequence of line bundles (Section 2). This already follows from
our previous work [HP2]. Moreover we show, that in such a sequences there are
no Ext2–groups between the line bundles. In a second step, we define a universal
(co)extension for such sequences, and obtain a tilting bundle. The last step, if we
use only universal extensions, coincide with a construction known in representation
theory of so-called quasi-hereditary algebras, and is called standardization in [DR].

Since our methods work in a much broader context, we try to be as general as
possible. In fact, the last step, the universal extension can be defined for any
exceptional sequence of complexes (objects in the corresponding derived category).
However, we obtain a tilting complex only if all higher (that is Ext2 and higher
groups) do vanish. Otherwise, we obtain at least a partial result (Theorem 1.4).
We start with our main results and then explain the strategy of the proof together
with the content of this work. A vector bundle T on an algebraic variety X is
called tilting bundle if Extq(T, T ) = 0 for all q > 0 and T generates the derived
category of coherent sheaves on X in the following sense: the smallest triangulated
subcategory of the bounded derived category Db(X) of coherent sheaves on X
containing all direct summands of T is already Db(X) itself. For further notions of
generators we refer to [BV].

Theorem 1.1. Any smooth, projective rational surface X admits a tilting bundle
T on X.

This, in particular, yields an equivalence RHom(T,−) between the bounded derived
category Db(X) of coherent sheaves on X and the bounded derived category Db(A)
of right modules over the finite dimensional endomorphism algebra A of T . In fact
we will see in Section 6 that we have many choices to construct a tilting bundle
T . First, we choose a sequence of blow ups and a standard augmentation (see
Definition 2) to obtain a full exceptional sequence of line bundles on X . Then we
can either use universal extensions or universal coextensions (we have again a choice
for any Ext1–block, see the final part in section 4) to obtain a tilting bundle. So it
is desirable and possible to construct tilting bundles with further good properties.
One possibility is to keep the ranks of the indecomposable direct summands of
T small. This needs some detailed understanding of the non-vanishing extension
groups and is based on our previous work [HP2]. The other way is to obtain an
endomorphism algebra with good homological properties. One natural choice is
to construct a tilting bundle T so that A = End(T ) becomes a so–called quasi–
hereditary algebra. Quasi–hereditary algebras have very nice and well–understood
homological properties (see [DR] for a short introduction). In particular, there is the
subcategory F(∆) of A–modules with a ∆–filtration, an additive subcategory closed
under kernels and extensions. Such a choice is also of interest by a second reason.
If we deal with exceptional sequences, where the higher Ext–groups do not vanish,
we obtain a functor between the derived categories that is not an equivalence.
Anyway, using quasi–hereditary algebras we can at least obtain an equivalence
between certain subcategories (Theorem 1.3 and Theorem 1.4).
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Theorem 1.2. Let X be a rational surface then there exists a tilting bundle T on
X with quasi-hereditary endomorphism algebra.

Let ε be any set of objects in an abelian category. Then we define the subcategory
F(ε) as the full subcategory of objects M admitting a filtration F 0 = 0 ⊆ F 1 ⊆
F 2 ⊆, . . . ⊆ F l = M for some integer l, so that for any 0 < i < l the quotient
F i+1/F i is isomorphic to one object in ε. We consider this category in the particular
case that ε is an exceptional sequence. If the abelian category is the category
of finitely generated modules over a finite dimensional algebra A, an exceptional
sequence is also called a set of standardizable modules (see [DR]). This particular
case we consider in detail in Section 5. If we restrict, over a quasi-hereditary
algebra, to the set of standard modules ∆(1), . . . ,∆(t) then these modules form
an exceptional sequence and the category of modules with a ∆–filtration is also
called the category of good modules over A. This category plays an important
role under the equivalence above. In fact, we can obtain an equivalence between
the subcategory of coherent sheaves F(ε) admitting a filtration by line bundles in
the exceptional sequence with the well understood category of good modules over
the quasi-hereditary endomorphism algebra. At this point it is desirable to have
small ranks (thus line bundles) for the objects in ε to keep the category F(ε) large.
In fact the next result is also constructive, however it needs more background
that we develop only in the last section to formulate it in this way. Also note,
that we can take any full exceptional sequence of line bundles obtained from the
Hirzebruch surface by any sequence of standard augmentations (see Definition 2)
in the following theorem. The tilting bundle T is then obtained as a universal
extension of the line bundles in the exceptional sequence.

Theorem 1.3. On any rational surface X there exists a full exceptional sequence
of line bundles ε = (L1, . . . , Lt) and a tilting bundle T , so that under the equivalence
RHom(T,−) between the derived categories above the category of coherent sheaves
F(ε) with a filtration by the line bundles in ε is equivalent to the category F(∆) of
good A-modules. Moreover, the functor RHom(T,−) maps Li to ∆(i).

Now it is desirable to have similar constructions for other varieties, in particular, in
any dimension. We assume X is any smooth projective (or at least complete) alge-
braic variety and ε is an exceptional sequence. Then the theorem above generalizes
to this situation. For we need to construct a quasi-hereditary algebra A. It appears
as the endomorphism algebra of the universal extension E of ε. We discuss this
construction in detail in Section 4. Here we only need to know, that there exists
such a quasi-hereditary algebra A. The construction is completely parallel to the
construction in [DR] for modules over finite dimensional algebras. Note that we do
not need a full sequence anymore, however the category F(ε) can be rather small.

Theorem 1.4. If ε is an exceptional sequence of sheaves on X, then there exists
a quasi-hereditary algebra A so that the the category F(ε) of coherent sheaves with
an ε–filtration is equivalent to the category F(∆) of ∆–good A–modules.

Note that the equivalence in the theorem does, in general, not induce an equiva-
lence between the corresponding derived categories. To obtain an equivalence of the
derived categories it is necessary (and also sufficient, as the next theorem shows)
that all higher extension groups vanish. Consequently, we eventually consider ex-
ceptional sequences ε with vanishing higher extension groups. For those sequences
we can even construct a tilting object. In fact, the exceptional sequence we start
with need not to be a sequence of sheaves, it can even consist of complexes of
sheaves. However, for complexes we can not expect to get an equivalence for the
filtered objects as above. For any exceptional sequence of complexes of coherent
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sheaves ε we define D(ε) to be the smallest full triangulated subcategory of Db(X)
containing all objects in ε. In case ε consists of coherent sheaves the category F(ǫ)
also generates D(ε).

Theorem 1.5. Let ε = (E1, . . . , Et) be any exceptional sequence of objects in the
bounded derived category of coherent sheaves on a smooth projective algebraic X
with Extq(Ei, Ej) = 0 for all q < 0 and all q ≥ 2. Then the full triangulated
subcategory D(ε) generated by ε admits a tilting object T , that is obtained as a
universal extension by objects in ε. If the exceptional sequence ε consists of sheaves,
then the tilting object is a sheaf as well, and if the exceptional sequence consists of
vector bundles then T is also a vector bundle. Finally, if ε is full then T is a tilting
object in Db(X).

Outline The reader just interested in a construction of a tilting bundle on a rational
surface only needs to read Section 2 to Section 4. The construction gets more
technical if one wants to construct tilting bundles with further properties or wants
to obtain the more general results for any projective algebraic varietyX . In fact the
results in Section 3 and Section 4 have a nice interpretation in terms of differential
graded algebras (DG-algebras). Given a DG-algebra as an endomorphism algebra
of an exceptional sequence with only degree zero and degree one terms (that is
Extq = 0 for ≥ 2) then it is derived equivalent to an ordinary algebra (that is the
endomorphism algebra of the universal extension).

In Section 2 we start with the construction of an exceptional sequence on any
rational surface and prove some further vanishing results. In section 3 we consider
universal (co)extensions of pairs of objects. Since we need to use the construction
recursively, it is not sufficient to consider only exceptionl pairs. In Section 4 we
define universal extensions of exceptional sequences and prove Theorem 1.1. In
Section 5 we proceed with quasi-hereditary algebras. In fact we need this notion to
define modules with good filtration. Moreover, using this notion we also get results
for exceptional sequences on varieties of higher dimension. Finally, in Section 6 we
construct one tilting bundle explicitly.

2. Exceptional sequences of line bundles on rational surfaces

In this section we construct on any rational surface a full exceptional sequence of
line bundles ε = (L1, . . . , Lt) that satisfies Ext2(Li, Lj) = 0 for all 1 ≤ i, j ≤ t.
The construction is based on a form of a pull back of an exceptional sequence
of line bundles for any blow up (Theorem 2.4), called standard augmentation in
[HP2]. The main steps of the construction have already been proved in [HP2],
Section 5. We only recall the main augmentation lemma and prove the vanishing
of the higher Ext-groups. Since any rational surface, not isomorphic to P

2, admits
a blow down to a Hirzebruch surface in finitely many steps we can use induction
on blow ups. For P

2 such a full exceptional sequence is (O,O(1),O(2)). For the
Hirzebruch surfaces we construct an infinite sequence of these sequences (where
we can assume without loss of generality that L1 is the trivial line bundles O).
Denote by Fm the mth Hirzebruch surface. It admits a natural projection to P

1

with fiber P1 and a natural projection to P
2 with exceptional fiber a prime divisor

E. Then there is a prime divisor Q linear equivalent to mP + E. Computing the
self-intersection numbers we obtain P 2 = 0, E2 = −m, and Q2 = (mP +E)2 = m.
Moreover, the Picard group of Fm is freely generated by O(P ) and O(Q) (or O(E),
respectively), so any line bundle is isomorphic to O(αP +βQ). The computation of
the cohomology groups uses standard formulas in toric geometry (see [F], Section
3.5). The concrete results for the Hirzebruch surfaces can also be found in [H2].
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Proposition 2.1. Any Hirzebruch surface Fm admits a full exceptional sequence
of line bundles ε = (O,O(P ),O(Q+ aP ),O(Q+ (a+1)P )), where this sequence is
strong precisely when a ≥ 0.

Proof. From the standard formula for cohomology of line bundles on toric varieties
(see [F] or [O]) follows for β = −1, or β ≥ 0 and α ≥ −1

H1(Fm,O(αP + βQ)) = 0

For line bundles in the the sequence above, the second cohomology group vanishes,
since for any β ≥ −1

H2(Fm,O(αP + βQ)) = 0.

Consequently, we have on any Hirzebruch surface an infinite family of exceptional
sequences and an infinite family of strongly exceptional sequences. It remains to
show that both are full. To show this claim it is sufficient that one exceptional
sequence in the family is full: consider the exact sequence

0 −→ O −→ O(P )2 −→ O(2P ) −→ 0.

Then we can recursively show that (O,O(P ),O(Q + aP ),O(Q + (a + 1)P )) is
full, precisely when (O,O(P ),O(Q + (a− 1)P ),O(Q+ aP )) is full, just tensor the
sequence above with O(Q + (a− 1)P ).

It is well-known that the sequence above is full for P1×P
1 and the first Hirzebruch

surface F1. Moreover, using the projection Fm −→ P
1 and results in [Or] we see

that ε is full on any Hirzebruch surface. ✷

Remark. On a Hirzebruch surface with m ≥ 3 the set of sequences in Theorem
2.1 is already the complete classification of (strongly) exceptional sequences of line
bundles (up to a twist with a line bundle). For m = 0, 1, and 2 there is a finite
number of further sequences (see [H2]).

In the next step we consider blow ups X̃ −→ X in one point x ∈ X with excep-
tional divisor E ⊂ X . If L is a line bundle on X , then we denote the pull back

of L under a blow up of X with the same letter. Since Hq(X ; L̃) = Hq(X ;L)
for any line bundle L on X this notation is convenient and does not lead to any
confusion if we compute extension groups. Let X be any surface with an excep-
tional sequence ε = (L1, . . . , Lt) of line bundles on X . Then we obtain a sequence

ε̃ := (L1(E), . . . , Li−1(E), Li, Li(E), Li+1, . . . , Lt) on the blow up X̃.

Definition. Given an exceptional sequence ε on X . We call the sequence ε̃(i) :=
(L1(E), . . . , Li−1(E), Li, Li(E), Li+1, . . . , Lt) on the blow up a standard augmen-

tation of ε (at position i).

Note that we can choose any i to obtain a standard augmentation, so for any blow
up we have t choices to produce a new sequence. We will show that ε̃ is exceptional
for each i = 1, . . . , t. If ε is strongly exceptional then in some cases the new sequence
is even strongly exceptional. In this case, there must exist a section in Hom(Lj , Lk)
for all j ≤ i and all k ≥ i that does not vanish in x (see [HP2], Theorem 5.8 and
the proof). However, in general the new sequence is only exceptional. The more
detailed analysis of when ε̃ is strongly exceptional is needed only for the concrete
construction of the tilting bundle T . So we leave this part to the end in Section 6.

Proposition 2.2. Let X be a surface with an exceptional sequence ε. Then ε̃ is an

exceptional sequence on the blow up X̃ in one point. If ε is full then ε̃ is also full.
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Proof. We prove first the vanishing result. For we have to show that on X̃

Extq(Lj , Lk(E)) = 0 = Extq(Lj , Lk) for all q and j > k.

The second vanishing is obvious, since it coincides with the same group on X . It
remains to show the first vanishing. Using Extq(Lj , Lk(E)) = Hq(L−1

j ⊗ Lk(E))

it is sufficient to show the following lemma. Moreover, also Extq(Li(E), Li) =
Hq(O(−E)) = 0 for q = 0, 1, 2 follows from the exact sequence in the proof of the
following lemma.

Finally, we need to show that ε̃ is full, provided ε is. For we consider the semi–

orthogonal decomposition of Db(X̃) with respect to Db(X) and OE(−1) (see [Or]).
Obviously, by assumption, the line bundles Li generate Db(X). Moreover, the
bundles Li(E) and Li generate OE(−1). Then in the last step, the subcategory
generated by Lj(E) and OE(−1) contains Lj . Consequently, ε̃ generates Db(X)

and OE(−1), thus also Db(X̃). ✷

Lemma 2.3. If L is a line bundle on a surface Y with Hq(Y ;L) = 0 for all q and
E ≃ P

1 is a (−1)–curve on Y so that L |E is trivial then Hq(Y ;L(E)) = 0 for all
q.

Note that this is exactly our situation. If we consider the pull back of a line bundle
L to a blow up, then the restriction of L to the exceptional divisor is trivial and
the exceptional divisor is a (−1)–curve.

Proof. We consider the short exact sequence

0 −→ O
X̃

−→ O
X̃
(E) −→ OP1(−1) −→ 0

and tensor it with L. Then in the corresponding long exact sequence the following
groups vanish: Hq(Y ;L) for all q and Hq(P1, L |E (−1)) = Hq(P1,OP1(−1)) for all
q. Consequently, the claim follows. ✷

Our main theorem in this section states that any rational surface X admits a full
exceptional sequence of line bundles, so that all the groups Ext2(Li, Lj) vanish.
Such a sequence can be obtained by recursive standard augmentation from an
exceptional sequence on a Hirzebruch surface.

Theorem 2.4. Let X be any rational surface. Then X admits full exceptional
sequences of line bundles, obtained from a full exceptional sequence of line bundles
on a Hirzbruch surface by applying any standard augmentation in each step of the
blow up. For such a sequence the groups Ext2 between any two members of the
sequence vanish.

We will see in the next two sections that any exceptional sequence with this property
defines a tilting bundle. So, using the universal extension (to define in the next
sections) we have proved Theorem 1.1.

Remark. Note that we defined standard augmentation in [HP2] in a more general
sense and allowed to blow up several times in one step. This gave us even more
flexibility in constructing exceptional sequences. However, if we perform a standard
augmentation only for the blow up of one point (as we do in this note) then it is
always admissible in the sense of [HP2], Section 5, and it is sufficient to prove our
results.

Proof. Since we have already shown the existence of a full exceptional sequence
for any recursive blow up of a Hirzebruch surface (Proposition 2.2) we get a full
exceptional sequence on any rational surface X . Then, using only recursive stan-
dard augmentations, we obtain a full exceptional sequence ε = (L1, . . . , Lt) with
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Ext2(Li, Lj) = 0 for all 1 ≤ i, j ≤ t: just apply the proof of Lemma 2.3 also to the
exact sequence

0 −→ O
X̃
(E) −→ O

X̃
−→ OP1 −→ 0.

Then ε̃ has no Ext2 between any members of the sequence since H2(X̃ ;L(−E)) = 0
and thus also Ext2(Li(E), Lj) = 0 = Ext2(Li, Lj). ✷

For later use in Section 6 we also need to prove some further vanishing results. In
particular, we need to compute the cohomology of O(Ri − Rj), where Ri and Rj

are both divisors (not prime in general) of self-intersection −1. So let X be any
rational surface, not P

2 and fix a sequence of blow downs of a (−1)–curve in Xi

step by step to a Hirzebruch surface

X = Xt −→ Xt−1 −→ . . . −→ X1 −→ X0 = Fm.

Note that the rank of the Grothendieck group of Fm is 4 so for X it is just t + 4,
where t+4 is also the length of the full exceptional sequence. In each Xi (for i > 0)
we a distinguished (−1)-curve Ei blown down under Xi −→ Xi−1. We define Ri

to be the divisor on X obtained as the pull back of Ei to X . Then we need to
compute Hq(X,O(Ri −Rj)).

Definition. We say Ri is above Rj if Ei is blown down to a point Pi ∈ Xi−1

that is on the inverse image of Ej in Xi−1. Then we also write i ≻ j.

If Ri is above Rj then i must be larger than j,

Lemma 2.5. The cohomology groups H1(X,O(Ri −Rj)) and H0(X,O(Ri −Rj))
both equal k precisely when i ≻ j, otherwise both vanish. The second cohomology
group H2(X,O(Ri −Rj)) is always zero.

Proof. First note that H2(X,O(Ri−Rj)) = H2(Xi,O(Ei−Rj)) vanishes, since
H2(Xj ,O(−Rj)) = H2(Xi,O(−Rj)) is zero and we have Proposition 2.2. Further
note that by Riemann-Roch the Euler characteristic of O(Ei − Rj) is zero, thus
H0(X,O(Ri −Rj)) and H1(X,O(Ri −Rj)) have the same dimension.
We start to compute H0(X,O(Ri−Rj)). If Ri is above Rj then Ri−Rj is effective,
thus H0(X,O(Ri − Rj)) 6= 0. On the other hand H0(X,O(Ri)) = H0(Xi,O(Ei))
is one-dimensional and the dimension of H0(X,O(Ri − Rj)) can not exceed the
dimension of H0(X,O(Ri). A similar argument applies to H0(X,O(Ri − Rj)) for
Ri not above Rj , then we obtain H0(X,O(Ri −Rj)) = 0. ✷

3. Universal extension of pairs

In this section we study universal extensions of objects in an abelian category. We
work with sheaves, however all the techniques developed here work whenever the
groups Ext1 are finite dimensional. The principal aim of this part is to show, that
any pair of objects with certain Ext–groups vanishing can be transformed, using
universal (co)extensions, in a pair with vanishing Ext1–group. Roughly spoken we
apply a certain partial mutation (in the sense of [Bo]) to such a pair and the first
extension group vanishes. However, the price we have to pay is, that we create
new homomorphisms between the new objects. In particular, whenever we have
a non-vanishing extension group we create, using universal extensions, additional
homomorphism in the opposite direction. Thus the result is no longer an exceptional
sequence. Even worse, the new object has nontrivial endomorphisms.

Definition. Let (E,F ) be a pair of coherent sheaves. Then we define the
universal extension E of E by F (respectively, the universal coextension F of F by
E) by the following extension

0 −→ F ⊗ Ext1(E,F )∗ −→ E −→ E −→ 0,
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respectively

0 −→ F −→ F −→ E ⊗ Ext1(E,F )) −→ 0.

If we consider the second exact sequence as a triangle in the derived category, the
boundary map is the canonical evaluation map Ext1(E,F )⊗E −→ F [1]. This map
induces, just by taking the adjoint, a canonical map E −→ Ext1(E,F )∗ ⊗ F [1].
The mapping cone over this map defines the first exact sequence. Thus, both
exact sequences are unique up to isomorphism. The first exact sequence can be
characterized by the following property: if we apply Hom (−, F ) in the long exact
sequence we get an induced map Hom(F, F ) ⊗ Ext1(E,F ) −→ Ext1(E,F ) that is
the Yoneda product. This map is surjective, since id⊗ξ maps to ξ. In a similar
way one can characterize the second exact sequence. If we apply Hom (E,−) then
we get a surjective map Hom(E,E) ⊗ Ext1(E,F ) −→ Ext1(E,F ) that is just the
ordinary Yoneda product. The following lemma is formulated in more generality
than actually needed.

Lemma 3.1. a) Let (E,F ) be a pair of objects with Extq(F,E) = Extq(E,E) =
Extq(F, F ) = 0 for all q > 0. Then (E,F ) and (E,F ) satisfy Ext1(E,F ) =
0 = Extq(F ,E) and Ext1(E,F ) = 0 = Extq(F,E) for all q > 0. Moreover,
Ext1(E,E) = 0 = Ext1(F , F ).
b) If in addition we have Extq(E,F ) = 0 for some q ≥ 2 then Extq(E,F ) =
0 = Extq(F ,E) and Extq(F,E) = 0 = Extq(E,F ). Moreover, Extq(E,E) = 0 =
Extq(F , F ).

Roughly spoken we can replace any exceptional pair with only non-vanishing Hom
and Ext1 by a pair with only non-vanishing Hom . If we perform this universal
extension recursively we can replace any full exceptional sequence with vanishing
Extq for q > 1 by a tilting object (for the details see Section 4).

Proof. The proof is just a standard diagram chasing, we only prove the crucial
step for a universal extension. The proof is analogous for coextensions. Note that
the vanishing of Extq(E,F ) follows from the long exact sequence for Hom (−, F )
applied to the universal extension of F by E. We show that Ext1(F,E) van-
ishes. We apply Hom (−, F ) to the universal extension. Since the boundary map
Hom (F, F )⊗Ext1(E,F ) −→ Ext1(E,F ) is surjective and Ext1(F, F ) = 0 we obtain
Ext1(E,F ) = 0. To obtain Ext1(E,E) = 0 we apply Ext1(E,−) to the universal
extension. Since Ext1(E,E) = 0 by assumption and Ext1(E,F ) = 0 by the previ-
ous argument we obtain the desired vanishing. This finishes the proof of a) for the
universal extension.
To show b) we only need to apply Hom (−, F ) to the universal extension and get
the vanishing form the long exact sequence. For the second vanishing we apply
Extq(E,−) to the universal extension, as we did for q = 1 in a). ✷

Remark. Note that E, respectively F need not to be indecomposable. However,
the above vanishing result holds for any direct summand as well. If we deal with an
exceptional pair (E,F ), then there exists a unique indecomposable direct summand
E1 of E with dimHom (E1, E) = dimHom (E,E) = dimHom (E,E) = 1. This
allows later to distinguish certain indecomposable direct summands of our universal
(co)extension.

The following lemma is useful for a construction of a tilting bundle with small rank.
In fact we will show in Section 6 that we can on any rational surface construct full
exceptional sequences of line bundles with dimExt1(Li, Lj) ≤ 1 for all i, j (there
are at most one-dimensional extension groups).
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Lemma 3.2. Assume (E,F ) is a pair of coherent sheaves on X with dimExt1(E,F ) =
1, then the universal extension E is isomorphic to the universal coextension F .

Proof. In this case the end terms of the two defining short exact sequences
coincide. Any non-trivial element ξ ∈ Ext1(E,F ) = k defines the same middle
term. Since E and F are both unique up to isomorphism, they must be isomorphic.
✷

4. Universal extensions of exceptional sequences

In this section we start with an exceptional sequence and perform universal exten-
sion or coextensions recursively. We explain the construction for universal exten-
sions, for universal coextensions the construction is dual.

Definition. Let ε = (E1, . . . , Et) be any exceptional sequence, then we define
Ei(1) := Ei(2) := . . . := Ei(i) := Ei and Ei(j) to be the universal extension of
Ei(j − 1) by Ej for j > i. Thus we have exact sequences

0 −→ Ej ⊗ Ext1(Ei(j − 1), Ej)
∗ −→ Ei(j) −→ Ei(j − 1) −→ 0

for all t ≥ j > i (for i ≤ j the sequences are always trivial, since the first term
vanishes). Thus we have defined new objects Ei(t) for 1 ≤ i ≤ t that are not
necessarily indecomposable. We define Ei to be the unique indecomposable direct
summand of Ei(t) with the property that k = Hom(Ei(t), Ei) = Hom (Ei, Ei) and
denote by E the direct sum ⊕t

i=1Ei. We call E the universal extension of the
exceptional sequence ε and Ei the universal extension of Ei by Ei+1, . . . , Et.

In a dual way we define universal coextensions E and Ei (here we need to perform
recursive universal coextensions with Ei−1, . . . , E1 instead).

Remark. Note that we can also split the exceptional sequence into two subsets
and perform universal extensions in the first and universal coextensions in the
second subset.

Theorem 4.1. Let ε = (E1, . . . , Et) be an exceptional sequence, E := ⊕Ei the
direct sum of the elements in ε and E the direct sum of the objects Ei constructed
above. Then Ext1(E,E) = 0. If, moreover, Extq(E,E) = 0 for some q > 1 then
also Extq(E,E) = 0.

Proof. We first show Ext1(Ei(j), El) = 0 for all j ≥ l. Assume j = l then this
follows from Lemma 3.1, since

0 → Ej ⊗ Ext1(Ei(j − 1), Ej)
∗ → Ei(j) → Ei(j − 1) −→ 0

is a universal extension by Ej . Then use induction over j, the induction step just

follows from applying Ext1(−, El) to the defining exact sequence above.
As a consequence we obtain Ext1(Ei(t), Ej) = 0 for all 1 ≤ j ≤ t. Now we apply

Ext1(Ei(t),−) to the defining sequence for Ei(j) and obtain an exact sequence

Ext1(Ei(t), Ej)⊗Ext1(Ei(j−1), Ej)
∗ −→ Ext1(Ei(t), Ei(j)) −→ Ext1(Ei(t), Ei(j−1)).

The first and the last term are zero by induction, thus the middle term vanishes
for all j ≥ i, in particular, it vanishes for j = t. In a similar way we can, using
Extq(E,−), show the last claim. ✷

Theorem 4.2. Assume ε = (E1, . . . , Et) is a full exceptional sequence of sheaves
(or complexes of sheaves), E = ⊕t

i=1Ei, with Extq(E,E) = 0 for all q 6= 0, 1. Then

the universal extension E is a tilting sheaf (or tilting object).
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Proof. Using the defining exact sequences we see that E and E generate the
same subcategory in the derived category Db(X) (or the corresponding triangulated
category of the abelian category we work with). Moreover, Extq(E,E) = 0 for all
q 6= 0 by the previous result. ✷

sProof. (of Theorem 1.5) The tilting object is just the universal extension of the
exceptional sequence ε. ✷

Now we are interested in sequences where we can also perform both, universal
extensions and universal coextensions. To explain this we collect our objects into
Ext1–blocks. Let ε = (E1, . . . , Et) be an exceptional sequence.

Definition. We define a graph Γ(ε), called Ext-graph with vertices i for 1 ≤
i ≤ t (the indices of the objects in ε) and an edge between i and j, whenever
Ext1(Ei, Ej) or Ext1(Ej , Ei) does not vanish. Then an Ext–block consists of a
connected component in Γ(ε).

In this way we define certain subsets, for each subset we can choose either a universal
extension or a universal coextension. Note that we get different results only if at
least one subset consists of at least three elements or there are two-dimensional
extension groups.

In the last section we discuss in more detail how to choose an exceptional sequence
of line bundles on a rational surface X depending on the sequence of blow ups from
a Hirzebruch surface (or the projective plane). Then we also know precisely the
Ext1–blocks. We can use this to minimize the non-vanishing extension groups so
that E has a small rank.

5. Quasi-hereditary algebras

Let X be a rational surface, or even any algebraic variety, with a tilting sheaf
that is the universal extension of a full exceptional sequence (with all higher Ext–
groups vanishing) on X . Then we claim that the endomorphism algebra of this
sequence satisfies a well-understood and extensively studied property: it is quasi-
hereditary. Note that a quasi-hereditary algebra is an algebra with an order on
its primitive orthogonal idempotents (or equivalently on its isomorphism classes of
indecomposable projective modules). This order is just induced from the natural
order in the exceptional sequence we started with.

If we used universal coextensions then we get the dual notion of so-called ∇–
modules. If we use both, universal extensions in some Ext1–blocks and universal
coextensions in the remaining Ext1–blocks, then the endomorphism algebra is not
quasi-hereditary (except the blocks only consist of two members).

In this section we review some of the main properties on quasi-hereditary algebras.
In particular, we use the so-called standardization introduced by Dlab and Ringel
in [DR] to prove Theorem 1.2 and, more important, Theorem 1.4.

Let A be the endomorphism algebra of a sheaf T that is obtained as a univer-
sal extension of an exceptional sequence ε = (E1, . . . , Et) of sheaves on X . We
decompose T into indecomposable direct summands T = ⊕t

i=1T (i). Then the
natural order in ε defines an order on the indecomposable projective A-modules
P (i) := Hom(T, T (i)). Moreover, we define ∆(i) to be the quotient of P (i) by the
maximal submodule generated by any direct sum ⊕j<iP (j)a(j). This submodule is
a proper submodule.

Definition. The algebra A is called quasi-hereditary (with this order) if each
P (i) is in F(∆) (see [DR]).
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Remark. Note that our definition is slightly different to the one in [DR], since
an exceptional sequence of sheaves on a complete variety X has all the properties
of a standardizable set.

Theorem 5.1. Let ε = (E1, . . . , Et) be any exceptional sequence of sheaves and
T the sheaf obtained from ε by its universal extension. Then the endomorphism
algebra of T is quasi-hereditary with ∆–modules ∆(i) = Hom(T,Ei).

Proof. We need to show that any finitely generated projective A-module has
a filtration by the modules ∆(i) defined as a quotient of P (i). Note that the
recursive universal extensions provides us with such a filtration for the objects Ei

by induction: we consider the defining exact sequence (from the previous section)

0 −→ Ej ⊗ Ext1(Ei(j − 1), Ej)
∗ −→ Ei(j) −→ Ei(j − 1) −→ 0.

If we apply Hom (T,−) we obtain an exact sequence of A-modules

0 → Hom(T,Ej)⊗Ext1(Ei(j−1), Ej)
∗ → Hom(T,Ei(j)) → Hom(T,Ei(j−1)) → 0.

(it is exact, since Ext1(T,Ej) = 0). Thus, by induction over j the right A–module
Hom (T,Ei(t)) admits a filtration by the modules ∆(i). Now we use that F(∆) is
closed under direct summands (see e.g. the characterization in [DR], Theorem 1).
✷

Theorem 5.2. Let ε = (E1, . . . , Et) be a full exceptional sequence of sheaves and
T its universal extension. Then the functor Hom (T,−) induces an equivalence
between F(ε) and F(∆) mapping Ei to ∆(i).

Proof. Let F be any sheaf in F(ε). Then Ext1(T, F ) = 0 since Ext1(T,Ei) = 0
for all i. Using the exact sequences defining the filtration of F recursively, we get
a filtration of Hom (T, F ) by ∆(i) = Hom (T,Ei). Thus Hom (T, F ) is in F(∆).
Conversely, let M be an A-module in F(∆), then M has a projective presentation

P 1 f
−→ P 0 −→ M −→ 0. This defines an induced map T 1 f+

−→ T 0, where T 1

and T 0 are direct sums of direct summands of T . The map f+ is just defined
using the equality A = HomA(A,A) = HomX(T, T ) and the fact that P 1 and P 0

are direct sums of direct summands of A. Define F (M) to be the cokernel of f+.
Note that f is injective precisely when f+ is injective. Thus the ∆-filtration of
M induces an filtration of F (M) showing F (M) is in F(ε). Note that under the
functor M 7→ F (M) the module ∆(i) is mapped to Ei. Thus this functor is inverse
to Hom (T,−) finishing the proof. ✷

Proof. (of Theorem 1.4)
The proof of Theorem 5.2 provides us with an explicit construction for the algebraA
as the endomorphism algebra of a universal extension T of an exceptional sequence.
✷

Proof. (of Theorem 1.2)
If ε = (E1, . . . , Et) is any exceptional sequence with Ext2(Ei, Ej) = 0 for 1 ≤ i, j ≤ t
on a surface X , then its universal extension has a quasi-hereditary endomorphism
algebra by the theorem above. Such a sequence, consisting even of line bundles,
exists by Theorem 2.4. ✷

Proof. (of Theorem 1.3)
This result was proved above, where we replace any sheaf Ei just by a line bundle
Li. ✷

Remark. The principal idea of the theorem above can be found in [DR], 3.
standardization. Therein is a similar construction for any abelian category. In fact,
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such a construction, even in greater generality, can be performed in any abelian
k-category with finite dimensional extension groups.

6. Construction of tilting bundle on rational surfaces

In this section we use the previous constructions to obtain a particular tilting
bundle on any rational surfaces. We like to obtain a tilting bundle of small rank
and a tilting bundle with a quasi-hereditary endomorphism algebra. Note that we
are not optimal with our construction (compare for example with [HP2], Theorem
5.8), however, to avoid to many technical details and case by case considerations
we present one construction that works for any rational surface X .

It is convenient to start with a strongly exceptional sequence on a Hirzebruch surface
ε = (O,O(P ),O(Q+ aP ),O(Q+ (a+ 1)P )), where we can assume a is sufficiently
large.

Then we chose a sequence of blow ups, where we allow to blow up finitely many
different points in each step (so we use a slightly different notation than in Section
2)

X = Xm πm−→ Xm−1 πm−1

−→ . . .X2 π2−→ X1 π1−→ X0 = X0 = Fa

of X to a Hirzebruch surface. Note that we still have choices with this notation.
To make the morphisms unique (for a chosen surface X with a fixed morphism π
to Fa) we blow up in the first step as many points as possible and proceed in this
way. Thus if xv ∈ X i is a point not blown up under πi+1 : X i+1 −→ X i then also
its preimage in any Xj for j > i is not blown up. Moreover, if xv ∈ X i is blown
up, we call l(v) = i + 1 its level and denote by Ev the corresponding exceptional
divisor in X i+1.

Next we define the blow up graph G as follows. Its vertices G0 are the points xv

in Xi that are blown up under πi : Xi+1 −→ Xi. There is an edge between xv and
xw, whenever xw ∈ Ev (or vice versa). This way, we get a levelled graph, that is
for each edge v — w we have |l(v) − l(w)| = 1. The blow up graph is precisely
the Hasse diagram (Hasse graph) for the partial order ≻ defined in Section 2. To
construct an exceptional sequence of line bundles on X we also need the divsors Rv

defined as the pull back of Ev in X . Note that the strict transform Ev of Ev is an
irreducible component of the divisor Rv. For the self-intersection numbers on X l(v)

we get R2
v = −1 = E2

v and on X we obtain R2
v = −1 and E

2

v = −1− av where av
is the number of points in Ev blown up under πi+2.

To start with the construction and to avoid to many notation we assume first X is
the recursiv blow up of one point, so πi : X

i −→ X i−1 is the blow up of one point
xi−1 on the exceptional divisor Ei−1 for i = 1, . . . , t = m. With Ri we denote the
pull back of Ei to X . Then we consider the full exceptional sequence

ε = (O,O(Rt),O(Rt−1), . . . ,O(R2),O(R1),O(P ),O(aP +Q),O((a + 1)P +Q))

that is obtained by recursive standard augmentations in the first place. Using
Lemma 2.5 we obtain non-vanishing extension groups Ext1(O(Ri),O(Rj)) = k for
all i > j. All other extension groups vanish. Then we can define recursively vector
bundles Vi via V1 = O(R1) and

0 −→ O(Ri) −→ Vi −→ Vi−1 −→ 0

with Ext1(Vi−1,O(Ri)) = k. In this way we define vector bundles Vi with non-
trivial endomorphism ring. In fact the direct sum of all Vi has an endomorphism
ring isomorphic to the Auslander algebra of k[α]/αt, a quasi-hereditary algebra
considered in [DR], Section 7.
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Lemma 6.1. The coherent sheaf Vi is a vector bundle of rank i and it is in-
decomposable with endomorphism ring isomorphic to k[α]/αi. The direct sum
⊕O⊕

⊕
i Vi⊕O(P )⊕O(aP +Q)⊕O((a+1)P +Q) is isomorphic to the universal

extension E of the exceptional sequence ε.

Proof. Clearly Vi is a vector bundle of rank i. To identify it with the universal
extension of O(Ri) in the sequence ε we need to compute Ext1X(O(Ri), Vi−1) =
Ext1Xi(O(Ei), Vi−1) = k. This can be shown recursively, just apply Hom (O(Ei),−)
to the defining sequence and we obtain Hom (O(Ei),O(Rj)) = k = Hom(O(Ei), Vj)

and Ext1(O(Ei),O(Rj)) = k = Ext1(O(Ei), Vj) for all j < i. This follows directly
from the equivalence in Theorem 1.4 for the exceptional sequence

(O(Rt),O(Rt−1), . . . ,O(R2),O(R1)).

Note that the quasi-hereditary algebra A for this sequence is the Auslander algebra
of k[α]/αi considered in [DR], Section 7. However, one might check the claim also
directly using the defining exact sequences and the vanishing of Ext2. ✷

Now we consider the general case, let X be any rational surface together with a
sequence of blow ups from a Hirzebruch surface. Then the Ext–blocks correspond
to the points in X0 = Fa that are blown up under π1. Consequently, the Ext–blocks
correspond to the connected components in the blow up graph, together with the
four bundles O,O(P ),O(aP +Q) and O((a+1)P +Q) we started with. To be pre-
cise, for our exceptional sequence the Ext–graph of (O(Rt),O(Rt−1), . . . ,O(R2),O(R1))
contains the blow up graph, by Lemma 2.5. Moreover, they have the same con-
nected components. Note that we get non-trivial universal extensions only between
two objects in the same connected component. For any point xj ∈ X l(j)−1 blown
up under some morphism πl(j) we define the universal extension Vj of O(Rj) by all
bundles O(Ri) with xj is blown down to xi under some composition of the maps
π. This bundle Vi, according to Lemma 6.1, is a direct summand of the universal
extension E for the exceptional sequence ε. The arguments above for the partic-
ular case also apply here, so we get a tilting bundle on X satisfying the following
properties.

Theorem 6.2. Let E be the universal extension of the full exceptional sequence ε
above, then the direct summmands of E are isomorphic to the vector bundles Vi. In
particular, O⊕

⊕
i Vi⊕O(P )⊕O(aP +Q)⊕O((a+1)P +Q) is a tilting bundle on

X. If xi ∈ Xj then rkVi = j. Thus E consists of vector bundles of rank at most t.
Moreover, Hom (Vi, Vj) 6= 0 precisely when xi blows down to xj ∈ X l. In this case
Hom (Vi, Vj) is l–dimensional.

Proof. First note that the universal extension ofO(Ri) with respect to ε coincides
with the universal extension for the exceptional sequence consisting of all O(Rj)

with xi is mapped to xj under the composition X l(i) −→ X l(j), since all other
extension groups vanish. Thus we can apply the lemma above to show that Vi is
indecomposable of rank l(i) and E consists of the four line bundles on Fa and the
bundles Vi. Consequently, E are isomorphic to the vectorbundles Vi. In particular,
O ⊕

⊕
i Vi ⊕O(P )⊕O(aP +Q)⊕O((a+ 1)P +Q) is a tilting bundle on X with

rkVi equals the level of xi. Finally, the claim for the Hom–groups can be shown by
induction using the defining exact sequences. ✷

Remark. We have chosen a simple example to construct at least one particular
tilting bundle. In fact we have many other choices. First, we can use different
projections to different Hirzebruch surfaces. Then we can choose the position of any
standard augmentation and, eventually, we can chose to perform either extensions
or coextensions. Moreover, we do not need to start with line bundles, in fact also
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the structure sheaf on any (−1)-curve can be used, since it is exceptional. However,
apart from this a construction of other exceptional sheaves becomes more technical
and the computation of the extensions groups might be more difficult as well. Thus
line bundles are a nice, but not the only choice.
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