
TENSORING GENERALIZED CHARACTERS
WITH THE STEINBERG CHARACTER

G. HISS AND A. ZALESSKI

Abstract. Let G be a reductive connected algebraic group over an algebraic closure of
a finite field of characteristic p. Let F be a Frobenius endomorphism on G and write
G := G

F for the corresponding finite group of Lie type.
We consider projective characters of G in characteristic p of the form St ·β, where β is

an irreducible Brauer character and St the Steinberg character of G.
Let M be a rational G-module affording β on restriction to G. We say that M is

G-regular if for every F -stable maximal torus T distinct weight spaces of M are non-
isomorphic TF -modules. We show that if M is G-regular of dimension d, then the lift of
St · β decomposes as a sum of d regular characters of G.

1. Introduction

Let K be an algebraically closed field of prime characteristic p, C the field of complex
numbers and H a finite group. It is well known that every projective KH-module M lifts
to characteristic zero, that is, there is a CH-module L whose character at p′-elements
coincides with the Brauer character of M . The multiplicities of the irreducible constituents
of L are called the decomposition numbers of M . One of the classical problems of the
modular representation theory of finite groups is to determine the decomposition numbers,
especially when M is indecomposable.

The problem is intensely studied for quasi-simple groups of Lie type with p being the
defining characteristic, the latest contribution seems to be in Chastkofsky [5] where one
can also find the relevant bibliography. See also Humphreys’ book [12, Ch.9] for a survey
of this circle of problems.

In this paper we study the decomposition numbers for the products of the Steinberg
character with certain generalized Brauer characters. In many instances these are the
Brauer characters of projective modules. According to the philosophy developed in Ballard
[1], Humphreys [12], Jantzen [13] and Chastkofsky [5], this may highlight the problem of
computing the decomposition numbers for principal indecomposable modules.

Let G be a quasi-simple group of Lie type in defining characteristic p. Recall there is
a unique irreducible KG-module of defect 0 and its lift to characteristic 0 is called the
Steinberg module. Its character is called the Steinberg character. This can also be defined
via the character formula [4, 71.19], and this formula can be used to define the Steinberg
character for G := GF where G is an arbitrary reductive connected algebraic group with
Frobenius endomorphism F . We denote the Steinberg character of G by St (or StG). We
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study irreducible constituents of St ·β where β is a generalized (Brauer) character of G. As
St vanishes at the p-singular elements of G, the values of β on such elements are immaterial.

In this paper we are only concerned with decomposing the characters St · β as sum of
ordinary irreducible characters of G and do not touch the problem of decomposing them
in terms of the Brauer characters of principal indecomposable modules. Of course one can
also try to decompose ψ · St where ψ is an ordinary character. In [9] we consider a special
case with ψ the Weil characters of symplectic or unitary groups. In this paper we use some
machinery developed in [9].

In order to state our results we introduce some basic notation.
Below G is a reductive connected algebraic group over K, F a Frobenius endomorphism

of G, G = GF = {x ∈ G : F (x) = x}, and T is an F -stable maximal torus of G, T = TF .
(It is customary to call T a maximal torus of G.) The action of F on T induces the dual
action of F on Ω = Hom(T,K×), the set of rational irreducible representations of T, which
is an integral lattice. This action extends to a linear transformation of Ω := Ω ⊗ C. It
is known that all eigenvalues of F on Ω have the same absolute value usually denoted by
q. This q determines F and one often uses the notation G(q) for GF . (Notice that q is a
prime power unless G ∈ {2B2(q), 2G2(q), 2F4(q)}.)

In the Deligne-Lusztig theory of characters of groups of Lie type, the irreducible char-
acters of G partition into sets Es where s runs over semisimple conjugacy classes of the
dual group G∗. Therefore, every class function f on G can be written as

∑
s fs where

fs is the projection of f onto the span of the characters in Es. In this paper the central
role is played by so called regular characters. These are, by definition, constituents of a
Gelfand-Graev character. If G is with connected center then every Es contains a unique
regular character, which coincides with Γs where Γ is the Gelfand-Graev character of G. If
Z(G) is not connected, the situation is more complicated, however, for all s occurring in
our results, Es contains a unique regular character (see Section 3).

The main result of this paper is the following theorem.

Theorem 1.1. Let φ be a generalized character of G. Suppose that the restriction of φ to
T is a multiplicity free proper character of T for every maximal torus T of G. Then the
character φ · St is a sum of exactly φ(1) distinct regular characters.

Our proof of Theorem 1.1 is based on the analysis of (φ · St)s, and in fact we prove that
this projection is a regular character. We do this in a slightly more general form by refining
the hypothesis of the theorem in terms of s.

Let M be a rational G-module. We say that M is G-regular, if for every maximal F -
stable torus T distinct weight spaces of M are non-isomorphic T -modules. Alternatively,
we can fix T and apply this condition to conjugates of maximal tori of G in T.

Theorem 1.2. Let M be an irreducible G-module, G = GF and let χ be the Brauer
character of M |G. Suppose that M is G-regular. Then

(1) χ · StG is a sum of d regular characters where d = dimM ;
(2) the set of the multiplicities of the irreducible constituents in M |G⊗StG (disregarding

repetitions) coincides with the set of the weight multiplicities of M .
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Observe that the number of irreducible constituents in item (2) of Theorem 1.2 is greater
than the number of weights of M , so we need to disregard the repetitions to obtain the
coincidence.

Given G and M , there are only finitely many q such that M is not G(q)-regular; in §6,
using some results of Guralnick and Tiep [8], we provide an upper bound for such q in
terms of the highest weight of M for simple groups G. Seitz [14] showed that the adjoint
module is G(q)-regular if q > 5 (he did not introduce any name for this property).

The following result allows one to detect regular character constituents in φ · St even if
φ is not G-regular.

Theorem 1.3. Let s ∈ G∗ be semisimple and let φ be a generalized character of G. Suppose
that (φ|T , θ) ∈ {0, 1} for all (T, θ) corresponding to the conjugacy class of s. Then φ · St
contains at most one constituent from Es, and this is a regular character.

Theorem 1.1 is an immediate consequence of Theorem 1.3. Moreover, the latter also
implies Theorem 1.2 as soon as one shows that the Brauer character of M is a sum of
generalized characters satisfying the assumption of Theorem 1.1. This can be shown by
using some generalized characters sµ attached to every weight µ of G. These sµ have been
introduced by Wong [18], and we call them here Wong characters (see Section 5 for the
definition). If M is G-regular then the restriction sµ|T is multiplicity free for every weight
µ of M and for every maximal torus T of G. Another advantage of Wong characters is that
sµ · St is the character of a projective module if µ is small. Namely, Ballard [1, Corollary
4.5] proves this assuming that ln (µ) < q where ln is a certain ‘weight length function’.

The above notion of G-regularity is meaningful for any T-module. This allows us to
define G-regular weights as follows. Let µ be a weight, W the Weyl group of G and Wµ
the W -orbit of µ. Consider 1-dimensional T-modules Uν for all weights ν ∈ Wµ. We say
that µ is G-regular if for every ν 6= ν ′ in Wµ and for every maximal torus T of G the spaces
Uν and Uν′ are non-isomorphic T -modules. As an immediate consequence of Theorem 1.1
we have:

Theorem 1.4. If µ is G-regular then the character sµ|G·St is a sum of exactly sµ(1) = |Wµ|
distinct regular characters.

We could provide more explicit information on the decomposition numbers in Theorem
1.4. However, this would lead to technicalities which we would prefer to avoid in this paper.

The fact that the sµ of G(q) are defined in terms of the algebraic group G, and behave
in a sense uniformly on q, seems to be significant. It is rather surprising that our proof
makes no use of the representation theory of algebraic groups, and is somehow based on
general ideas.

Naturally, the question arises whether Theorem 1.1 is a proper generalization of Theorem
1.4. Equivalently, is it true that φ is a sum of some sµ with non-negative integer coefficients?
At the moment we do not have any result in this direction.

2. Tensoring with the Steinberg character

We denote by (·, ·) the inner product of functions on G. We write W or W (G) for the
Weyl group of G. We set W (T ) := NG(T)F /T and W (T )θ = CW (T )(θ) where θ is an
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irreducible character of T . In addition, εG := (−1)r where r is the relative rank (or Fq-
rank) of a connected algebraic group G, which therefore is meaningful for T (consult [7,
pp. 64,66]).

For every F -stable maximal torus T and an irreducible character θ of T := TF Deligne
and Lustzig introduce a generalized character RT,θ, see [7, 11.14], which plays a part in this
paper. If the pairs (T, θ) and (T′, θ′) areG-conjugate then RT,θ = RT′,θ′ and (RT,θ, RT,θ) =
|W (T )θ|, otherwise (RT,θ, RT′,θ′) = 0 ([7, p.88]). This is called the orthogonality relations
for Deligne-Lustzig characters.

The following lemma is a part of the reasoning in [3, p.242].

Lemma 2.1. Let φ be any class function on G and St the Steinberg character. Then

(1) φ · St =
∑
(T,θ)

(φ|T , θ)
|W (T )θ|

εGεTRT,θ,

where the summation ranges over representatives of G-conjugacy classes of pairs (T, θ) in
G.

Lemma 2.2. Let φ, ψ be class functions of G. Then

(φ · St, ψ · St)G =
∑
(T,θ)

(φ|T , θ)T · (ψ|T , θ)T
|W (T )θ|

,

where the summation ranges over representatives of G-conjugacy classes of pairs (T, θ) in
G. In particular, if (φ, ψ)T = 0 for all maximal tori T in G then (φ · St, ψ · St)G = 0.

Proof. Observe that (φ, ψ)T = 0 implies (θ, ψ)T = 0 for every irreducible constituent θ
of φ. Furthermore,

(φ · St, ψ · St) =
∑
(T,θ)

(φ|T , θ)
|W (T )θ|

(εGεTRT,θ, St · ψ)G =
∑
(T,θ)

(φ|T , θ)T
|W (T )θ|

(θG, ψ)G

which implies the formula in the statement since (εGεTRT,θ, St · ψ)G = (εGεTRT,θ ·
St, ψ)G = (θG, ψ)G (see [3, Proposition 7.4.5]) and (θG, ψ)G = (θ, ψ|T )T .

One of the fundamental notions of the character theory of Chevalley groups is that of
a geometric conjugacy of pairs (T, θ) where T is an F -stable maximal torus and θ is an
irreducible character of T = TF , see for instance [3, 7]. There is a bijective correspondence
between geometric conjugacy classes of pairs (T, θ) and F ∗-stable semisimple conjugacy
classes in the dual group G∗ ([7, 13.13]). This is based on the notion of duality of simple
algebraic groups as explained in [7, 13.10]. If G∗ is dual to G then there is a Frobenius
morphism F ∗ of G∗ such that G = GF and G∗ := G∗F

∗
are of the same order. (Below we

omit the star from F ∗ as we do not expect any confusion from this.) Duality includes a
bijection T → T ∗ between G-conjugacy classes of maximal tori T in G and G∗-conjugacy
classes of maximal tori T ∗ in G∗ such that W (T ) ∼= W (T ∗) (and also W (G) ∼= W (G∗)). If C
is an F -stable semisimple conjugacy class, then C∩G∗ is non-empty, so C is determined by
C∩G∗ which is a set of elements of G∗ that are G∗-conjugate but not always G∗-conjugate.
In addition, C ∩G∗ is a union of conjugacy classes in G∗. Therefore, a geometric conjugacy
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class of pairs (T, θ) can be further partitioned into subclasses parametrized by G∗-conjugacy
classes of semisimple elements, see [7, 13.13]. So given a semisimple element s ∈ G∗ we
denote by [s] the set of pairs (T, θ) corresponding to the G∗-conjugacy class of s. If CG∗(s)
is connected then an element s′ ∈ G∗ is G∗-conjugate to s if and only if it is G∗-conjugate to
s. Therefore, if CG∗(s) is connected then [s] is a geometric conjugacy class of pairs (T, θ).
In addition, we denote by [s]G some set of representatives of the G-conjugacy classes in [s].

Lemma 2.3. Let s ∈ G∗ be a semisimple element, S = CG∗(s) and S = SF . In addition,
let S0 be the connected component of S and S0 = S ∩ S0. Then the cardinality of [s]G is
equal to the number of S-conjugacy classes of F -stable maximal tori in S0, and does not
exceed the number of F -conjugacy classes in W 0

s , the Weyl group of S0.

Proof. There is a bijection between G-conjugacy classes of pairs (T, θ) and G∗-conjugacy
classes of pairs (s,T∗) with s ∈ T ∗, see [7, 13.13]. If s is fixed then saying that (T, θ) belongs
to [s] means that T∗ contains this fixed s, and (T, θ) ∈ [s] is G-conjugate to (T′, θ′) is
equivalent to saying that (s,T∗) is G∗-conjugate to (s,T

′∗). Therefore, the cardinality of
[s]G is equal to the number of S-conjugacy classes of F -stable maximal tori in S. As T∗

is connected and hence is contained in S0, the first assertion of the lemma follows. The
number of S0-conjugacy classes of F -stable maximal tori in S0 is equal to the number of
F -conjugacy classes in W 0

s , see [7, 3.23]. As S0 ⊂ S, the lemma follows.

Lemma 2.4. Let H ⊂ G be reductive connected algebraic groups and F a Frobenius endo-
morphism of G such that F (H) = H. Let g ∈ NGF (H) be a semisimple element. Then g
stabilizes an F -stable maximal torus of H.

Proof. This is proved in [16, 5.16] for H being semisimple. So let T ′ be an F -stable
maximal torus of H ′, the semisimple part of H. Then H = H ′ ·Z(H)0, and T := T ′ ·Z(H)0

is a maximal torus in H ([3, Section 1.8]). Obviously, Z(H) is F -stable and g-stable, and
hence so is T .

Let s, s′ ∈ G∗ be semisimple elements, (T, θ) ∈ [s] and (T′, θ′) ∈ [s′]. If s, s′ are not
conjugate in G∗ [7, 14.41] then RT,θ and RT′,θ′ have no common irreducible constituents.
The set of irreducible characters not orthogonal to every RT,θ ∈ [s] is denoted by Es. An
important fact of the Deligne-Lusztig theory is that every irreducible character of G belongs
to Es for some semisimple element s ∈ G∗ and Es ∩ Es′ = ∅ if s, s′ are not conjugate in G∗.
In other words, IrrG = ∪Es is a partition, where s runs over representatives of semisimple
conjugacy classes in G∗. It follows that, for every semisimple G∗-conjugacy class in G∗,
expression (1) uniquely determines the partial sums

(2) πs(φ) =
∑

(T,θ)∈[s]G

(φ|T , θ)
|W (T )θ|

εGεTRT,θ.

(Here πs(φ) depends on the G∗-conjugacy class of s rather than on s. Note that we used the
notation (φ ·St)s in place of πs(φ) in the introduction.) Therefore φ ·St =

∑
πs(φ) with the

summation over representatives of the semisimple conjugacy classes in G∗. Observe that
(πs(φ), πs′(φ)) = 0 if s, s′ are not conjugate in G∗.
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Lemma 2.5.

(πs(φ), πs(φ)) =
∑

(T,θ)∈[s]G

(φ|T , θ)2
T

|W (T )θ|
.

Proof. Follows from Lemma 2.2.

Lemma 2.6. πs(φ) 6= 0 if and only if there exists a pair (T, θ) ∈ [s] such that θ is a
constituent of φ|T .

Proof. As distinct functions RT,θ are linear independent [7, 11.15], πs(φ) 6= 0 if and only
if the coefficient of some RT,θ in (2) is non-zero.

Lemma 2.7. If φ is a generalized character of G, then so are φ · St and πs(φ).

Proof. The first claim is trivial. Recall that IrrG = ∪Es is a partition. It follows from
the definition of Es that RT,θ for (T, θ) ∈ [s] is a linear combination of characters in Es.
Therefore, if φ · St =

∑
imiχi (mi ∈ Z, χi ∈ IrrG), then πs(φ) =

∑
imiχi where χi ∈ Es.

So we conclude that πs(φ) is a generalized character.

Lemma 2.8. Let G be a reductive connected group with Frobenius endomorphism F . Then∑ 1
|W (T )| = 1 where the sum is over G-conjugacy classes of F -stable maximal tori in G.

Proof. This is a particular case of [3, Proposition 7.8.6] (see the remark after Lemma 4.1
below for details).

3. G-regular generalized characters

We keep the notation of the previous section. In particular, for a semisimple element
s ∈ G∗ we set S = CG∗(s) and S = SF . In addition, S0 is the connected component of S
and S0 = S∩S0. Following the notation in [7, 2.4 and 14.40], we set Ws(T ∗) := NF

S (T∗)/T ∗

and W 0
s (T ∗) := NF

S0(T∗)/T ∗. In this section, a generalized character φ is called s-regular
if 0 ≤ (φ|T , θ) ≤ 1 for every (T, θ) ∈ [s].

Lemma 3.1. Let φ be a generalized character. Suppose that φ is s-regular. Then πs(φ) is
an irreducible character or 0. In the former case (φ|T , θ) = 1 for all (T, θ) ∈ [s], S = S0

and

(3) πs(φ) =
∑

(T,θ)∈[s]G

1
|W (T )θ|

εGεTRT,θ =
∑

T∗⊂S

1
|W 0

s (T ∗)|
εGεTRT,θ,

where the second sum runs over S0-conjugacy classes of F -stable maximal tori in S0. In
addition, W 0

s (T ∗) = Ws(T ∗), the cardinality of [s]G is equal to the number of S0-conjugacy
classes of F -stable maximal tori in S0, and hence to the number of F -conjugacy classes in
W 0
s .

Proof. Suppose that πs(φ) 6= 0. By the definition of an s-regular character, 0 ≤ (φ|T , θ) ≤
1, so from (2) and Lemma 2.5 we have

(πs(φ), πs(φ)) ≤
∑

(T,θ)∈[s]G

1
|W (T )θ|

=
∑

(T,θ)∈[s]G

1
|Ws(T ∗)|
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where T∗ ⊂ S is dual to T. The equality holds as W (T )θ = Ws(T ∗), see [3, page 289]. By
Lemma 2.3, the cardinality of [s]G does not exceed the number of F -stable S0-conjugacy
classes of maximal tori in S. As W 0

s (T ∗) ⊆Ws(T ∗), hence |Ws(T ∗)| ≥ |W 0
s (T ∗)|, we get

(4) (πs(φ), πs(φ)) ≤
∑

T∗⊂S0

1
|Ws(T ∗)|

≤
∑

T∗⊂S0

1
|W 0

s (T ∗)|
= 1.

The former sum is over representatives of F -stable S-conjugacy classes of maximal tori
in S0 and the latter sum is over representatives of F -stable S0-conjugacy classes of max-
imal tori in S. The equality in (4) follows from Lemma 2.8 applied to S0. As πs(φ) is a
non-zero generalized character (Lemma 2.7), this inequality implies (πs(φ), πs(φ)) = 1.
In addition, πs(φ)(1) > 0 as εGεTRT,θ(1) = θG(1)/St(1) > 0, see [3]. So the first
assertion of the lemma follows. Furthermore, the equality (πs(φ), πs(φ)) = 1 implies
that all inequalities in the proof are in fact equalities. Therefore, (φ|T , θ) = 1 for all
(T, θ) ∈ [s]G, |Ws(T ∗)| = |W 0

s (T ∗)| (hence Ws(T ∗) = W 0
s (T ∗)), and that the number of

terms in the right hand side of (3) is the same as in the last sum in (4). It follows that
πs(φ) =

∑
(T,θ)∈[s]G

1
|W (T )θ|εGεTRT,θ. By Lemma 2.4, the equalities Ws(T ∗) = W 0

s (T ∗) for
all F -stable maximal tori T∗ in S implies that S = S0.

Remark. The assertion that S = S0 is not equivalent to S = S0. For instance, consider
a torus T of order 3 in SL(3, 2).

We recall the correspondence between the G-conjugacy classes of F -stable maximal tori
and F -conjugacy classes in W , the Weyl group of G, see [7, 3.23]. Fix an F -stable maximal
torus T0, and identify W with N := NG(T). Let w ∈ W , and let nw ∈ N be an element
such that w = nwT. By Lang’s theorem, there is g ∈ G such that g−1F (g) = nw. We wish
to fix one of such g for every w, so we write g as gw. Then Tw := gwTg−1

w is an F -stable
maximal torus in G. The tori Tw and Tw′ are G-conjugate if and only if w,w′ ∈ W are in
the same F -conjugacy class, that is, w′ = v−1wF (v) for some v ∈ W . Moreover, if w runs
over representatives of the F -conjugacy classes in W , tori Tw runs over representatives of
all G-conjugacy classes of F -stable maximal tori in G.

In the next lemma this is applied to S0 = C0
G∗(s) for some semisimple s ∈ G∗.

Lemma 3.2. ∑
T∗⊂S

1
|W 0

s (T ∗)|
εGεTRT,θ =

1
|W 0

s |
∑
w∈W 0

s

εGεTwRTw,θ.

Here the pairs (T, θ) and (T∗, s) are dual, and the left hand side sum runs over S0-conjugacy
classes of F -stable maximal tori in S0. At the right hand side Tw is the torus obtained from
w ∈W 0

s and the sum runs over the whole W 0
s (so there are repetitions of equal terms).

Proof. In view of the correspondence described prior the lemma, the left hand side can
be written as ∑

T∗w

1
|W 0

s (T ∗w)|
εGεTwRTw,θ,

where the summation runs over representatives of F -conjugacy classes in W 0
s . Next we

rearrange this by repeating the term 1
|W 0

s (T ∗w)|εGεTwRTw,θ exactly aw,F times where aw,F is
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the size of the F -conjugacy class in W 0
s that contains w. Then we get∑

w∈W 0
s

1
aw,F |W 0

s (T ∗w)|
εGεTwRTw,θ

with the summation over the whole W 0
s . Note that aw,F |W 0

s (T ∗w)| = |W 0
s |, see Carter [3,

Proposition 3.3.6], so the lemma follows.

An irreducible character ρ of G is called regular if it is a constituent of a Gelfand-Graev
representation of G. If G is with connected center then there is a unique Gelfand-Graev
representation and every Es contains exactly one regular character. In general, if G is an
arbitrary reductive connected group, then there are several Gelfand-Graev representations
([7, 14.29]), and Es may contain several regular characters. However, if S = S0 then Es
contain a unique regular character, see the remark after Lemma 3.3.

Lemma 3.3. Suppose that φ is an s-regular generalized character. Then πs(φ) is either 0
or a regular (irreducible) character of G.

Proof. By Lemmas 3.1 and 3.2, we have

(5) πs(φ) =
∑

(T,θ)∈[s]G

εGεT
|W (T )θ|

RT,θ =
∑

T∗⊂S

εGεT
|W 0

s (T ∗)|
RT,θ =

1
|W 0

s |
∑
w∈W 0

s

εGεTwRTw,θ

where the second sum ranges over S0-conjugacy classes of F -stable maximal tori T∗ in S.
The right hand side expression coincides with the function introduced by Digne and

Michel [7, 14.40]. By [7, 14.48,14.49], this function (in general) is a proper character
χs and (χs, χs) = |(Ws/W

0
s )F |, see [7, 14.43], and the irreducible constituents of χs are

constituents of the sum of the Gelfand-Graev characters. In our situation, πs(φ) = χs is
irreducible (Lemma 3.1), and hence πs(φ) is a regular character.

Remark. By Lemma 3.1, if φ is G-regular then S = S0. It follows that Es contain a
unique regular character ρs which can be defined by the formula

∑
(T,θ)∈[s]G

εGεT
|W (T )θ|RT,θ.

Indeed, by [7, 14.46], every irreducible constituent of any Gelfand-Graev character occurs as
a constituent of χs from the proof of Lemma 3.3. As S = S0, the character χs is irreducible
([7, 14.41]). So ρs = χs is unique. (However, ρs is a constituent of every Gelfand-Graev
character ([7, 14.44]).

Lemma 3.4. Suppose that φ is an s-regular generalized character such that πs(φ) 6= 0.
Then πs(φ)(1) = |G∗ : S|p′ · |S|p where |S|p is the p-part of |S| and |G∗ : S|p′ = |G∗ :
S|/|G∗ : S|p.

Proof. By Lemma 3.3, πs(φ) = 1
|W 0

s |
∑

w∈W 0
s
εGεTwRTw,θ and the lemma follows by the

same reasoning as in in the proof of [3, Theorem 8.4.9]. (In fact, the only place of the
proof that uses the assumption made in [3] that the center of G is connected is the equality∑

(T,θ)∈[s]G
1

|W (T )θ|εGεTRT,θ =
∑

T∗⊂S
1

|W 0
s (T ∗)|εTRT,θ, which holds in our situation by

Lemma 3.1.)

Theorem 3.5. If φ is an s-regular generalized character of G then πs(φ) is either 0 or
a regular character in Es, and πs(φ)(1) = |G∗ : S|p′ · |S|p. In addition, if πs(φ) 6= 0 then
CF

G0(s) = CFG(s).
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Proof. This follows from Lemmas 3.3 and 3.4, the additional claim is proved in Lemma
3.1.

Remark. The additional claim of Theorem 3.5 is useful as it shows that for certain s no
generalized character φ can be s-regular.

In the following result we do not assume that φ is s-regular.

Theorem 3.6. Suppose that S is connected (or S = S0) and (φ|T , θ) = k for all (T, θ) ∈ [s].
Then πs(φ) = k · ρs where ρs is the regular character in Es.

Proof. It follows from (2) that πs(φ) = k ·
∑

(T,θ)∈[s]G
1

|W (T )θ|εGεTRT,θ. If S is connected
(or, by Lemma 2.4, if S = S0), then W 0

s (T ) = Ws(T ), and by Lemma 2.3, the number of
terms in this sum is equal to the number of S0-conjugacy classes of F -stable maximal tori
in S0. Hence ∑

(T,θ)∈[s]G

1
|W (T )θ|

εGεTRT,θ =
∑

T∗⊂S0

1
|W 0

s (T ∗)θ|
εGεTRT,θ.

By Lemma 3.2, the right hand side coincides with the function in [7, 14.40]. The reasoning
at the end of the proof of Lemma 3.3 shows that this is a regular character of G.

Theorem 3.7. If φ is a G-regular generalized character then φ · St is a summand of the
Gelfand-Graev character. In addition, the set of pairs (T, θ) such that (φ|T , θ) 6= 0 is a
union of classes [s].

Proof. We have that φ ·St =
∑
πs(φ), where the summation ranges over representatives

of the semisimple conjugacy classes in G∗. As φ is G-regular, φ|T is multiplicity free for
every maximal torus T , so (φ|T , θ) ≤ 1 for every pair (T, θ). By Lemma 2.3, πs(φ) for every
s is either 0 or a regular character. As (πs(φ), πs′(φ)) = 0 if s, s′ are not conjugate in G∗,
it follows that φ|T · St is multiplicity free, which implies the first part of the theorem. In
addition, if (T, θ) ∈ [s] then, by Lemma 2.3, (φ|T , θ) 6= 0 implies that (φ|T ′ , θ′) = 1 for all
(T′, θ′) ∈ [s], again by Lemma 2.3.

Theorem 1.4 is a particular case of Theorem 3.7.

4. Decomposition of ψ · St for G-regular character ψ

Let ψ be any class function of the semisimple classes of G. We denote by ψe its extension
to G by setting ψe(su) = ψ(s) whenever us = su and u is unipotent. As every g ∈ G is
uniquely expressed as g = su for s semisimple, u unipotent and su = us, this is a well
defined function on G. Observe that ψe is a generalized character if and only if ψ is a
generalized Brauer character [4, 18.12] (this follows from Brauer’s induction theorem). If
ψ is a Brauer character then ψe is called the Brauer lift of ψ.

In this section we use the Curtis duality (or the Curtis-Alvis duality) on the vector space
of class function on G. In particular, the duality is an isometry, that is, a linear map that
preserves the inner product of class functions, see [3, Theorem 8.2.1].
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Lemma 4.1. ψe and ψe · St are Curtis dual. In addition,

(ψe, ψe) = (ψe · St, ψe · St) =
∑ (ψ|T , ψ|T )

|W (T )|
.

Proof. By Carter [3, Proposition 7.6.4] and (2) above, we have:

ψe =
∑
(T,θ)

(ψ, θ)T
W (T )θ

RT,θ and ψe · St =
∑
(T,θ)

(ψ, θ)T
W (T )θ

εGεTRT,θ

where the summation ranges over all G-orbits of pairs (T, θ). Deligne and Lusztig [6, p.540]
shows that the Curtis dual of RT,θ is εGεTRT,θ (and conversely). As the Curtis duality
is an isometry, the first equality of the lemma follows. The second one is [3, Proposition
7.6.8].

Remark. If ψ = 1G, the principal character, then ψ = ψe and ψe · St = St. So
1 = (ψe, ψe) =

∑ 1
|W (T )| , the formula stated in Lemma 2.8.

Lemma 4.2. If ψ is a G-regular generalized character then (ψ · St, ψ · St) = ψ(1).

Proof. By Lemma 4.1, (ψe, ψe) =
∑ (ψ|T ,ψ|T )

|W (T )| . As ψ is G-regular, ψ|T is multiplicity free
for any T , so we have that (ψ|T , ψ|T ) = ψ(1). As

∑ 1
|W (T )| = 1, we have (ψe, ψe) = ψ(1).

By Lemma 4.1, (ψe, ψe) = (ψ · St, ψ · St), so the lemma follows.

Corollary 4.3. If ψ is a G-regular generalized character then ψ · St is the sum of exactly
ψ(1) regular characters.

Recall that an irreducible character is called semisimple if it is the Curtis dual of ρ or
−ρ where ρ is a regular character.

Corollary 4.4. If ψ is a G-regular generalized character then ψe is a linear combination
of exactly ψ(1) distinct semisimple characters with coefficients 1 or −1.

Proof. By Lemma 4.3, we can write ψ · St =
∑ψ(1)

i=1 ρsi where si are suitable semisimple
elements from distinct conjugacy classes in G∗. The Curtis dual of ψ ·St is ψe (Lemma 4.1)
and the Curtis dual of ρs is χs or −χs where χs is a semisimple character. So the result
follows as ρs is a unique regular character in Es, see the remark after Lemma 3.3.

Example. Let G = GL(n, q) where q > 2, and let ψ be the Brauer character of the
natural GL(n, q)-module. Then ψ|T is multiplicity free for every maximal torus T of G,
therefore, ψ is G-regular. By Corollaries 4.2 and 4.4, ψ · St and ψe are multiplicity free
and (ψe, ψe) = n. These facts are known from Lusztig’s book [10] (see also [15, Corollary
1.4]). To some extent, our results have an origin in Lusztig’s work [10] of 1974, although
the machinery of the Deligne-Lusztig theory we use here has been developed later.

Proof of Theorem 1.1 We have that φ ·St =
∑

s πs(φ) where s runs over G∗-conjugacy
classes of semisimple elements in G∗. It follows from the assumption that φ is s-regular
for every s. By Theorem 3.5, each πs(φ) is a regular character. As the functions πs are
orthogonal to each other, the result follows.
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5. Wong characters

The generalized characters sµ were introduced by Wong [18], and we call them here Wong
characters. (However, Wong considers only non-twisted groups and one has to consult [12]
for the general case.)

Let G = G(K) be a reductive connected algebraic group over K where K is the algebraic
closure of a finite field. Let T be an F -stable maximal torus in G, and W = NG(T)/T the
Weyl group of G. Weights of G are defined as rational homomorphisms T → K×. They
form a group, in fact, a Z-lattice, for which it is customary to use the additive notation. We
say that a weight µ of G is dominant if the restriction of µ to G′ is a dominant weight of
G′, the maximal semisimple subgroup of G. Let µ be a weight of G and Wµ the stabilizer
of µ in W . Generalized characters sµ can be defined as follows. Consider an irreducible
G-module M with highest weight µ and, for a weight ν let Mν = {x ∈ M : tx = ν(t)x}
be the ν-weight space in M . Consider Sµ :=

∑
ν∈OMν where O = W/Wµ denotes the

W -orbit of µ, so the number of summands is |W : Wµ|. As dimMµ = 1, it follows that
dimSµ = |W : Wµ|. Let C denote the complex number field. As K× is a quasi-cyclic
group, there is an injective homomorphism h : K× → C, which we fix. This defines for
us the Brauer character βµ of T on Sµ (as T is the union of finite subgroups). Note that
βµ is stable under NG(T). As every semisimple element s ∈ G is conjugate to an element
t ∈ T, and any two conjugates of s in T are conjugate in NG(T), one obtains a well defined
function sµ on the semisimple conjugacy classes of G. Its restriction to G is the Wong
character of G attached to µ. We do not expect any confusion from keeping the same
notation sµ for functions on G and on G.

The following lemma is obvious:

Lemma 5.1. Let M be a G-module and β its Brauer character. Then β =
∑

µmµsµ where
µ runs over the dominant weights of M and mµ is the multiplicity of the weight µ in M .

Lemma 5.2. (Wong) Every Wong character is an integer linear combination of irreducible
Brauer characters of G.

Proof. This follows by induction. Recall that ν < µ for weights µ, ν means that ν =
µ−

∑
aiαi where αi are simple roots and ai are non-negative integers. Let µ be a dominant

weight. There are finitely many dominant weights ν such that ν < µ. So we can assume
that the lemma is true for all dominant weights ν such that ν < µ. Consider an irreducible
module M of highest weight µ, and let βµ be its Brauer character. If µ is the only dominant
weight in M then all weights of M are in Wµ so sµ = βµ. Otherwise, sµ = βµ −

∑
mνsν

where the summation runs over the dominant weights ν of M distinct from µ and mν is
the multiplicity of ν in M . It is well known that ν < µ. So the lemma follows by induction.

Proof of Theorem 1.2 Let β be the Brauer character of M . Then β =
∑
mνsν where

the summation ranges over the dominant weights of M and mν is the multiplicity of ν.
Hence β · St =

∑
mνsν · St. As M is G-regular, (sµ|T , sν |T )T = 0 for all maximal tori T

in G and all weights µ 6= ν of M . By Lemma 2.2, (sµ · St, sν · St)G = 0. Furthermore,
if M is G-regular then every weight ν of M is G-regular. By Theorem 3.7, every sν · St
is the sum of regular characters, each occurring with multiplicity 1. Therefore, a regular
character that is a constituent of sν ·St occurs in β ·St with multiplicity mν . Moreover, the
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number of the irreducible constituents of sν · St is equal to sν(1). This coincides with the
number of weights in the orbit Wν. As dimM = β(1) =

∑
νmν · sν(1), the result follows.

Remark. In general, sµ · St is not necessarily a character of G. Indeed, consider G =
SL(2, q) for q > 5 and µ = (q+1)ω where ω is the fundamental weight for G. Let T1, T2 be
maximal tori of G of orders q−1, q+1, respectively. Then sµ|T2 = 2·1T2 and sµ|T1 = τ2+τ−2

for some faithful character τ of T1. Recall that (RT,θ, 1G) = 1 if θ = 1T and equals zero
otherwise [3, 7.4.1]. Therefore, it follows from Lemma 2.1 that (sµ ·St, 1G) = εGεT2 = −1.
So sµ · St is not a proper character. This example also shows that φ · St is not necessarily
a character of G if φ is a generalized character such that φ|T is a proper character of T for
every maximal torus T of G.

Remark. Humphreys [11] proves the following formula for sµ · St:

sµ · St =
1
|Wµ|

∑
w∈W

εGεTwRTw,θw .

(See [11] for notation.) However, this nice formula is not in use in this paper as formula
(1) better fits our purpose.

6. Effective bound

In this section G is a simple algebraic group. Here we mimic Guralnick and Tiep [8,
5.1,5.2]. Let Ω be the weight lattice for G and (·, ·) the standard bilinear form on Ω, see
[2]. For ω ∈ Ω we set ||ω|| =

√
(ω, ω). Define l = min Ω to be the minimum value ||ω|| for

ω ∈ Ω.

Lemma 6.1. Let G be one of the groups 2B2(q), 2F4(q), 2G2(q), and let 0 6= ω ∈ Ω. If
q > 8, 9, 16 and t = 3, 5, 6, respectively, then ||F (ω)|| > q

t ||ω||.

Proof. We proceed case-by-case. Let p be the defining characteristic for G, so p = 3 if
G = 2G2(q) and p = 2 otherwise. Recall that q = ps

√
p for some integer s ≥ 0. Let α, β

be simple roots of G with |α| < |β| and let y = aα + bβ. Then F (y) = q√
pbα + q

√
paβ =

q√
p(bα + paβ), see [17, §10]. Let ε1, . . . , εr be the basis in the weight space introduced in

[2, Planchees].
Consider the case 2B2. Then α1 = ε1 − ε2 and α2 = ε2. Hence y = aα1 + bα2 =

aε1 + (b − a)ε2 and (y, y) = 2a2 − 2ab + b2. Similarly, F (y) = (
√
q2/2)(2bα1 + aα2) so

(F (y), F (y)) = (q2/2)(8b2− 4ab+a2). It follows that (F (y), F (y)) > (q2/8) · (y, y). Indeed,
(F (y), F (y)) = (q2/8) · (32b2 − 16ab+ 4a2) and 32b2 − 16ab+ 4a2 > 2a2 − 2ab+ b2, as this
is equivalent to 31b2 − 14ab + 2a2 > 0 which is true as the discriminant 142 − 4 · 2 · 31 =
196− 248 < 0. Therefore, ||F (y)|| > q√

8
||y||.

Consider the case 2G2. Then y = a(ε1−ε2)+b(−2ε1+ε2+ε3) = (a−2b)ε1+(b−a)ε2+bε3.
So (y, y) = (a − 2b)2 + (a − b)2 + b2 = 2a2 − 6ab + 6b2. Hence (F (y), F (y)) = (q2/3) ·
(2b2 − 18ab+ 54a2). It follows that (F (y), F (y)) > (q2/33) · (y, y). Indeed, (F (y), F (y)) =
(q2/33) · (22b2 − 198ab + 594a2) and 22b2 − 198ab + 594a2 > 2a2 − 6ab + 6b2, as this is
equivalent to 16b2−192ab+592a2 > 0 which is true as the discriminant 1922−4 ·16 ·592 =
36864− 37888 < 0. It follows that ||F (y)|| > q√

33
||y||.
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Consider the case 2F4. Then α1 = ε2− ε3 and α2 = ε3− ε4, α3 = ε4 and α4 = (ε1− ε2−
ε3−ε4)/2. Let z = aα1+bα2+cα3+dα4 = a(ε2−ε3)+b(ε3−ε4)+cε4+d(ε1−ε2−ε3−ε4)/2 =
d
2ε1+(a−d

2)ε2+(b−a−d
2)ε3+(c−b−d

2)ε4. Therefore, (z, z) = (d2)2+(a−d
2)2+(b−a−d

2)2+(c−
b−d

2)2 = d2+2a2+2b2+c2−ad−(b−a)d−(c−b)d−2bc−2ab = 2a2+2b2+c2+d2−cd−2ab−2bc.
As |α1| = |α2| > |α3| = |α4|, we have that F (z) = q√

2
(2dα1 + 2cα2 + bα3 + aα4), and hence

(F (z), F (z)) = q2

2 (8d2 + 8c2 + b2 + a2− ab− 8cd− 4bc) := q2

2 x. We show that if m > 9 then
mx > (z, z). We have

mx− (z, z) = (m− 2)(a2 + b2) + (8m− 1)(c2 + d2)− (8m− 1)cd− (m− 2)ab− 2(2m− 1)bc.

Express

−(m− 2)ab = (a
√
m− 2−

√
m− 2

2
b)2 − (m− 2)a2 − m− 2

4
b2,

−(8m− 1)cd = (
√

8m− 1
2

c− d
√

8m− 1)2 − 8m− 1
4

c2 − (8m− 1)d2,

−2(2m− 1)bc = (b

√
3(m− 2)

2
− 2(2m− 1)√

3(m− 2)
c)2 − 3(m− 2)

4
b2 − 4(2m− 1)2

3(m− 2)
c2.

Next substitute these expressions into the above formula. Then we have

mx− (z, z) = c2(
3(8m− 1)

4
− 4(2m− 1)2

3(m− 2)
) + (a

√
m− 2−

√
m− 2

2
b)2+

+(
√

8m− 1
2

c− d
√

8m− 1)2 + (

√
3(m− 2)

2
b− 2(2m− 1)√

3(m− 2)
c)2.

The coefficient of c2 is non-negative if and only if 3(8m−1)
4 ≥ 4(2m−1)2

3(m−2) . This inequality is
valid for m ≥ 10. Therefore, ||F (z)|| ≥ q√

20
||z||.

Proposition 6.2. Define k = 1/3, 1/5, 1/6 for G = 2B2(q), 2F4(q), G = 2G2(q), respec-
tively, and set k = 1 otherwise. Let T be an F -stable torus of G, T = TF and µ 6= 0 a
weight. Then

|CT (µ)|
|T |

≤ ||µ||
(kq − 1) · l

where l = min(||ω|| : 0 6= ω ∈ Ω).

Proof. For k = 1 the proposition is exactly Lemma 5.1 in [8]. Suppose k < 1. It is shown
in [8, p.293] that

|CT (µ)|
|T |

≤ ||µ||
min06=y∈Ω ||F (y)− y||

,

so it suffices to set up a suitable lower bound for the denominator. As in [8, 5.1], we have
here
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||F (y)− y|| ≥ |(||F (y)|| − ||y||)| ≥ (
q

t
− 1) · ||y|| ≥ (kq − 1) · l

by Lemma 6.1. (If k = 1 then ||F (y)|| = q · ||y|| and k = 1/t where t is as in Lemma 6.1.)

Corollary 6.3. Let k, T be as in Proposition 6.2. Suppose that µ 6= 0.
(1) If q > 1

k + ||µ||
k·l then (sµ, 1T ) = 0.

(2) If q > 1
k + 2||µ||

kl then T separates the weights of Wµ.

Proof. (1) Suppose the contrary. Then CT (w(µ)) = T for some w ∈W . By Proposition
6.2, we have kq − 1 ≤ ||w(µ)||

l . This is a contradiction as ||w(µ)|| = ||µ||. (2) Suppose that
w(µ) 6= w′(µ) for w,w′ ∈ W and w(µ)|T and w′(µ)|T are the same characters of T . Then
(w(µ) − w′(µ))|T = 1, that is, CT (w(µ) − w′(µ)) = T . As ||w(µ) − w′(µ)|| ≤ 2||µ||, the
result follows from (1).

Corollary 6.4. Let M be an irreducible G-module. Then there are only finitely many
groups G = G(q) such that M |G ⊗ StG is not a sum of regular characters.

Remark. The values of l for every simple algebraic group are known to be the following:
An : l = n/(n + 1); Bn (n ≥ 3) : l = min(1, n/4); Cn (n ≥ 2), Dn (n ≥ 4) : l = 1;
E6 : l = 4/3; E7 : l = 3/2; E8 : l = 2; F4 : l = 1; G2 : l = 2/3. We are indebted to Pham
Huu Tiep for communicating us these.
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