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ON A TRIANGULATED CATEGORY WHICH BEHAVES LIKE A

CLUSTER CATEGORY OF INFINITE DYNKIN TYPE, AND THE

RELATION TO TRIANGULATIONS OF THE INFINITY-GON

THORSTEN HOLM AND PETER JØRGENSEN

0. Introduction

This paper investigates a certain 2-Calabi-Yau triangulated category D whose Aus-
lander-Reiten quiver is ZA∞. We show that the cluster tilting subcategories of D

form a so-called cluster structure, and we classify these subcategories in terms of
what one may call ‘triangulations of the ∞-gon’.

This is reminiscent of the cluster category C of type An which is a 2-Calabi-Yau
triangulated category whose Auslander-Reiten quiver is a quotient of ZAn; see [2]
and [4]. The cluster tilting subcategories of C form a cluster structure and they are
classified in terms of triangulations of the (n + 3)-gon by [4].

The category D behaves like a ‘cluster category of type A∞’.

Let us give some more details. The category D is the compact derived category
Dc(A) of the Differential Graded cochain algebra A = C∗(S2; k) where S2 is the
2-sphere and k is a field. In fact, S2 is formal over any field k, so one can equally
well use as A the quasi-isomorphic DG algebra obtained by placing copies of k in
cohomological degrees 0 and 2.

The category D was studied in [9], and it follows from [9, prop. 4.4 and cor. 5.2]
that it is a 2-Calabi-Yau category. This makes it natural to consider maximal 1-
orthogonal subcategories A of D. These are the subcategories which satisfy A =
(Σ−1

A )⊥ = ⊥(ΣA ) and they were introduced by Iyama; see [2], [6], [7], [8], and
[11]. Our first main result is this.

Theorem A. There is a bijection between maximal 1-orthogonal subcategories of
D and triangulations of the ∞-gon.

By a triangulation of the ∞-gon, we mean a maximal set of non-intersecting arcs
connecting non-neighbouring integers: We adopt the philosophy that the integers
can be viewed as the vertices of the ∞-gon, and that the arcs can be viewed as
diagonals. There are two obvious ways to achieve such maximal sets; they are
shown in the following two sketches where the arcs must be continued ad infinitum
according to the indicated pattern. First a ‘leapfrog’ configuration which is locally
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finite in the sense that only finitely many arcs end in each integer.

___ ___

(1)

Then a ‘fountain’ where infinitely many arcs going to either side end in a single
integer.

__ ___

(2)

Maximal 1-orthogonal subcategories are particularly important if they are functori-
ally finite. Then they are called cluster tilting subcategories and the corresponding
quotient categories are abelian by [11, sec. 2] and [13, thm. 3.3]. Our second main
result is the following.

Theorem B. A maximal 1-orthogonal subcategory of D is functorially finite if
and only if the corresponding triangulation of the ∞-gon is locally finite or has a
fountain.

The point is that there are triangulations of the ∞-gon like the following, which
have a ‘right-fountain’ and a ‘left-fountain’ but do not satisfy the conditions of
Theorem B.

__ ___

(3)

This gives an example of a maximal 1-orthogonal subcategory of D which is not
functorially finite; see Example 4.5.

If A is a cluster tilting subcategory of D, then we will call the collection A of
indecomposable objects of A a cluster. Since A = add A, the subcategory and the
corresponding cluster contain the same information. Our third main result is the
following.

Theorem C. The clusters form a cluster structure in D.

The notion of a cluster structure was introduced in [1] and we have reproduced it
in Section 5. Some of the salient features are that if A is a cluster and a is an
indecomposable object in A, then a can be replaced with a unique other indecom-
posable object a∗ of D such that a new cluster A∗ results, and that passing from
the Auslander-Reiten (AR) quiver of add A to the AR quiver of add A∗ is given by
Fomin-Zelevinsky mutation at a in the sense of [5, sec. 8].

There are several viewpoints on the results of this paper.

(1) As mentioned, D behaves like a cluster category of type A∞.

(2) Theorems A and B show that D can be viewed as a categorification of triangu-
lations of the ∞-gon. Such triangulations have not, to our knowledge, been studied
elsewhere, but they seem to be interesting combinatorial objects.
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(3) Theorem C shows that D provides a cluster tilting theory for the abelian ca-
tegories of the form D/A where A is a cluster tilting subcategory of D. Namely,
we have D/A ≃ modA by [11, sec. 2] and [13, cor. 4.4], and Theorem C says that
the AR quivers of A = add A and A ∗ = add A∗ are related by Fomin-Zelevinsky
mutation at a, so passing from D/A ≃ modA to D/A ∗ ≃ modA ∗ can be viewed
as ‘cluster tilting at a’. Some of the categories modA are hereditary categories of
the form rep Γ where Γ is an infinite quiver; see Example 5.4. Such categories were
investigated by Reiten and Van den Bergh in [15] and form an important branch in
the taxonomy of hereditary categories.

Other aspects of the category D have been studied in the literature: It is equivalent
to the category CH which appeared in [11, sec. 2.1] where a cluster tilting subca-
tegory was also shown, its Hall algebra was computed in [12], and some relations
with algebraic topology were investigated in [14].

Let us remark that we will actually obtain D by a different recipe from the one
mentioned above. Namely, we will use D = Df(k[T ]) where k[T ] is viewed as a DG
algebra with T placed in homological degree 1 and zero differential. This gives a
category which is triangulated equivalent to the one above by [9, sec. 8], but some
computations become easier.

The paper is organised as follows. Section 1 gives basic information on the category
D. Section 2 investigates the morphisms of D. Section 3 gives the information we
need on triangulations of the ∞-gon. Section 4 proves Theorems A and B, and
Section 5 proves Theorem C.

Section 6 presents some questions; for instance, is it possible to define a ‘cluster
algebra of type A∞’?

Notation 0.1. The set of morphisms in D from x to y is denoted D(x, y).

We will join a common abuse of terminology by saying ‘indecomposable object’
when we mean ‘isomorphism class of indecomposable objects’, and by viewing two
subcategories of D as equal if they have the same essential closure.

1. Basic properties of the category D

This section defines the category D and recalls a few basic properties.

Setup 1.1. Throughout, k is a field and R = k[T ] is the polynomial algebra. We
view R as a DG algebra with zero differential and T placed in homological degree
1.

Our main object of study is

D = D
f(R),

the derived category of DG R-modules with finite dimensional homology over k.
The suspension, Serre functor, and AR quiver of D will be denoted by Σ, S, and Q.

The next three remarks sum up some results on D from [9, section 8 in particular].
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Remark 1.2 (Basic properties). The category D has finite dimensional Hom spaces
over k and split idempotents, so it is Krull-Schmidt. It is a 2-Calabi-Yau triangu-
lated category, that is, its Serre functor is S = Σ2 where Σ denotes the suspension
functor. Accordingly, the AR translation is τ = SΣ−1 = Σ.

Remark 1.3 (Indecomposable objects). For each integer r ≥ 0, we have a DG
R-module

Xr = R/(T r+1)

which is concentrated in homological degrees from 0 to r. The indecomposable
objects of D are ΣjXr for j, r integers, r ≥ 0.

There is an obvious short exact sequence of DG modules 0 → Σr+1R → R → Xr →
0 which induces a distinguished triangle

Σr+1R → R → Xr → Σr+2R (4)

in D. Hence the DG module Xr is quasi-isomorphic to the mapping cone Cr of
Σr+1R → R.

Denote by (−)♮ the operation of forgetting the differential. Then R♮ is a graded
algebra, C♮

r is a graded R♮-module, and the construction of the mapping cone gives

C♮
r = R♮ ⊕ Σr+2R♮.

Denoting the generators of the two copies of R♮ by e0 and er+2, the differential of
Cr is given by

∂(e0) = 0, ∂(er+2) = T r+1e0.

It is easy to see that Cr is a minimal semi-free resolution of Xr.

Remark 1.4 (Auslander-Reiten quiver). The AR quiver Q of D is ZA∞ and the
indecomposable objects are arranged in the quiver as follows.

...

��?
??

?

...

��?
??

?

...

��?
??

?

...

��?
??

?

...

��?
??

?

...

· · ·

��?
??

? Σ0X3

??����

��?
??

Σ−1X3

??����

��?
??

Σ−2X3

??����

��?
??

Σ−3X3

??����

��?
??

Σ−4X3

??����

��?
??

· · ·

Σ1X2

??���

��?
??

Σ0X2

??���

��?
??

Σ−1X2

??���

��?
??

Σ−2X2

??���

��?
??

Σ−3X2

??���

��?
??

Σ−4X2

??����

��?
??

?

· · ·

??����

��?
??

? Σ1X1

??���

��?
??

Σ0X1

??���

��?
??

Σ−1X1

??���

��?
??

Σ−2X1

??���

��?
??

Σ−3X1

??���

��?
??

· · ·

Σ2X0

??���

Σ1X0

??���

Σ0X0

??���

Σ−1X0

??���

Σ−2X0

??���

Σ−3X0

??����

We will use the following standard coordinate system on Q.

...

��?
??

?

...

��?
??

?

...

��?
??

?

...

��?
??

?

...

��?
??

?

...

· · ·

��?
??

? (−5, 0)

??����

��?
??

(−4, 1)

??����

��?
??

(−3, 2)

??����

��?
??

(−2, 3)

??����

��?
??

(−1, 4)

??����

��?
??

· · ·

(−5,−1)

??���

��?
??

(−4, 0)

??���

��?
??

(−3, 1)

??���

��?
??

(−2, 2)

??���

��?
??

(−1, 3)

??���

��?
??

(0, 4)

??����

��?
??

?

· · ·

??����

��?
??

? (−4,−1)

??���

��?
??

(−3, 0)

??���

��?
??

(−2, 1)

??���

��?
??

(−1, 2)

??���

��?
??

(0, 3)

??���

��?
??

· · ·

(−4,−2)

??���
(−3,−1)

??���
(−2, 0)

??���
(−1, 1)

??���
(0, 2)

??���
(1, 3)

??����
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Accordingly, coordinate pairs and indecomposable objects will be related by

(m, n) = Σ−nXn−m−2.

Note that in terms of coordinates, the actions of Σ = τ and S = Σ2 on objects are

Σ(m, n) = (m − 1, n − 1), S(m, n) = (m − 2, n − 2).

2. Morphisms in the category D

This technical section provides detailed information on the morphisms of the cate-
gory D.

Definition 2.1. Let x = (i, j) be a vertex of the AR quiver Q of D. We define
(unbounded) subsets H−(x) and H+(x) of vertices of Q which can be sketched as
follows.

?
?

?
?

�
�

�
�

H−(x) H+(x)?
?

?
?

(i−1,j−1)

��
��

��
��

��
�

??????????????

(i,j) (i+1,j+1)

??
??

??
??

??
?

��������������

�
�

�
�

___
(i−1,i+1)

??????????????

(j−1,j+1)

��������������
___

(5)

The subsets include the edges. In a more rigorous vein, we have

H−(x) = { (m, n) | m ≤ i − 1, i + 1 ≤ n ≤ j − 1 },

H+(x) = { (m, n) | i + 1 ≤ m ≤ j − 1, j + 1 ≤ n }.

We write H(x) = H−(x) ∪ H+(x).

The following Proposition says that an indecomposable object x has non-zero mor-
phisms to the indecomposable objects y in two regions like the ones in figure (5).
The object x is at the leftmost vertex of the right hand region.

Proposition 2.2. Let x and y be indecomposable objects of D. Then

D(x, y) =

{

k for y ∈ H(Σx),
0 otherwise.

Proof. Using a power of Σ, we can shift x and y horizontally on the quiver without
loss of generality, and so we can assume

x = (−r − 2, 0) = Xr.

We will write

y = (m, n) = Σ−nXn−m−2.
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Taking Hom of the distinguished triangle (4) into the object Σ−nXn−m−2 gives a
long exact sequence containing

D(Σr+2R, Σ−nXn−m−2) → D(Xr, Σ
−nXn−m−2)

→ D(R, Σ−nXn−m−2) → D(Σr+1R, Σ−nXn−m−2)

which is

Hn+r+2(Xn−m−2) → D(x, y) (6)

→ Hn(Xn−m−2) → Hn+r+1(Xn−m−2).

Consider the sketch of the AR quiver below. It is cumbersome, but elementary, to
verify from (6) that D(x, y) is k when y is in the region /.-,()*+2 (which includes the edges

and is equal to H+(Σx)). Also, D(x, y) is 0 when y is in region /.-,()*+1 (which does not

include the diagonal edge) or region /.-,()*+3 (which includes the dotted edge, but not
the other one).

?
?

?
? 765401233′

?�

?�

?�

�
�

�
�

765401232′ /.-,()*+2?
?

?
?

Σ2x

��
��

��
��

��
��

�

????????????

Σx

?�
?�

?�
?�

?�
?�

?�
?�

x

??
??

??
??

??
??

?

�������������

�
�

�
�

765401231′ /.-,()*+3 /.-,()*+1

___

???????????????

?�
?�

?�
?�

?�
?�

?�
?�

��������������� ___

Serre duality says D(a, b) ∼= D(b, Σ2a)∨. By applying this to the previous results,
we get that D(x, y) is k when y is in the region 765401232′ (which includes the edges and

is equal to H−(Σx)). Also, D(x, y) is 0 when y is in region 765401231′ (which does not

include the diagonal edge) or region 765401233′ (which includes the dotted edge but not
the other one).

To complete the proof, we must show that D(x, y) is 0 when y is on the wavy line
through Σx. The vertices on this line have the form (−r − 3,−r − 1 + t) for t ≥ 0,
that is, they are the objects Σr+1−tXt for t ≥ 0, and we must show that a morphism
Xr → Σr+1−tXt in D is 0. Such a morphism is a homotopy class of morphisms of
DG modules

γ : Cr → Σr+1−tXt

where Cr is the minimal semi-free resolution of Xr from Remark 1.3.

Recall that Cr has generators e0 and er+2 in homological degrees 0 and r + 2. The
DG module Σr+1−tXt is concentrated in homological degrees from r +1− t to r +1.

If r + 1 − t > 0, then Σr+1−tXt is 0 in each degree where Cr has a generator, so
γ = 0 is clear.

If r+1−t ≤ 0, then Σr+1−tXt is 0 in degree r+2, but it is k in degree 0. Potentially,
γ(e0) could be non-zero. However,

T r+1γ(e0) = γ(T r+1e0) = γ∂(er+2) = ∂γ(er+2)
(a)
= ∂(0) = 0
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where (a) is because Σr+1−tXt is 0 in degree r + 2. Since Σr+1−tXt is equal to k in
degree r + 1, it follows that γ(e0) = 0 so γ = 0. �

Corollary 2.3. Let x and y be indecomposable objects of D. The following are
equivalent.

(i) D(x, y) 6= 0.

(ii) D(x, y) = k.

(iii) y ∈ H(Σx).

(iv) x ∈ H(Σ−1y).

Proof. (i), (ii), and (iii) are equivalent by Proposition 2.2. Using Serre duality, (i)
is equivalent to D(y, Σ2x) 6= 0. Using (iii), this is equivalent to Σ2x ∈ H(Σy), that
is x ∈ H(Σ−1y), and this is (iv). �

Remark 2.4 (Forward morphisms). Proposition 2.2 and Corollary 2.3 show that
there are two distinct types of non-zero morphisms going from x to indecomposable
objects of D: Those going to objects in H+(Σx) will be called forward morphisms,
and those going to objects in H−(Σx) will be called backward morphisms. The
backward morphisms cannot be seen in the AR quiver; they are in the infinite
radical of D.

The forward morphisms have an easy model: Up to multiplication by a non-zero
scalar, they are induced by certain canonical morphisms of DG modules. Namely,
consider again the case x = (−r − 2, 0) = Xr. Then x is a DG module which is
concentrated in homological degrees from 0 to r. Let y = (m, n) = Σ−nXn−m−2

be in the region H+(Σx) whence −r − 2 ≤ m ≤ −2 and n ≥ 0. Then y is a DG
module which is concentrated in homological degrees from −n to −m − 2, and we
have −n ≤ 0 and 0 ≤ −m − 2 ≤ r. We can sketch the non-zero parts of the DG
modules x = Xr and y = Σ−nXn−m−2 as follows, where the numbers at the top are
homological degrees and where each horizontal line indicates the degrees where a
module has non-zero components.

r −m − 2 0 −n

Xr

����
X−m−2� _

��

Σ−nXn−m−2

We have included the DG module X−m−2 in the sketch, and it is clear that there is
a surjective and an injective morphism of DG modules as indicated. Their compo-
sition is a canonical morphism of DG modules which induces a forward morphism
x → y in D.

Observe that the canonical morphism of DG modules induces a (non-zero) forward
morphism x → y in D if and only if there is a homological degree where both x and
y have a non-zero component. Indeed, it is easy to check that this happens if and
only if y is in H+(Σx).
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Lemma 2.5. Let x, y, and z be indecomposable objects of D such that y, z ∈
H+(Σx) and z ∈ H+(Σy), for instance as in the following sketch.

�
�

�
�

?�

?�

?�

z

�
�

�
�

y

�_
�_

�_
�_

�_
�_

�_
�_

�_
�_

�_
�_

�_
�_

�_

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�

?�

?�

x

??
??

??
??

??
??

??
?

��������������������������������

___

���������������������������������

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?� ___

(i) The composition of non-zero morphisms x → y and y → z is non-zero.

(ii) Let y
f
→ z be a non-zero morphism. Then each morphism x → z factors as

x → y
f
→ z.

Proof. (i). Since we have y ∈ H+(Σx) and z ∈ H+(Σy), the non-zero morphisms
x → y and y → z in D are forward morphisms. By Remark 2.4, up to multiplication
by non-zero scalars which can be ignored, they are induced by canonical morphisms
of DG modules which we can indicate as follows.

x

��
y

��
z

It is clear that these compose to a canonical morphism x → z.

Since we have z ∈ H+(Σx), Remark 2.4 gives that there is a homological degree
where both the DG modules x and z have a non-zero component, and hence the
canonical morphism x → z induces a (non-zero) forward morphism x → z in D as
desired.

(ii). We must show that D(x, f) : D(x, y) → D(x, z) is surjective. Since each non-
zero Hom set is isomorphic to k, it is enough to see that D(x, f) is non-zero, and

this follows from part (i) because it sends x → y to the composition x → y
f
→ z. �

Lemma 2.6. Let x, y, and z be indecomposable objects of D.

(i) y ∈ H+(Σx) ⇔ Sx ∈ H−(Σy).
(ii) z ∈ H−(Σx) ⇔ Sx ∈ H+(Σz).
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Proof. (i) Suppose y ∈ H+(Σx); then there is a non-zero morphism x → y in D

by Corollary 2.3. The Serre duality isomorphism D(x, y) ∼= D(y, Sx)∨ implies that
there is a non-zero morphism y → Sx so we have Sx ∈ H(Σy). To establish the
implication ⇒, it remains to see that Sx is in H−(Σy), not H+(Σy).

However, if x = (i, j) then the shape of the region H+(Σx) implies y = (i+p, j + q)
for some p, q ≥ 0. This again means that the points of H+(Σy) have the form
(i + p + p′, j + q + q′) for some p′, q′ ≥ 0, but Sx = (i− 2, j − 2) is not of this form
so we must have Sx in H−(Σy).

The implication ⇐ is proved by a similar argument.

(ii) We have

z ∈ H−(Σx) ⇔ SS−1z ∈ H−(Σx) ⇔ x ∈ H+(ΣS−1z) ⇔ Sx ∈ H+(Σz)

where the second biimplication is by part (i). �

Lemma 2.7. Let x, y, and z be indecomposable objects of D such that y, z ∈
H−(Σx) and z ∈ H+(Σy), for instance as in the following sketch.

?
?

?�

?�

�
�

?
?

�
�

y

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�

z

��
��

��
��

�

???????????????????????????
x

??
??

??
??

��������������������������

__

??????????????????????????

?�
?�

?�
?�

?�
?�

?�
?�

?�
?�

?�

_�
_�

_�
_�

_�
_�

_�
_�

_�
_�

��������������������������� __

Let y
f
→ z be a non-zero morphism. Then each morphism x → z factors as x →

y
f
→ z.

Proof. We must show that D(x, f) : D(x, y) → D(x, z) is surjective. Using Serre
duality, it is the same to show that D(f, Sx) : D(z, Sx) → D(y, Sx) is injective.

This map sends z
ζ
→ Sx to the composition y

f
→ z

ζ
→ Sx. However, we have

z ∈ H−(Σx) so Lemma 2.6(ii) says Sx ∈ H+(Σz). Hence, if ζ is non-zero then it is

a forward morphism. So is f since z ∈ H+(Σy), and then y
f
→ z

ζ
→ Sx is non-zero

by Lemma 2.5(i) since we have Sx ∈ H+(Σy); this holds by Lemma 2.6(ii) again
since y ∈ H−(Σx). �

3. Triangulations of the ∞-gon

This section studies triangulations of the ∞-gon, that is, maximal sets of non-
intersecting arcs, and their relation with the category D.

Definition 3.1. An arc is a pair (m, n) of integers with m ≤ n − 2.

The arc (m, n) is said to end in each of the integers m and n.
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Two arcs (m, n) and (p, q) are said to intersect if we have either m < p < n < q or
p < m < q < n.

The definition is intended to capture our geometric intuition in which an arc is
drawn as a curve between two integers on the number line as follows.

___ ____

Two arcs can be drawn as non-intersecting curves precisely if they do not intersect
in the sense of the definition, with the proviso that curves which only meet at their
end points are not viewed as intersecting.

In an informal sense, it is reasonable to view the integers as being the vertices of
an ∞-gon and to view arcs as being diagonals between vertices. Hence a maximal
set of non-intersecting arcs can be viewed as a triangulation of the ∞-gon. Some
typical ways of achieving such maximal sets are shown in sketches (1), (2), and (3)
in the Introduction. The sketches inspire the following definition.

Definition 3.2. Let A be a set of arcs. If for each integer n there are only finitely
many arcs in A which end in n, then A is called locally finite.

If n is an integer such that A contains infinitely many arcs of the form (m, n), then
n is called a left-fountain of A.

If n is an integer such that A contains infinitely many arcs of the form (n, p), then
n is called a right-fountain of A.

If n is both a left- and a right-fountain of A, then it is called a fountain.

It turns out that if a maximal set of non-intersecting arcs has a right-fountain then
it also has a left-fountain and vice versa; we owe this observation to Collin Bleak.
However, all we need here is the following more modest result.

Lemma 3.3. Let A be a maximal set of non-intersecting arcs. Then A has at most
one right-fountain and at most one left-fountain.

Proof. Suppose that A is not locally finite and let m be an integer where infinitely
many arcs of A end. So m is either a right- or a left-fountain of A and we can
suppose the former without loss of generality.

We must show that m is the only right-fountain of A, so let p 6= m be an integer. If
p > m then we can pick n > p such that (m, n) is in A. An arc (p, q) will intersect
(m, n) as soon as q > n.

___ m p n q ____

So A contains only finitely many arcs of the form (p, q) and p is not a right-fountain.
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If p < m then an arc (p, q) can only be in A if q ≤ m, for if q > m then it is possible
to pick an arc (m, n) in A with n > q, and then (m, n) and (p, q) intersect.

___ p m q n ____

Again A contains only finitely many arcs of the form (p, q) and p is not a right-
fountain. �

Remark 3.4. An ordered pair of integers (m, n) with m ≤ n − 2 can be viewed
as an arc. Using the coordinate system of Remark 1.4, it can also be viewed as a
vertex of the AR quiver Q of D, that is, an indecomposable object of D.

So there is a bijection between arcs and indecomposable objects of D.

This induces a bijection between sets of arcs and sets of indecomposable objects
of D. But such sets correspond bijectively to subcategories of D which are closed
under direct sums and direct summands, the bijection being given by A 7→ addA.

So there is a bijection between sets of arcs and subcategories of D which are closed
under direct sums and direct summands.

It is easy to check that the bijection plays together with the regions H(x) as follows.

Lemma 3.5. Let x and y be indecomposable objects of D. The following conditions
are equivalent.

(i) x ∈ H(y).

(ii) y ∈ H(x).

(iii) The arcs corresponding to x and y intersect.

The following is an immediate consequence.

Lemma 3.6. Let x and y be indecomposable objects of D. Then

D(x, y) 6= 0 ⇔ the arcs corresponding to x and Σ−1y intersect.

Proof. By Corollary 2.3, we have D(x, y) 6= 0 if and only if x ∈ H(Σ−1y), and
by Lemma 3.5, this is the same as for the arcs corresponding to x and Σ−1y to
intersect. �

4. Cluster tilting subcategories of D

This section proves Theorems A and B from the Introduction; see Theorems 4.3
and 4.4.

The distinction between maximal 1-orthogonal and cluster tilting subcategories in
the following definition is not standard in the literature, but Theorem B means that
it is useful for this paper.
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Definition 4.1. Let A be a subcategory of D. We write

A
⊥ = { d ∈ D |D(a, d) = 0 for each a ∈ A },

⊥
A = { d ∈ D |D(d, a) = 0 for each a ∈ A }.

A subcategory A is called maximal 1-orthogonal if it satisfies A = (Σ−1A )⊥ and
A = ⊥(ΣA ). (In fact, either equality implies the other because D is a 2-Calabi-Yau
category.)

A subcategory A is called cluster tilting if it is maximal 1-orthogonal and functo-
rially finite.

Remark 4.2. Let A be a subcategory of D which is closed under direct sums and
direct summands. The inclusion

A ⊆ (Σ−1
A )⊥ (7)

holds precisely if the presence of an indecomposable object a in A forbids an inde-
composable object x from being in A when there is a non-zero morphism Σ−1a → x.

It hence follows from Corollary 2.3 that the inclusion (7) is equivalent to the follow-
ing condition: If a is in A then the indecomposable objects in H(ΣΣ−1a) = H(a)
are forbidden from A .

We therefore sometimes refer to the H(a) as forbidden regions. Note that, in par-
ticular, a maximal 1-orthogonal subcategory of D satisfies (7).

Theorem 4.3. Let A be a subcategory of D which is closed under direct sums and
direct summands. Let A be the corresponding set of arcs under the bijection of
Remark 3.4.

Then A is a maximal 1-orthogonal subcategory of D if and only if A is a maximal
set of non-intersecting arcs.

Proof. By Remark 4.2, the inclusion (7) is equivalent to the condition that if a is
in A then the objects in H(a) are forbidden from A .

An indecomposable object a corresponds to an arc a, and by Lemma 3.5 the in-
decomposable objects in H(a) correspond precisely to arcs intersecting a. So the
subcategory A satisfies (7) if and only if it corresponds to a set of non-intersecting
arcs.

It follows that subcategories A maximal among the ones satisfying (7) correspond
to maximal sets of non-intersecting arcs. But it is not hard to check that such
maximal subcategories are precisely the ones with A = (Σ−1

A )⊥, and these are
the maximal 1-orthogonal subcategories of D. �

Theorem 4.4. Let A be a maximal 1-orthogonal subcategory of D. Let A be the
corresponding maximal set of non-intersecting arcs under the bijection of Remark
3.4.

Then A is functorially finite (that is, A is a cluster tilting subcategory of D) if and
only if A is (i) locally finite, or (ii) has a fountain.
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Proof. We remind the reader of Corollary 2.3 on the relation between existence of
non-zero morphisms in D and membership of the regions H+ and H−. This will be
used repeatedly in the proof.

We must show that A is functorially finite if and only if A satisfies condition (i) or
(ii) in the theorem. By [13, lem. 3.2.3] and its dual, it is enough to show that A is
precovering or preenveloping if and only if A satisfies (i) or (ii).

Suppose that (i) holds. Then it follows easily from Lemma 3.6 that for each inde-
composable object x of D, only finitely many indecomposable objects of A have
non-zero morphisms to x, and this implies that A is precovering.

Suppose that (i) does not hold; that is, A has a right- or a left-fountain. Without
loss of generality we can suppose that A has a right-fountain which by Lemma 3.3
is the only right-fountain of A. We must show that A is precovering if and only if
the right-fountain is also a left-fountain.

Suppose first that A is precovering. The right-fountain of A is an integer n for
which there are infinitely many arcs of the form (n, p) in A. These arcs give a
collection P of indecomposable objects in A which sit on a diagonal half line r in
the AR quiver Q of D. The following sketch of Q shows r along with some of the
indecomposable objects a of P and, in dotted lines, their regions H(Σa).

s′ r
�

�

a3

������������

s ℓ3

a2

�������

a1

���
ℓ2

ℓ1
__

�������� __

(8)

Note that the regions H−(Σa) for a in P share the half line s as a common edge,
while each of the line segments ℓi is an edge of a region H+(Σa) with a in P .

We are aiming to show that n is also a left-fountain, that is, there are infinitely
many arcs in A of the form (m, n). This is the same as showing that there are
infinitely many indecomposable objects of A which are on the half line s.

Let x be an indecomposable object in the region bounded by the diagonal half lines
s and s′ and let b → x be an A -precover. We can assume that the morphism b → x
is non-zero on each direct summand of b; in particular, each direct summand of b
belongs to H(Σ−1x).

It is easy to see that x is in H−(Σa) for infinitely many a in P , so there are infinitely
many a in P with a non-zero morphism a → x. Each of these morphisms factors
through b → x, so there is an indecomposable direct summand c of b such that
infinitely many a in P have non-zero morphisms to c. Hence c is certainly in H(Σa)
for some a in P . Moreover, since c is in A , Remark 4.2 says that c must be outside
the forbidden region H(a) for each a in P . The following sketch shows the regions
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H(Σa) (ordinary lines) and H(a) (wavy lines) for an indecomposable object a.
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Combining this with the previous sketch shows that there are only three possible
places for c: It is either on one of the line segments ℓi, or on the half line r, or on
the half line s.

Now, there are infinitely many a in P with non-zero morphisms to c; that is, infi-
nitely many a in P which are in H(Σ−1c). And it is easy to see from the sketch (8)
that this does not happen if c is on an ℓi or on r, so c must be on s. Moreover, c is a
direct summand of b, so c is in H(Σ−1x). Combining the sketch (8) with H(Σ−1x),
indicated in wavy lines, gives the following.

u

s′

r

s
�

�

x

�?
�?

�?
�?

�?
�?

�?
�?

�?
�?

�?
�?

�?
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_�
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_�
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�������
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���

t
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This shows that the indecomposable object c must be on s and above the line
segment t.

For each x we get a c in A which is on s and above the line segment t corresponding
to x. By moving x out along the half line u, we can clearly force infinitely many
distinct c’s. It follows that, as desired, there are infinitely many indecomposable
objects of A which are on s.

Suppose next that the right-fountain of A is also a left-fountain. Let x be an
indecomposable object of D; we will construct a A -precover of x. Consider again the
sketch (8). The arcs going right, respectively left from the fountain of A correspond
to indecomposable objects of A on the half lines r, respectively s, so each of r
and s contains infinitely many indecomposable objects of A . The other arcs in A

correspond to indecomposable objects of A away from r and s.

Consider the set of indecomposable objects a of A which have non-zero morphisms
to x, and divide it into disjoint subsets R, S, and T according to whether a is on
r, s, or neither. We will construct a morphism ar → x with ar ∈ A such that
each a → x with a ∈ R factors as a → ar → x. We will also construct morphisms
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as → x and at → x with the analogous properties with respect to S and T ; then an
A -precover can be obtained as ar ⊕ as ⊕ at → x.

If a set R, S, or T is finite, then the construction of the corresponding morphism
ar → x, as → x, or at → x is trivial.

The set T is always finite: Suppose that a is in T and let a be the arc corresponding
to a. There is a non-zero morphism a → x so Lemma 3.6 gives that a intersects the
arc x = (i, j) corresponding to Σ−1x. Hence a ends in an integer m with i < m < j.
Since a is in T , it is in A but not on one of the half lines r and s; this means that
a is an arc which is in A but does not end in the fountain of A. In particular, m is
not the fountain of A. We conclude that each of the finitely many possible values
of m is an integer where only finitely many arcs of A end, and it follows that there
are only finitely many arcs a as described. That is, T has finitely many elements.

We are left to deal with the cases of R and S being infinite.

Suppose that R is infinite. So there are infinitely many indecomposable objects a
of A on the half line r with non-zero morphisms to x, that is, with x in H(Σa). By
inspecting the sketch (8) it can be seen that x is in the region bounded by the half
lines s and s′. However, there are infinitely many indecomposable objects of A on
the half line s, and so we can chose one, ar, which has x ∈ H+(Σar) as indicated
here.

?�

?�
s′

r
�

�

s

?�

?�

a

����������

ar

?�
?�

?�
?�

?�
?�
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x
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_�
_�

_�
_�

_�
_�

?�
?�
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?�

?�
?�
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?�

?�
?�

?�
?�

��������������������� ___

Pick a non-zero morphism ar → x. If a is in R then it has a non-zero morphism
a → x, and then we have x ∈ H−(Σa) as in the sketch. But it is clear that ar ∈
H−(Σa) and so Lemma 2.7 says that a morphism a → x factors like a → ar → x
as desired.

Suppose that S is infinite. So there are infinitely many indecomposable objects a of
A on the half line s with non-zero morphisms to x, that is, with x in H(Σa). The
following sketch shows some of the indecomposable objects a on s and, in dotted
lines, their regions H(Σa). Since x is in infinitely many of these regions, it can be
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seen that it is again in the region bounded by the half lines s and s′.

s

a3

??????????????????

s′

a2

????????

a1

????

__

????????? __

Let as be the indecomposable object in S which is closest to the end of s and pick a
non-zero morphism as → x. It is clear that we have x ∈ H+(Σas). If a is in S then
it has a non-zero morphism a → x, and again x ∈ H+(Σa). The following sketch
shows the whole situation.

s

a

???????????????????????

s′

as

??????????

x

___

?????????????????? ___

But it is clear that as ∈ H+(Σa) and so Lemma 2.5(ii) says that each morphism
a → x factors like a → as → x as desired. �

Example 4.5. Theorem 4.4 shows that there are maximal 1-orthogonal subcate-
gories of D which are not cluster tilting; that is, they are not functorially finite.

A concrete example comes from the maximal set of non-intersecting arcs in the
sketch (3) in the Introduction, which corresponds to the maximal 1-orthogonal
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subcategory A with the indecomposable objects marked by bullets.
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In fact, it is not hard to adapt the arguments in the proof of Theorem 4.4 to show
that there is no A -precover of the indecomposable object x.

5. The cluster structure of D

This section proves Theorem C from the Introduction; see Theorem 5.2.

Definition 5.1. For each cluster tilting subcategory A of D we can consider the
set A of indecomposable objects of A whence A = add A. We will refer to the sets
A as clusters.

The clusters are said to form a cluster structure if the following conditions are
satisfied; cf. [1].

(i) If A is a cluster, then each of its indecomposable objects a can be replaced
with a unique other indecomposable object a∗ of D such that a new cluster
A∗ results.

(ii) There are distinguished triangles a∗ → b → a and a → b′ → a∗ in D

where the left-hand morphisms are add(A\{a})-envelopes and the right-
hand morphisms are add(A\{a})-covers.

(iii) If A is a cluster, then the AR quiver of add A has no loops or 2-cycles.

(iv) Passing from the AR quiver of add A to the AR quiver of add A∗ is given
by Fomin-Zelevinsky mutation at a in the sense of [5, sec. 8].

Theorem 5.2. The clusters form a cluster structure on D.

Proof. Remark 1.2 says that D is a 2-Calabi-Yau category and it follows from The-
orem 4.4 that there exist cluster tilting subcategories of D. Hence by [1, thm. I.1.6]
it is enough to show that for each cluster A, there are no loops or 2-cycles in the
AR quiver of the cluster tilting subcategory A = addA.

It is clear that there are no loops: If a is in A, then A (a, a) = D(a, a) = k by
Corollary 2.3, so each non-zero morphism a → a is an isomorphism and so not
irreducible.

To show that there are no 2-cycles in the AR quiver of A = add A, we will show the
stronger claim that given a and b in A with A (a, b) 6= 0, it follows that A (b, a) = 0.
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The following sketch shows the regions H(Σa) (straight lines) and H(a) (wavy
lines).
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Since D(a, b) = A (a, b) 6= 0, the indecomposable object b is in the region H(Σa)
by Corollary 2.3. Since a and b are both in the cluster tilting subcategory A , the
object b is outside the region H(a) by Remark 4.2.

It follows that in the sketch, b must be either on the line segment t or on one of
the half lines u and v, and in any of these cases it is easy to verify that a is outside
H(Σb), that is, A (b, a) = D(b, a) = 0. �

Example 5.3. Passing from the cluster A to A∗ is referred to as cluster mutation
at a. It corresponds to an obvious combinatorial mutation of maximal sets of arcs.

For instance, recall the leapfrog configuration.
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(9)

Under the bijection of Remark 3.4, this corresponds to the following cluster A in
D; the broken arc corresponds to the object a.
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(10)

Removing the broken arc from (9) creates a ‘quadrangle’, and there is clearly a
unique other arc which bisects it to form a new maximal set of non-intersecting
arcs.
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Under the bijection of Remark 3.4, this corresponds to the cluster A∗; the broken
arc corresponds to the object a∗.
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Example 5.4. If A is a cluster tilting subcateory of D, then D/A is an abelian
category by [11, sec. 2] and [13, thm. 3.3], and we have D/A ≃ modA by [11, sec.
2] and [13, cor. 4.4].

In the case of the A given by the sketch (10) above, it is easy to check that A is
the path category of its AR quiver Γ.

Γ = • // • •oo // a •oo // · · ·

So modA is equivalent to rep Γ, the category of finitely presented representations
of Γ. Such hereditary categories were studied in [15].

Likewise, A ∗ is the path category of its AR quiver Γ∗.

Γ∗ = • // • •oo a∗oo // • // · · ·

So modA ∗ is equivalent to rep Γ∗, and cluster mutation at a has changed rep Γ to
rep Γ∗.

6. Questions

Let us end the paper by posing some questions which seem natural in the light of
the results presented here.

(1) The category D behaves like a cluster category of type A∞. Is it possible to
define a cluster algebra of type A∞?

(2) Section 5 gives the means to do cluster tilting of abelian categories of the form
D/A where A is a cluster tilting subcategory. Which abelian categories have this
form? In particular, which hereditary abelian categories do?

(3) Can D be viewed as a covering category for the tubular 2-Calabi-Yau categories
studied in [3, sec. 2]?

(4) The AR quiver of D is ZA∞. Is there a similar category with AR quiver Z∆
when ∆ is another infinite Dynkin quiver than A∞?

(5) Is it possible to define ‘higher cluster categories of type A∞’? See [10], [16], and
[17] for the type An case.
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